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Abstract

Attention has been given recently to the Concentration Index; specifically, corrected
versions have been generated that supersede the original with properties such as trans-
form invariance, reversal invariance and transfer invariance. While previous studies have
promoted a transformed or normalised index to overcome these problems, I propose,
in this paper, two novel approaches to a direct parametric model for dependence as a
measure of inequality in the distributions of health and income. These are the copula
and quantile regression using jackknifed samples.

As well as accommodating any form of health or income, and being robust to invariance
criteria, both methods parameterise the measure of inequality directly, rather than indi-
rectly through functions on one of the marginals. Results from an illustrating example
using the Survey of Health, Retirement and Ageing in Europe suggest that such in-
equality in these countries is not explained well by covariates on age, gender, education
and lifestyles.

JEL classification: C46, C51, I10
Keywords: Health Inequality, Non-Continuous data, Copulas, Quantile Regression

1 Introduction

In a recent exchange, Erreygers (2009a, 2009b) and Wagstaff (2009) debated the merits
of ‘their’ respective indices of socioeconomic related inequalities in health (which, in this
study, translates to income-related inequalities in Self-Assessed Health; however, the results
here apply more broadly). Erreygers’ (2009a) argument took the view that four consistent
properties were required of a measure of income-related inequalities in Self-Assessed Health
(SAH): transform invariance, mean invariance, transfer invariance and order invariance.
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In both the Erreygers index E and the Wagstaff index W (Erreygers 2009a), the Concentra-
tion Index was re-scaled so that it overcame particular weaknesses: principally, the failure
to be bounded properly CI ∈ (−1, 1). In this paper, I instead propose a different paradigm
of measurement: direct parameterisation of dependence using demographic, socioeconomic
and lifestyle covariates. As well as rank-correlation meeting the criteria enumerated in Er-
reygers (2009a, 2009b), assigning covariates directly can offer more precise information for
policy responses.

Both methods define socioeconomic inequalities in health as the dependence between the
distributions of Self-Assessed Health and Income, in concordance with the principles of in-
equality found in, for example, Wagstaff, et al. (1991), Bommier and Stecklov (2002) and
the International Society for Equity in Health (ISEqH, 2001).

The first method employed uses copulas to bind the distributions of the margins of health
and socioeconomic status. Copulas are rank-based measures of association between mono-
tonic transformations of random variables, rather than the variables themselves. In essence,
a copula is a multivariate distribution functions whose margins consist of univariate uniformly-
distributed variables. Like the concentration index, copulas can jointly estimate health and
income. Because dependence is tractably separate from the margins in the bivariate dis-
tribution function, however, copulas can be constructed such that dependence itself is the
response variable. Unlike other methodological approaches to measuring inequality, this
gives the researcher direct access to the factors determining socioeconomic inequalities in
health.

The second method uses jackknifing techniques to generate resampled data containing sam-
ple dependence and sample means or proportions of the covariates. Quantile regression
methods can then be used to estimate, at the country level, the effect of the population-
level characteristics on the dependence between health and income in the population. As
well as generating policy-relevant interpretations of the results, this method overcomes the
problems associated with using dependence, a population parameter that is not indexed by
the individual.

I present here results for concentration indices as well as copulas and quantile regression,
for an international comparison of income-related inequalities in SAH using data on retirees
in 11 European countries. The results show that parameterisation of dependence generates
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different information on size and statistical significance of the factors of inequality when
measured directly, rather than indirectly through Generalised Linear Models for health.

2 The Concentration Index

There are several representations of the Concentration Index; the most useful for this analy-
sis is the “convenient covariance” representation, in which each individual’s health hi (from
a distribution of health H with mean µh) is indexed against their rank Ri in the distribution
of income Y (Kakwani 1980; Wagstaff et al. 2003). Thus

CI =
2
µh

n∑
i=1

(hi − µh)(Ri −
1
2

) (1)

=
2
µh

cov(h,R)

The Concentration Index CI is the scaled covariance between the health of the individual
and their rank in the income distribution: CI = 0 when there is no inequality - i.e. no
observed association between income and SAH - and −1 ≤ CI ≤ 1 due to the 2

µh
term. Co-

variance forms the basis of the measurement of socioeconomic-related inequalities in health,
according to the criteria of Wagstaff et al. (1991) and Bommier and Stecklov (2002), among
others.

