

HEDG Working Paper 09/28

Analysis of the Validity of the Vignette Approach to Correct for Heterogeneity in Reporting Health System Responsiveness

Nigel Rice

Silvana Robone

Peter Smith

August 2009

ISSN 1751-1976

Analysis of the Validity of the Vignette Approach to Correct for Heterogeneity in Reporting Health System Responsiveness

Nigel Rice, Silvana Robone*, Peter Smith

Centre for Health Economics, University of York

August 2009

Abstract

Despite the growing popularity of the vignette methodology to deal with self-reported, categorical data, the formal evaluation of the validity of this methodology is still a topic of research. Some critical assumptions need to hold in order for this method to be valid. In this paper we analyse the assumption of “vignette equivalence” using data on health system responsiveness contained within the World Health Survey.

We perform several tests to check the assumption of vignette equivalence. First, we use a test based on the global ordering of the vignettes. A minimal condition for the assumption of vignette equivalence to hold is that individual responses are consistent with the global ordering of vignettes. Secondly, using the HOPIT model on the pool of countries, we undertake sensitivity analyses, stratifying countries according to the Inglehart-Welzel scale and the Human Development Index. The results of this analysis are robust, suggesting that the vignette equivalence assumption is not contradicted. Thirdly, we model the reporting behaviour of the respondents through a two-step regression procedure to evaluate whether the vignettes construct is perceived by respondents in different ways. Overall, across the analyses the results do not contradict the assumption of vignette equivalence and accordingly lend support to the use of the vignette methodology when analysing self-reported data and health system responsiveness.

Manuscript words: 4920

This research was funded by Economic and Social Research Council through their Public Services Programme (RES-166-25-0038).

Keywords: Health system responsiveness, Anchoring vignettes, Vignette Equivalence

***Contact author:** Silvana Robone, Centre for Health Economics, Alcuin Block A, University of York, Heslington, York, YO10 5DD, United Kingdom. Email: sr517@york.ac.uk

1. Introduction

In recent years the concept of responsiveness has been promoted as a desirable measure to evaluate the performance of health systems. Responsiveness relates to a system's ability to respond to the legitimate expectations of potential users about non-health enhancing aspects of care (Murray and Frenk, 2000). In broad terms, it can be defined as the way in which individuals are treated and the environment in which they are treated and encompasses the notion of an individual's experience of contact with the health system (Valentine et al, 2003).

One of the most ambitious attempts to implement a cross-country comparative instrument aimed at measuring health system performance is the World Health Survey (WHS), which includes modules on the responsiveness of a system to user preferences. Respondents are asked to rate their experiences of health systems using a 5-point categorical scale (ranging from “very good” to “very bad”). A common problem with such data is that individuals, when faced with the instrument, are likely to interpret the meaning of the response categories in a way that systematically differs across populations or population sub-groups, according to their preferences and norms (for example, see Salomon et al., 2004). Accordingly, the response categories will not be comparable across populations if they do not correspond to the same underlying level of the responsiveness construct. We refer to this phenomenon as “reporting heterogeneity”.

Recently, the use of anchoring vignettes has been promoted as a means for controlling for reporting heterogeneity across populations or population sub-groups. Vignettes represent hypothetical descriptions of a fixed level of a latent construct, such as responsiveness. Since these are fixed and predetermined, systematic variation across individuals in the rating of the vignettes can be attributed to differences in reporting behaviour (Bago d'Uva et al., 2008). The idea is to use information from the vignettes to adjust self-reported experiences of health system performance to increase cross population comparability by removing the influence of reporting heterogeneity.

Despite the growing popularity of the vignette methodology to address the issue of reporting heterogeneity, the formal evaluation of the validity of the approach remains a topic of research. Two critical assumptions need to hold in order for the method to be valid. The first, termed *response consistency*, implies that individuals classify the vignettes in a way that is consistent with the rating of their own experiences of health system responsiveness. This implies that the mapping used from the latent levels of responsiveness given by the vignettes to the response categories is the same as the mapping used to translate latent responsiveness of own experiences of contact with health services to the available response categories. The second assumption, termed *vignette equivalence*, implies that “the level of the variable represented by any one vignette is perceived by all respondents in the same way and on the same unidimensional scale” (King et al., 2004, p.194). This assumption implies that, conditional on the socio-economic characteristics that determine reporting behaviour, for each vignette there is an actual (unobserved) level of responsiveness which all individuals agree to, irrespective of their country of residence, their socio-demographic characteristics or the level of responsiveness they actually face.

In this paper we focus attention on the assumption of vignette equivalence. A limited number of other studies have tried to assess the validity of this assumption. These were focused on self-reports of the ratings of work disability (Kapteyn et al., 2007), mobility (Murray et al., 2003), visual acuity and political efficacy (King et al., 2004), job satisfaction (Kristensen and Johansson 2008) and life satisfaction for income (Kapteyn et al., 2008) and largely made use of non-parametric methods, using tests based on the global ordering of the vignettes. Our study explores the validity of the vignette equivalence assumption making reference to the concept of responsiveness and using data from the WHS. Moreover, we adopt several strategies to assess the validity of the vignette equivalence assumption, using both non-parametric and parametric methods. The use of a two-step regression procedure to evaluate whether a vignette construct is perceived in the same way across respondents is particularly novel.

2. Data

To assess the validity of the vignette equivalence assumption we use data from the WHS. The WHS is an initiative launched by the WHO in 2001 aimed at strengthening national capacity to monitor critical health outputs and outcomes through the fielding of a valid, reliable and comparable household survey instrument (see Üstün et al., 2003). The basic survey mode was an in-person interview, consisting of either 90-minute in-household interview (53 countries), a 30-minute face-to-face interview (13 countries) or a computer assisted telephone interview (4 countries). In total, seventy countries participated in the WHS 2002-2003. All surveys were drawn from nationally representative frames with known probability resulting in sample sizes of between 600 and 10,000 respondents across the countries surveyed. Data collection was on a modular basis covering different aspects of health and health systems, including information on health state valuation, health system responsiveness and health system goals. Samples have undergone extensive quality assurance procedures, including the testing of the psychometric properties of the responsiveness instrument (Valentine et al., 2009), and close attention has been paid to the issue of comparability (Ustun et al., 2003)

The WHS responsiveness module gathers basic information on health care utilization for both inpatient and outpatient services. In the analysis that follows we make reference only to inpatient services. The measurement of responsiveness was obtained by asking respondents to rate their most recent experience of contact with the health system within a set of eight domains by responding to set questions. The domains consist of “autonomy” (involved in decisions), “choice” (of health care provider), “clarity of communication” (of health care personnel), “confidentiality” (e.g. talk privately), “dignity” (respectful treatment and communication), “prompt attention” (e.g. waiting times), “quality

of basic facilities” and “access to family and community support”.¹ The following five response categories were available to respondents when rating their experience of health systems: “very good”, “good”, “moderate”, “bad”, and “very bad”.

The WHS further contains information on respondent characteristics. We make use of age, gender, level of education and income. These variables have been extensively used in the studies investigating differential reporting behaviour in self-reported measure of health (Bago d’Uva et al., 2008; Murray et al., 2003; Valentine et al., 2003) and health-related disabilities (Kapteyn et al., 2007). Level of education is a continuous variable measuring the number of years in education. Gender is a dummy variable coded 0 for women and 1 for men. Income is derived from a measure of permanent income based on information on the physical assets owned by households. The approach to its measurement, which relies on a variant of the hierarchical ordered probit model (HOPIT) to improve cross-country comparability, is provided by Ferguson et al., 2003. We construct dummy variables to indicate the tertiles of the within-country distribution of household permanent income to which individuals belong. For the analysis presented here, the first income tertile is considered as the base category.

The WHS contains a number of vignettes describing the experiences of hypothetical individuals within each of the eight domains of responsiveness. The vignettes have been divided into four sets (Set A-D) with each set containing five vignettes for each item present across two domains. For example, Set A contains five vignettes for each of the two items in the domain of *Dignity* and five vignettes for each of the two items in *Prompt Attention*. Due to constraints of interview length, each respondent in the survey rated the vignettes present in only one of the sets. Therefore, each vignette has been rated by approximately 25% of survey respondents. The response scale available to respondents answering the vignettes is the same as the scale available when reporting their own experiences of health system responsiveness. Examples of the WHS vignettes are provided in Table I

¹ The long-form questionnaire uses two questions items per domain, while the short-form questionnaire uses only one. We use the eight items that are common to the long and short form questionnaire.

for the domains “Confidentiality”, “Choice”, “Clarity of communication” and “Quality of basic amenities”.

We attempt to take into consideration the different levels of socio-economic development of countries to assess whether this influence the perception of the vignettes by making use of the Human Development Index (HDI) to stratify the countries into high, medium and low HDI groups. The HDI is a composite index of human development which combines indicators of life expectancy, educational attainment and income (United Nations Development Programme, 2006). We also try to take into account the presence of different values and norms in different countries and evaluate if those values and norms affect the way individuals perceive the vignettes. To do this, we stratify our sample on the basis of the Inglehart-Welzel Cultural Map of the World, represented in Figure 1 (<http://www.worldvaluessurvey.org>).² This map reflects the presence of a strong correlation between a large number of basic values common to several countries. If we focus on European countries only, according to the Inglehart-Welzel map it is possible to identify three sets of countries that share similar social norms and values: the catholic countries, the protestant countries and the ex-communist ones. At a broader level, if we consider all countries across the world, the basic values can be represented across two major dimensions of cross-cultural variation: Traditional/Secular-rational and Survival/Self-expression values (<http://www.worldvaluessurvey.org>). The first dimension reflects the contrast between societies in which religion is considered as an important element of life and those in which it is not. The second dimension reflects the contrast between industrial and post-industrial societies. In the former societies emphasis is given to economic and physical security while in the latter societies there is an increasing emphasis on subjective well-being, self-expression and quality of life. We follow this stratification in the analysis that follows.³

² This map has been utilized to assess the validity of the vignette equivalence assumption also by Kristensen and Johansson (2008).

³ “Self Secular” = Austria, Belgium, Denmark, Germany, Spain, Finland, France, Great Britain, Greece, Israel, Italy, Luxemburg, Netherlands, Slovenia, Sweden. “Self-Traditional” = Brazil, Dominican Republic, Ecuador, Guatemala, Ireland, Portugal, Uruguay. “Survival-Traditional” = United Arab Emirates, Burkina Faso, Bangladesh, Chad, Cote

3. Methods

3.1. Consistent and near consistent ordering of vignettes

We assess the vignette equivalence assumption by first considering the global ordering of the vignettes. A minimal condition for the assumption of vignette equivalence to hold is that individual responses are consistent with the global ordering of vignettes. The global ordering for a domain can be obtained by pooling all the responses across countries and considering the average categorical response for each vignette (Murray et al. 2003). Similar tests of the vignette equivalence assumption based on the global ordering of vignettes, but for health related disabilities, job satisfaction and self reported measures of health, have been undertaken by Kapteyn et al. (2007), Kristensen and Johansson (2008), Kapteyn et al. (2008). Due to the presence of stochastic measurement errors we cannot expect all individuals to order the vignettes in exactly the same way as each other. Adopting the approach of Murray et al. (2003), we define a consistent ordering as “a set of categorical vignette ratings that could be consistent with the global ordering in the latent variable space, if ambiguities were resolved in favour of the global ordering” (Murray et al., 2003; p.373).⁴ Accordingly, for each domain and for each country we compute the percentage of respondents that gave an ordering of vignettes consistent with the global ordering, or had an ordering where only one vignette moved one or two ranks or two vignettes moved one rank each. Further, we compute the average percentage of respondents in each country that gave an ordering of vignettes consistent or near consistent with the global

d'Ivoire, Congo, Comoros, Ethiopia, Ghana, India, Kenya, Lao, Sri Lanka, Malaysia, Mauritania, Maly, Morocco, Myanmar, Mauritius, Malawi, Namibia, Nepal, Pakistan, Philippines, Senegal, Swaziland, Tunisia, South Africa, Zambia, Zimbabwe. “Survival Secular”= Bosnia, China, Croatia, Czech Republic, Georgia, Hungary, Kazakhstan, Latvia, Russia, Slovakia, Ukraine, Vietnam.

⁴ For an example of consistent vignette ordering consider Murray et al. (2003), Figure 30.3.

ordering, where countries have been stratified by HDI groups and by the Inglehart-Welzel map groups.⁵

3.2. Spearman rank order correlation coefficient

Individuals' ordering of the vignettes might differ due either to measurement errors (caused, for example, by incorrect phrasing, translation or implementation of the vignette questions) or to problems of multidimensionality and variation in the cultural construct of a domain (Murray et al., 2003).⁶ An analysis of the more common alternative patterns of vignette ordering can provide information about the relative importance of the problem of measurement error versus the problems of multidimensionality and variation in the cultural construct of a domain. Measurement error is generally associated with a large number of alternative orderings (due to chance). The prevalence of multidimensionality or cultural variation in a construct should however lead us to observe a limited number of alternative orderings, "reflecting some other weighting of the components of a multidimensional construct or alternative cultural constructs" (Murray et al., 2003; p. 376). Multidimensionality of the responsiveness construct provides evidence of a violation of the vignette equivalence assumption. The Spearman rank order correlation coefficient (SROCC), that quantifies the extent to which an ordering is consistent with the global ordering of vignettes, has been suggested as a means to investigate the relative importance of the two sources of difference in ratings of vignettes (Murray et al., 2003).⁷ For each domain we compute the SROCC between the vignettes rankings of each respondent and the global ranking.

⁵ The average is computed assigning the same weight to each country within a group.

⁶ As an example "running a marathon" could be viewed as a multidimensional construct. Some individuals may view running a marathon as evidence of a high level of mobility and some as a result of exceptional talent. Others might consider it as an attribute related to health, whilst others might as an attribute related to sport (Murray et al., 2003).

⁷ Perfect agreement of the rankings leads to a coefficient of 1, perfect disagreement -1, and independence 0.

