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Abstract
This chapter reviews the econometric methods that are used by health economists to
model health care costs. These methods are used for prediction, projection and
forecasting, in the context of risk adjustment, resource allocation, technology
assessment and policy evaluation. The chapter reviews the literature on the
comparative performance of the methods, especially in the context of forecasting
individual health care costs, and concludes with an empirical case study.
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1. Introduction

Health care costs pose particular challenges for econometric modelling. Individual-
level data on medical expenditures or costs of treatment typically feature a spike at
zero and a strongly skewed distribution with a heavy right-hand tail. This non-
normality stems from the fact that, due to clinical complications and comorbidities,
the more severe patients may attract substantial and costly services. Relatively rare
events and medical procedures might be very expensive, creating outliers in the right-
hand tail of the distribution. Often, a small minority of patients are responsible for a
high proportion of health care costs and mean costs are well above median costs. In
econometric models of costs the error term will typically exhibit a high degree of
heteroskedasticity, reflecting both the process driving costs and heterogeneity across
patients1. The relationship between costs and covariates may not be linear and the
appropriate regression specification for such data may be nonlinear.

When the cost data represent the population as a whole, rather than just the users of
health care, the distribution will typically have a large mass point at zero (with costs
truncated at zero). The presence of a substantial proportion of zeros in the data has
typically been handled by using a two-part model (2PM), which distinguishes
between a binary indicator, used to model the probability of any costs, and a
conditional regression model for the positive costs. An alternative approach is to use
sample selection or generalised Tobit models to deal with the zeros. The relative
merits of the two approaches are discussed in Jones (2000). Binary, multinomial and
count data models for health care utilisation have been reviewed elsewhere ( see e.g.,
Jones, 2000; Jones, 2007; Jones et al., 2007; Jones, 2009). The modelling of count
data for doctor visits has strong affinities with the modelling of cost data, as both
have non-normal heavily skewed distributions, but this chapter focuses specifically
on econometric models for non-zero health care costs

Linear regression applied to the level of costs may perform poorly, due to the high
degree of skewness and excess kurtosis; OLS minimises the sum of squared residuals
on the cost scale and may be sensitive to extreme observations. As a result, in applied
work costs are often transformed prior to estimation. The most common
transformation is the logarithm of y, although the square root is sometimes used as
well. More recently the literature has moved away from linear regression towards
inherently nonlinear specifications, these include generalized linear models and
extensions, such as the extended estimating equations approach, as well as more
semiparametric approaches, such as finite mixture and discrete conditional density
estimators.

Econometric models for health care costs are used in many areas of health economics
and policy evaluation. Two areas where they are used frequently are risk adjustment
and cost-effectiveness analysis. Cost-effectiveness analyses tend to work with smaller

1 For example, if total costs are generated by the sum of discrete episodes of care
times the costs of those episodes and the episodes follow a count distribution such as
the Poisson which is inherently heteroskedastic.
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datasets and the scope for parametric modelling may be more limited (Briggs et al.,
2005). In cost-effectiveness analysis, and health technology assessment in general,
the emphasis is often on costs incurred over a specific episode of treatment or over a
whole lifetime. This introduces the issue of right censoring of cost data and the use of
survival analysis.

Risk adjustment has been adopted by health care payers who use prospective or
mixed reimbursement systems, such as Medicare in the United States. It is intended to
address the incentives for providers to engage in cream skimming or dumping of
potential patients (Van de Ven and Ellis, 2000). Risk adjustment also plays a role in
the design of formulas for equitable geographic resource allocation (see e.g., Smith et
al., 2001). In both cases regression models are used to predict health care costs for
individuals or groups of patients. The specification of these models depends on their
intended use but they typically condition on sociodemographic information, including
age and gender, diagnostic indicators and controls for comorbidities such as the
Diagnostic Cost Group (DCG) system (e.g., Ash et al., 2001). In risk adjustment the
emphasis is on predicting the treatment costs for particular types of patient, often with
very large datasets, and these costs are typically measured over a fixed period, such as
a year. Risk adjustment entails making forecasts of health care costs for individual
patients or groups of patients and is the motivation for exploring these methods here.
It means that the focus is on individual level, rather than aggregate, data. Individual
data comes from two broad sources: social surveys, in particular health interview
surveys, and routine administrative datasets.

Administrative datasets include health care provider reimbursement and claims
databases, and population registers of births, deaths, cancer cases, etc. (see, e.g.,
Atella et al., 2006; Chalkley and Tilley, 2006; Dranove et al., 2003; Dusheiko et al.,
2004; Dusheiko et al., 2006; Dusheiko et al., 2007; Farsi and Ridder, 2006; Gravelle
et al., 2003; Ho, 2002; Lee and Jones, 2004; Lee and Jones, 2006; Martin et al., 2007;
Propper et al., 2002; Propper et al., 2004; Propper et al., 2005; Rice et al., 2000;
Seshamani and Gray, 2004). These datasets are collected for administrative purposes
and may be made available to researchers. Administrative datasets will often contain
millions of observations and may cover a complete population, rather than just a
random sample. As such they suffer from less unit and item non-response than survey
data. They tend to be less affected by reporting bias, but as they are collected
routinely and on a wide scale they may be vulnerable to data input and coding errors.
Administrative datasets are not designed by and for researchers, which means they
may not contain all of the variables that would be of interest to researchers, and
different data sources may have to be combined.

This chapter provides an outline of the methods that are typically used to model
individual health care costs. It reviews the literature on the comparative performance
of the methods, especially in the context of forecasting individual health care costs,
and concludes with an empirical case study. Section 2 begins with linear regression
on the level of costs and on transformations of costs. Section 3 moves on to nonlinear
regressions that are specified in terms of an exponential conditional mean. These can
be estimated as nonlinear regressions or by exploiting their affinity with count data
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regression and hazard models, which can provide specifications that give additional
flexibility to the distribution of costs. Many recent studies of nonlinear specifications
are embedded within the generalized linear models (GLM) framework. The language
of the GLM approach is commonplace in the statistics literature but is less used in
econometrics and is outlined in Section 4. Recent research has seen the development
of more flexible parametric and semiparametric approaches and some of the key
methods are described in Section 5. Section 6 reviews evidence on the comparative
performance of methods that are most commonly used to model costs and for some of
the recent methodological innovations. This is reinforced in Section 7 which presents
an illustrative application of the methods with data from the US Medical Expenditure
Panel Study (MEPS). Section 8 suggests some further reading.