Concentration indices are appropriate for ratio-scale random variables but not ordinal SAH
(Wagstaff et al. 1991, 2005; Erreygers (2006, 2009a); O’Donnell et al. 2008). Allison and
Foster (2004) demonstrated the non-robustness of the mean as a reference point for measur-
ing inequality of a ordinally-scaled variables because transformations (of the mean, linearly,
or of the distribution non-linearly) will place the mean between different categories in the
ordinal scale. For example, for five people whose SAH is distributed uniformly amongst the
categories S1 = [1, 2, 3, 4, 5], µh1 = 3. Under linear transformations, µh remains the mid-
point, however non-linear transformations generate skew, moving the mean. The scales
S2 = S2

1 and S3 = eS1 move the mean above the third category; S4 = Ln(S1) move it to
below the third category. In fact, the greater the value placed upon the upper categories,
the greater the increase in the mean, and vice-versa.
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This means that any mean-scaled measure of inequality will not be stable under re-scaling
- particularly when, in practice, the distribution of individual SAH will almost certainly
not be uniform. This is relevant to measuring inequality with SAH because the cardinal
scale applied to represent the ‘true’ value of health will vary in this manner: in particular,
whether low or high values of SAH are relatively more important (to avoid or to achieve,
respectively) is a normative problem. Any given participant in such a comparison might
- rightly - complain that such a comparison unfairly represented them due to the cardinal
scale assumed for SAH.

2.1 The Erreygers and Wagstaff indices

See Erreygers (2009a, 2009b) and Wagstaff (2005, 2009) for a comprehensive presentation
and discussion of these. The former paper presents the iterative ‘corrections’ for the Con-
centration Index. Erreygers (2009a) proposed what he called a rank-dependent family of
indicators:

I(h) = 2f(h)
∑
i

hi
n+ 1− 2Ri

(2)

He showed that the Concentration Index, normalised Concentration Index of Wagstaff
(2005) and Generalised Concentration Index of Wagstaff et al. (1991) all were specific forms
of his general family, the differences lying in the form of f(H), some function f(H) > 0
capturing health and/or population characteristics. By allowing H to contain, freely, µh,
bh, ah, etc., he is able to make a general class containing the others.

His ‘corrected’ Concentration Index is the specific form:

E(h) =
16

n2(bh − ah)

∑
i

hi
n+ 1− 2Ri

(3)

A more straightforward solution however is leave the Concentration Index itself unchanged
- including separation of the margins of health and income - and re-configure SAH itself.

2.2 Non-parametric extension to continuity of SAH

Discrete SAH can be transformed using continuous extension: the discrete random variable
h is said to be continued by U when, for m = 1, ..,M levels of an ordinal random variable
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h, h∗(m) = h(m) + (h(m) − h(m−1))(U − 1), where U ⊂ (0, 1) has a strictly increasing CDF
independent of h (see, for example, Denuit and Lambert 2005, Mesfioui and Tajar 2005).

This approach preserves concordance within the distribution of health h and deals with the
problem of non-continuity, however it cannot preserve rank which is now one of only five
values in the distribution of SAH.1 Dependence will be weaker as a result of the continua-
tion, and will also vary for such transformations, making results non-replicable by different
analysts; however, because the mapping of h∗ → h is invariant to this (provided U ⊂ (0, 1)
in this case) the results in terms of correlation will not vary. More importantly, continua-
tion of a random variable will preserve the mean and support; because of this, the effects
of mean-scaling the Concentration Index will also be preserved.

