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Abstract

This paper takes a �nte mixture approach to model heterogeneity in incentives and selection
effects of drug coverage on the total drug expenditure among the Medicare elderly US popula-
tion. Evidence is found that the positive drug expenditures of the entire elderly popultion can
be decomposed into two groups of relatively healthy with lower average expenditures and rel-
atively unhealthy with higher average expenditures, accounting for approaximately 25% and
75% of the population, respectively. The incentive effects of drug insurance, i.e. ex post moral
hazard, are much stronger in magnitude for the unhealthy group. There is also evidence of
adverse selection into drug insurance, and this appears to be greater for the higher-expenditure
component.



1. Introduction and background

In the United States, Medicare Part A, a public insurance program which covers hospitalization for

speci�ed duration, provides insurance coverage for most elderly after age 65. To cover physician

services and most outpatient care, voluntary enrollment in Medicare Part B is necessary. The basic

Medicare plan did not offer outpatient prescription drug coverage until an optional Part D plan for

drug coverage was implemented in January 1, 2006. Prescription drug expenditure is an important

component of healthcare spending for the elderly. Kaiser Family Foundation (2005) estimates

that in 2005 the total prescription drug expenditure of the elderly was about $120.6 billion or

an annual spending of $2,864 per person. The Medicare bene�ciaries spent over 36 percent of

total outpatient drug expenditure nationwide even though they constituted only 13 percent of the

U.S. population (Cook, 1999). But, in 2002, nearly half of the Medicare bene�ciaries lacked drug

coverage for at least part of the year (Kaiser Family Foundation, 2005). Before 2006, those wanting

prescription drug coverage did so using a variety of supplementary insurance plans that included

employer-sponsored plans (ESI), Medigap plans and Medicare managed care plans (MMC). With

the expansion of the Medicare bene�ts to include drug coverage, a change that is widely perceived

to be a major policy initiative, it is of special interest to evaluate the contribution of drug coverage

to the total prescription drug expenditure.

This paper attempts to study the effect of such insurance coverage on the total prescription

drug expenditure using a model speci�cation that allows for endogenous unobserved selection

into health plans and discrete form of heterogeneity captured using a 2-component �nite mixture

model. Atherly (2001) indicates that a high proportion of the existing literature on supplemental

insurance does not control for self-selection on unobservables. Whereas some studies of Medicare

supplemental insurance attempt to control for unobserved selection (Sing et al., 2008; Curtis et al.,

2004), others argue for limited or no role for such a selection effect (Lillard et al. (1999); Shea et

al (2006)). Treating this as an open research issue, we propose and apply a Bayesian estimation

procedure that attempts to decompose the selection effect from the pure incentive effect of insur-

ance. When econometric models of drug expenditure treat the insurance status as exogenous, the
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selection and incentive effects are confounded. An additional complication arises from possible

heterogeneity in the expenditure behavior of the elderly. It is plausible that such heterogeneity

cannot fully be controlled for by the standard observable covariates that are typically included in

regression analysis. To allow for unobserved heterogeneity we propose to use a fairly �exible func-

tional form, the latent class model that has been used in a number of previous studies of healthcare

utilization, e.g., Deb and Trivedi (1997, 2002), Conway and Deb (2005), and Bago d'Uva (2005,

2006). However, these studies consider models in which the insurance status is exogenous. We

extend the model speci�cation to allow for endogenous insurance and then develop a Bayesian

estimator for this new model.

The relationship between the Medicare supplemental insurance and the utilization of prescrip-

tion drugs of the elderly has been investigated intensively in the US literature (e.g. Poisal and

Murray, 2001; Piette et al., 2004; Goldman and Philipson, 2007) using both pre- and post 2006

data. A consistent �nding is that the elderly with drug coverage spend more on prescription drugs.