2. Linear regression models

2.1 Cost regressions
Linear regression on the level of costs (y) is a natural starting point to model health
care costs. It is familiar and straightforward to implement. Estimation by least squares
is easy and fast to compute in standard software even when there are hundreds of
regressors and millions of observations, which is often the case of risk adjustment
models based on administrative data. The model is specified on the “natural” cost
scale, measured directly as costs in dollars, pounds, etc., and no prior transformation
is required. As the natural cost scale is used the effects of covariates (x) are on the
same scale and are easy to compute and interpret:

The model can be estimated by ordinary least squares (OLS) and predictions of the
conditional mean of costs are given by:

The specification of the regression model can be checked using a variety of
diagnostic tests. These are presented here in the context of the linear cost regression
model but can be extended to models for transformed costs and to the nonlinear
regression models presented below.

With individual level data on medical costs there will typically be a high degree of
heteroskedasticity in the distribution of the error term, as indicated by relevant
diagnostic tests (Breusch-Pagan, 1979; Godfrey, 1978; Koenker, 1981; White, 1980).
The norm is to estimate the model using robust standard errors and use these for
inference (White, 1980).

A Ramsey (1969) RESET test, based on re-running the regression with squares and
other powers of the fitted values included as auxiliary variables, is often used as a test
for the reliability of the model specification. In the health economics literature
Pregibon’s (1980) link test is widely used as an alternative to the RESET, this adds
the level of the fitted values rather than including the individual regressors. For the

i i iy x   

ˆˆ( )i ix x 
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nonlinear models discussed below the RESET and link tests may be augmented by a
modified Hosmer-Lemeshow (1980, 1995) test and its variants. The idea here is to
compute the fitted values and prediction errors for the model, on the raw cost scale.
These prediction errors can then be regressed on the fitted values, testing whether the
slope equals zero. In the modified Hosmer-Lemeshow test an F statistic is used to test
for equality of the mean of the prediction errors over, say, deciles of the fitted values,
often accompanied by a graphical residual-fitted value plot of the relationship on the
cost scale. This can be implemented by regressing the prediction errors on binary
indicators for the deciles of the fitted values and testing the joint significance of the
coefficients.

A potential downside of heavily parameterized models is that they may over-fit a
particular sample of data and perform poorly in terms of out-of-sample forecasts.
When models are to be used for prediction, the Copas test provides a useful guide to
out-of-sample performance and guards against over-fitting (Copas, 1983; Blough et
al., 1999). The Copas test works by randomly splitting the data into an estimation, or
training, sample and a forecast, or holdout, sample (see e.g., Buntin and Zaslavsky,
2004). The model is estimated on the former and used to form predictions on the
latter. The predictions from the forecast data are then regressed on actual costs to test
whether the coefficient on the predictions is significantly different from 1 over
multiple replications of the random sampling. Evidence of a significant difference
suggests a problem of over-fitting 2 . It should be noted that the tests for model
specification - such as the RESET, link and Copas tests – are sensitive to the presence
of outliers in the data and diagnostics for influential observations should be checked,
particularly when split sample tests are used (Basu and Manning, 2009).

2.2 Regression on transformed costs
As health care cost data involves working with non-normal distributions on the raw
scale, for both costs and for the model residuals, much of the early literature focused
on transforming the cost data to produce a more symmetric distribution (see e.g.,
Carroll and Rupert, 1988; Manning, 1998; Manning et al., 2005; Mullahy, 1998).
The most popular transformation is the log transformation but square-root
transformations and other power functions are applied as well. The distinctive feature
of the transformation approach is that the regression model is specified on the
transformed scale and that the model no longer works with the raw cost scale.

2 Split sample methods, such as balanced half samples, are inefficient, as only a
portion of the data is used for estimation. A related approach is v-fold, or leave v out,
cross validation; for each subset of v observations in the data the model is estimated
with n-v observations and used to predict the v observations. Setting v=1, the leave
one out approach, means estimating the model n times which may be computationally
expensive. Ellis and Mookin (2008) propose an efficient Jacknife style variant of the
Copas test which makes better use of the data than the conventional 50:50 split and,
in the context of the classical linear model, avoids the need to estimate the model
multiple times.
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Log transformations
Using a logarithmic transformation of cost data typically reduces skewness, making
the distribution more symmetric and closer to normality. This has lead to widespread
use of regression models for the log of costs. One of the problems with this approach
is that it requires arbitrary additional transformations if there are zero observations or
the use of two-part specifications to deal with the zeros. More importantly standard
regression estimates provide predicted costs on the log scale, while analysts typically
want results that are expressed in terms of actual costs. Simple exponentiation of the
predictions does not result in predictions on the original cost scale. To deal with this
problem it is necessary to apply a smearing factor which is not always straightforward
to implement. This weakens the case for working with transformed data and, in
particular, problems arise with the retransformation if there is heteroskedasticity in
the data on the transformed scale (Manning, 1998; Manning and Mullahy, 2001;
Mullahy, 1998).

The log regression model takes the form:

The error term is assumed to have the standard properties:

Interest lies in predicting costs on the original scale and, given E(ln(y))ln(E(y)), this
relies on retransforming to give3:

Then:

If the error term is normally distributed, with variance , then it is possible to
estimate the conditional mean for the log-normal distribution using the OLS estimates
of β and σ: 

If the error term is not normally distributed, but is homoskedastic, then the estimate
based on log-normality will be biased. Instead the Duan (1983) smearing estimator
can be applied. In this case the conditional mean is estimated using:

where is the estimated smearing factor:

where n is the sample size and k is the number of parameters in the regression.
Typically this smearing factor lies between 1.5 and 4.0 in empirical applications with
health care costs, illustrating the fact that ignoring the retransformation can lead to
substantial underestimation of average costs.

3 Basu et al., (2006) refer to the ‘scale of interest’ and the ‘scale of estimation’.

  0E     0E x  

ln( )i i iy x   

2


 2ˆˆ ˆ( ) exp 0.5i ix x    

 ˆˆˆ ( ) expi ix x   

̂

   1 ˆˆ ˆ ˆ1 exp , lni i i i
i

n k y x   


    

exp( ) exp( )exp( )i i i i iy x x      

( | ) exp( ) (exp( ) | )i i i i iE y x x E x 
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If the error term on the log scale is heteroskedastic, Duan’s homoskedastic smearing
estimator will lead to bias, with the bias being a function of x. In the lognormal case:

In the general case:

This shows that eliminating bias in the predictions requires knowledge of the form of
heteroskedasticity. This may be manageable if there are a limited number of binary
regressors. For example, the approach adopted in the RAND Health Insurance
Experiment was to split the sample by discrete x variables and apply separate
smearing estimates (see e.g. Manning et al., 1987b). In general, this is difficult if the
number of regressors is large and contains continuous variables. However, it is
possible to exploit the fact that:

This suggests running a regression of the exponentiated residuals on x and using the
fitted values as the smearing factor4. An alternative is to use separate smearing factors
for different ranges of predicted costs, for example Buntin et al., (2004) use a separate
smearing factor for the top decile. Ai and Norton (2000) provide standard errors for
the retransformed estimates when there is heteroskedasticity.