A similar approach can be taken to extending rank by continuation when, with discrete
data, ranks are tied. For ordinal data with ranks Rm∈1,..,M , continued rank R∗(m) = Rm +
(Rm − Rm−1)(U − 1) where U ⊂ (0, 1) has a strictly increasing CDF independent of R.2

Unlike continuation by extension of SAH itself, that of the rank of SAH will preserve the
midpoint of the distribution as the mean - in this case 0.5, such that Equation (4) holds.

2.3 The Rank-Concentration Index

In Quinn (2009), I proposed an alternative to correcting the Concentration Index: correct-
ing, instead, health. This replaced ordinal SAH with its rank, or empirical CDF:

F (h) =
#[i : 1 ≤ i ≤ n, hi ≤ h]

n
(4)

So that the Concentration Index simplifies dramatically. Cardinal scales S1 to S4 will
contain the same cut-points in relative terms, allowing for the proportions of each latent
scale, but will generate a different mean. However, any rank-preserving transformation will
generate the same rank-order amongst observations. Scaling Equation (1) by the mean of
the rank reduces it to the covariance of the ranks.

2.4 Decomposing rank-covariance

Decomposition is undertaken to isolate (i) inequality due to a given source (in this case of
health); (ii) the reduction in inequality that would result if a given factor of health ceased to
be a factor, or if it was distributed evenly across all ranks of income; and (iii) the percentage
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of inequality that would be observed if all other factors of health were distributed evenly
across ranks of income.3 It functions much like a sub-group analysis of the inequality in the
distribution of income, grouped by the factors explaining health.

The index in Equation (4) can be decomposed according to the same principles first identi-
fied by Wagstaff et al. (2003), in their analysis of socioeconomic inequalities in height-for-
age in Vietnam. They showed that, for a linearly-additive regression model for health h,
(O’Donnell et al. 2008)

h = α+
∑
j

βjxj + ε (5)

for J = 1, .., J regressors, the decomposed concentration index is such that

CIh =
∑
j

CIj
β̂j x̄j
µh

+
CIε
µh

(6)

where CIj is the concentration index for each xj as defined in Equation(1) and CIε is the
generalised concentration index for error ε, given also by the residual of the concentration
indices.

For a well-specified model CIε = 0 and the concentration index CIh is the weighted sum of
decomposed concentration indices of the factors of health only. Thus the decomposed con-
centration index, originally the covariance between health and income, is made up instead
of the linearly-additive explanators of health and income, variable-by-variable.

In this instance Generalised Linear Models (GLMs) can be used for SAH, such that

G(h) = α+
∑
j

βjxj + ε (7)

where G(h) can be an ordered or binary choice model, normal or logistic regression, etc. De-
composition follows Equation (6). Cardinal scales S1 to S4 will contain the same cut-points
in relative terms, and any CDF G(H) will generate the results in Equation (4). GLM can be
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applied to SAH continued by extension, also: all such extensions are Lebesgue-measurable.
The assumptions of linear covariation between health and socioeconomic status extend to
the relationship between the factors of health individually and socioeconomic status. In-
come is still ranked by Ri, the empirical CDF of income.

The strength of the information gained on socioeconomic inequalities in health, however,
can only be as great as the explanatory power in the GLM for SAH used to weight the
decomposed Concentration Indices in Equation (6). In a previous analysis (Quinn 2009)
little such power existed: in the ordinal probits used, R2, for example, ranged from 2.5%
to nearly 9.5% across the SHARE countries. Explanatory power in the intermediate model
affects how well we understand the directly relationship between inequality and the variables
of interest. A more appropriate method should factorise the inequality directly.

3 Copulas

A copula is best described as a multivariate distribution function that binds each marginal
distribution function to form the joint (Joe 1997); the copula parameterises the dependence
between the margins, while the parameters of each marginal distribution function can be
estimated separately. For univariate marginal distribution functions G(h) for SAH and
F (y) for income, a copula is a function that binds those margins precisely, to form the
multivariate distribution function (Smith 2003. See Joe 1997, Nelsen 2006 for examples).