But the estimates of the incentive effect of insurance have a wide range. Li and Trivedi (2009),

henceforth LT(2009), survey these �ndings and provide their own analysis using 2003 and 2004

data fromMedicare Current Bene�ciary Survey (MCBS). Using an extended version of the endoge-

nous two-part model of Deb, Munkin and Trivedi (2006), LT (2009) provide a detailed empirical

analysis of the effects of seven types of insurance status, controlling for endogenous sample se-

lection. Such disaggregation allows one to study the diversity of responses among different types

of insurance plans that vary in the drug bene�ts that they offer; that is, as plans vary in terms of

coinsurance rates, coverage of brand-name versus generic drugs, use of expenditure caps and so

forth, disaggregation by plan types is a way of capturing heterogeneity in responses. Overall, drug

bene�ts offered by employer sponsored insurance plans (ESI) are the most generous and those

from the Medigap plans the least generous. To reduce biases due to aggregation careful delineation

of differences in plans is desirable. The estimated effects of prescription drug insurance may also

vary with the approach used to control for self-selection. This consideration motivates LT (2009)

to provide a comparative econometric analysis from Bayesian and classical viewpoints. However,
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sometimes such disaggregation may not be possible due to lack of data, and at other times it may

be avoided (as in this paper) for reasons of computational tractability.

Our approach is related to that of Shang and Goldman (2007) who analyzed the effect of drug

coverage in Medigap market and implemented the discrete factor method in the two-part model.

They assume that the population can be partitioned into three types with different sets of unob-

servable factors affecting plan choice and drug expenditure. The discrete factor model introduces

the error terms for the plan choice equation, hurdle expenditure equation and conditional expen-

diture equation that jointly allow for endogeneity as well as unobserved individual heterogeneity.

Our Bayesian analysis also allows for correlated unobserved individual heterogeneity, conditional

on positive expenditure. However, we avoid the two-part structure and concentrate on conditional

model of positive expenditures.

To develop the methodological framework for endogenous selection in a latent class model,

we have made some simpli�cations. First, we will assume that a dichotomous indicator of drug

coverage adequately captures the treatment effect of drug insurance in a meaningful way. This

involves a strong assumption that combining the incentive effect for those who are only enrolled in

the basic Medicare and those enrolled in a supplemental plan without drug coverage is a reasonable

approximation that will not affect the identi�ability of the key parameters we want to study; how-

ever, for a more cautious appraisal of this issue see (Atherly (2002), Sing et al. (2008); Khan et al.

(2007)). We assume that our qualitative inferences regarding the aggregate incentive effects of drug

insurance and the presence of adverse selection remain valid despite aggregation; see (Goldman et

al, 2006). Previous work on expenditure modeling has extensively used the two-part ("hurdle")

model which allows the data generating process for positive expenditures to differ from that for

zero expenditures; see, for example, Deb et al (2006) and LT (2009). For the data analyzed here

the share of positive expenditure is relatively high, around 93%. We will therefore concentrate on

modeling the positive expenditures only. While extending our framework to the case of this hurdle

model is a desirable objective, its success is likely to depend on having a better division into zeros

and positives than in our sample.

4



The remainder of this paper is organized as follows. Section 2 develops the methodology

for Bayesian analysis of 2-component latent class model with endogenous dummy variable, under

assumption of bivariate normality. Section 3 provides the framework for calculating treatment

effects. Section 4 presents our empirical application. Section 5 concludes.

2. The 2-component latent class model

2.1. Heteroskedasticity

Since most of individuals in our sample have positive drug expenditure we will conduct a condi-

tional analysis considering only observations with positive expenditures. The expenditure variable

usually displays skewness and it is standard to take its logarithmic retransformation and assume

normality. Specify the logarithm of the positive values of Y to be linear in X , a set of exogenous

explanatory variables, such that

E(lnY jY > 0; X) = X�; (2.1)

where � is a parameter vector. The main interest is usually centered on estimating E(Y jX) and

all associated with that partial effects and elasticities. Given the estimated conditional mean (2.1),

one has to transform back from logarithm to variable Y to make inference about E(Y jX).