Square root transformations
Square-root transformations have been favoured over log transformations in some
applications. In this case the implied model is:

The smearing estimator can be adapted to the square root transformation to give
estimates of the conditional mean:

The smearing factor, assuming homoskedastic errors, is:

In the heteroskedastic case predictions take the form:

Here the smearing factor can be estimated by running a regression of the squared
residuals on functions of x, such as the fitted values of the linear index.

Box-Cox models
Rather than imposing a particular transformation, a Box-Cox transformation can be
used to specify the cost regression (see Box and Cox 1964; Chaze 2005):

4 Veazie et al., (2003) adopt a variant of this approach using the fitted values of the
linear index in place of x in the context of a square root transformation.

  2ˆˆ ˆ( ) exp 0.5i i ix x x   

   ˆˆ( ) expi i ix x x   

i i iy x   

 
2

ˆˆˆ( )i ix x   

1 2ˆ î
i

N  

   
2

ˆˆ( )i i ix x x   

( ) 1i
i i i

y
y x


  




  

  [exp( ) | ]i i ix E x 
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This includes levels (λ=1) and logs (λ=0) as special cases. Assuming  has a normal
distribution, λ can be estimated, along with the other parameters, by maximum 
likelihood estimation in packages such as Stata (more general models are also
available that apply the Box-Cox transformation to the covariates as well).
Retransformation of predictions to the cost scale is not straightforward, especially in
the presence of heteroskedasticity. A more satisfactory use of the Box-Cox
transformation is provided by the Extended Estimating Equations (EEE) approach
that is discussed in Section 4 below.

Semiparametric transformation models
The flexibility of the Box-Cox transformation is taken a step further, while
maintaining the idea of writing transformed costs as a linear function of the regressors,
in a recent papers by Welsh and Zhou (2006) and Zhou et al. (2009). For example,
Zhou et al. (2009) propose a semiparametric transformation model:

The specification is semiparametric in two senses: the transformation H(.) is treated
as an unknown increasing function and the error (0,1) has an unknown distribution.
The function σ(.) captures heteroskedasticity and is assumed to be a known function. 
Estimation is based on an iterative algorithm that cycles between estimating β and γ, 
given H(.), and estimation of H(.) by nonparametric regression, given β and γ. 
Predictions are derived from an extended version of Duan’s (1983) smearing
estimator:

3. Nonlinear regression models

3.1 Exponential Conditional Mean models
The transformation approach discussed above deals with the non-normality of costs
by finding a transformation that makes the outcome more symmetric and then
estimating a linear regression on that scale. But these models can perform poorly and
create the problem of retransforming predictions back to an economically meaningful
scale. To avoid this problem, the exponential conditional mean (ECM) model
assumes a nonlinear relationship for the cost regression, such that:

The ECM model is written in a general form here, to encompass specifications where
the conditional mean is proportional to the exponential function. The use of the
exponential function recognises that the object of interest, health care costs, is a non-
negative quantity and accommodates the typical skewed shape of the distribution.
Notice also that this implies that the effect of covariates is proportional rather than
additive, with a constant proportional effect (see e.g., Gilleskie and Mroz, 2004).

 | expi i i iE y x x     

( ) ( )i i i iH y x x     

1

1

ˆˆ ( )1 ˆˆ ˆˆ( ) ( )
ˆ( )

n
i i

i i i
i i

H y x
x H x x

n x


   

 




  
     

    

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The ECM, and related extensions, can be estimated in a variety of ways. In practice
this is done using nonlinear least squares (NLS); the Poisson quasi-maximum
likelihood (QML) estimator; and using hazard models (for example, based on
exponential, Weibull and generalized gamma distributions). Also, the ECM is closely
related to generalized linear models (GLMs), which are covered in Section 4.

The ECM can be viewed as a nonlinear regression model:

This can be estimated by nonlinear least squares (NLLS) or, more generally, by the
generalized method of moments (GMM). The relevant first-order/moment conditions
are solved iteratively to give estimates of the regression parameters:

As this approach only uses the first moment rather than the full probability
distribution, it may be more robust than maximum likelihood, but it may also be less
efficient, depending on the form of the variance function.

3.2 Poisson regression
The basic model used for integer-valued count data is the Poisson model. This model,
and extensions such as the negative binomial model, are often used in health
economics to model the number of visits to a doctor but the models can also be
applied to continuous measures of health care costs (see e.g., Jones, 2000).

In the Poisson model the dependent variable yi is assumed to follow a Poisson
distribution, with mean i, defined as a function of the covariates xi. Thus, the model
is defined by the distribution:

where the conditional mean i is specified by:

So the Poisson model has the ECM form and standard software designed for Poisson
regression can be used to estimate the β parameters by maximum likelihood, even if 
the dependent variable is not an integer count, as in the case of the skewed
distribution of health care costs. The quasi-maximum likelihood (QML) property of
the Poisson estimator means that, so long as the mean is correctly specified, it is
consistent even if higher moments, such as the conditional variance, are misspecified.
In this case robust standard errors, computed using the sandwich estimator, are used
in place of the standard ML estimates.

3.3 Hazard models
The ECM and its extensions can be estimated using standard estimation routines for
parametric hazard models. These models are normally applied to duration data but, as

  exp 0i i ii y x x 

 | expi i i iE y x x    

( )
!

i iy
i

i
i

e
P y

y

 



 | expi i iE y x x   
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with count data regressions, can also be used for health care costs (see e.g., Jones,
2000).

For example, the Weibull model has a hazard function:

where ρ is known as the shape parameter. The hazard is monotonically increasing for 
ρ>1, showing increasing duration dependence, and monotonically decreasing for ρ<1, 
showing decreasing duration dependence. ρ=1 gives the exponential distribution.
Standard maximum likelihood estimation can be used to obtain estimates of the
parameters η, ρ and . In the context of cost data the parameter ρ provides flexibility 
to capture the shape of the distribution and, in particular, to allow for its skewness.
The Weibull model can be expressed in proportional hazard form but can also be
written in what is called the accelerated time to failure format, which expresses the
log of y as a function of the dependent variables and the shape parameter:

 
1

log( ) log( ) log( log( ( )))i i iy h x S y


    

where log(-log(S(y))) has an extreme value distribution. This provides an intuitive
link to the ECM model and to log transformed models of costs.

The scope for parametric modelling of survival data is taken a step further by the
generalized gamma model (GGM), which is often used as a flexible parametric
distribution for survival models. Manning et al. (2005) propose the use of this
distribution as a flexible way of modelling non-normal health care cost data. The
generalized gamma has density function:

 2

( ; , , ) exp( )
( )

, ( ) ln( ) , exp( )

i i i

i

i i i i i

i i

f y z u
y

where

z sign y u z

x


   

  

     

 



 


   



Special cases of the distribution are the gamma (   ) , Weibull ( 1  ),

exponential ( 1, 1   ), and lognormal ( 0  ). The model can be estimated by

maximum likelihood, for example using the streg command in Stata, and the
restrictions implied by the nested specifications can be tested explicitly.