By Sklar’s (1959) theorem, one can say that all multivariate distributions have a copula
representation, in which each margin is invariant to transformations in every other margin,
or independent of the choice of every other marginal distribution. Consider two random
variables H,Y with bivariate distribution function O(h, y) = Pr(h ≤ H, y ≤ Y ) and uni-
variate marginal distributions G(h) and F (y) respectively. Then there exists a copula C

that represents the joint distribution function in terms of the margins, such that

O(h, y) = C(G(h), F (y); θ) (8)

In particular, copulas are tractable with respect to the margins and the parameter of associ-
ation (see Smith (2007) for his study of this issue and its application to Fisher Information).
Because of this, G(h) and F (y) need not be identical distribution functions, which facilitate
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more flexible estimation of jointly-dependent variables. However it also means that copulas
provide a lot of flexibility over the dependence structure without affecting estimation at
the margins. This includes asymmetric and tail-dependence copulas, however it also means
that covariates can be used to explain the dependence, rather than treating it as a nuisance
parameter.

The dependence parameter θ that binds G(h) and F (y) to form the copula is a measure
of rank covariance. That is, the covariance between the ranks, or CDFs, of the random
variables. Like the index shown in Equation (4) this means that empirical CDFs can
freely be used in place of SAH or income, reducing the problem to one of explaining only
dependence itself, without any loss of information.

3.1 Parameterisation of dependence only

Parameterised dependence is a recent development in the use of copulas (Bogaerts and
Lessaffre 2008; Nikoloulopoulos and Karlis 2008). A parametric dependence function, rather
than a nuisance parameter, facilitates measurement of a direct effect of a covariate on
dependence, rather than the indirect approach of decomposition. For this application the
dependence parameter will be constructed as a linear combination of covariates - most
similar, in fact, to decomposition in the sense of Equations (5) and (6).
Four specifications of copulas are examined: three Archimedean-class copulas (see Nelsen
2006) and the Gaussian copula. First, the Frank, given by (Frank 1979)

C(u, v; θ) = −1
θ

ln(1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1
) (9)

where u = G(h), v = F (y) and where θ ∈ (−∞,∞)\{0} corresponds to τ ∈ (−1, 1)\{0}.4

The second copula is the Clayton, given by (Clayton 1978):

C(u, v; θ) = max[(u−θ + v−θ − 1)
−1
θ , 0] (10)

where θ ∈ [−1,∞)\{0}.

The final Archimedean-class copula is the Gumbel, given by (Nelsen 2006)
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C(u, v; θ) = Exp(−((−Ln(u))θ + (−Ln(v))θ)frac1θ) (11)

where θ ∈ [−1,∞).

Finally the Gaussian copula will be used, given by:

C(u, v; ρ) = Φ(1,2)(Φ
−1
1 (u)),Φ−1

2 (v)))) (12)

Although the marginal distribution functions in the copula can still incorporate covariates,
analysis will be simpler using only Empirical CDFs for both income and health. Both
margins are therefore considered as Empirical CDFs following Equation (4). Estimation by
canonical maximum likelihood then satisfies (Joe 2005, Yan 2007)

θ̂ = arg max
θ∈Θ

n∑
i=1

ln c(F (h), F (y); θ) (13)

3.2 Goodness of fit

The appropriate copula can be found using information criteria such as the Akaike Infor-
mation Criterion (AIC), where AIC = 2k − 2 ln(L), for log-likelihood L and k parameters,
or Bayesian Information Criterion (BIC), BIC = k ln(n) − 2 ln(L), where n is the sample
size. Since all copula models will be equally parameterised this is the equivalent of select-
ing the copula with the greatest likelihood. Other approaches can include model-averaging
methods described in Bogaerts and Lesaffre (2005). The results presented here will only
include the ‘best’ copula for each country, however the remaining results are available from
the author.

4 Jackknifed samples and Quantile Regression

The second approach to parameterising dependence lies in the construction of a resampled
dataset using the delete-one jackknife. This approach arises in response to the fact that,
unlike a sample mean, measures of concordance or dependence, such as θ in Equations (9)
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to (12), cannot be indexed by individual. This affects estimation procedures, since there is
no individual observation on θ̂i, nor does θ have a distribution in the population. An n = n

pseudo-sample can be constructed from any given sample, containing θ indexed to each
jackknifed sub-sample used. This can then be combined with sample means and sample
proportions of the variables of interest as covariates.