The dependent variable is assumed to be linear in the set of explanatory variablesX and normal

error e � N
�
0; �2

�
such as

lnY = X� + e: (2.2)

After estimating the parameters of the model the main interest lies in calculating marginal

effects of Y with respect toX for the actual expenditure variable. The assumption of lognormality

allows us to retransform the dependent variable and consistently estimate ' = E (exp [e]) as

b' = exp �0:5�2� : (2.3)

Duan (1983) suggested that robustness of this estimator depends critically on whether the posi-

tive expenditure is indeed lognormally distributed. He proposed an alternative robust smearing
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estimator de�ned as b' = 1

N

NX
i=1

exp bei; (2.4)

where bei are the �tted residuals. Mullahy (1998) emphasized that for consistent estimation of para-
meter � in the conditional mean (2.1) it is suf�cient to assume that E(ejY > 0; X): However, this

assumption does not imply statistical independence of e and X . Speci�cally, Mullahy considered

several examples and showed analytically that E (exp [e]) can depend onX and, therefore, the use

of the (homoskedastic) smearing estimator will fail to address heteroskedasticity of the multiplying

factor ' = '(X). This is likely to cause misleading estimates.

2.2. Finite Mixture of Normal Distributions

Assume that we have N independent observations (i = 1; :::; N) and the dependent variable of in-

terest, Yi; the logarithm of drug expenditure, is continuous. Assume that the population consists of

k homogenous subpopulations such that the dependent variable is generated by a k-component �-

nite mixture of normal distributions. One of the modeling goals is to allow for a binary endogenous

treatment variable in the conditional means of the components. Model the endogenous binary treat-

ment variable di as generated by latent variable Di that measures the difference in utility derived

by individual i in the treated and untreated states respectively,

Di =Wi�+ ui (2.5)

such that

di = IfDi > 0g;

where If:g is the indicator function, Wi is a set of exogenous variables and ui
iid� N [0; 1]. It is

assume thatWi contains at least one variable which does not affect drug expenditure.

The main observed variable of interest Yi; the logarithm of expenditure. Introduce k latent

variables Yij (j = 1; :::; k) distributed N
�
�ji; �

2
j

�
and parameterize the means such that

Yij = Xi�j + �jdi + �jui + "ij ; j = 1; :::; k (2.6)
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where Xi is a set of exogenous regressors, "ij � N
�
0; �2j

�
. The set of exogenous variables Wi

contains at least one variable not included inXi. We utilize the approach of Geweke, Gowrisankaran,

and Town (2003) and introduce random variable ui directly in to the conditional mean. The way

endogeneity of the treatment variable di can be modeled is by imposing a potential correlation be-

tween the errors in the treatment equation (2:5) and the mean (2:6) :However, things are simpli�ed

substantially if ui is introduced directly in the mean equation (2:6). The unobservable variables that

affect the choice of the treatment variables also affect the expenditure variable, and the combined

error term in the expression (2:6) conditional on di is not centered at zero

E (�jui + "ij jdi) 6= 0:

The variable of interest Yi is distributed as a �nite mixture of normals Yij � N
�
�ij ; �

2
j

�
with probability pij . We allow these probabilities to depend on regressors. Finite mixtures is a

way of modeling heterogeneous individuals, however, there is a possibility that the probabilities of

belonging to a component change with individuals as opposed to being a �xed number across the

entire sample. The probabilities must satisfy the following constraint

kX
j=1

pij = 1

Introduce latent variable zij such that

zij =

�
1
0
if observation i belongs to component j

otherwise :

Then the observability condition is

Yi = Yij if and only if zij = 1:

In order to allow the state probabilities to depend on covariates we follow Geweke and Keane

(2007b) and specify the multinomial probit model to determine the state probabilities. Let k � 1

latent variables be de�ned as

Mij = Vi
j + �ij (j = 2; :::; k) ; �i
iid� N [0; Ik�1] : (2.7)
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and letMi1 be restricted to zero. Then the components are identi�ed as

zij = 1 if and only ifMij >Mil (for 8l, l = 1; :::; k): (2.8)

The set of covariates V in general is different from X . The observability condition is

Yi � N
�
�ij ; �

2
j

�
if and only if zij = 1:

Denote zi = (zi1; zi2; ::::zik)
0; 
0 = (
02; :::; 


0
k), � =

�
�21; :::; �

2
k

�
; Ri = (Xi; di; ui), �j =

(�j ; �j ; �j)
0; � = (�1; :::; �k; 
; �) and �i = (Xi;Wi; Vi; �). The joint density of observed and

latent data for individual i is

f(Di; di; Yij ;Mi; zi; Yij�i) = p(Dij�i)