In general the rth uncentred moment of the generalized gamma distribution is:

 
2

2

2

1

( ) exp( )
1

r
r

r

E y  




 



  
   
  

  
  
  

So, the conditional mean of costs is:

 1| . expi i i ih y x y x     
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2
2

2

1

( | ) exp( ) exp( )
1

i i i i iE y x x x 




    



  
   
     

  
  
  

This shows that the model fits within the ECM class, with the mean proportional to
an exponential function5. It also highlights the form of the various special cases as
well. For example, for the Weibull ( 1  ) :

1
( | ) exp( ) (1 ) exp( ) 1i i i iE y x x x  



 
       

 

For the Gamma distribution (  ):

2
2

2

1
1

( | ) exp( ) exp( )
1

i i i i iE y x x x


   



  
   
     

  
  
  

The conditional variance of the generalized gamma model (and of the standard
gamma) is proportional to the square of the mean.

Manning et al. (2005) propose that, when there is evidence that κ is small (<0.1), it is 
better to use a specification with additional heteroskedasticity, generated by assuming

exp( )iz  for a set of regressors z. This ensures that the special cases of the

GGM, such as the lognormal model, allow for heteroskedasticity through σ.

The use of hazard models is taken further by Basu et al. (2004) who compare log-
transformed models for health care costs to the semiparametric Cox (1972)

5 There is a link here with the generalized beta of the second kind (GB2) distribution.
This has been used to model the size distribution of earnings and in analyses of
income inequality and it nests other distributions such as the Burr-Singh-Maddala
(BSM) and Dagum, among others (see for example, Parker, 1999; Jenkins, 2009).
Mullahy (2009) discusses the issue of heavy tailed distributions and the use of the
BSM distribution but the GB2 distribution does not seem to have been applied to
health care costs. The mean of the GB2 distribution is:

   

1 1
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p q
a a

E y b
p q

    
       
    

  
 
 

Using  exp ib x  and treating the other parameters as scalars puts this in the ECM

class of models. The Burr-Singh-Maddala distribution is a special case when p=1, the
Dagum is a special case when q=1 and p=q=1 gives the log-logistic. Also, the
generalized gamma, and hence the gamma and Weibull, are limiting cases of the
GB2.
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proportional hazard model. In the Cox model the hazard function at y for individual i
is:

Cox’s method is described as being semiparametric because it does not specify the
baseline hazard function ho(y). Estimation uses the partial log-likelihood function,

where lRi are those observations in the risk set, Ri, at the point of exit of individual i.

By conditioning on the risk set the baseline hazard ho(y) is factored out of the partial

likelihood function. A drawback of the Cox model for modelling costs is that
estimates of the baseline hazard are required to estimate the conditional mean. But the
model does provide a benchmark for testing the ‘proportional hazards’ assumption
that is implicit in the choice of an ECM specification.

6. Generalized linear models

6.1 Basic approach
The dominant approach to modelling health care costs in the recent literature has been
the use of generalized linear models (see e.g., Blough et al 1999; Buntin and
Zaslavsky, 2004; Manning and Mullahy, 2001; Manning et al., 2005; Manning, 2006).
Generalized linear models (GLMs) specify the conditional mean function directly:

For example, with an exponential conditional mean (ECM) or ‘log link’:

The first component of a GLM model is a link function g(.) that relates the
conditional mean to the covariates:

The second component is a distribution (D) that belongs to the linear exponential
family. This is used to specify the relationship between the variance and the mean:

Advantages of the GLM approach are that predictions are made on the raw cost scale,
so that no retransformation is required, and that they allow for heteroskedasticity
through the choice of distributional family, albeit limited to specifications of the
conditional variance that are pre-specified functions of the mean.

The link function specifies the shape of the conditional mean function. The most
commonly used link functions are the identity – where covariates act additively on
mean, so that the interpretation of coefficients is the same as linear regression – and

 |i i i iE y x f x    

   | expi i i iE y x f x x     
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( | ) ( )i i iVar y x  

 0| ( ) expi i i ih y x h y x   

  log exp( )
ii li l RLogL x x    
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the log link – where covariates act multiplicatively on mean. The link function
characterises how the mean on the raw cost scale is related to the set of covariates.
For example, with a log link:

and:

The chosen distribution is used to describe the relationship between the variance and
conditional mean. Often this is specified as a power function:

Common distributional families based on the power function include:
– Gaussian:  constant variance; υ=0 
– Poisson: variance proportional to the mean; υ=1 
– Gamma: variance proportional to the square of the mean; υ=2 
– Inverse Gaussian: variance proportional to cube of the mean;  υ=3 

Other common distributions within the GLM framework use a quadratic function of

the mean, in particular the Bernoulli, (1 )  , and binomial, (1 )n  .

These distributions allow considerable flexibility in modelling cost data, although the
modelling of the variance is restricted to being a specified function of the mean. Note
that the Gaussian distribution with an identity link function is comparable to linear
regression. The distribution and link functions can be combined freely, although there
are canonical links for each distribution. The most popular specification of the GLM
for health care costs has been the log-link with a gamma error (Blough et al., 1999;
Manning and Mullahy, 2001; Manning et al., 2005).

Estimation of GLMs is based on the classical “estimating equations” or quasi-score
functions:
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where r is the Pearson or standardized residual and 1
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i

i



 




are the standardized

regressors (see, Wedderburn, 1974). GLMs are based on the linear exponential family
of distributions:

This means they have the pseudo- or quasi-ML property and estimates are consistent
so long as the mean is correctly specified (Gourieroux et al., 1984)6. The estimator
only specifies the conditional mean and variance functions, so more efficient

6 Cantoni and Ronchetti (2006) propose a robust variant of GLM that modifies the
quasi-score equations to make the estimator less sensitive to outliers.

 | expi i iE y x x   

 ln |i i iE y x x   

 var | |i i i iy x E y x
        

exp( ( ) ( ) ( ) )LEFf a b y c y   
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estimators may be obtained that make use of correctly specified functions for higher
moments, such as the skewness of the distribution.