The implication of this is that, at a the survey level (for example the national level) a model
can be used to explain the effect of population levels of the covariates on dependence be-
tween SAH and income in the population. For individually-indexed population parameters,
such as average income or health, such an approach should generate equivalent estimates
whether the original or the pseudo-sample was used, assuming exchangeable, homoskedastic
observations in the original sample (Good 2002). A similar motivation underlies the use of
jackknifing for cross-validation, for example (Shao and Tu 1995).

4.1 Quantile Regression

Once a pseudo-sample has been constructed, it will contain θ̂i, i ∈ (1, .., n) corresponding to
each sub-sample used during jackknifing. Then, θ̂ can be defined according to its conditional
qth quantile function, thus:

Qθ(q|x) = α+
∑
i

βqxi (14)

which is then solved with β̂q, where

β̂ = arg min
β∈B

n∑
i=1

ρq(θi − βxi) (15)

where ρq is some loss function defined according to Koenker (2005).

Quantile regression is particularly appropriate to this problem because of the uniqueness
of dependence captured by a given copula, in particular the domain of θ. For example, the
coefficients from the Frank copula, where θ ∈ (−∞,∞)\{0}, are not directly comparable
with those of the Gaussian copula, in which θ ∈ (−1, 1).
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Like the procedure regarding copulas with parameterised dependence, the optimal model
will be selected using information criteria. The estimate θ̂i for i ∈ (1, .., n) replications will
be retained in the pseudo-sample for quantile regression estimation.5

5 Illustrating example: the Survey of Health, Ageing and

Retirement in Europe

The Survey of Health, Ageing and Retirement in Europe (SHARE) is ... “a multidisci-
plinary and cross-national panel database of micro data on health, socio-economic status
and social and family networks of more than 30,000 individuals aged 50 or over.”6 Eleven
European countries are included in the current data: Denmark, Sweden, Austria, France,
Germany, Switzerland, Belgium, the Netherlands, Spain, Italy and Greece. Although Israel
also contributed to baseline data it is not included in this analysis.7 This paper uses indi-
viduals over 40 years of age and Wave 1 (2004) of the SHARE data. It is therefore only
cross-sectional, with each country separately identified, although the methods here can be
extended to the SHARE panel as it expands.

The SHARE data contain information on a range of social and economic characteristics:
physical health and functioning, including lifestyles and health care service utilisation; psy-
chological health and functioning, labour-market activity including work during retirement;
socioeconomic variables including income transfers and consumption; housing; education
and social support. Preliminary descriptive analysis of the data has been published by the
Mannheim Research Institute for the Economics of Aging (Börsch-Supan et al. 2005).89

The key variables in this paper are SAH and Gross Equivalised Household Income, PPP-
adjusted. Gross PPP-adjusted Household Income can be found in a supplementary set of
the SHARE data, labelled ‘imputations’: individual equivalents were taken using household
size. Figures 1 and 2 show these variables descriptively for each country.

11



Figure 1: SHARE Self-Assessed Health by Country.

Figure 2: SHARE Mean Gross Equivalised Income, PPP-adjusted, by Country;
95% Confidence Intervals and Gini Coefficients.

SAH scales S1 to S4 can be seen for Sweden, by way of example, in Figure 3.
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Figure 3: Histograms and Kernel Densities for non-linear cardinal SAH scales,
Sweden only.

Note the different scales along both axes in the four graphs. The non-linearity of the
transformations is moving the mean/skewness as they occur. One can see that, depending
upon the starting point of one country’s mean under S1, subsequent means will move relative
to those of other countries under the same transformation also, affecting internationally-
comparative measures of inequality.