�p(dijDi;�i)

�p (Yij jdi; Di;�i)

�p (Mijdi; Di; Yij ;�i)

�p (zi; YijMi; di; Di; Yij ;�i)

or

=
exp

�
�0:5 (Di �Wi�)

2
�

p
2�

[diIfDi > 0g+ (1� di) IfDi < 0g]

�
kY
j=1

24exp
�
�0:5��2j

�
Yij �Xi�j � �jdi � �j (Di �Wi�)

�2�q
2��2j

35
� exp

24�0:5 kX
j=1

�
Mij � Vi
j

�235
�

24 kX
j=1

Ifzij=1gIfYi=Yijg

 
kY
l=1

I(�1;Mij ] (Mil)

!35
The MCMC algorithm of the model requires a Metropolis-Hastings step as follows.

1. DrawMij (j = 2; :::; k) independently from N
�
Vi
j ; 1

�
:
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2. Select state j = j� such thatMij� >Mij 8j = 1; :::; k:

3. We accept the draw with probability

min

8<:�
�1
j� exp

�
�0:5��2j�

�
Yi �Xi�j� � �j�di � �j� (Di �Wi�)

�2�
��1j exp

�
�0:5��2j

�
Yi �Xi�j � �jdi � �j (Di �Wi�)

�2� ; 1

9=; ;
where j denotes the current state determining the component for observation i, corresponding

to zij = 1.

4. The latent vectors Di (i = 1; :::N) are conditionally independent with normal distribution

Zi
iid� N

h
Di; Hi

�1
i
where

Hi = 1 +
kX
j=1

�2j�
�2
j ,

Di = Wi�+Hi
�1

24 kX
j=1

�j�
�2
j (Yij �Ri�j)

35
Each variable is truncated such that

Di > 0 if di = 1 and Di < 0 if di = 0:

5. Draw Yij for each i and j when zij = 0, from the full conditional density N
�
�ji; �

2
j

�
. If

zij = 1 then Yij = Yi.

6. Let the prior distribution of � be N
�
�;H�1

�

�
. Then the full conditional distribution of � is

� � N
h
�;H

�1
�

i
where

H� = H� +
NX
i=1

W 0
i

0@1 + kX
j=1

�2j�
�2
j

1AWi

� = H
�1
� [H��+

NX
i=1

fW 0
i

0@1 + kX
j=1

�2j�
�2
j

1ADi
�W 0

i

kX
j=1

�j�
�2
j (Yij �Ri�j)g]:
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7. Let the prior distributions be 
j � N
h

j ;H

�1

j

i
; j = 1; :::; k: Then the full conditional

distribution of 
j is 
j � N
h

j ; H

�1

j

i
where

H
j = H
j
+

NX
i=1

R0i�
�2
j Ri


j = H
�1

j

"
H
j


j +

NX
i=1

R0i�
�2
j Yij

#

8. Assign priors ��2j � G
�
nj=2; (gj=2)

�1
�
; j = 1; :::; k. Then the full conditional of ��2j is

G

0@nj +N
2

;

"
gj
2
+

NX
i=1

(Yij �Ri�j)2

2

#�11A :
3. Treatment Effects

Next we calculate the average treatment effect (ATE), the average treatment effect for the treated

(ATET) and the local average treatment effect (LATE) for each component in the mixture. De�-

nition of dependent variable Yi establishes the link between the observed and counterfactual out-

comes as

Yi = diY
1
i + (1� di)Y 0i :

The average treatment effect is de�ned as the expected outcome gain from receipt of treatment for

a randomly chosen individual. One can show that for a randomly chosen individual the ATE for

component j is

E
�
Y 1j � Y 0j jX

�
=
1

N

NX
i=1

exp
�
Xi�j + 0:5

�
�2j + �

2
j

�� �
exp

�
�j
�
� 1
�
: (3.1)

We calculate the ATE parameters averaging with respect to the sample and posterior distrib-

utions of the parameters.