The LEF density presented above is what is known as the mean parameterisation of
the density, where:

( )

( )
i

a
E y

c







     

GLMs are more typically presented in terms of the canonical parameterisation:
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Where:
( )iE y b    

The canonical link is such that :
where x    

For example, with the Poisson distribution:
( ) exp( ), ( ) exp( ), ln( ) ln(exp( ))b b             

In applications the choice of link function and distribution is often guided by the use
of the Pregibon link test, modified versions of Park’s (1966) test for the distribution,
and by the use of residual plots. The link test has been described above. In the context
of GLMs it should be applied using the same link function and distribution as the
model being tested, taking care to check for influential observations in the data. The
idea of the modified Park test is that the GLM distribution should reflect the
relationship between the variance and the mean, when this is based on a power
function it implies:

The test exploits this by regressing  2ˆln ( )i iy y on  ˆln iy and a constant, typically

using a GLM to estimate the model, having tested for the appropriate form of the link
function to use (e.g., Manning and Mullahy, 2001). The estimated slope coefficient
from the modified Park test provides guidance on the appropriate distributional
family.

4.2 Extended estimating equations
In response to the problem of selecting the appropriate link and variance functions,
Basu and Rathouz (2005) suggest a flexible semiparametric extension of the GLM
model. Their model, which is labelled the extended estimating equations (EEE)
approach, uses a Box-Cox transformation for the link function:

This includes the log-link as a special case along with other power functions of y.

This is combined with a general power function for the variance:
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which gives a flexible specification that nests the common GLM distributions and
allows the restrictions to be tested7. The additional parameters are estimated, along
with the regression coefficients, by QML using the extended estimating equations.
The EEE specification is heavily parameterized and care may be needed in calibrating
numerical optimisation routines to estimate the model8. Basu et al. (2006) apply the
EEE method to claims data on the incremental costs associated with heart failure.

5. Other nonlinear models

5.1 Finite mixture models
The proportional effect of covariates implied by the ECM may be too restrictive in
some applications and evidence of heterogeneity, in the form of a multimodal
distribution may indicate that costs can be modelled as a mixture. This can be done
semiparametrically and finite mixture models have been applied to health care costs.
For example Deb and Burgess (2007) use mixtures of gamma distributions.

To specify a finite mixture model, assume that each individual belongs to one of a set
of latent classes j=1,…,C, and that individuals are heterogeneous across classes9.
Conditional on the observed covariates, there is homogeneity within a given class j.
Given the class that individual i belongs to, the outcomes have a density fj(yi| xi; β j ),
such as a gamma distribution, where the βj are vectors of parameters that are specific
to each class. The probability of belonging to class j is ij, where 0< ij <1 and

1 1C
ijj   . Unconditional on the latent class the individual belongs to, the density of

yi is given by:

   1 1
1

| ; ,..., ; ,..., | ;
C

i i i iC C ij i i jj
j

f y x y xf     


 

The discrete distribution of the heterogeneity has C mass points and the s need to be
estimated along with the βjs. In most empirical applications of finite mixture models
the class membership probabilities are treated as fixed parameters ij = j but this can
be relaxed (see for example, Deb and Trivedi, 1997; Deb and Holmes, 2000; Deb,
2001; Deb and Trivedi, 2002; Jiménez-Martin et al., 2002; Atella et al., 2004;

7 Even greater flexibility is assumed by Chiou and Muller (1998) who leave the link
and variance functions unspecified and estimated nonparametrically, by locally
weighted least squares, as part of a three stage extension of the QML estimator. This
method does not seem to have been applied to health care costs so far.
8 Although, in Hill and Miller’s (2009) comparative analysis of cost regression
models the EEE estimator fails to converge in only 1.8 per cent of the 4,096 models
they estimate.
9 This section focuses on models for latent mixtures, where class membership is
unobserved. Mixture models can of course be used when there is an observed split,
such as two-part models, applied to zero and positive costs, or multi-part models,
applied to different categories of inpatient and outpatient expenditures.
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Conway and Deb, 2005; Bago d'Uva, 2006). After estimating the model, it is possible
to calculate the posterior probability that each individual belongs to a given class. The
posterior probability of membership of class j depends on the relative contribution of
that class to the individual’s likelihood function. This is given by:

 
 

 
1

| ;

| ;

ij j i i j

C

ik k i i k
k

f y x
P i j

f y x

 

 


 



Each individual can then be assigned to the class that has the highest posterior
probability for them and the predicted costs can be calculated separately for each
class.

5.2 The discrete conditional density estimator
Gilleskie and Mroz (2004) propose a semiparametric approach that divides the data
into a fixed number of discrete intervals then applies discrete hazard models,
implemented as a sequence of logits, to estimate the conditional density function.
From that the conditional mean and other conditional expectations can be formed.
This approach can be seen as a generalisation of the two-part model into a multi-part
model: in which a separate estimate of the conditional mean is used for each of the
intervals and the probability of costs lying in each interval is a function of the
covariates.

The approach begins by dividing the support of y into a fixed number (K) of discrete
intervals, or bins; these may be chosen to contain an equal number of observations,
such as deciles, or they may reflect features of the distribution such as a mass point at
zero. The estimator focuses on an approximation to the conditional expectation of
some function of costs h(y). This takes the form of a weighted average:

*
1( ) | ( ) ( | ) ( ) [ | ]i i i i i k k ikE h y x h y f y x dy h k p y Y y x      

where h*(k) is an approximation of the function of interest within the kth interval.
The general formulation of the conditional expectation nests the conditional mean of
costs, where h(.) is simply an identity. In practice, Gilleskie and Mroz (2004) choose
to use the sample mean within each interval to implement the approximation, which
does not allow for heterogeneity within the intervals, but local regressions could be
used instead. This may be a particular problem with the open-ended interval at the top
end of the distribution that contains the high cost cases (Basu and Manning, 2009)

The heart of the approach is estimation of the conditional probabilities of belonging
to each interval which are then used as the weights in the averaging. They suggest
that this should be estimated by a discrete hazard specification implemented using
logit models on an expanded version of the data. A separate logit could be estimated
for each interval but they adopt a pooled logit model that smooths over the intervals
using higher order polynomials in the regressors. The model is estimated for a given
number of partitions of the support of y. To choose the appropriate number of
partitions Gilleskie and Mroz (2004) suggest selecting the value that maximises a
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penalised log-likelihood and, on the basis of Monte Carlo experiments, indicate that
10-20 intervals will usually be sufficient. 10 Standard errors are obtained by
bootstrapping the whole procedure.

6. Comparing model performance

6.1 Evidence from the literature
There is a rich literature that compares the performance of methods of estimating
health care costs (see for example, Basu et al., 2004; Basu et al., 2006; Buntin and
Zaslavsky, 2004; Deb and Burgess 2007; Duan et al., 1983; Gilleskie and Mroz,
2004; Hill and Miller 2009; Manning and Mullahy, 2001; Manning et al., 2005;
Montez-Roth et al., 2006; Veazie et al., 2003). These studies include classical Monte
Carlo analyses, with hypothetical cost data drawn randomly from specified
parametric distributions, along with studies of empirical datasets that use a quasi-
Monte Carlo design, with estimation and forecast samples drawn from the data. The
former allow the performance of estimators to be assessed against known parameter
values. The latter allow the predictive performance to be assessed when the models
are confronted with the idiosyncracies of the distribution of actual cost data, rather
than textbook parametric distributions, although the findings may then be specific to
particular measures of costs and specific groups of people. A general finding of these
studies is that the appropriate specification varies from application to application, for
example, depending on whether the costs relate to elderly or non-elderly patients and
whether total health care costs or specific costs such as prescription drug spending are
being modelled. Table 1 illustrates the range of methods spanned by some recent
published studies.