We calculate the frequency distribution, together with several descriptive statistics, of the SROCCs across all individuals in the WHS dataset for the eight domains considered.⁸ First, for each domain, we compute the percentage of individuals who reports an ordering of vignettes that is positive and that is larger than 0.5. Secondly, following Murray et al. (2003), we report the number of different rank order correlation coefficients observed in each domain and the number that occur with frequency greater than 1%. The greater the number of different rank order correlation coefficients reported in each domain together with a smaller number occurring with a large frequency, the higher the probability that alternative orderings are due to measurement errors rather than to multidimensionality or cultural variation. We also show the median SROCC for each domain and the average SROCC across domains for each country.⁹

3.3. The HOPIT model

An alternative way to check the vignette equivalence assumption implies estimating a model for responsiveness that takes into account possible biases due to reporting heterogeneity. This approach, adopted by Kristensen and Johansson (2008) when considering self-reported job satisfaction, consist of firstly estimating a model on a pool of countries. Secondly, the sample is split into groups of countries according to the values, social norms, economic development etc. that characterize these countries. Models are then estimated on the sub-samples and the coefficients are compared to those obtained from the pooled sample. If the model is robust and the vignette equivalence assumption is not violated, then we would expect the coefficient to be similar in the two samples. However, if the differences in culture and values across the country groups lead

⁸ We do not include in the analysis individuals who gave the same evaluation of all the vignettes (i.e. they judge all the vignettes as excellent responsiveness). Indeed, for these individuals it is not possible to compute the Spearman rank order correlation coefficient between their ranking and the global ordering ranking. However, we perform a robustness check including in the sample the observations about respondents who gave the same evaluation of all the vignettes. Referring to the domain “Confidentiality”, we perform the robustness check by just moving one vignette of one rank, in a consistent way with the global ordering. The results obtained including these observations are extremely similar to those not including them.

⁹ The average SROCCs have been computed assuming equal weight for each individual.

individuals to interpret the meaning of vignettes differently (and thus to violate the vignette equivalence assumption), we should observe very different estimated coefficients across the country groups (Kristensen and Johansson, 2008).

Since the data on responsiveness in the WHS are self-reported and categorical, we use the hierarchical ordered probit model (HOPIT), developed by Tandon et al. (2003) (also see Terza, 1985), to adjust for reporting behaviour. The model can be specified in two parts. The first part draws on the use of the anchoring vignettes to provide a source of information that enables the thresholds to be modelled as functions of relevant covariates (*reporting behaviour equation*). The second part maps the relevant covariates to underlying self-reported health system responsiveness while controlling for differences in reporting behaviour obtained through the first step (*responsiveness equation*). A more formal description of the two parts of the model is reported in Appendix 1 (also see Rice et al. 2008). The use of vignettes to identify reporting heterogeneity relies on the assumptions of response consistency and vignette equivalence described in Section 1.

As a preliminary analysis, we apply the HOPIT model across the pool of twenty-seven European countries present in the WHS, using the domain “Dignity”. For the purposes of our model, we use the dummies for country of residence together with individual specific characteristics (age, gender, level of education and income) as relevant covariates in both the reporting behaviour and the responsiveness equation. Austria is taken as the baseline country. We then stratify the European countries in three groups according to the Inglehart-Welzer map to reflect similar cultures, social norms and values. We finally re-estimate the HOPIT model for each of the three groups of countries.

We further extend the analysis by considering all the countries present in the WHS.¹⁰ Mexico, which has the largest sample size, is taken as the baseline country. Countries are stratified into four groups according to the Inglehart-Welzer map (“Self-Traditional”, “Self-Secular”, “Survival-

¹⁰ We only exclude Australia, Norway and Turkey since data on “Dignity” are not available for these countries.

Traditional”, “Survival-Secular”) and the HOPIT model is estimated separately for each of these groups of countries.

We also consider the possibility that differences in the level of socioeconomic development of countries might induce individuals to interpret the meaning of vignettes differently. Accordingly, we stratify the countries in the WHS according to their level of HDI and again apply the HOPIT model for each of these groups of countries.

3.4. Assessment of multidimensionality of the constructs represented by vignettes.

An analysis of the characteristics of individuals described in the vignettes offers a further tool to check the vignette equivalence assumption. If the person described in a vignette is characterized by specific socio-demographic characteristics, it is possible that respondents are influenced by these characteristics which may induce them to perceive the vignettes differently to other respondent. This would represent a violation of the vignette equivalence assumption. As an example, consider a vignette about “Autonomy” representing an elderly person. Some respondents may feel that elderly people are incapable of making appropriate decisions about treatments and may have lower expectations about the level of autonomy afforded to elderly individuals. Other respondents, however, could consider elderly people equally able to be involved in decisions about treatments as young people and hence would have the same expectations about the level of autonomy for elderly and young people. Specifying the age of the person described in the vignette may therefore induce some respondents to perceive the construct as representing “autonomy for elderly people” and for others to perceive it as “autonomy” in general.

For our analysis we consider the pool of countries present in the WHS and, for illustration, make reference to the set of vignettes contained in the domains of “Dignity” and “Prompt

attention”.¹¹ This set comprises 20 vignettes questions answered by 858,570 individuals across all countries.

We evaluate whether individuals judge the vignettes differently according to the gender of the person represented in the vignettes and whether the person suffers from physical pain. We choose these individual characteristics for two reasons. First, on practical grounds, vignettes tend to represent “neutral” individuals, with little information on personal characteristics. Gender and pain are two of a very limited set of characteristics we can identify in the 20 vignettes considered. Secondly, the previous literature suggests that individuals tend to judge the vignettes differently according to whether the person in the vignette is female or male (Kapteyn et al., 2007).¹² Moreover, Bago d’Uva et al. (2008) suggests that different groups of people (ie. elderly vs. young) interpret the construct of a vignette differently if the vignette describes a situation of physical pain.

We perform a two stage analysis using an estimated dependent variable regression model (EDV), as described by Lewis and Linzer (2005). In the first stage we model the reporting behaviour of respondents using a standard ordered probit model. We regress respondent ratings of the vignettes on the socio-demographic characteristics of the respondents and on a set of vignette-specific dummy variables (Jones et al., 2007; p. 61).¹³ We then “store” the coefficients of the vignette-specific dummy variables.¹⁴ In the second stage we regress the coefficients of the vignette-specific dummies on a dummy variable indicating if the person in the vignette is female and on a dummy indicating if the person is in pain. Given the small sample size of the data we

¹¹ This set of vignettes is coded as Set A in the WHS. We are unable to perform our analysis on a pool of all the vignettes contained in the responsiveness module, since each set is evaluated by a different group of respondents.

¹² Kapteyn et al. (2007) have considered vignettes for work disability. they found that “for a given vignette description, a male vignette person is seen as more work disabled than a female vignette person, by both male and female respondents” (Kapteyn et al., 2007; p. 469)

¹³ The first vignette of the set (q7501) is assumed to be the base category.

¹⁴ The strategy adopted by STATA (the software we utilize for the empirical estimates) for identification in the ordered probit model is to set the constant term to zero. Therefore, we assume the coefficient of the base reference vignette-dummy to be equal to zero.

use in the second step regression, we correct for the potential presence of heteroskedasticity using the Efron robust standard error estimator (Efron, 1982), as suggested by Lewis and Linzer (2005).

4. Results

4.1. Consistent and near consistent ordering of vignettes

Using the data on health system responsiveness contained in the WHS, Table II reports the percentage of respondents for each domain in each country that gave an ordering of vignettes consistent with the global ordering, or had an ordering where only one vignette moved one or two ranks or two vignettes moved one rank each.¹⁵ For each domain, there is not substantial variation across countries. For all countries (with few exceptions) more than 90% of respondents report consistent or near consistent vignette orderings. For each domain, this percentage is equal to or greater than 95% in at least 52 countries. These preliminary results provide support for the assumption of vignette equivalence.

Table III presents the average percentage of respondents in each country that gave an ordering of vignettes consistent or near consistent with the global ordering, where countries are stratified by HDI groups and by the Inglehart-Welzel map groups. Average percentages are reported for each domain. In general, the average percentages are slightly higher for High HDI countries compared to Medium and Low HDI countries, and for countries characterized by “Secular-Rational” values compared to “Traditional” ones. However, the variation across HDI groups and across the Inglehart-Welzel grouping of countries is very small. These results provide further evidence that individuals across different countries tend to interpret the vignettes in a consistent way.

¹⁵ Australia, Turkey and Guatemala are excluded from the analysis since data on vignettes are not reported for all the domains considered.

4.2. Spearman rank order correlation coefficient

Table IV provides frequency distributions for the SROCCs for the two domains “Clarity of Communication” and “Prompt Attention” and Table V provides descriptive statistics across all domains. For each domain, the majority of the individuals reports an ordering of vignettes that is positive and highly correlated with the global ordering (the percentage of individuals whose SROCC is positive is between 87% and 95%, and the percentage of individuals with a SROCC larger than 0.5 is between 64% and 90%). The number of different rank order correlation coefficients reported in each domain appears to be high, and varies quite substantially (between 59 and 145) across domains. Accordingly, in some domains there is a large number of alternative orderings (i.e. “Prompt Attention” and “Quality of Facilities”), while for others the number of ordering is small (i.e.: “Clarity of communication”, “Autonomy” and “Social Support”). The number of SROCCs that occur with frequency larger than 1% does not appear to be particularly large (on average it is 19) and it varies across domains much less than the number of alternative orderings.¹⁶ Overall, the results suggest that vignettes ordering inconsistencies are more likely to occur because of measurement errors than because of the multidimensionality or cultural variation in the constructs of a domain. However, the possibility of some problem of multidimensionality appears to be higher in some domains (domains presenting a smaller number of alternative orderings, i.e. “Autonomy”) than in others.

Table VI shows the median SROCC across the data for each domain.¹⁷ For most of the domains the vignettes appear to work well, with the median correlation assuming values between 0.85 and 0.95. Only the domains “Confidentiality” and “Choice” appear to have slightly worst performance, presenting a median correlation that varies between 0.75 and 0.80. Table VII shows

¹⁶ The coefficient of variation of the number of alternative orderings is 14.35, while for the number of SROCCS that occur with frequency larger than 1% it is 0.91.

¹⁷ For each domain, we have computed the median SROCC on the bases of tables analogous to Table IV.

the median value of the SROCC across domains in each country. This value ranges from very high levels observed for Bangladesh and Comoros Islands (1.00 each) to more moderate values for Cote d'Ivoire and Namibia (0.84 and 0.74 respectively). However, the coefficient is greater than 0.90 in the majority of countries. The high values presented by the average SROCCs imply that cultural differences in the interpretation of vignettes across countries may not be of great concern.

Table VIII provides the average SROCCs across all countries for individuals belonging to different socioeconomic groups. We perform this analysis following the suggestion of King et al. 2004, that “the key in detecting multidimensionality [of the vignette construct] is searching for inconsistencies that are systematically related to any measured variable” (King et al., 2004; p. 200). In particular, Table VIII a) provides the SROCC between the ordering of vignettes defined at global level and the median ordering given by individuals within different education groups. Table VIII b) and c) provide the same information for individuals stratified according to their level of income and their gender, respectively. The vignettes appear to be ordered in a similar way across the different socio-economic groups. The exception is individuals with a high level of education for the domain “Confidentiality”. For these individuals the ordering of the vignettes is less close to the global ordering, since the SROCC assumes values inferior to 0.8.

4.3. The HOPIT model

Table IX presents the results from the responsiveness and reporting behaviour equation of the HOPIT model estimated on the pool of the twenty-seven European countries present in the WHS. Belonging to the top income tertile, compared to the bottom, appears to be significantly related to experiencing a high level of responsiveness, while being a woman is negatively related to responsiveness (although this effect does not attain statistical significance). Elderly people and more educated people appear to face higher levels of responsiveness, but only for the former is the

association statistically significant. On average, individuals in Eastern European countries appear to face lower levels of responsiveness than in Austria, while we can not draw general conclusions for individuals in Western European countries.

We stratify the European countries into three groups, according to the Inglehart-Welzer map, to reflect similar cultures, social norms and values. When we estimate the HOPIT model for each of the three groups of European countries separately (catholic, protestant and ex-communist) the coefficients for the country dummy variables are very robust both in the responsiveness equation and in the reporting behaviour equation. The coefficients retain the same sign when compared to the coefficients for the model where all the European countries are pooled together. Further, few of them change substantially. These results lend further support to the assumption of vignette equivalence.

Table X presents the results of the HOPIT model estimated across the full pool of countries and on “Self-Traditional”, “Self-Secular”, “Survival-Traditional”, “Survival-Secular” countries separately. Again, the coefficients for the country dummy variables, both in the responsiveness and in the reporting behaviour equation, appear robust. Similar results, presented in Table XI are obtained when the HOPIT model is estimated separately for countries stratified according to their level of HDI. For both the responsiveness equation and the reporting behaviour equation, the coefficients for the country dummy variables again appear robust. These results provide further evidence in favour of the assumption of vignette equivalence.

4.4. Test for multidimensionality of the constructs represented by vignettes.

When we perform the two stage analysis described in Section 3.4, neither the regressors nor the constant term in the second step regression are statistically significant at the 95% percentage

level¹⁸. This result suggests that the gender of the person represented in the vignettes and his/her condition of pain do not influence the way respondents judge the vignettes.¹⁹ Again, these results provide support to the vignette equivalence assumption.

5. Conclusion and Discussion

Despite the growing popularity of the vignette methodology to address the issue of systematic reporting heterogeneity in self-reported data, the formal evaluation of the validity of this methodology has remained a topic for research. Two critical assumptions need to hold in order for the method to be valid. This paper presents analyses to assess the validity of the assumption of vignette equivalence using data on health system responsiveness contained within the World Health Survey.

We first perform a non-parametric analyses based on the global ordering of the vignettes. Secondly, after estimating a HOPIT model for responsiveness on the pool of countries, we perform sensitivity analyses stratifying the countries in our sample on the bases of the Inglehart-Welzel map and the HDI groupings. Thirdly, we adopt a two-step regression procedure to evaluate the possibility that individuals` perceptions of the construct described by a vignette differs according to the characteristics of the person described in the vignette. The results derived from our analysis do not contradict the assumption of vignette equivalence. Accordingly, they lend support to the use of the vignette methodology to correct for the presence of reporting heterogeneity.

A potential limitation of our analysis is that, for brevity, only a limited set of domains of responsiveness have been used. For the analysis in Section 4.3 we considered only “Dignity”,

¹⁸ The results of the first and second step regression are available on request

¹⁹ The results are not affected by the distribution of the gender of individuals across vignettes, since both women and men are represented in vignettes describing high and low levels of responsiveness.

while in Section 4.4 we refer to “Dignity” and “Prompt Attention”. Some caution is, therefore, required in generalizing our results to other domains of the responsiveness construct.

The results refer only to the assumption of vignette equivalence and does not consider response consistency. Recent literature has tried to assess the validity of the latter assumption (Datta Gupta et al., 2009; Van Soest et al., 2007). The majority of these studies test this assumption by comparing self-reported data to objective data (for example, comparing self-reported data on health to objectively measured levels of health). Unfortunately, the WHS does not contain objective measures of the level of responsiveness faced by respondents. Hence, we are currently unable to test this assumption in the WHS.