The treated group consists of individuals with drug coverage. Denote by� (�) c.d.f. of the stan-

dard normal distribution. The expected outcome gain for those who actually receive the treatment
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is calculated by the ATET,

E
�
Y 1j � Y 0j jX;W; d = 1

�
as

=
1

N

NX
i=1

� (W�+ �j)

� (W�)
exp

�
Xi�j + 0:5

�
�2j + �

2
j

�� �
exp

�
�j
�
� 1
�

(3.2)

We will calculate the LATE effect with respect to the premium required to pay for the insurance

plan. Denote it by Wk, the instrument component in the set of explanatory variable W in the in-

surance equation. The instrument should affect the decision to receive treatment whenWk changes

from a �lower� value to a �higher� value. DenoteW 0 andW 1 two realizations ofW in which all

the components are equal except for the instrumentWk for which it takes the �lower� and �higher�

values respectively. Then the local average treatment effect is de�ned as the expected outcome gain

for those induced to receive treatment atW 1 but who would not have received treatment atW 0;

E
�
Y 1j � Y 0j jX;W 0;W 1; d(W 0) = 0; d(W 1) = 1

�
:

which is estimated as

1

N

NX
i=1

�
�
W 1�+ �j

�
� �

�
W 0�+ �j

�
� (W 1�)� � (W 0�)

� exp
�
Xi�j + 0:5

�
�2j + �

2
j

�� �
exp

�
�j
�
� 1
�
: (3.3)

4. Application to drug expenditure of Medicare bene�ciaries

4.1. Data

The data used in this paper are closely related to the 2003-04 MCBS those used in LT (2009),

the main difference being that we also add the data for 2005. Further, our analysis only uses

positive-valued expenditures. While we provide the essential information for making the current

paper self-contained, the reader is referred to that earlier paper for a more complete description of

methods and conventions.
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Three data sources were linked to generate the data. The Medicare Current Bene�ciary Survey

(MCBS) is the main source of information regarding demographics, plan enrollment and prescrip-

tion drug expenditure. The Area Resource File (ARF) and the State County File (SCF) provide

extra sources for the instrumental variables.

4.1.1. MCBS data

MCBS, a continuous survey of a representative sample of the Medicare population, contains plan

attribute information that can serve as instrumental variables for modeling plan choice. It also con-

tains regional information that can be linked to other datasets such as ARF and SCF that are useful

in the analyzing regional Medicare markets. The �Cost and Use� �le provides information on

Medicare utilization, expenditures, insurance coverage, health status and demographic characteris-

tics. Our sample excludes enrollees with Medicaid or other public plans as well as those who hold

more than one health plan or who switch plans during the year. Due to panel structure of the data

we have multi-year observations on some individuals. As our analysis is cross sectional we only

use one observation per year per individual, the convention being to use the �rst time the individual

is sampled. The �nal sample contains 7,280 observations from three years, the breakdown being

3,503 from 2003, 1,825 from 2004 and 1,952 from 2005. The MCBS also provides information on

supplemental insurance, source of the plan, the premium paid, and coverage of prescription drug

expenses. This paper does not use all the information because of its level of aggregation.

MCBS provides information on demographic (age, gender, race, education level, family in-

come, marital status, children), socioeconomic (e.g., income), and extensive list of health status

variables (including chronic conditions, disability and activity limitations).

To handle endogeneity of plan choice we need individual-speci�c or plan-speci�c instrumental

variables that affect plan choice, but are not directly correlated with drug expenditure. Premium is

a natural instrument for insurance choice, as it is essentially a sunk cost after purchase of a plan

and hence should not affect health care utilization. For additional detail, see LT (2009).
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4.1.2. ARF and SCF data

Several county level variables can serve as individual speci�c instruments for plan choice. We use

the county managed medicare (MMC) penetration rate in the preceding year as a measure of the

market power of MMC when the elderly make the plan choice decision and this lagged variable

should not affect the current year's drug expenditure. The information on the number of MMC

enrollees and the number of eligible Medicare bene�ciaries in each county in each year is provided

by the SCF; this information is used to calculate the MMC penetration rate. For additional details

see LT (2009).