6 Results

6.1 Decomposed rank-covariance indices

Table 1 contains results from decomposition of the rank-covariance indices in Equation
(4). Statistical significance indicated is taken from ordinary regression of the factors of
decomposition on continued SAH as described in Section 2.2.
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“Retired young” is an indicator of whether or not the individual is less than 65 years of age
at the time surveyed. This is to capture the most likely threshhold effect of age, under the
assumption that age will affect inequality through sub-groups. Age was included to ease
the grid-searching of the optimiser for the copula models, later.10 However it can interfere
with the observed effects of early retirement as a result.

Primary education was collinear with no and post-secondary education, relative to sec-
ondary education, and was dropped. Asterisks show statistical significance from the ordi-
nary regressions used to calculate the weights in Equation (6). This is necessary because
insignificant factors in the model can still appear to have a higher impact under decomposi-
tion, however their relative lack of information makes them poor candidates for any policy
response.

The residual Concentration Index was calculated as the remainder between the simple
Concentration Index in Equation (1) and the linear combination of the decomposed indices
in Table 1.11 The residual is substantial but not consistently-signed across the SHARE
countries. It is driven by common variables: age, in particular, as well as education and
obesity, albeit to a lesser extent. Residual indices are also greatest for Austria and Spain,
who have the lowest Concentration Index overall, however this relationship is not born out
across all of the countries. It is worth noting, though, that all countries have relatively
low degrees of association between SAH and income, which affects the degree to which the
association that does exist can be explained.

6.2 Copulas

The Frank, Clayton, Gumbel and Gaussian copulas from Equations (9)-(12) were estimated
and then compared using Information Criteria to determine the best-fitting specification.
The Frank copula performed best according to these criteria; results are contained in Table
2.12
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The copula models had routinely unstable hessians, and were estimated via bootstrapping.
Even so, and with the inclusion of age as a continuous variable, the indications were that
the maximisation was finding local maxima only; the results do not appear to be robust to
difference starting values.

Because of this, limited statistical significance is found across the copula models. There
is some suggestion however that, at least in some countries, overweight and obesity, as
well as potentially related early retirement, has an effect on dependence between continued
SAH and income. The effect is not consistently-signed, though - unlike other countries the
effect of increasing rates of overweight, obesity and early retirement correlate with decreased
dependence. As with the Concentration Indices, dependence was relatively small for all of
the countries, making convergence more difficult.

6.3 Quantile Regression

After selecting the Frank copula and jackknifing samples for each country, quantile regres-
sion at the median was undertaken. Results for the median and interquartile ranges are
contained in Tables 3-5.
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Like the copula results in Table 2, there is substantially less statistical significance in the
quantile regression results, relative to the decomposed Concentration Index. Quantile re-
gression has the advantage, though, of demonstrating different effects according to quantiles
of combinations of the regressors: the marginal effects at higher and lower degrees of de-
pendence overall.

The results show some consistency in terms of the effect of education; countries differ,
however, in whether no education or post-secondary education is pre-eminent, and only
France and, to a lesser extent the Netherlands, show significant effects for both. Lifestyle
effects are not consistent with the copula results. At the 75% quartile, gender, overweight
and obesity become significant in some countries.

7 Discussion

The residual Concentration Index in Table 1 illustrates one of the problems when attempt-
ing to explain income-related inequalities in health by factors. Under decomposition, one is
concerned with the distribution of income across the factors of health, weighted according
to the degree to which they explain health. In terms of statistical significance, however,
only with regards to SAH can it be known. Moreover, the residual indices were substantial
in several countries, leaving the issue of factorisation somewhat unresolved.

This is not a newly-discovered problem. Amongst other things, one of the shortcomings
with attempting to isolate the factors of income-related inequalities in health is the specifi-
cation: although this model satisfied specification for all of the countries, omitted variables
is unavoidable; in particular, income (or income-related socioeconomic status) cannot be in-
cluded because (i) the causality is complex, and difficult to accommodate in cross-sectional
data (Jones and Lóopez Nicolás 2004), and (ii) including income directly into the equation
for SAH risks introducing inequalities in the distribution of income into the measured dis-
tribution of health, thereby contaminating what is actually being measured.