Our study provides an original contribution to the literature on anchoring vignettes by exploring the validity of the vignette equivalence assumption with reference to the concept of responsiveness. We adopt several strategies to assess the validity of the vignette equivalence assumption, employing both non-parametric and parametric methods. Overall, our results do not provide strong evidence to suggest that the assumption does not hold and accordingly support the use of the anchoring vignette approach to adjust self-reported data for systematic differences in reporting behaviour.

Acknowledgements: We are grateful to the World Health Organization for providing access to the World Health Survey and to Teresa Bago d’Uva for providing code for the HOPIT model. We would like to thank the World Health Organization for providing access to the World Health Survey and, in particular, Somnath Chatterji, Amit Prasad, Nicole Valentine and Emese Verdes.

References

Bago d'Uva, T., van Doorlaer, E., Lindeboom, M., O'Donnell, O., 2008. Does reporting heterogeneity bias the measurement of health disparities?. *Health Economics*, 17 (3), 351-375.

Datta Gupta N., K. N., Pozzoli D., 2008. External Validation of the Use of Vignettes in Cross-Country Health Studies, *IZA Discussion Paper*

Efron B. 1982. *The Jackknife, the Bootstrap and Other Resampling Plans*. Philadelphia,: Society for Industrial and Applied Mathematics.

Inglehart R. Inglehart-Welzel Cultural Map of the World. <http://www.worldvaluessurvey.org>

Jones A.M., R. N., Bago d'Uva T., Balia S., 2007. *Applied Health Economics*: Routledge.

Kapteyn A., S. J., van Soest A., 2007. Vignettes and self-reports of work disability in the US and the Netherlands. *American Economic Review*, 97(1), 461-473.

Kapteyn A., S. J., van Soest A., 2008. Are Americans Really Less Happy With Their Incomes? : Rand Working Paper.

King G., M. C. J. L., Salomon J., Tandon A., 2004. Enhancing the validity and cross-cultural comparability of measurement in survey research. *American Political Science Review*, 98(1), 184-191.

Kristensen N., J. E., 2008. New evidence on cross-country differences in job satisfaction using anchoring vignettes. *Labour Economics*, 15, 96-117.

Lewis, J. B., Linzer D.A., 2005. Estimating Regression Models in Which the Dependent Variable Is Based on Estimates. *Political Analysis*, 13, 345-364.

Murray, C., Frenk, J., 2000. A framework for assessing the performance of health systems. *Bulletin of the World Health Organization*, 78, 717-731.

Murray, C. J. L., Ozaltin, E., Tandon, A.J., Salomon, J., 2003. Empirical evaluation of the anchoring vignettes approach in health surveys. In Murray C. J. L., Evans D.B. (Ed.), *Health systems performance assessment: debates, methods and empiricism*. Geneva: World Health Organization.

Rice N., R. S., Smith P.C., 2008. International Comparison of Public Sector Performance: The Use of Anchoring Vignettes to adjust Self-Reported Data, *HEDG Working Paper*: University of York.

Salomon, J., Tandon A., Murray C. J. L., World Health Survey Pilot Study Collaborating Group, 2004. Comparability of self-rated health: Cross sectional multi-country survey using anchoring vignettes. *British Medical Journal*, 328(258).

United Nation Development Programme, 2006. *Human Development Report*. New York.

Üstün T. B., C. S., Mechbal A., Murray C., 2003. The World Health Surveys. In Murray C. J. L., Evans D.B. (Ed.), *Health systems performance assessment: debates, methods and empiricisms* (pp. 762-796). Geneva: World Health Organization.

Valentine, N., De Silva A., Kawabata K., Darby C., Murray C.J.L., Evans D., 2003. Health system responsiveness: concepts, domains and operationalization. In Murray C. J. L., Evans D.B. (Ed.), *Health systems performance assessment: debates, methods and empiricisms* (pp. 573-596). Geneva: World Health Organization.

Valentine N., P. A., Rice N., Robone S., Chatterji S., 2009. Health systems responsiveness - a measure of the acceptability of health care processes and systems. In Mossialos E., Smith P., Leatherman S. (Ed.), *Performance measurement for health system improvement: experiences, challenges and prospects*. London: WHO European Regional Office.

Van Soest A., D. A., Harmon C., Kapteyn A., Smith J.P., 2007. Validating the use of vignettes for subjective threshold scales, *Discussion Paper*: Tilburg University.

Appendix 1: The HOPIT model

Reporting behaviour equation

To identify the thresholds as a function of respondent covariates, let R_{ik}^{v*} represent the underlying health system responsiveness for vignette k , rated by individual i . Given that each vignette is fixed and unrelated to a respondent's characteristics, it is assumed that the expected value of the underlying latent scale depends solely on the corresponding vignette, such that:

$$R_{ik}^{v*} = K_{ik} \eta_k + \varepsilon_{ik}^v, \quad \varepsilon_{ik}^v | K_i \sim N(0,1) \quad (1)$$

where K_{ik} is the vector of vignettes, η_k is a conformably dimensioned vector of parameters and ε_{ik}^v is an idiosyncratic error term. R_{ik}^{v*} is unobservable to the researcher and instead we observe the vignette rating, r_{ik}^v on a five point scale ranging from 'very bad' to 'very good'. We assume the observed category of r_{ik}^v is related to R_{ik}^{v*} through the following mechanism:

$$r_{ik}^v = j \quad \text{if} \quad \mu_i^{j-1} \leq R_{ik}^{v*} < \mu_i^j \quad (2)$$

$$\text{for } \mu_i^0 = -\infty, \mu_i^5 = \infty, \forall i, k; \quad j = 1, \dots, 5$$

Should the thresholds represent fixed constants, μ^j , common to all individuals, then the above mapping is common to the ordered probit model. For the HOPIT model the thresholds are assumed to be functions of covariates, X such that:

$$\mu_i^j = X_i \gamma^j \quad (3)$$

where $\mu_i^j, j = 1, \dots, 5$ are parameters to be estimated along with η_k . Further, we assume an ordering of the thresholds such that $\mu_i^1 < \mu_i^2 < \dots < \mu_i^5$. If we impose the restriction that the covariates affect all thresholds by the same magnitude we have parallel cut-point shift. However, if the degree of reporting heterogeneity varies across thresholds such that it is greater at some levels of responsiveness than others, we refer to this as non-parallel shift (Jones et al. 2007).

Responsiveness equation

Underlying health system responsiveness faced by individual i can be expressed as:

$$R_i^{s*} = Z_i\beta + \varepsilon_i^s, \quad \varepsilon_i^s | Z_i \sim N(0, \sigma^2) \quad (4)$$

where Z_i represents a set of regressors predictive of responsiveness. As with the vignettes R_i^{s*} represents an unobserved latent variable and we assume that the observed categorical response, r_i^s , relates to R_i^{s*} in the following way:

$$r_i^s = j \quad \text{if} \quad \mu_i^{j-1} \leq R_i^{s*} < \mu_i^j \quad (5)$$

$$\text{for } \mu_i^0 = -\infty, \mu_i^5 = \infty, \forall i; \quad j = 1, \dots, 5$$

where μ_i^j are defined by (3) with γ^j fixed and it is assumed that R_{ik}^{v*} and R_i^{s*} are independent for all $i = 1, \dots, N$ and $k = 1, \dots, V$. Note that $\hat{\sigma}^2$ in (4) is identified due to the thresholds being fixed through the reporting behaviour equation.

It follows that the probabilities associated with each of the 5 categories are given by:

$$\Pr(r_i = j) = \Phi(\mu_i^j - Z_i\beta) - \Phi(\mu_i^{j-1} - Z_i\beta), \quad j = 1, \dots, 5 \quad (6)$$

where $\Phi(\cdot)$ is the cumulative standard normal distribution.

Table I: Examples of vignettes for the domain of confidentiality, choice, communication and quality of basic facilities

Domain: Confidentiality, Choice

1. [Simon] was speaking to his doctor about an embarrassing problem. There was a friend and a neighbour of his in the crowded waiting room and because of the noise the doctor had to shout when telling [Simon] the treatment he needed.

Q1: How would you rate the way the health services ensured [Simon] could talk privately to health care providers?

Q2: How would you rate the way [Simon's] personal information was kept confidential?

2. In [William's] town there is a large day clinic where there are several doctors and nurses. When [William] has a sensitive health problem he can see a male rather than a female doctor or nurse.

Q1: How would you rate [William's] freedom to choose his health care provider?

Domain: Clarity of Communication and Quality of Basic Facilities

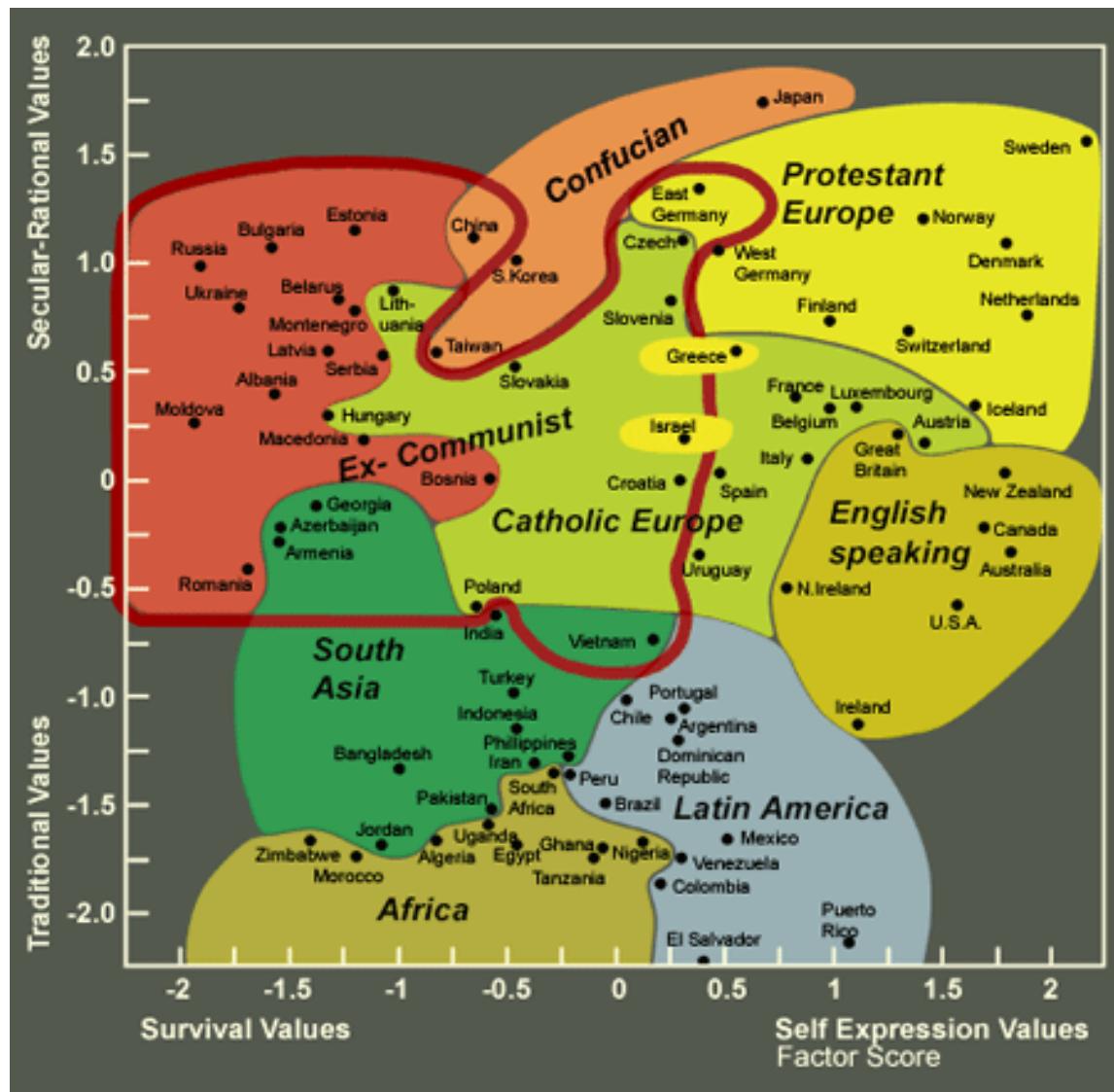
1. [Wing] had his own room in the hospital and shared a bathroom with two others. The room and bathroom were cleaned frequently and had fresh air.

Q1: How would you rate the cleanliness of the rooms inside the facility, including toilets?

Q2: How would you rate the amount of space [Wing] had?

2. [Rose] cannot write or read. She went to the doctor because she was feeling dizzy. The doctor didn't have time to answer her questions or to explain anything. He sent her away with a piece of paper without telling her what it said.

Q1: How would you rate her experience of how clearly health care providers explained things to her?


Q2: How would you rate her experience of getting enough time to ask questions about her health problem or treatment?

Note: the above provide examples only and not an exhaustive list of possible vignettes for each domain. The response categories available to respondents were "Very good", "Good", "Moderate", "Bad" and "Very bad".