4.1.3. Sample Summary Statistics

The summary statistics for enrollees by insurance status are provided in Table 1. The logarithm of

total drug expenditure, LNAAMTTOT, is the dependent variable and drug coverage (COVRX) is

the binary endogenous treatment variable. Figure 1 plots the dependent variable and it is clear that

its distribution is non-central. The vector of covariatesX in the both components of the expenditure

variable is the same. It consists of the drug coverage dummy, self-perceived health status variables

VEGOOD, GOOD, FAIR and POOR (excellent health status is the excluded category), indicators

of present and past smoking habits, SMOKNOW and SMOKEVER, indicators for heart and other

health conditions, HEARTCOND and OTHCOND, geographical location variables NOREAST,

WEST, SOUTH and MSA, variables that proxy for socioeconomic status: AGE, WHITE, MALE,

MARRY, WIDOW, LVALONE, DEGRCV, number of children living, CHNLNM, logarithm of

personal income, LNINCOME, employment status, JOBSTAT, and year dummies YEAR2004,

YEAR2005. Vector W of the insurance equation does not include COVRX, includes all X vari-

ables, plus the identifying instrumental variables PENET and MOAMT.

One needs a valid instrumental variable to identify the treatment effects and key endogeneity

parameters. We use two such variables, PENET and MOAMT. Variable MOAMT is de�ned at the

monthly premium amount paid for the insurance coverage. It is a plan attribute and should not

affect the expenditure variable. For computational simplicity we have aggregated different types of
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drug coverage plans. For example, some may cover both generics and brand-name drugs whereas

others only cover generics. Of course, the monthly premiums on average would be higher for

the more generous coverage. Using paid premium as one of the instruments helps to control for

heterogeneity in the treatment variable. The decision to purchase drug insurance also depends upon

access to plans. It is known that such access varies geographically. The ARF and SCF data base

provide additional sources of information that potentially expands the set of instruments. Several

county level variables can serve as individual speci�c instruments. For example, since the county

MMC penetration rate in the preceding year can measure the market power of MMC that affects

the plan choice but not the current year's drug expenditure. Combining information on the number

of MMC enrollees and the number of eligible Medicare bene�ciaries in each county, the MMC

penetration rate can be generated; see LT (2009) for additional detail.

Finally, the set of covariates in the probability equation V includes indicators for heart and

other chronic health conditions, HEARTCOND and OTHCOND, respectively, and logarithm of

personal income, LNINCOME. If it is true that the two components are differentiated based on

health conditions and ability to pay for the prescribed medicine, then these variables should have a

strong effect on the probabilities.

4.2. Application

In general a �nite mixture model with any number of components can be used to �t the data.

However, in our application we concentrate on a two-component model. Our main speci�cation is

consistent with health economics literature which �nds strong empirical support for two subpopu-

lations of "higher" and "lower" level users. These correspond to relatively healthy and unhealthy

individuals. Finite mixture models have some distinct features that make the estimation process

non-trivial. For example, classical estimation requires carefully chosen starting values. The ob-

jective function is potentially multimodal which could lead the maximizer away from the global

maximum. That makes the estimation somewhat unstable. Bayesian estimation, on the other hand,

has its own problems with the Gibbs sampler because the objective function is invariant with re-
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spect to all possible permutations of the components. In other words, it is not clear to allocate a

draw from the Gibbs sampler with respect to the components and prevent label switching. This

problem of estimation is especially serious when the number of components is misspeci�ed (see

Fruhwirth-Schnatter (2001), Geweke (2007a)). The Markov chains have bad mixing properties

such that the entire support of the posterior distribution is not visited. For example, Celeux, Hurn

and Robert (2000) report dif�culties with the Gibbs sampler.

When the estimated function of interest is component invariant Fruhwirth-Schnatter (2001)

shows that a random permutation sampler is able to solve the convergence problem and the pro-

duced Markov chains have very good properties. However, when the estimated function is com-

ponent speci�c and the number of components is correctly identi�ed Geweke (2007a) shows that

�nite mixture models display robust properties provided estimation is based on large samples and

there exist justi�able constrains that allows one to separate the components at each draw of the

Markov chains. In our application, there is a number of constraints that could be tested to pro-

duce practically identical results. These include �1 > �2; �1 > �2 and �21 > �22, and each serves

as a good identifying restriction. The incentives and selection effects of COVRX are expected to

be different between the "higher" and "lower" expenditure groups, which justi�es the use of the

constraints. We run our MCMC algorithm for 20,000 replications after discarding �rst 1000 repli-

cations of the burn-in phase. The chains show very good mixing properties with the autocorrelation

function of the parameters dying after at most 10 lags. The results are presented in Table 2.