10 The estimation routine is described as being a maximum likelihood procedure but
the properties of the estimator, with respect to the sample size and number of
intervals are not derived. Although the approach is not based on explicit
distributional assumptions it does use explicit, logit, functional forms. So, compared
to some other semiparametric estimators, predictions can be computed for
counterfactual values of the regressors. This is used to compute numerical derivatives
of the expected values.
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Table 1: Coverage of methods in some recent comparative studies
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OLS on y   ███ ███ ███ 
OLS on ln(y) + Duan ███ ███ ███ ███ ███ 

OLS on y    ███  

Box-Cox
GLM log-gamma ███  ███  ███ 
GLM linear-gamma
& quadratic-gamma

   ███  

EEE   ███  ███ 
Weibull ███ ███    
Generalized gamma  ███   ███ 
Cox PH ███     
FMM gamma    ███  

One of the most comprehensive published comparisons of methods is provided by
Hill and Miller (2009). They compare many of the models for positive expenditures
that have been discussed above: linear OLS; OLS on log costs with smearing: GLMs
using a log link and Poisson or gamma distributions; the standard generalized gamma
model (GGM), without additional heteroskedasticity, and the extended estimating
equations model (EEE). The GGM and EEE are the most flexible approaches and are
not nested within each other, but they both share the gamma model as a common
special case. Hill and Miller’s empirical analysis is based on the first eight waves of
the US Medical Expenditure Panel Survey (MEPS) spanning the years 1996-2003.
They regress medical expenditures on measures of chronic conditions and
socioeconomic characteristics from the previous wave of data. To encompass
different shapes of cost distributions the analysis uses two groups of people, elderly
people who are eligible for Medicare and non-elderly people who have insurance, and
two measures of costs, total health care expenditure and expenditures on prescription
drugs. This gives four sub-samples and the shape of the distribution of costs differs
across the samples. The comparison of models uses cross validation, in the style of
the Copas test, with repeatedly grouped balanced half-samples (RGBHS) that take
account of the complex survey design of MEPS. This allows estimation and
validation on 1024 half-samples and the models are compared in terms of model fit
and out-of-sample predictions.
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Hill and Miller’s findings echo earlier work which shows that different functional
forms (link functions) work better with different sub-samples and that it is not the
case that one specification dominates. The log link works well for total expenditures
among the non-elderly but not for the elderly. While for prescription drugs a square
root link gives a better fit for both elderly and non-elderly. Bias is measured by the
mean prediction error (MPE) and predictive accuracy is measured by the mean
absolute prediction error (MAPE). The log transformed OLS model performs poorly,
leading to substantial over-predictions and has the worst fit for all four distributions.
The best performing models are linear OLS, Poisson regression and the EEE model.
Linear OLS and EEE have less over-fitting, while the GGM and OLS on logs are
much more likely to over-fit the data. The performance of the GGM and standard
gamma model deteroriates when a log link is not appropriate, as is the case for three
out of the four empirical distributions.

The MEPS data has a relatively small sample size. In contrast Deb and Burgess
(2007) make use of 3 million observations from claims data for the US Department of
Veterans Affairs (VA) for financial year 2000. This allows them to assess the role of
sample size in determining the comparative performance of different methods11. They
use a quasi-Monte Carlo approach, dividing the data into estimation and prediction
groups, each with 1.5m observations. The estimation group is then randomly
sampled, with replacement, to give estimation samples of five different sizes ranging
from 10,000 to 500,000. Twenty samples are generated for each sample size.
Predictions are computed using the full prediction group. These are evaluated using
the mean prediction error (MPE) that indicates overall bias; the mean absolute
prediction error (MAPE) that indicates the ability of the models to predict individual
costs; and the absolute deviations of the MAPE (ADMAPE), based on deviations
across the experimental replications. The models control for diagnostic groups and
comorbidities and are estimated with and without trimming of the top 5 per cent of
the cost data 12 . The results from the multiple simulations are combined and
summarised using response surface regressions.

As in Hill and Miller (2009), and other recent studies, the log regression model
performs poorly across the board in terms of bias (MPE) and predictive accuracy
(MAPE). Linear and square root regressions exhibit negligible bias on the untrimmed
prediction samples. When the data is trimmed of the top 5 per cent of costs finite
mixtures of gammas, with 2 or 3 components, do better than the regression models.
Comparison of the different sample sizes suggests that the linear and square root
regressions converge on the asymptotic values of the MPE for sample sizes of 20-

11 Montez-Roth et al. (2006) also use VA data and compare sample sizes ranging from
5,000 to 500,000, with a focus on expenditures by patients with diagnoses for mental
health problems and substance abuse. Their comparison of linear, square root and log
models suggests that the square root transformation works best for predictive
accuracy with these data.
12 Note that trimming only one end of the distribution will not be mean-preserving.
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30,000, while the finite mixture models converge with samples of 30-40k13. When
the focus shifts to the MAPE, the 2-component FMM dominates, whether or not the
data is trimmed. This specification also does best in terms of the DAMAPE, which
captures the variability across replications, but the other best performing models – the
square root regression and the gamma model - give similar results and linear OLS is
not far behind.

7. An empirical application

To illustrate the performance of the various specifications discussed above, this
section presents an empirical application that draws on an easily accessible dataset.
This is taken from Microeconometrics using Stata by Cameron and Trivedi (2009)
and the dataset is available through their web page. The original source is the US
Medical Expenditure Survey (MEPS), which is a set of surveys of families and
individuals, their medical providers and employers across the US. The surveys collect
data on the use of health services (e.g. frequency and cost) and whether individuals
hold health insurance. The particular subset of data is taken from the MEPS sample
used in Chapter 3 (p.71) of Cameron and Trivedi (2009), available as the Stata dataset
mus03data.dta14. Cameron and Trivedi describe the data as follows:

“We analyze medical expenditure of individuals aged 65 years and older who
qualify for health care under the U.S. Medicare program. … Medicare does not
cover all medical expenses. For example, copayments for medical services and
expenses of prescribed pharmaceutical drugs were not covered for the time period
studies here. About half of eligible individuals therefore purchase supplementary
insurance in the private market that provides insurance coverage against various out-
of-pocket expenses.” (p71)