Figure 1: Inglehart-Welzel Cultural Map of the World

Source: <http://www.worldvaluessurvey.org/>

Table II: Percent of consistent and near consistent ordering by domain and country

	<i>Prompt attention</i>	<i>Dignity</i>	<i>Clarity of Communic.</i>	<i>Autonomy</i>	<i>Confident.</i>	<i>Choice</i>	<i>Quality of Facilities</i>	<i>Social Support</i>
ARE	0.97	0.97	0.98	0.94	0.98	0.99	0.99	0.96
AUT	0.97	0.95	0.98	0.92	0.98	0.98	0.99	0.96
BEL	0.98	0.98	0.99	0.99	0.97	0.95	0.99	0.98
BFA	0.97	0.96	0.99	0.97	0.97	0.97	0.98	0.98
BGD	1.00	0.97	0.99	0.98	0.97	0.98	0.99	0.98
BIH	0.98	0.95	0.97	0.99	0.95	0.99	0.99	0.96
BRA	0.99	0.98	0.98	0.98	0.97	0.97	0.99	0.99
CHN	0.99	0.99	1.00	1.00	1.00	0.99	1.00	0.99
CIV	0.96	0.97	0.97	0.96	0.98	0.96	0.97	0.97
COG	0.99	0.99	0.99	0.97	0.98	0.98	0.99	0.99
COM	0.95	0.89	0.94	0.95	0.96	0.94	0.97	0.94
CZE	0.99	0.99	0.99	0.98	0.99	0.99	1.00	0.98
DEU	0.99	0.99	0.99	0.97	1.00	1.00	1.00	0.97
DNK	0.98	0.95	0.96	0.99	0.94	0.96	0.96	0.99
DOM	0.99	0.96	0.98	0.99	0.98	0.98	0.99	0.99
ECU	0.97	0.94	0.97	0.97	0.98	0.98	0.98	0.98
ESP	0.98	0.97	0.98	0.98	0.96	0.96	0.99	0.98
EST	0.99	0.98	0.99	0.99	1.00	0.99	0.99	0.99
ETH	0.97	0.97	0.99	0.96	0.99	0.99	0.99	0.99
FIN	0.99	0.98	0.99	1.00	0.98	0.98	1.00	0.99
FRA	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.98
GBR	0.98	0.98	0.99	0.98	0.98	0.98	1.00	0.98
GEO	0.98	0.97	1.00	0.99	0.99	0.99	1.00	0.98
GHA	0.98	0.95	0.98	0.98	0.98	0.97	0.98	0.99
GRC	0.99	0.97	0.99	0.99	0.99	0.98	0.99	0.96
HRV	0.99	0.99	0.99	0.99	0.99	0.99	1.00	0.99
HUN	0.99	1.00	0.99	0.99	0.99	0.98	0.98	0.99
IND	0.97	0.93	0.97	0.96	0.96	0.96	0.98	0.97
IRL	0.82	0.79	0.90	0.72	0.73	0.74	0.93	0.73
ISR	1.00	0.99	0.98	0.97	1.00	1.00	0.99	0.99
ITA	0.99	0.98	0.99	0.98	0.99	0.98	0.99	0.99
KAZ	0.95	0.92	0.96	0.68	0.76	0.81	0.98	0.77
KEN	0.96	0.94	0.98	0.98	0.98	0.96	0.99	0.98
LAO	1.00	0.98	1.00	0.99	0.99	0.98	1.00	0.99
LKA	0.94	0.92	0.95	0.95	0.93	0.94	0.95	0.97
LUX	0.98	0.97	0.99	0.99	0.97	0.99	0.99	0.99
LVA	0.99	0.98	0.98	0.99	0.99	0.95	0.99	0.99
MAR	0.98	0.98	0.99	0.97	0.98	0.97	0.99	0.98
MEX	0.95	0.92	0.97	0.96	0.95	0.96	0.97	0.97
MLI	1.00	0.99	0.99	1.00	0.99	0.97	0.99	0.98
MMR	1.00	0.98	0.99	0.96	0.99	0.98	0.99	0.97
MRT	0.96	0.90	0.90	0.92	0.91	0.89	0.93	0.96
MUS	0.99	0.99	0.99	0.99	0.99	0.98	0.99	0.98
MWI	0.98	0.95	0.97	0.98	0.98	0.97	0.98	0.97
MYS	1.00	0.99	1.00	0.99	0.99	0.99	1.00	0.99
NAM	0.95	0.94	0.89	0.97	0.94	0.92	0.92	0.97
NLD	0.99	0.98	1.00	1.00	1.00	0.99	0.99	1.00
NOR	0.97	0.97	0.99	0.97	0.97	0.96	0.97	0.97
NPL	0.98	0.96	0.99	0.99	0.98	0.98	0.99	0.99
PAK	0.98	0.98	0.99	0.99	0.99	0.99	1.00	0.99
PHL	1.00	0.99	0.99	0.99	1.00	1.00	0.99	0.99
PRT	0.99	0.99	0.97	0.99	0.99	0.99	0.98	0.98
PRY	0.98	0.96	0.98	0.97	0.98	0.98	0.99	0.98
RUS	0.98	0.96	0.99	0.98	0.98	0.97	0.99	0.99
SEN	0.94	0.92	0.93	0.95	0.92	0.93	0.96	0.96
SVK	0.98	0.97	0.97	0.99	0.98	0.98	0.98	0.99
SVN	0.99	0.95	0.94	0.98	0.97	0.91	0.98	0.98
SWE	0.98	0.98	0.99	0.98	0.99	0.99	0.99	0.99
SWZ	0.92	0.88	0.88	0.92	0.98	0.97	0.91	0.96
TCD	0.97	0.95	0.98	0.99	0.90	0.86	0.98	0.98
TUN	0.94	0.88	0.99	0.99	0.99	0.99	1.00	0.99
UKR	0.95	0.92	0.98	0.97	0.93	0.96	0.98	0.96
URY	0.98	0.95	0.97	0.98	0.99	0.98	0.97	0.98
VNM	0.98	0.96	0.98	0.98	0.97	0.97	0.99	0.98
ZAF	0.92	0.92	0.96	0.94	0.92	0.92	0.97	0.97
ZMB	0.97	0.95	0.98	0.97	0.96	0.95	0.99	0.98
ZWE	0.99	0.97	1.00	0.99	0.98	0.98	1.00	0.99

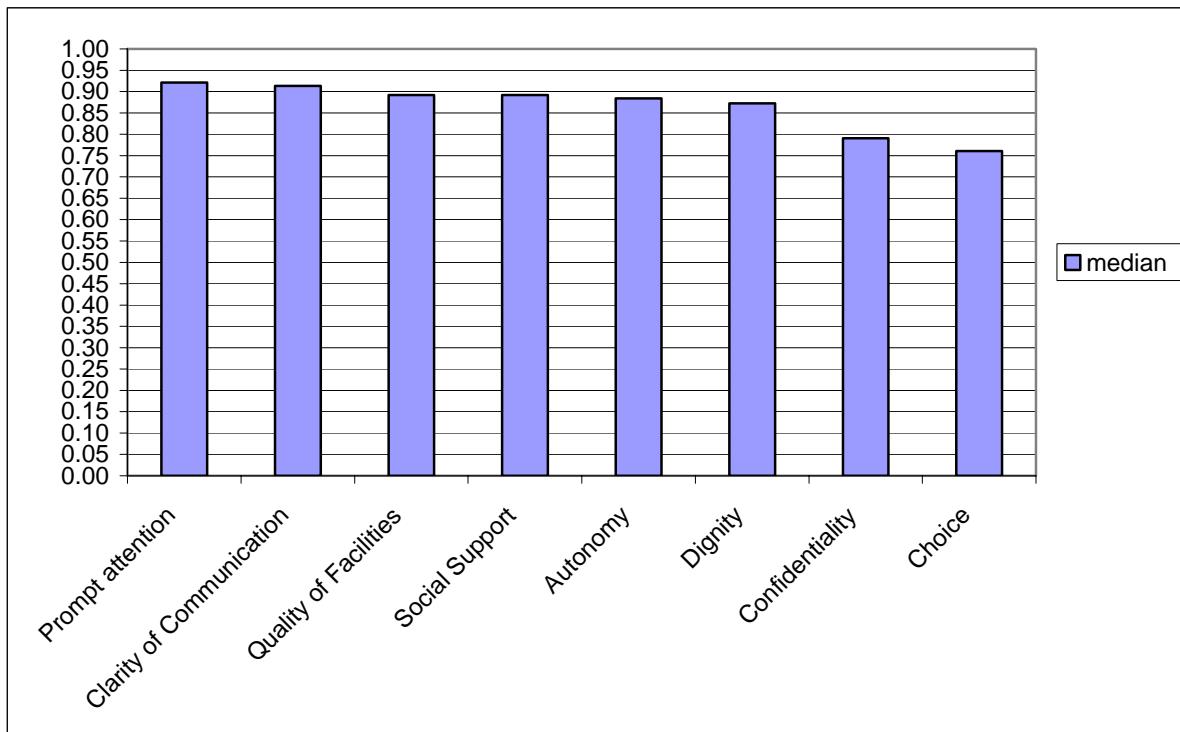
Table III: Average per cent consistent and near consistent ordering, by HDI groups and by the Inglehart-Welzel map groups

	<i>Prompt attention</i>	<i>Dignity</i>	<i>Clarity of Communic.</i>	<i>Autonomy</i>	<i>Confident.</i>	<i>Choice</i>	<i>Quality of Facilities</i>	<i>Social Support</i>
Average across all countries	0.97	0.96	0.98	0.97	0.97	0.96	0.98	0.97
countries by HDI group								
High	0.98	0.97	0.98	0.97	0.97	0.97	0.99	0.97
Low	0.97	0.95	0.97	0.97	0.96	0.95	0.98	0.98
Medium	0.97	0.95	0.97	0.96	0.96	0.96	0.98	0.97
countries by Inglehart value map								
Self-Secular	0.98	0.97	0.98	0.98	0.98	0.97	0.99	0.98
Survival-Secular	0.98	0.97	0.98	0.96	0.96	0.97	0.99	0.97
Self-Traditional	0.96	0.94	0.97	0.94	0.95	0.95	0.98	0.95
Survival-Traditional	0.97	0.95	0.97	0.97	0.97	0.96	0.98	0.98

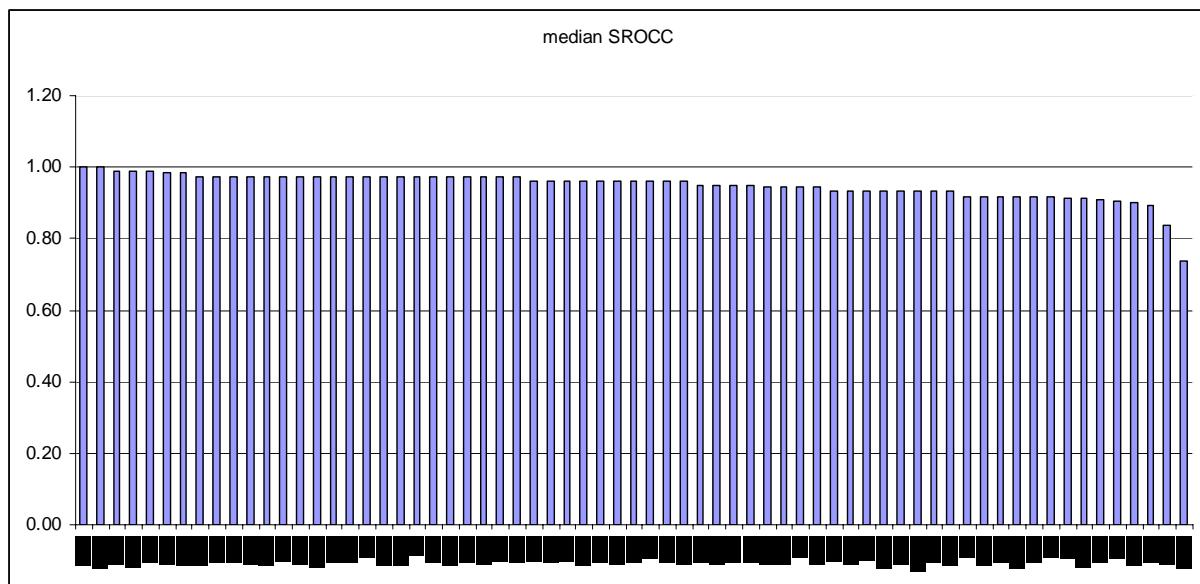
Table IV: Spearman's rank order correlation coefficient between individual ordering of vignettes and the global ordering.

a) Clarity of Communication

Spearman rank order correlation coefficient	N	%	Cum %	Spearman rank order correlation coefficient	N	%	Cum %
-1.000	4	0.03%	0.03%	0.083	19	0.13%	7.08%
-0.973	11	0.08%	0.10%	0.158	1	0.01%	7.09%
-0.949	8	0.06%	0.16%	0.162	43	0.30%	7.39%
-0.917	39	0.27%	0.43%	0.177	44	0.31%	7.69%
-0.913	47	0.33%	0.76%	0.250	95	0.66%	8.35%
-0.892	21	0.15%	0.90%	0.316	2	0.01%	8.37%
-0.884	16	0.11%	1.01%	0.324	28	0.19%	8.56%
-0.811	5	0.03%	1.05%	0.354	99	0.69%	9.25%
-0.791	2	0.01%	1.06%	0.406	37	0.26%	9.50%
-0.750	14	0.10%	1.16%	0.456	132	0.92%	10.42%
-0.730	10	0.07%	1.23%	0.474	5	0.03%	10.46%
-0.707	35	0.24%	1.47%	0.487	34	0.24%	10.69%
-0.667	3	0.02%	1.49%	0.530	149	1.03%	11.73%
-0.649	16	0.11%	1.60%	0.559	335	2.33%	14.05%
-0.632	1	0.01%	1.61%	0.583	176	1.22%	15.27%
-0.583	39	0.27%	1.88%	0.632	17	0.12%	15.39%
-0.559	91	0.63%	2.51%	0.649	296	2.06%	17.45%
-0.530	13	0.09%	2.60%	0.667	140	0.97%	18.42%
-0.487	8	0.06%	2.66%	0.707	246	1.71%	20.13%
-0.456	59	0.41%	3.07%	0.730	343	2.38%	22.51%
-0.406	24	0.17%	3.24%	0.750	597	4.14%	26.65%
-0.354	49	0.34%	3.58%	0.791	122	0.85%	27.50%
-0.324	3	0.02%	3.60%	0.811	282	1.96%	29.46%
-0.316	3	0.02%	3.62%	0.884	1040	7.22%	36.68%
-0.250	71	0.49%	4.11%	0.892	1287	8.94%	45.62%
-0.177	36	0.25%	4.36%	0.913	1520	10.55%	56.17%
-0.162	34	0.24%	4.60%	0.917	2043	14.18%	70.35%
-0.083	14	0.10%	4.69%	0.949	400	2.78%	73.13%
-0.081	9	0.06%	4.76%	0.973	1952	13.55%	86.68%
0.000	301	2.09%	6.85%	1.000	1918	13.32%	100.00%
0.081	15	0.10%	6.95%				
				total	14403	100%	