Table 2 illustrates the direct marginal effect of each covariate on the dependence param-
eter. In doing so, it provides new information on how best to respond to socioeconomic
inequalities in health: using direct marginal effects, one can gauge those factors that are
(i) statistically significant, (ii) economically meaningful and (iii) subject to policy. With
respect to the Concentration Index, the issue of inclusion socioeconomic indicators directly
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remains open: as income is one of the margins of the bivariate model, including it as a
covariate in dependence is not feasible.

The balance of the evidence across the three approaches suggests that socioeconomic in-
equalities in SAH are explained by education, on the one hand, and overweight/obesity on
the other. Since these are linked with both health and income it is not necessarily a surprise
to see this narrative form.

Future analysis using multivariate, rather than bivariate, models, can consider this evidence:
education could itself be included with health and income in a multivariate distribution func-
tion. This parsing of dependence would follow the jackknife/quantile regression approach,
sorting dependence into levels of education. So, too, would consideration of more complex
copulas: the quantile regression results suggest that multi-parameter, asymmetric and/or
tail-dependent copulas could provide more information than single-parameter, symmetric
copulas.

8 Conclusion

In this paper, I presented results for concentration indices as well as copulas and quan-
tile regression of jackknifed samples for an international comparison of income-related in-
equalities in SAH using data on retirees in 11 European countries. The results show that
parameterisation of dependence in the copula generates different information on size and
statistical significance of the factors of inequality when measured directly, rather than in-
directly through Generalised Linear Models for health.

Although the performance and results of the methods used varied, the evidence suggests
the socioeconomic inequalities vary the most at different levels of education, in accordance
with the human capital theory of investment in education and health. Quantile regression
with jackknifed pseudo-data further suggested that multi-parameter and asymmetric cop-
ula functions should be used to gain further information on socioeconomic inequalities in
health.
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Notes

1Concordance is preserved because the original ordinal scale can always be recreated
from a continued discrete random variable.

2STATA, for example, will carry this out automatically upon omission of the equal option
when using the cumul command.

3Taken from Podder, N. 1993. The disaggregation of the Gini coefficient by factor
components and its application to Australia, Review of Income and Wealth, 39(1): pp
52-53.

4Note that v = G(Y ) = Rank(Y ) = R, as in previous models.
5This will keep the copula and quantile regression estimates comparable, however it

should be noted that, as Archimedean-class copulas, the parameters of the Frank, Clayton,
Gumbel and Gaussian copulas can all be expressed as either Kendall’s τ or Spearman’s ρ
(Nelsen 2006). Not regarding this comparison, the copula need not be used at all: quantile
regression of jackknifed τ̂i in i ∈ (1, .., n) replications is equivalent.

6http://www.share-project.org/. This paper uses data from SHARE Waves 1 & 2, as of
December 2008. SHARE data collection in 2004-2007 was primarily funded by the European
Commission through its 5th and 6th framework programmes (project numbers QLK6-CT-
2001- 00360; RII-CT- 2006-062193; CIT5-CT-2005-028857). Additional funding by the
US National Institute on Aging (grant numbers U01 AG09740-13S2; P01 AG005842; P01
AG08291; P30 AG12815; Y1-AG-4553-01; OGHA 04-064; R21 AG025169) as well as by
various national sources is gratefully acknowledged (see http://www.share-project.org for a
full list of funding institutions).

7This is due to missing information on health and income in the first wave.
8http://www.mea.uni-mannheim.de
9Although there is reason to expect endogeneity amongst these variables, it is not con-

sidered during the ensuing analysis, mostly to avoid encumbering unnecessarily the analysis
and discussion of the methods. The effect is likely to be common across all countries for
this data (e.g. age and education, health and income, for example).

10Age is a continuous variable, and can smooth over relatively empty cells made up of
dummy variables in a model such as this. Intersections of retirement, overweight/obesity
and education levels, in particular, were consistently under-populated.

11The intercept from the model explaining continued SAH is remaindered to the residual
CI as well.

12results from the other copulas can be obtained from the author.
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