Total annual health care expenditures are measured in US dollars and this is the
outcome variable in the cost regressions. Sociodemographic and health-status
measures are also available together with insurance status. Following Cameron and
Trivedi (2009) a simple additive specification of the linear index is used that includes
indicators of supplementary private insurance, physical limitations, activity
limitations, the number of chronic conditions, age, gender and household income as
regressors. It is important to note that the simple comparison of models presented
hear uses the same linear index in each specification. In empirical applications a
richer specification will typically be used with many more covariates and with
polynomials and interaction terms, perhaps using a fully saturated model as a starting
point if sufficient data is available (Manning et al., 1987a). A fuller and fairer

13 Note that the FMM performs poorly on the MPE criterion in the empirical case
study presented in Section 7 which uses a much smaller sample of around 3,000
observations from MEPS.
14 The MEPS has a complex survey design that involves over-sampling of specific
groups. However sample weights and other design variables are not included in this
subset and, purely for the purposes of this empirical illustration, it is treated here as if
it was a simple random sample.
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comparison of models may entail using different specifications of the regressors for
each model, so that the best specification of one model is compared with the best
specification of another15. For example, Veazie et al. (2003) discuss the case where a
linear specification, ix  , is appropriate on the square root scale, then the appropriate

specification on the levels scale would be a quadratic function of ix  .

The models presented here are the ones most commonly used in the health economics
literature and some of the recent innovations: OLS estimates for linear regression of
actual costs; OLS estimates for regressions on log and square root transformations,
using the Duan smearing estimator; the ECM model, estimated by NLLS and using
the Poisson ML estimator; the generalized gamma model estimated by ML, including
the specification with additional heteroskedasticity; the generalised beta of the second
kind (GB2); four variants of the GLM, one with a square root link and gamma
distribution and three with a log link but with gamma, log-normal and Poisson
distributions; the extended estimating equations model (EEE); and a finite mixture
model (FMM) with a two-component gamma mixture. All of the models are
estimated in Stata, using built-in and user-written commands16.

The sample is made up of 2,955 individuals who have positive annual medical
expenditures (109 cases with zero costs are excluded). The mean cost is $7,290, with
a minimum of $3 and a maximum of $125,610. The interquartile range of $6,064 is
quite tight compared to the overall range and the distribution of costs is distinguished
by a very heavy right-hand tail. The skewness statistic is 4.1 (compared to 0 for
symmetric data) and kurtosis is 25.6 (compared to 3 for normal data). As expected for
heavily skewed data, the median cost, $3334, is less than half the mean cost.

Estimates for linear regression on the level of costs show evidence of a high degree of
heteroskedasticity. For example, the Breusch Pagan test gives a F statistic of 74.1 and
the White test statistic is 104.017. Although, it is notable that the use of Huber-White
robust estimates does little to change the magnitude of the standard errors in this
application. The estimated residuals from the linear model inherit the shape of the
distribution of costs and are highly non-normal, with a skewness statistic of 4.1 and a
kurtosis statistic of 26.4. Individual residuals can be very large and range from -
17,311 to 113,095. Also using the linear model does lead to some negative predicted
costs. Specification tests for the linear model, along with the other models, are
discussed below.

As well as making the distribution of costs more symmetric, the logarithmic
transformation shrinks the range of variation in the dependent variable. When linear
regression is applied to the log of costs the adjusted R2 goes from 0.11 for the levels

15 I am grateful to Will Manning for this observation.
16 The discrete conditional density estimator is not included in this exercise: at the
time of writing, no standard command or user-written program for this method is
available in the public domain.
17 This is the F test version of the Breusch-Pagan statistic that drops the assumption of
normality.
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model to 0.23 for the log model. Heteroskedasticity is less severe than on the levels
scale but does not disappear: the Breusch-Pagan F statistic is 33.2. Using the log
model requires retransformed estimates to predict costs 18 . The estimate of the
standard Duan smearing factor is 2.0. A similar retransformation process is applied to
the estimates of the square root regressions (see Veazie et al., 2003). The final
transformed regression approach used here is to estimate the Box-Cox model. This
suggests a transformation that is close to the log transformation with an estimated
value of λ equal to 0.076, although this estimate is statistically significantly different 
from 0. However this standard Box-Cox model does not allow for heteroskedasticity
(unlike the EEE model).

The exponential conditional mean (ECM) model is estimated by nonlinear least
squares (using the nl command) and Poisson regression (poisson). Extensions
that allow for the mean to be proportional to the exponential function and capture the
shape of the distribution using parametric hazard functions are estimated for
exponential (streg, dist(exp)), Weibull (dist(w)) and generalized gamma
(dist(gamma)) distributions. The latter can also be estimated using Anirban
Basu’s user-written code (gengam2). This provides tests of all of the nested special
cases all of which are rejected, although the lognormal distribution performs best:
these are the standard gamma (chi squared equals 359.85), lognormal (16.24),
Weibull (258.27) and exponential (412.52). The estimated value of κ is 0.2 and the 
estimate of σ is 1.19. Although the value of κ is greater than 0.1 the generalized 
gamma model is also estimated with additional heteroskedasticity. All of the special
cases of this variant of the model are rejected, with the lognormal again performing
best. To complement the generalized gamma model another flexible size distribution
is estimated; this is the generalised beta of the second kind (GB2) which is estimated
by ML using Stephen Jenkin’s program gbfit2 (Jenkins, 2009)19.

The generalized linear model (GLM) framework is used to estimate a set of models;
the first has a square root link and gamma variance (glm, link(power 0.5)
family(gamma)) and the others all have log links, coupled with a gamma
distribution (glm, link(log) family(gamma)), a Poisson distribution
(family(poisson)), and a lognormal distribution (family(normal)). The
link test rejects the log link but does not reject the square root link. The modified Park
tests for these specifications always reject specific integer values of υ, although 
values of 1 (Poisson) and 2 (gamma) perform best. These GLM specifications are
nested with the extended estimating equations (EEE) model of Basu and Rathouz
(2005) which is estimated by Anirban Basu’s program pglm. The estimate of the
Box-Cox parameter for the link function is 0.563, suggesting a square root rather than
a log transformation, and the estimate of υ2 is 1.67, between the Poisson and gamma
distributions.

18 The heteroskedastic smearing uses predictions from a regression of the
exponentiated residuals on the fitted values of the linear index, having confirmed that
all of the predictions have positive values.
19 Note that this program uses a linear rather than an exponential specification to
introduce the regressors so the version estimated here is not an ECM.
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The finite mixture model is estimated for a two-component gamma specification,
using Partha Deb’s program fmm. This divides the sample into two classes with
membership probabilities (π) of 0.75 and 0.25. The predicted costs for the first group 
average $2,956 and range from $694 to $23,978. While those for the second group
are higher, averaging $15,868 and ranging from $5,101 to $91,232, suggesting a
smaller group of heavy users of health care.