b) Prompt Attention

Spearman rank order correlation coefficient				Spearman rank order correlation coefficient			
N	%	Cum %	N	%	Cum %		
-1.000	2	0.01%	0.01%	0.079	9	0.06%	6.95%
-0.973	3	0.02%	0.03%	0.081	43	0.29%	7.24%
-0.921	1	0.01%	0.04%	0.103	3	0.02%	7.26%
-0.918	3	0.02%	0.06%	0.105	1	0.01%	7.27%
-0.892	6	0.04%	0.10%	0.108	20	0.13%	7.40%
-0.889	21	0.14%	0.24%	0.132	32	0.22%	7.62%
-0.860	1	0.01%	0.25%	0.135	19	0.13%	7.74%
-0.811	7	0.05%	0.30%	0.148	87	0.59%	8.33%
-0.803	10	0.07%	0.36%	0.158	9	0.06%	8.39%
-0.789	3	0.02%	0.38%	0.162	24	0.16%	8.55%
-0.763	6	0.04%	0.42%	0.205	6	0.04%	8.59%
-0.730	3	0.02%	0.44%	0.229	34	0.23%	8.82%
-0.725	21	0.14%	0.59%	0.237	17	0.11%	8.94%
-0.711	2	0.01%	0.60%	0.263	20	0.13%	9.07%
-0.688	3	0.02%	0.62%	0.270	10	0.07%	9.14%
-0.684	2	0.01%	0.63%	0.287	22	0.15%	9.29%
-0.676	8	0.05%	0.69%	0.289	14	0.09%	9.38%
-0.658	1	0.01%	0.69%	0.296	46	0.31%	9.69%
-0.649	22	0.15%	0.84%	0.324	5	0.03%	9.73%
-0.632	7	0.05%	0.89%	0.342	4	0.03%	9.75%
-0.592	13	0.09%	0.98%	0.344	139	0.94%	10.69%
-0.579	2	0.01%	0.99%	0.351	22	0.15%	10.84%
-0.574	9	0.06%	1.05%	0.359	4	0.03%	10.86%
-0.564	1	0.01%	1.06%	0.363	57	0.38%	11.25%
-0.553	21	0.14%	1.20%	0.368	2	0.01%	11.26%
-0.544	38	0.26%	1.46%	0.395	17	0.11%	11.38%
-0.526	8	0.05%	1.51%	0.406	16	0.11%	11.48%
-0.516	13	0.09%	1.60%	0.410	1	0.01%	11.49%
-0.500	7	0.05%	1.64%	0.433	26	0.18%	11.67%
-0.487	16	0.11%	1.75%	0.444	66	0.44%	12.11%
-0.462	1	0.01%	1.76%	0.459	20	0.13%	12.25%
-0.460	3	0.02%	1.78%	0.460	52	0.35%	12.60%
-0.459	18	0.12%	1.90%	0.462	2	0.01%	12.61%
-0.444	37	0.25%	2.15%	0.487	25	0.17%	12.78%
-0.433	6	0.04%	2.19%	0.500	37	0.25%	13.03%
-0.410	3	0.02%	2.21%	0.516	77	0.52%	13.55%
-0.406	8	0.05%	2.26%	0.526	9	0.06%	13.61%
-0.395	7	0.05%	2.31%	0.544	196	1.32%	14.93%
-0.368	1	0.01%	2.32%	0.553	33	0.22%	15.15%
-0.363	19	0.13%	2.45%	0.564	4	0.03%	15.18%
-0.359	1	0.01%	2.45%	0.574	106	0.71%	15.89%
-0.351	10	0.07%	2.52%	0.579	4	0.03%	15.92%
-0.344	77	0.52%	3.04%	0.592	44	0.30%	16.22%
-0.324	4	0.03%	3.07%	0.616	2	0.01%	16.23%
-0.342	4	0.03%	3.09%	0.632	132	0.89%	17.12%
-0.296	11	0.07%	3.17%	0.649	168	1.13%	18.25%
-0.289	22	0.15%	3.32%	0.658	14	0.09%	18.34%
-0.287	4	0.03%	3.34%	0.667	11	0.07%	18.42%
-0.270	9	0.06%	3.40%	0.676	71	0.48%	18.90%
-0.263	6	0.04%	3.44%	0.684	28	0.19%	19.09%
-0.237	15	0.10%	3.54%	0.688	31	0.21%	19.30%
-0.229	45	0.30%	3.85%	0.711	25	0.17%	19.46%
-0.205	1	0.01%	3.85%	0.718	2	0.01%	19.48%
-0.162	21	0.14%	4.00%	0.725	46	0.31%	19.79%
-0.158	11	0.07%	4.07%	0.730	74	0.50%	20.29%
-0.154	1	0.01%	4.08%	0.763	57	0.38%	20.67%
-0.148	66	0.44%	4.52%	0.789	365	2.46%	23.13%
-0.135	19	0.13%	4.65%	0.803	175	1.18%	24.31%
-0.132	10	0.07%	4.72%	0.811	337	2.27%	26.58%
-0.108	42	0.28%	5.00%	0.816	91	0.61%	27.19%
-0.105	8	0.05%	5.05%	0.821	14	0.09%	27.29%
-0.103	2	0.01%	5.07%	0.860	883	5.95%	33.24%
-0.081	16	0.11%	5.18%	0.872	98	0.66%	33.90%
-0.079	5	0.03%	5.21%	0.889	1245	8.39%	42.29%
-0.057	9	0.06%	5.27%	0.892	657	4.43%	46.72%
-0.054	13	0.09%	5.36%	0.895	199	1.34%	48.06%
-0.053	13	0.09%	5.45%	0.918	110	0.74%	48.80%
-0.051	2	0.01%	5.46%	0.921	267	1.80%	50.60%
-0.026	15	0.10%	5.56%	0.947	2366	15.95%	66.55%
0.000	123	0.83%	6.39%	0.973	3729	25.13%	91.68%
0.026	15	0.10%	6.49%	0.975	355	2.39%	94.07%
0.054	38	0.26%	6.75%	1.000	880	5.93%	100.00%
0.057	21	0.14%	6.89%				
			total	14838	100%		


Table V: descriptive statistics about the spearman rank order correlation coefficient, by domain.

	n. of different rank order correlation coefficients	individuals whose correlation coefficient is positive	individuals whose correlation coefficient is >0.5	n. of rank order correlation coefficients that occur with frequency >1%
Prompt Attention	145	93%	85%	13
Dignity	98	94%	87%	17
Clarity of Communication	61	93%	88%	16
Autonomy	59	90%	81%	21
Confidentiality	80	88%	64%	22
Choice	125	87%	70%	26
Quality of Facilities	143	95%	90%	16
Social Support	59	93%	85%	19
<i>average</i>	96	92%	81%	19

Table VI: Median SROCC across domains

Table VII: Median SROCC across countries

Table VIII: average SROCC across all survey by:

a) Education groups

Education groups	<i>Prompt attention</i>	<i>Dignity</i>	<i>Clarity of Commun.</i>	<i>Autonomy</i>	<i>Confident.</i>	<i>Choice</i>	<i>Quality of Facilities</i>	<i>Social Support</i>
no formal schooling	0.97	0.95	1.00	1.00	1.00	1.00	0.92	1.00
less than primary school	0.97	0.97	1.00	0.91	1.00	1.00	1.00	1.00
primary school completed	1.00	1.00	0.97	1.00	1.00	1.00	1.00	0.97
secondary school completed	1.00	0.89	1.00	1.00	1.00	1.00	1.00	1.00
high school completed	0.97	1.00	0.95	1.00	0.79	0.97	1.00	0.97
college completed	0.95	1.00	0.95	1.00	0.79	0.97	1.00	0.95
post graduate degree completed	0.95	1.00	0.95	0.97	0.75	0.89	1.00	0.95
<i>Average</i>	0.97	0.97	0.97	0.98	0.90	0.98	0.99	0.98

b) Income quintiles

income quintile	<i>Prompt attention</i>	<i>Dignity</i>	<i>Clarity of Commun.</i>	<i>Autonomy</i>	<i>Confident.</i>	<i>Choice</i>	<i>Quality of Facilities</i>	<i>Social Support</i>
1st	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00
2nd	1.00	0.97	1.00	1.00	1.00	1.00	1.00	1.00
3rd	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
4th	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
5th	0.95	1.00	0.97	0.91	1.00	0.97	1.00	1.00
<i>Average</i>	0.99	0.99	0.99	0.98	1.00	0.99	1.00	1.00

c) Gender

gender	<i>Prompt attention</i>	<i>Dignity</i>	<i>Clarity of Commun.</i>	<i>Autonomy</i>	<i>Confident.</i>	<i>Choice</i>	<i>Quality of Facilities</i>	<i>Social Support</i>
female	1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00
male	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
<i>Average</i>	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00

Table IX: European countries: coefficients and standard errors for the responsiveness equation of the HOPIT model, for the domain “Dignity”, for the pool of countries and for countries stratified by the Inglehart-Welzer value map

Europe overall		catholic countries		communist countries		protestant countries		
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
xb								
dumI2	-0.004	0.026	0.041	0.051	0.029	0.033	-0.035	0.067
dumI3	0.063	0.028	0.094	0.057	0.073	0.035	0.124	0.072
female	-0.010	0.021	0.080	0.040	-0.031	0.028	-0.011	0.055
age_yrs	0.006	0.001	0.009	0.001	0.005	0.001	0.007	0.002
edu_yrs	0.005	0.003	0.007	0.005	0.002	0.004	-0.003	0.009
BEL	0.275	0.108	0.284	0.110				
ESP	-0.099	0.078	-0.094	0.079				
FRA	0.224	0.118	0.236	0.119				
GRC	-0.079	0.098	-0.064	0.099				
ITA	-0.598	0.148	-0.577	0.148				
LUX	0.486	0.106	0.503	0.107				
PRT	-0.138	0.103	-0.120	0.105				
BIH	-0.247	0.095			-0.239	0.093		
CZE	0.053	0.098			0.053	0.096		
EST	-0.045	0.095			-0.035	0.093		
GEO	0.015	0.088			0.029	0.086		
HRV	-0.135	0.097			-0.127	0.095		
HUN	-0.229	0.088			-0.218	0.086		
KAZ	-0.450	0.081			-0.421	0.080		
LVA	-0.221	0.097			-0.203	0.096		
RUS	-0.547	0.080			-0.514	0.078		
SVK	-0.561	0.089			-0.545	0.087		
SVN	-0.192	0.107			-0.176	0.104		
UKR	-0.547	0.083			-0.514	0.082		
DEU	-0.159	0.093					-0.213	0.103
DNK	0.481	0.108					0.524	0.120
FIN	0.508	0.096					0.518	0.106
GBR	0.190	0.095					0.199	0.106
IRL	-0.107	0.105					-0.135	0.117
NLD	0.170	0.104					0.155	0.117
SWE	0.493	0.101					0.521	0.112
_cons	1.577	0.092	1.499	0.133	1.546	0.102	1.828	0.173
sig								
_cons	0.788	0.009	0.784	0.017	0.756	0.011	0.940	0.026
vigdum2								
_cons	1.870	0.019	2.056	0.039	1.771	0.024	2.028	0.047
vigdum3								
_cons	2.343	0.020	2.460	0.041	2.246	0.026	2.573	0.050
vigdum4								
_cons	0.949	0.018	1.329	0.036	0.782	0.022	1.048	0.043
vigdum5								
_cons	-1.118	0.019	-1.235	0.039	-1.070	0.024	-1.197	0.049

Table IX (continued): coefficients and standard errors for reporting behaviour equation, first and second cut point

mu1							
dumI2	0.011	0.023	0.001	0.049	0.024	0.030	-0.013 0.056
dumI3	0.052	0.025	0.151	0.054	0.059	0.032	-0.037 0.058
female	0.098	0.019	0.112	0.038	0.071	0.025	0.135 0.045
age_yrs	-0.002	0.001	-0.004	0.001	-0.002	0.001	-0.003 0.001
edu_yrs	0.007	0.003	-0.002	0.005	0.007	0.004	0.021 0.007
BEL	0.687	0.108	0.810	0.114			
ESP	0.111	0.082	0.098	0.086			
FRA	0.455	0.112	0.552	0.118			
GRC	0.229	0.097	0.243	0.102			
ITA	0.263	0.137	0.282	0.144			
LUX	0.315	0.107	0.371	0.112			
PRT	-0.172	0.104	-0.229	0.109			
BIH	0.133	0.093			0.124	0.091	
CZE	0.054	0.099			0.056	0.097	
EST	-0.058	0.098			-0.050	0.096	
GEO	-0.389	0.086			-0.384	0.084	
HRV	0.147	0.098			0.142	0.096	
HUN	-0.005	0.091			-0.007	0.089	
KAZ	-0.145	0.084			-0.147	0.083	
LVA	0.424	0.099			0.414	0.097	
RUS	0.084	0.083			0.077	0.082	
SVK	-0.085	0.090			-0.076	0.088	
SVN	0.367	0.102			0.343	0.100	
UKR	0.022	0.087			0.017	0.085	
DEU	0.171	0.096					0.165 0.099
DNK	0.682	0.101					0.696 0.105
FIN	0.176	0.097					0.178 0.100
GBR	0.508	0.094					0.506 0.098
IRL	0.715	0.102					0.737 0.105
NLD	-0.285	0.102					-0.320 0.106
SWE	0.639	0.098					0.651 0.101
_cons	-0.828	0.093	-0.674	0.132	-0.852	0.101	-0.952 0.144
mu2							
dumI2	0.013	0.020	0.059	0.042	0.006	0.025	0.003 0.049
dumI3	0.015	0.021	0.134	0.047	-0.018	0.026	0.032 0.051
female	0.014	0.016	0.040	0.033	-0.027	0.021	0.133 0.040
age_yrs	-0.001	0.000	-0.001	0.001	0.000	0.001	-0.003 0.001
edu_yrs	0.001	0.002	-0.004	0.004	0.002	0.003	-0.001 0.006
BEL	0.723	0.095	0.804	0.098			
ESP	0.267	0.069	0.271	0.071			
FRA	0.441	0.097	0.500	0.100			
GRC	0.263	0.083	0.284	0.086			
ITA	0.172	0.119	0.198	0.123			
LUX	0.735	0.089	0.800	0.092			
PRT	0.175	0.086	0.168	0.090			
BIH	0.129	0.079			0.118	0.077	
CZE	0.167	0.084			0.156	0.083	
EST	0.241	0.082			0.232	0.081	
GEO	0.057	0.071			0.045	0.070	
HRV	0.512	0.083			0.484	0.081	
HUN	0.111	0.076			0.098	0.075	
KAZ	-0.004	0.070			-0.008	0.069	
LVA	0.406	0.084			0.392	0.083	
RUS	0.174	0.070			0.161	0.069	
SVK	0.034	0.075			0.033	0.074	
SVN	0.468	0.087			0.444	0.086	
UKR	0.244	0.072			0.233	0.071	
DEU	0.240	0.081					0.274 0.084
DNK	0.828	0.087					0.918 0.091
FIN	0.455	0.081					0.517 0.084
GBR	0.465	0.081					0.512 0.084
IRL	0.441	0.089					0.474 0.092
NLD	0.159	0.084					0.200 0.088
SWE	0.779	0.084					0.849 0.088
_cons	0.027	0.078	0.133	0.113	-0.012	0.084	0.058 0.126

Table IX (continued): coefficients and standard errors for reporting behaviour equation, third and fourth cut point

mu3							
duml2	-0.012	0.019	0.034	0.039	-0.005	0.024	-0.042 0.047
duml3	-0.036	0.020	0.033	0.044	-0.038	0.025	-0.047 0.049
female	-0.012	0.015	0.048	0.031	-0.048	0.020	0.060 0.038
age_yrs	-0.001	0.000	-0.001	0.001	-0.001	0.001	-0.003 0.001
edu_yrs	0.000	0.002	0.000	0.004	-0.003	0.003	-0.006 0.006
BEL	0.585	0.091	0.609	0.093			
ESP	0.118	0.063	0.134	0.065			
FRA	0.539	0.092	0.560	0.093			
GRC	0.286	0.077	0.318	0.078			
ITA	0.092	0.110	0.116	0.112			
LUX	0.660	0.085	0.681	0.087			
PRT	0.328	0.079	0.351	0.081			
BIH	0.141	0.073			0.127	0.072	
CZE	0.249	0.078			0.239	0.077	
EST	0.340	0.076			0.329	0.075	
GEO	0.352	0.066			0.337	0.065	
HRV	0.684	0.078			0.656	0.077	
HUN	0.115	0.070			0.109	0.069	
KAZ	0.226	0.064			0.232	0.064	
LVA	0.399	0.079			0.388	0.078	
RUS	0.374	0.064			0.364	0.064	
SVK	0.055	0.070			0.058	0.069	
SVN	0.314	0.082			0.306	0.082	
UKR	0.527	0.067			0.518	0.067	
DEU	0.273	0.075					0.314 0.078
DNK	0.638	0.083					0.718 0.086
FIN	0.664	0.075					0.729 0.078
GBR	0.443	0.076					0.501 0.079
IRL	0.327	0.084					0.351 0.087
NLD	0.374	0.078					0.420 0.082
SWE	0.741	0.079					0.819 0.083
cons	0.778	0.073	0.863	0.105	0.743	0.080	0.947 0.122
mu4							
duml2	-0.023	0.020	-0.045	0.040	-0.018	0.026	-0.040 0.050
duml3	-0.069	0.021	-0.064	0.045	-0.079	0.027	-0.057 0.053
female	-0.034	0.016	0.001	0.031	-0.036	0.021	-0.030 0.040
age_yrs	0.000	0.000	0.001	0.001	0.000	0.001	-0.001 0.001
edu_yrs	-0.009	0.002	-0.009	0.004	-0.008	0.003	-0.017 0.006
BEL	0.655	0.094	0.663	0.095			
ESP	0.498	0.064	0.511	0.065			
FRA	0.608	0.095	0.611	0.096			
GRC	0.151	0.078	0.168	0.079			
ITA	0.186	0.111	0.200	0.111			
LUX	0.697	0.089	0.705	0.090			
PRT	0.737	0.083	0.753	0.084			
BIH	0.207	0.074			0.206	0.074	
CZE	0.266	0.078			0.255	0.078	
EST	0.522	0.077			0.510	0.077	
GEO	0.605	0.067			0.602	0.066	
HRV	0.438	0.079			0.427	0.078	
HUN	0.123	0.071			0.121	0.070	
KAZ	0.556	0.066			0.554	0.065	
LVA	0.363	0.081			0.354	0.080	
RUS	0.524	0.066			0.521	0.065	
SVK	0.047	0.071			0.038	0.070	
SVN	0.416	0.085			0.413	0.084	
UKR	0.676	0.069			0.670	0.069	
DEU	0.431	0.077					0.468 0.079
DNK	0.559	0.086					0.604 0.089
FIN	0.855	0.079					0.920 0.083
GBR	0.424	0.077					0.462 0.080
IRL	0.263	0.087					0.285 0.090
NLD	0.754	0.082					0.809 0.086
SWE	0.680	0.082					0.734 0.085
cons	1.820	0.075	1.925	0.108	1.734	0.083	2.114 0.131

Table X: All countries: coefficients and standard errors for the responsiveness equation of the HOPIT model, for the domain “Dignity”, for the pool of countries and for countries stratified by the Inglehart-Welzer value map

	ALL COUNTRIES		SELF SEC EUROPE		SELF TRAD LatAm		SUR TRAD Asia Africa		SUR SEC Communist	
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
xb										
dumI2	0.023	0.011	0.003	0.021	0.029	0.020	0.032	0.013	0.012	0.019
dumI3	0.085	0.012	0.021	0.022	0.067	0.023	0.096	0.015	0.025	0.020
female	0.027	0.009	0.045	0.018	0.028	0.018	0.039	0.011	0.006	0.016
age_yrs	0.004	0.000	0.005	0.001	0.005	0.001	0.003	0.000	0.003	0.000
edu_yrs	0.005	0.001	0.004	0.002	0.003	0.002	0.005	0.001	0.002	0.002
AUT	0.184	0.071	0.158	0.069						
BEL	0.424	0.078	0.388	0.077						
DEU	0.036	0.056	0.020	0.056						
DNK	0.621	0.077	0.581	0.075						
ESP	0.093	0.028	0.079	0.028						
FIN	0.651	0.060	0.610	0.060						
FRA	0.383	0.089	0.346	0.087						
GBR	0.343	0.060	0.313	0.059						
GRC	0.116	0.063	0.098	0.062						
ISR	0.112	0.065	0.091	0.064						
ITA	-0.355	0.122	-0.360	0.119						
LUX	0.628	0.075	0.584	0.073						
NLD	0.333	0.071	0.305	0.069						
SVN	0.009	0.075	-0.009	0.073						
SWE	0.623	0.068	0.583	0.067						
BRA	0.201	0.030			0.202	0.030				
DOM	0.150	0.030			0.149	0.030				
ECU	0.016	0.038			0.023	0.038				
GTM	0.106	0.035			0.104	0.036				
IRL	0.097	0.074			0.095	0.075				
PRT	0.051	0.070			0.042	0.070				
PRY	0.323	0.032			0.332	0.032				
URY	0.320	0.042			0.316	0.043				
ARE	0.108	0.063			0.101	0.062				
BFA	-0.092	0.044			-0.094	0.043				
BGD	-0.186	0.035			-0.181	0.035				
CIV	-0.114	0.054			-0.111	0.053				
COG	-0.048	0.072			-0.049	0.071				
COM	-0.016	0.052			-0.009	0.051				
ETH	-0.534	0.070			-0.520	0.068				
GHA	-0.130	0.039			-0.123	0.038				
IND	-0.105	0.025			-0.097	0.025				
KEN	-0.350	0.034			-0.344	0.034				
LAO	-0.140	0.042			-0.135	0.041				
LKA	-0.466	0.026			-0.446	0.025				
MAR	-0.555	0.049			-0.543	0.048				
MLI	-0.103	0.152			-0.082	0.148				
MMR	0.187	0.050			0.183	0.049				
MRT	-0.366	0.051			-0.353	0.050				
MUS	0.091	0.031			0.088	0.031				
MWI	-0.183	0.031			-0.186	0.030				
MYS	-0.053	0.030			-0.056	0.029				
NAM	-0.034	0.034			-0.028	0.033				
NPL	-0.293	0.030			-0.283	0.030				
PAK	-0.199	0.032			-0.192	0.032				
PHL	0.131	0.024			0.129	0.023				
SEN	-0.415	0.071			-0.395	0.069				
SWZ	-0.235	0.059			-0.225	0.057				
TCD	-0.225	0.054			-0.214	0.053				
TUN	-0.346	0.029			-0.329	0.028				
ZAF	-0.079	0.045			-0.071	0.044				
ZMB	-0.187	0.033			-0.184	0.032				
ZWE	-0.136	0.036			-0.139	0.035				
BIH	-0.039	0.058					-0.034	0.056		
CHN	0.065	0.043					0.067	0.041		
CZE	0.223	0.063					0.222	0.061		
EST	0.132	0.059					0.142	0.058		
GEO	0.187	0.048					0.198	0.046		
HRV	0.050	0.061					0.059	0.059		
HUN	-0.024	0.048					-0.027	0.047		
KAZ	-0.229	0.035					-0.208	0.035		
LVA	-0.023	0.063					-0.014	0.061		
RUS	-0.315	0.032					-0.283	0.032		
SVK	-0.342	0.049					-0.327	0.047		
UKR	-0.320	0.039					-0.295	0.039		
VNM	-0.318	0.035					-0.308	0.033		
_cons	1.105	0.022	1.189	0.037	1.200	0.037	1.012	0.026	1.274	0.034
sig										
_cons	0.736	0.003	0.696	0.006	0.742	0.006	0.709	0.004	0.674	0.006
vigdum2										
_cons	1.396	0.008	1.442	0.014	1.459	0.013	1.215	0.009	1.443	0.013
vigdum3										
_cons	1.806	0.008	1.735	0.015	1.726	0.014	1.610	0.009	1.760	0.013
vigdum4										
_cons	0.757	0.007	1.113	0.014	1.191	0.013	0.626	0.009	0.996	0.012
vigdum5										
_cons	-1.031	0.008	-0.877	0.014	-0.866	0.013	-1.019	0.009	-0.877	0.013

Table X (continued): coefficients and standard errors for reporting behaviour equation, first and second cut point

	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.									
m1																			
dum2	0.039	0.010	0.065	0.018	0.068	0.017	0.043	0.012	0.054	0.017	dum2	0.011	0.008	0.044	0.014	0.025	0.014	0.011	0.009
dum3	0.068	0.010	0.080	0.019	0.079	0.019	0.062	0.013	0.066	0.018	dum3	0.019	0.008	0.062	0.016	0.038	0.016	0.017	0.010
female	0.028	0.008	0.052	0.014	0.035	0.014	0.007	0.009	0.036	0.013	female	0.016	0.006	0.041	0.012	0.028	0.011	0.014	0.007
age_yrs	-0.001	0.000	-0.001	0.000	-0.001	0.000	0.000	0.000	-0.001	0.000	age_yrs	0.000	0.000	-0.001	0.000	0.000	0.000	0.015	0.011
edu_yrs	0.009	0.001	0.005	0.002	0.013	0.002	0.006	0.001	0.008	0.002	edu_yrs	0.003	0.001	0.000	0.002	0.003	0.001	0.003	0.001
AUT	0.059	0.075	0.087	0.076							AUT	-0.186	0.063	-0.158	0.063				
BEL	0.675	0.071	0.732	0.072							BEL	0.466	0.065	0.513	0.065				
DEU	0.219	0.054	0.245	0.054							DEU	0.032	0.046	0.068	0.047				
DNK	0.672	0.061	0.704	0.062							DNK	0.554	0.056	0.585	0.056				
ESP	0.163	0.025	0.173	0.025							ESP	0.058	0.021	0.076	0.022				
FIN	0.210	0.054	0.247	0.055							FIN	0.227	0.045	0.262	0.046				
FRA	0.464	0.076	0.532	0.077							FRA	0.219	0.068	0.266	0.068				
GBR	0.528	0.051	0.558	0.052							GBR	0.237	0.046	0.273	0.047				
GRC	0.273	0.055	0.300	0.056							GRC	0.059	0.048	0.095	0.049				
ISR	0.320	0.054	0.372	0.055							ISR	0.095	0.049	0.142	0.049				
ITA	0.307	0.107	0.340	0.107							ITA	-0.028	0.094	0.005	0.094				
LUX	0.336	0.069	0.380	0.070							LUX	0.484	0.058	0.519	0.058				
NLD	-0.207	0.063	-0.157	0.063							NLD	-0.025	0.050	0.019	0.051				
SVN	0.381	0.063	0.431	0.063							SVN	0.244	0.055	0.278	0.055				
SWE	0.649	0.056	0.682	0.057							SWE	0.509	0.051	0.551	0.051				
BRA	0.479	0.025			0.488	0.025					BRA	0.216	0.022			0.233	0.022		
DOM	0.002	0.030			0.001	0.030					DOM	0.046	0.024			0.049	0.024		
ECU	0.006	0.032			0.003	0.032					ECU	0.029	0.026			0.037	0.027		
GTM	-0.449	0.032			-0.437	0.033					GTM	0.069	0.024			0.065	0.024		
IRL	0.673	0.064			0.657	0.065					IRL	0.208	0.060			0.214	0.060		
PRT	-0.081	0.065			-0.079	0.065					PRT	-0.020	0.053			-0.013	0.054		
PRY	0.140	0.027			0.144	0.027					PRY	0.091	0.022			0.099	0.022		
URY	0.165	0.035			0.152	0.035					URY	0.070	0.030			0.076	0.030		
ARE	-0.010	0.050					-0.005	0.050			ARE	-0.052	0.041					-0.051	0.041
BFA	0.210	0.039					0.198	0.039			BFA	0.212	0.032					0.203	0.031
BGD	0.083	0.028					0.080	0.027			BGD	-0.035	0.023					-0.033	0.023
CIV	0.159	0.043					0.149	0.043			CIV	0.257	0.035					0.249	0.035
COG	0.212	0.073					0.205	0.072			COG	0.427	0.058					0.409	0.057
COM	0.223	0.049					0.200	0.048			COM	0.440	0.040					0.423	0.039
ETH	-0.016	0.038					-0.013	0.037			ETH	-0.078	0.030					-0.077	0.030
GHA	0.231	0.034					0.222	0.033			GHA	0.040	0.028					0.039	0.028
IND	-0.116	0.024					-0.123	0.023			IND	-0.127	0.018					-0.126	0.018
KEN	0.276	0.028					0.271	0.028			KEN	0.081	0.024					0.080	0.024
LAO	-0.641	0.054					-0.622	0.053			LAO	-0.191	0.035					-0.184	0.035
LKA	-0.122	0.024					-0.125	0.024			LKA	-0.311	0.019					-0.305	0.019
MAR	0.671	0.038					0.661	0.037			MAR	0.163	0.036					0.160	0.035
MLI	-0.276	0.151					-0.281	0.149			MLI	0.040	0.109					0.036	0.107
MMR	-0.582	0.044					-0.564	0.043			MMR	0.001	0.030					0.002	0.029
MRT	0.077	0.054					0.061	0.054			MRT	0.081	0.041					0.076	0.040
MUS	0.387	0.027					0.382	0.027			MUS	0.392	0.024					0.379	0.024
MWI	0.225	0.027					0.220	0.026			MWI	0.044	0.022					0.044	0.022
MYS	-0.188	0.029					-0.171	0.029			MYS	-0.031	0.023					-0.026	0.023
NAM	0.092	0.031					0.079	0.030			NAM	0.097	0.023					0.089	0.023
NPL	-0.117	0.027					-0.119	0.027			NPL	-0.102	0.021					-0.101	0.021
PAK	0.001	0.026					0.002	0.026			PAK	0.201	0.022					0.193	0.021
PHL	-0.240	0.020					-0.230	0.019			PHL	0.091	0.015					0.087	0.014
SEN	-0.076	0.051					-0.090	0.050			SEN	0.055	0.039					0.050	0.038
SWZ	0.174	0.035					0.161	0.035			SWZ	0.215	0.028					0.205	0.028
TCD	-0.003	0.048					-0.027	0.047			TCD	0.223	0.035					0.212	0.035
TUN	0.123	0.025					0.110	0.025			TUN	0.050	0.020					0.046	0.020
ZAF	0.320	0.042					0.305	0.041			ZAF	0.147	0.035					0.142	0.034
ZMB	0.182	0.026					0.173	0.026			ZMB	0.028	0.022					0.027	0.021
ZWE	0.127	0.029					0.133	0.028			ZWE	-0.019	0.024					-0.017	0.023
BIH	0.171	0.049							0.176	0.049	BIH	-0.058	0.042					-0.050	0.042
CHN	-0.449	0.042							-0.420	0.042	CHN	0.034	0.030					0.050	0.029
CZE	0.122	0.057							0.133	0.058	CZE	-0.022	0.050					-0.012	0.051
EST	0.010	0.057							0.022	0.058	EST	0.036	0.047					0.047	0.047
GEO	-0.309	0.034							-0.302	0.035	GEO	-0.113	0.027					-0.105	0.028
HRV	0.201	0.057							0.216	0.057	HRV	0.280	0.049					0.292	0.048
HUN	0.056	0.045							0.087	0.045	HUN	-0.075	0.037					-0.059	0.038
KAZ	-0.099	0.030							-0.078	0.031	KAZ	-0.193	0.024					-0.184	0.025
LVA	0.448	0.057							0.469	0.058	LVA	0.181	0.051					0.193	0.051
RUS	0.120	0.029							0.136	0.030	RUS	-0.030	0.024					-0.019	0.025
SVK	-0.005	0.042							0.024	0.043	SVK	-0.140	0.036					-0.129	0.036
UKR	0.064	0.037							0.094	0.038	UKR	0.037	0.031					0.053	0.031
VNM	-0.247	0.033							-0.240	0.033	VNM	-0.071	0.026					-0.061	0.026
_cons	-1.013	0.018	-0.901	0.031	-0.961	0.029	-1.053	0.022	-0.928	0.029	_cons	0.000	0.015	0.118	0.026	0.107	0.024	-0.083	0.017