Table 2 summarises some specification tests. P-values are reported for the Pregibon
link test (computed, where applicable, using linktest and the Pearson test, which
is related to the Hosmer-Lemeshow approach, and tests whether the correlation
coefficient between the prediction error and the fitted values, on the raw cost scale,
equals 0. The Copas test is implemented by v-fold cross validation. The sample is
split into equal groups of size v and predictions for those observations are based on
the estimates of the model computed for the rest of the sample20. It is notable that the
regression on log costs, the exponential conditional mean models and the glms with a
log link all perform poorly according to the link test. The Copas test indicates that
both versions of the generalized gamma specification suffer from over-fitting,
although performance is improved by allowing for additional heteroskedasticity.
Over-fitting seems to be less of a problem with the generalized beta of the second
kind. The GLM log-gamma model, one of the more widely used empirical
specifications, also performs poorly with these data according to the Copas test.

Table 3 presents measures of goodness of fit within the estimation sample and
measures of predictive performance based on the cross validation approach. For the
estimation sample the measures of goodness of fit include the R2 from a regression of
actual costs on the predicted values on the raw scale, as well as the related measure of
root mean squared error (RMSE):

and the mean absolute prediction error (MAPE):

For the cross validation estimates the RMSE and MAPE, which measure precision of
the predictions, are augmented by the mean prediction error (MPE), which captures
bias within the forecast sample:

The three models which perform best on each criterion are highlighted in bold.

Ordinary Least Squares estimation of the linear regression model, which is based on
an estimator that maximises the R-squared, does best on this specific criterion within
the estimation sample. The EEE model and the GLM model with square root link and
gamma distribution have a similar performance to OLS. The generalized gamma

20 Here the sample is split into 100 groups with either 29 or 30 observations in each group.
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model performs worst on this criterion. The same pattern is reflected in the RMSE for
both the estimation and forecast samples. Turning attention to the MAPE, which
captures the precision of the predictions in terms of the level of costs, OLS no longer
dominates and EEE and the GLM model do better. The finite mixture of gammas
does even better in terms of MAPE. But this is offset by a large degree of bias in the
forecast sample, indicated by the MPE. The bias is small for linear regression, the
square root transformed regression, Poisson regression (ML and GLM) and the EEE
model. The bias is substantial for the log transformed regression, the generalized beta
of the second kind and the FMM.

The results illustrate that there may be a trade-off between bias and precision of
forecasts, most starkly in the case of the FMM estimator. It is notable that the simple
linear model, estimated by OLS, performs quite well across all of the criteria, a
finding that has been reinforced for larger datasets than the one used here.
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Table 2: Specification Tests

Link test
p value,
within
sample

Pearson
test
p value,
within
sample

Copas
test,
v-fold
cross
validation

OLS on y 0.133 0.974
(0.608)

OLS on ln(y) 0.000 0.000 0.528
(0.000)

OLS on y 0.712 0.855 1.210
(0.001)

ECM - NLLS - 0.350 1.002
(0.968)

ECM – Poisson-ML 0.000 0.158 0.897
(0.035)

Generalized gamma 0.000 0.000 0.590
(0.000)

Gen gamma + het 0.000 0.004 0.841
(0.013)

Generalized beta 2 - 0.832 0.974
(0.621)

GLM sqrt-gamma 0.633 0.343 0.934
(0.178)

GLM log-gamma 0.000 0.000 0.759
(0.000)

GLM log-normal 0.001 0.350 1.002
(0.968)

GLM log-poisson 0.000 0.158 0.897
(0.035)

EEE - 0.690 0.955
(0.371)

FMM gamma - 0.935 0.963
(0.489)

Notes:
i) The results for the Copas tests with v-fold cross validation are all based on

100 groups of size 29/30. The figures reported are the slope coefficient
and the p value for the test of the null hypothesis that this coefficient
equals 1.

ii) Numbers in bold indicate that the model was not rejected by the
specification test at a 5% level of statistical significance.
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Table 3: Measures of goodness of fit

R2 RMSE
(1) (2)

MAPE
(1) (2)

MPE

OLS on y 0.116 11270 11307 6225 6244 -1.41

OLS on ln(y) 0.095 11499 11906 6329 6639 -721.3

OLS on y 0.114 11283 11338 6181 6252 -1.12

ECM - NLLS 0.113 11296 11353 6267 6294 -102.6

ECM – Poisson-ML 0.110 11312 11362 6196 6220 -3.36

Generalized gamma 0.093 11769 11714 6429 6452 -403.5

Gen gamma + het 0.106 11354 11395 6221 6245 -39.0

Generalized beta 2 0.110 11319 11337 6409 6423 -432.1

GLM sqrt-gamma 0.115 11281 11311 6185 6203 -29.3

GLM log-gamma 0.106 11390 11432 6254 6276 -147.0

GLM log-normal 0.113 11295 11353 6267 6294 -102.6

GLM log-poisson 0.110 11312 11362 6196 6220 -3.36

EEE 0.116 11274 11310 6179 6200 -7.06

FMM gamma 0.106 11395 11433 5775 5793 1132.7

Note: R2 denotes the R-squared from a regression of actual costs on the predicted
values; RMSE is the root mean squared prediction error, on the cost scale, where (1)
is for the estimation sample and (2) is for the cross validation predictions; MAPE is
the mean absolute prediction error; MPE is the mean prediction error (bias) for the
cross validation predictions.
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8. Further reading

This chapter has focused on estimating and predicting health care costs using
regression models and microdata. A comprehensive guide to microeconometric
methods in general is provided by:

Cameron, A. C. and P. K. Trivedi (2005). Microeconometrics. Cambridge:
Cambridge University Press.

This has a companion text which shows how the techniques can be implemented in
Stata, with many empirical examples, including the use of the MEPS data on health
care expenditures:

Cameron, A. C. and P. K. Trivedi (2009). Microeconometrics Using Stata. College
Station Texas: Stata Press.

Models for health care costs are often based on health survey data. The issues
associated with survey design, sampling, nonresponse and imputation, and inference
with complex surveys are discussed in depth by:

Korn, E. L. and B. I. Graubard (1999). Analysis of Health Surveys. New York: John
Wiley & Sons Inc.

Parametric models for health care costs draw on the theory of size distributions such
as the lognormal and generalized gamma. These and other size distributions are given
a comprehensive treatment in:

Kleiber, C. and S. Kotz (2003). Statistical Size Distributions in Economics and
Actuarial Sciences. New York: John Wiley & Sons Inc.

A classic text for generalized linear models is:

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. Second Edition.
Boca Raton: Chapman and Hall.

The application of GLMs in Stata is described in:

Hardin, J. W. and J. M. Hilbe (2007). Generalized Linear Models and Extensions.
Second Edition. College Station Texas: Stata Press.
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