Table X (continued): coefficients and standard errors for reporting behaviour equation, third and fourth cut point

mu3	<i>Coef.</i>	<i>Std. Err.</i>										
duml2	-0.011	0.007	0.016	0.014	-0.001	0.013	-0.015	0.009	0.005	0.013		
duml3	-0.017	0.008	0.004	0.015	-0.007	0.015	-0.020	0.010	-0.020	0.014		
female	-0.002	0.006	0.001	0.011	-0.014	0.011	0.002	0.007	-0.024	0.010		
age_yrs	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000		
edu_yrs	0.000	0.001	-0.002	0.001	-0.001	0.001	0.000	0.001	-0.001	0.001		
AUT	-0.144	0.058	-0.124	0.058								
BEL	0.381	0.066	0.388	0.066								
DEU	0.094	0.044	0.115	0.044								
DNK	0.422	0.055	0.429	0.055								
ESP	-0.050	0.020	-0.033	0.020								
FIN	0.451	0.044	0.460	0.044								
FRA	0.342	0.066	0.343	0.066								
GBR	0.243	0.045	0.258	0.045								
GRC	0.108	0.046	0.129	0.046								
ISR	0.080	0.047	0.098	0.047								
ITA	-0.061	0.089	-0.043	0.088								
LUX	0.459	0.058	0.454	0.058								
NLD	0.204	0.048	0.216	0.048								
SVN	0.147	0.055	0.155	0.054								
SWE	0.507	0.050	0.522	0.050								
BRA	0.083	0.021			0.093	0.021						
DOM	0.110	0.023			0.112	0.023						
ECU	0.033	0.025			0.040	0.025						
GTM	-0.032	0.022			-0.034	0.022						
IRL	0.169	0.058			0.169	0.058						
PRT	0.143	0.049			0.149	0.049						
PRY	0.049	0.021			0.054	0.021						
URY	0.035	0.028			0.040	0.028						
ARE	0.055	0.039			0.057	0.039						
BFA	0.177	0.031			0.176	0.031						
BGD	0.096	0.021			0.093	0.021						
CIV	0.330	0.035			0.324	0.035						
COG	0.570	0.059			0.557	0.059						
COM	0.510	0.040			0.496	0.039						
ETH	0.019	0.028			0.022	0.028						
GHA	0.089	0.027			0.088	0.027						
IND	0.022	0.017			0.026	0.016						
KEN	0.062	0.023			0.063	0.023						
LAO	0.029	0.032			0.029	0.032						
LKA	-0.097	0.018			-0.092	0.017						
MAR	-0.016	0.035			-0.015	0.035						
MLI	-0.040	0.105			-0.033	0.104						
MMR	0.185	0.028			0.179	0.028						
MRT	0.364	0.040			0.359	0.040						
MUS	0.322	0.024			0.308	0.023						
MWI	-0.037	0.022			-0.032	0.021						
MYS	-0.023	0.022			-0.023	0.022						
NAM	0.314	0.023			0.311	0.023						
NPL	-0.001	0.020			0.003	0.019						
PAK	0.366	0.021			0.351	0.020						
PHL	0.603	0.014			0.585	0.014						
SEN	0.123	0.038			0.124	0.037						
SWZ	0.186	0.028			0.184	0.027						
TCD	0.371	0.035			0.368	0.035						
TUN	0.044	0.019			0.046	0.019						
ZAF	0.350	0.034			0.345	0.034						
ZMB	0.181	0.021			0.179	0.021						
ZWE	0.004	0.023			0.004	0.022						
BIH	-0.007	0.040					0.002	0.040				
CHN	0.389	0.029					0.377	0.029				
CZE	0.078	0.047					0.093	0.047				
EST	0.153	0.044					0.167	0.045				
GEO	0.173	0.026					0.184	0.026				
HRV	0.461	0.048					0.454	0.047				
HUN	-0.036	0.035					-0.028	0.035				
KAZ	0.075	0.023					0.081	0.024				
LVA	0.210	0.049					0.214	0.049				
RUS	0.193	0.023					0.198	0.024				
SVK	-0.079	0.035					-0.070	0.035				
UKR	0.337	0.030					0.331	0.030				
VNM	0.031	0.025					0.034	0.025				
_cons	0.641	0.014	0.771	0.025	0.781	0.023	0.520	0.017	0.757	0.023	2.098	0.016

mu4	<i>Coef.</i>	<i>Std. Err.</i>										
duml2	-0.019	0.008	-0.028	0.015	-0.041	0.015	-0.010	0.010	-0.018	0.014		
duml3	-0.060	0.009	-0.090	0.017	-0.115	0.017	-0.048	0.011	-0.084	0.015		
female	0.004	0.007	0.019	0.012	0.022	0.012	0.020	0.008	0.011	0.011		
age_yrs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
edu_yrs	-0.009	0.001	-0.009	0.002	-0.013	0.001	-0.005	0.001	-0.010	0.002		
AUT	-0.622	0.059	-0.615	0.059								
BEL	-0.027	0.070	-0.051	0.069								
DEU	-0.234	0.046	-0.237	0.046								
DNK	-0.118	0.060	-0.121	0.059								
ESP	-0.168	0.021	-0.164	0.022								
FIN	0.159	0.050	0.140	0.049								
FRA	-0.067	0.071	-0.091	0.070								
GBR	-0.251	0.047	-0.254	0.047								
GRC	-0.492	0.048	-0.479	0.047								
ISR	-0.565	0.048	-0.560	0.048								
ITA	-0.448	0.090	-0.445	0.089								
LUX	0.018	0.063	-0.007	0.063								
NLD	0.065	0.053	0.045	0.052								
SVN	-0.240	0.058	-0.253	0.057								
SWE	-0.017	0.054	-0.028	0.054								
BRA	-0.246	0.023										
DOM	0.179	0.026										
ECU	-0.239	0.027										
GTM	0.418	0.027										
IRL	-0.363	0.061										
PRT	0.049	0.055										
PRY	-0.349	0.023										
URY	-0.052	0.081										
ARE	-0.428	0.041										
BFA	-0.129	0.035										
BGD	-0.216	0.024										
CIV	-0.021	0.041										
COG	-0.103	0.064										
COM	0.087	0.045										
ETH	-0.543	0.080										
GHA	-0.343	0.029										
IND	-0.147	0.019										
KEN	-0.524	0.025										
LAO	-0.116	0.035										
LKA	-0.334	0.019										
MAR	-0.672	0.036										
MLI	-0.131	0.119										
MMR	0.364	0.035										
MRT	-0.128	0.046										
MUS	-0.084	0.025										
MWI	-0.659	0.022										
MYS	-0.116	0.024										
NAM	-0.192	0.026										
NPL	0.110	0.023										
PAK	0.088	0.024										

Table XI: All countries: coefficients and standard errors for the responsiveness equation of the HOPIT model, for the domain “Dignity”, for the pool of countries and for countries stratified by HDI group

	ALL COUNTRIES		HIGH HDI		MEDIUM HDI		LOW HDI	
	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.
xb								
dum12	0.023	0.011	0.010	0.017	0.043	0.013	-0.004	0.020
dum13	0.085	0.012	0.042	0.019	0.112	0.015	0.012	0.022
female	0.027	0.009	0.020	0.015	0.029	0.011	0.043	0.017
age_yrs	0.004	0.000	0.005	0.000	0.004	0.000	0.003	0.001
edu_yrs	0.005	0.001	0.002	0.002	0.006	0.001	0.001	0.002
ARE	0.108	0.063	0.102	0.062				
AUT	0.184	0.071	0.168	0.070				
BEL	0.424	0.078	0.418	0.077				
BIH	-0.039	0.058	-0.049	0.058				
CZE	0.223	0.063	0.223	0.063				
DEU	0.036	0.056	0.027	0.056				
DNK	0.621	0.077	0.608	0.076				
ESP	0.093	0.028	0.082	0.028				
EST	0.132	0.059	0.133	0.059				
FIN	0.651	0.060	0.635	0.060				
FRA	0.383	0.089	0.372	0.088				
GBR	0.343	0.060	0.336	0.060				
GRC	0.116	0.063	0.100	0.063				
HRV	0.050	0.061	0.045	0.061				
HUN	-0.024	0.048	-0.039	0.048				
IRL	0.097	0.074	0.085	0.073				
ISR	0.112	0.065	0.106	0.065				
ITA	-0.355	0.122	-0.370	0.121				
LUX	0.628	0.075	0.612	0.074				
LVA	-0.023	0.063	-0.034	0.063				
MUS	0.091	0.031	0.080	0.031				
MYS	-0.053	0.030	-0.052	0.029				
NLD	0.333	0.071	0.333	0.070				
PRT	0.051	0.070	0.043	0.069				
SVK	-0.342	0.049	-0.334	0.049				
SVN	0.009	0.075	-0.002	0.074				
SWE	0.623	0.068	0.614	0.067				
URY	0.320	0.042	0.317	0.042				
BGD	-0.186	0.035			-0.184	0.035		
BRA	0.201	0.030			0.196	0.029		
CHN	0.065	0.043			0.064	0.042		
COG	-0.048	0.072			-0.049	0.071		
COM	-0.016	0.052			-0.009	0.051		
DOM	0.150	0.030			0.144	0.030		
ECU	0.016	0.038			0.013	0.037		
GEO	0.187	0.048			0.180	0.047		
GHA	-0.130	0.039			-0.127	0.038		
GTM	0.106	0.035			0.097	0.034		
IND	-0.105	0.025			-0.100	0.025		
KAZ	-0.229	0.035			-0.226	0.035		
LAO	-0.140	0.042			-0.136	0.041		
LKA	-0.466	0.026			-0.451	0.025		
MAR	-0.555	0.049			-0.547	0.048		
MMR	0.187	0.050			0.180	0.049		
NAM	-0.034	0.034			-0.033	0.033		
NPL	-0.293	0.030			-0.284	0.030		
PAK	-0.199	0.032			-0.192	0.032		
PHL	0.131	0.024			0.124	0.023		
PRY	0.323	0.032			0.308	0.031		
RUS	-0.315	0.032			-0.302	0.032		
SWZ	-0.235	0.059			-0.225	0.057		
TUN	-0.346	0.029			-0.336	0.029		
UKR	-0.320	0.039			-0.312	0.039		
VNM	-0.318	0.035			-0.308	0.034		
ZAF	-0.079	0.045			-0.080	0.044		
BFA	-0.092	0.044			-0.099	0.044		
CIV	-0.114	0.054			-0.112	0.053		
ETH	-0.534	0.070			-0.506	0.068		
KEN	-0.350	0.034			-0.339	0.034		
MLI	-0.103	0.152			-0.102	0.148		
MRT	-0.366	0.051			-0.357	0.051		
MWI	-0.183	0.031			-0.184	0.031		
SEN	-0.415	0.071			-0.399	0.069		
TCD	-0.225	0.054			-0.221	0.054		
ZMB	-0.187	0.033			-0.185	0.032		
ZWE	-0.136	0.036			-0.137	0.035		
_cons	1.105	0.022	1.256	0.032	1.058	0.025	1.144	0.038
sig								
_cons	0.736	0.003	0.714	0.005	0.711	0.004	0.709	0.006
vidgum2								
_cons	1.396	0.008	1.569	0.012	1.294	0.009	1.260	0.013
vidgum3								
_cons	1.806	0.008	1.896	0.013	1.681	0.009	1.567	0.013
vidgum4								
_cons	0.757	0.007	1.058	0.012	0.770	0.009	0.847	0.012
vidgum5								
_cons	-1.031	0.008	-0.948	0.012	-0.985	0.009	-0.906	0.013

Table XI (continued): coefficients and standard errors for reporting behaviour equation, first and second cut point

mu1	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.								
dum12	0.039	0.010	0.059	0.015	0.042	0.012	0.059	0.016	dum12	0.011	0.008	0.036	0.013	
dum13	0.068	0.010	0.066	0.017	0.069	0.013	0.070	0.018	dum13	0.019	0.008	0.052	0.014	
female	0.028	0.008	0.039	0.012	0.026	0.009	0.020	0.013	female	0.016	0.006	0.033	0.010	
age_yrs	-0.001	0.000	-0.002	0.000	-0.001	0.000	0.000	0.000	age_yrs	0.000	0.000	-0.001	0.000	
edu_yrs	0.009	0.001	0.007	0.002	0.009	0.001	0.009	0.002	edu_yrs	0.003	0.001	0.000	0.001	
ARE	-0.010	0.050	0.025	0.051					ARE	-0.052	0.041	-0.020	0.042	
AUT	0.059	0.075	0.082	0.077					AUT	-0.186	0.063	-0.167	0.064	
BEL	0.675	0.071	0.729	0.072					BEL	0.466	0.065	0.518	0.066	
BIH	0.171	0.049	0.186	0.049					BIH	-0.058	0.042	-0.043	0.043	
CZE	0.122	0.057	0.135	0.059					CZE	-0.022	0.050	0.006	0.051	
DEU	0.219	0.054	0.239	0.055					DEU	0.032	0.046	0.062	0.047	
DNK	0.672	0.061	0.711	0.062					DNK	0.554	0.056	0.595	0.056	
ESP	0.163	0.025	0.173	0.025					ESP	0.058	0.021	0.073	0.022	
EST	0.010	0.057	0.027	0.058					EST	0.036	0.047	0.063	0.048	
FIN	0.210	0.054	0.241	0.055					FIN	0.227	0.045	0.260	0.046	
FRA	0.464	0.076	0.518	0.077					FRA	0.219	0.068	0.262	0.069	
GBR	0.528	0.051	0.559	0.052					GBR	0.237	0.046	0.271	0.047	
GRC	0.273	0.055	0.295	0.056					GRC	0.059	0.048	0.086	0.049	
HRV	0.201	0.057	0.224	0.058					HRV	0.280	0.049	0.317	0.049	
HUN	0.056	0.045	0.088	0.046					HUN	-0.075	0.037	-0.046	0.038	
IRL	0.673	0.064	0.716	0.065					IRL	0.208	0.060	0.237	0.060	
ISR	0.320	0.054	0.357	0.055					ISR	0.095	0.049	0.131	0.049	
ITA	0.307	0.107	0.332	0.109					ITA	-0.028	0.094	-0.001	0.096	
LUX	0.336	0.069	0.371	0.070					LUX	0.484	0.058	0.525	0.059	
LVA	0.448	0.057	0.485	0.059					LVA	0.181	0.051	0.215	0.052	
MUS	0.387	0.027	0.415	0.028					MUS	0.392	0.024	0.422	0.024	
MYS	-0.188	0.029	-0.184	0.030					MYS	-0.031	0.023	-0.014	0.024	
NLD	-0.207	0.063	-0.188	0.064					NLD	-0.025	0.050	0.005	0.051	
PRT	-0.081	0.065	-0.083	0.066					PRT	-0.020	0.053	-0.011	0.054	
SVK	-0.005	0.042	0.015	0.043					SVK	-0.140	0.036	-0.119	0.037	
SVN	0.381	0.063	0.425	0.064					SVN	0.244	0.055	0.277	0.056	
SWE	0.649	0.056	0.686	0.058					SWE	0.509	0.051	0.558	0.052	
URY	0.165	0.035	0.172	0.036					URY	0.070	0.030	0.083	0.031	
BGD	0.083	0.028			0.088	0.028			BGD	-0.035	0.023			
BRA	0.479	0.025			0.478	0.025			BRA	0.216	0.022			
CHN	-0.449	0.042			-0.432	0.042			CHN	0.034	0.030			
COG	0.212	0.073			0.215	0.072			COG	0.427	0.058			
COM	0.223	0.049			0.222	0.048			COM	0.440	0.040			
DOM	0.002	0.030			0.007	0.030			DOM	0.046	0.024			
ECU	0.006	0.032			0.012	0.032			ECU	0.029	0.026			
GEO	-0.309	0.034			-0.299	0.034			GEO	-0.113	0.027			
GHA	0.231	0.034			0.235	0.033			GHA	0.040	0.028			
GTM	-0.449	0.032			-0.431	0.032			GTM	0.069	0.024			
IND	-0.116	0.024			-0.112	0.023			IND	-0.127	0.018			
KAZ	-0.099	0.030			-0.094	0.030			KAZ	-0.193	0.024			
LAO	-0.641	0.054			-0.622	0.054			LAO	-0.191	0.035			
LKA	-0.122	0.024			-0.120	0.024			LKA	-0.311	0.019			
MAR	0.671	0.038			0.671	0.038			MAR	0.163	0.036			
MMR	-0.582	0.044			-0.563	0.043			MMR	0.001	0.030			
NAM	0.092	0.031			0.089	0.031			NAM	0.097	0.023			
NPL	-0.117	0.027			-0.109	0.027			NPL	-0.102	0.021			
PAK	0.001	0.026			0.008	0.026			PAK	0.201	0.022			
PHL	-0.240	0.020			-0.229	0.019			PHL	0.091	0.015			
PRY	0.140	0.027			0.146	0.026			PRY	0.091	0.022			
RUS	0.120	0.029			0.122	0.029			RUS	-0.030	0.024			
SWZ	0.174	0.035			0.167	0.035			SWZ	0.215	0.028			
TUN	0.123	0.025			0.126	0.025			TUN	0.050	0.020			
UKR	0.064	0.037			0.070	0.037			UKR	0.037	0.031			
VNM	-0.247	0.033			-0.238	0.033			VNM	-0.071	0.026			
ZAF	0.320	0.042			0.317	0.041			ZAF	0.147	0.035			
BFA	0.210	0.039				0.221	0.039			BFA	0.212	0.032		
CIV	0.159	0.043				0.168	0.042			CIV	0.257	0.035		
ETH	-0.016	0.038				0.004	0.037			ETH	-0.078	0.030		
KEN	0.276	0.028				0.284	0.028			KEN	0.081	0.024		
MLI	-0.276	0.151				-0.255	0.149			MLI	0.040	0.109		
MRT	0.077	0.054				0.077	0.054			MRT	0.081	0.041		
MWI	0.225	0.027				0.232	0.026			MWI	0.044	0.022		
SEN	-0.076	0.051				-0.068	0.050			SEN	0.055	0.039		
TCD	-0.003	0.048				0.002	0.048			TCD	0.223	0.035		
ZMB	0.182	0.026				0.195	0.026			ZMB	0.028	0.022		
ZWE	0.127	0.029				0.142	0.028			ZWE	-0.019	0.024		
_cons	-1.013	0.018	-0.883	0.027	-1.027	0.021	-1.036	0.029	_cons	0.000	0.015	0.140	0.023	
										-0.030	0.017	-0.017	0.024	

Table XI (continued): coefficients and standard errors for reporting behaviour equation, third and fourth cut point

mu3	Coef.	Std. Err.	Coef.	Std. Err.	Coef.	Std. Err.											
dum12	-0.011	0.007	0.014	0.012	-0.014	0.009	-0.007	0.012	dum12	-0.019	0.008	-0.024	0.013				
dum13	-0.017	0.008	0.007	0.013	-0.027	0.010	-0.015	0.014	dum13	-0.060	0.009	-0.075	0.014				
female	-0.002	0.006	0.005	0.010	-0.007	0.007	-0.011	0.010	female	0.004	0.007	0.015	0.011				
age_yrs	0.000	0.000	-0.001	0.000	0.001	0.000	0.000	0.000	age_yrs	0.000	0.000	0.000	0.000				
edu_yrs	0.000	0.001	-0.003	0.001	0.000	0.001	-0.001	0.001	edu_yrs	-0.009	0.001	-0.010	0.001				
ARE	0.055	0.039	0.063	0.039					ARE	-0.428	0.041	-0.438	0.042				
AUT	-0.144	0.058	-0.127	0.059					AUT	-0.622	0.059	-0.623	0.059				
BEL	0.381	0.066	0.409	0.066					BEL	-0.027	0.070	-0.032	0.070				
BIH	-0.007	0.040	0.009	0.040					BIH	-0.432	0.042	-0.429	0.042				
CZE	0.078	0.047	0.109	0.048					CZE	-0.389	0.048	-0.375	0.049				
DEU	0.094	0.044	0.123	0.044					DEU	-0.234	0.046	-0.231	0.046				
DNK	0.422	0.055	0.450	0.056					DNK	-0.118	0.060	-0.109	0.060				
ESP	-0.050	0.020	-0.029	0.020					ESP	-0.168	0.021	-0.162	0.022				
EST	0.153	0.044	0.185	0.045					EST	-0.152	0.047	-0.145	0.048				
FIN	0.451	0.044	0.481	0.044					FIN	0.159	0.050	0.158	0.050				
FRA	0.342	0.066	0.365	0.067					FRA	-0.067	0.071	-0.071	0.071				
GBR	0.243	0.045	0.273	0.045					GBR	-0.251	0.047	-0.244	0.047				
GRC	0.108	0.046	0.135	0.047					GRC	-0.492	0.048	-0.483	0.048				
HRV	0.461	0.048	0.488	0.048					HRV	-0.237	0.049	-0.231	0.049				
HUN	-0.036	0.035	-0.017	0.036					HUN	-0.511	0.036	-0.512	0.037				
IRL	0.169	0.058	0.184	0.058					IRL	-0.363	0.061	-0.368	0.061				
ISR	0.080	0.047	0.104	0.048					ISR	-0.565	0.048	-0.559	0.049				
ITA	-0.061	0.089	-0.042	0.089					ITA	-0.448	0.090	-0.447	0.090				
LUX	0.459	0.058	0.477	0.058					LUX	0.018	0.063	0.012	0.063				
LVA	0.210	0.049	0.235	0.050					LVA	-0.297	0.052	-0.297	0.052				
MUS	0.322	0.024	0.332	0.024					MUS	-0.084	0.025	-0.095	0.025				
MYS	-0.023	0.022	-0.012	0.022					MYS	-0.116	0.024	-0.121	0.024				
NLD	0.204	0.048	0.227	0.048					NLD	0.065	0.053	0.067	0.053				
PRT	0.143	0.049	0.161	0.050					PRT	0.049	0.055	0.050	0.054				
SVK	-0.079	0.035	-0.064	0.035					SVK	-0.584	0.035	-0.577	0.036				
SVN	0.147	0.055	0.163	0.055					SVN	-0.240	0.058	-0.244	0.058				
SWE	0.507	0.050	0.547	0.051					SWE	-0.017	0.054	-0.010	0.054				
URY	0.035	0.028	0.052	0.029					URY	-0.052	0.031	-0.045	0.031				
BGD	0.096	0.021			0.093	0.021			BGD	-0.216	0.024			-0.213	0.023		
BRA	0.083	0.021			0.081	0.021			BRA	-0.246	0.023			-0.248	0.022		
CHN	0.389	0.029			0.375	0.029			CHN	0.173	0.033			0.157	0.033		
COG	0.570	0.059			0.557	0.059			COG	-0.103	0.064			-0.102	0.064		
COM	0.510	0.040			0.497	0.039			COM	0.087	0.045			0.082	0.045		
DOM	0.110	0.023			0.109	0.023			DOM	0.179	0.026			0.170	0.026		
ECU	0.033	0.025			0.032	0.025			ECU	-0.239	0.027			-0.239	0.027		
GEO	0.173	0.026			0.164	0.026			GEO	-0.078	0.028			-0.089	0.028		
GHA	0.089	0.027			0.087	0.027			GHA	-0.343	0.029			-0.341	0.029		
GTM	-0.032	0.022			-0.030	0.022			GTM	0.418	0.027			0.405	0.027		
IND	0.022	0.017			0.023	0.017			IND	-0.147	0.019			-0.142	0.019		
KAZ	0.075	0.023			0.071	0.023			KAZ	-0.098	0.025			-0.105	0.025		
LAO	0.029	0.032			0.030	0.032			LAO	-0.116	0.035			-0.118	0.035		
LKA	-0.097	0.018			-0.095	0.017			LKA	-0.334	0.019			-0.327	0.019		
MAR	-0.016	0.035			-0.013	0.035			MAR	-0.672	0.036			-0.664	0.036		
MMR	0.185	0.028			0.181	0.028			MMR	0.364	0.035			0.348	0.035		
NAM	0.314	0.023			0.309	0.023			NAM	-0.192	0.026			-0.186	0.025		
NPL	-0.001	0.020			0.003	0.019			NPL	0.110	0.023			0.107	0.023		
PAK	0.366	0.021			0.355	0.021			PAK	0.088	0.024			0.087	0.023		
PHL	0.603	0.014			0.587	0.014			PHL	0.478	0.018			0.461	0.018		
PRY	0.049	0.021			0.048	0.021			PRY	-0.349	0.023			-0.347	0.022		
RUS	0.193	0.023			0.182	0.023			RUS	-0.139	0.025			-0.147	0.025		
SWZ	0.186	0.028			0.184	0.027			SWZ	-0.319	0.031			-0.308	0.031		
TUN	0.044	0.019			0.043	0.019			TUN	-0.255	0.022			-0.254	0.021		
UKR	0.337	0.030			0.322	0.030			UKR	0.000	0.033			-0.014	0.033		
VNM	0.031	0.025			0.030	0.025			VNM	-0.083	0.027			-0.084	0.026		
ZAF	0.350	0.034			0.341	0.034			ZAF	-0.270	0.037			-0.268	0.037		
BFA	0.177	0.031					0.168	0.031			BFA	-0.129	0.035			-0.142	0.035
CIV	0.330	0.035					0.314	0.035			CIV	-0.021	0.041			-0.036	0.040
ETH	0.019	0.028					0.016	0.028			ETH	-0.543	0.030			-0.529	0.030
KEN	0.062	0.023					0.062	0.023			KEN	-0.524	0.025			-0.517	0.024
MLI	-0.040	0.105					-0.040	0.103			MLI	-0.131	0.119			-0.136	0.117
MRT	0.364	0.040					0.349	0.040			MRT	-0.128	0.046			-0.127	0.046
MWI	-0.037	0.022					-0.037	0.021			MWI	-0.659	0.022			-0.642	0.022
SEN	0.123	0.038					0.119	0.037			SEN	-0.549	0.040			-0.529	0.040
TCD	0.371	0.035					0.354	0.035			TCD	0.113	0.044			0.100	0.043
ZMB	0.181	0.021					0.171	0.021			ZMB	-0.394	0.023			-0.393	0.022
ZWE	0.004	0.023					0.003	0.022			ZWE	-0.261	0.024			-0.266	0.024
_cons	0.641	0.014	0.814	0.022	0.596	0.016	0.618	0.023	_cons	2.098	0.016	2.257	0.025	2.027	0.019	2.022	0.026