It is interesting that all three variables, HEARTCOND, OTHCOND and LNINCOME, have a

negative and very strong impact on the probability to belong to a component. Our interpretation

is that the higher mean components consists of relatively less healthy people with higher levels of

income. The average probability of belonging to the higher expenditure subpopulation, taken over

the entire sample, is estimated to be 0.75.

With age people in our sample are less likely to have drug coverage. On the other hand, whites,

married, widowed and living in a metropolitan statistical area are more likely to have it. HEART-

COND positively affect the coverage probability, but OTHCOND has no effect. Consistent with
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expectation education and income increase drug coverage. Surprisingly smoking variables do not

affect drug coverage, being employed decreases the probability of it.

We are able to identify two components. The �rst component has a smaller mean (5:98) than

the second one (7:40), but the main difference between the components is in the variance parameter,

effect of COVRX and the covariance parameter. We interpret these components as healthy and

unhealthy. Males spend less on drug in both groups, while whites spend more. Marital status has

no effect on the amounts spent, smokers spend more. Expenditure goes up with education and as

health status indicators move from good health to poor health. This is consistent for both groups.

HEARTCOND has a strong positive effect on expenditure but other chronic conditions increase

expenditure only for the unhealthy group. Employment status has a negative effect on the amounts

spent for both groups. There is no measurable impact of income on drugs for the healthy group

and it is strong and positive for the unhealthy one. One quali�cation of the preceding description

is that the mean of the lower-expenditure group is slightly overestimated as our analysis is for the

population with positive expenditures. The sample estimate of the proportion with zero expenditure

is around 7-8%.

We estimate completely different variance parameters for the healthy and unhealthy groups,

1.753 (0.103) and 0.497. This indicates that the healthy group is much more heterogeneous with

a greater spread of expenditure values, relative to the unhealthy group. The covariance parameters

�1; �2, 0.096 (0.090) and 0.089 (0.037) show that the selection effects are strong in the unhealthy

group only, which is consistent with expectations of adverse selection into the drug coverage group.

Finally the impact of drug coverage is strong and signi�cant for both group, 0.341 (0.169) and

0.226 (0.066). However, in order to understand the magnitudes of the effects one has to calculate

the treatment effect. These results are consistent with positive moral hazard or incentive effect of

drug insurance. This result is consistent with many estimates available in the literature.

Our exclusion restrictions are strongly correlated with the drug coverage variable. The posterior

means and standard deviations of PENET and MOAMT are 0.020 (0.002) and �0.001 (0.0002)

respectively. These instruments drive the probability of treatment from 0.012 to 0.968.
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4.3. Average Treatment Effects

The estimated treatment parameters are given in Table 3. As can be seen from the results the

treatment effects are of very different magnitudes for the healthy and unhealthy components. The

ATEs are $397 and $502, respectively, which is about 100 dollars higher for the second component.

The ATET is interpreted as the average gain in the dependent variable from the treatment for the

subpopulation which actually selected into the treatment. The ATET is higher than ATE by $15 and

$24, respectively, for the healthy and unhealthy groups. Therefore, those who actually self-select

into purchasing additional drug coverage derive a greater incentive effect to utilize the insurance.

That is, evidence of adverse selection, consistent across both subpopulations, is suggested by the

observed difference between ATE and ATET estimates.

An alternative estimate of adverse selection in the two components is generated by comparing

estimates of ATE from the model that allows for endogenous selection and from that which does

not. Denote by ATEEndj , j = 1; 2; the estimate from the model with endogeneity, and by ATEExj
the corresponding estimate from the model without endogeneity. Then the presence of adverse

selection implies that

ATEEndj < ATEExj ;

where as under favorable (or advantageous) selection the direction of the inequality is reversed.

For consistency the second calculation is also based on Bayesian methodology implemented under

the restriction that �1 = �2 = 0 which means that the insurance and expenditure decisions are

independent. The model allowing for endogeneity of treatment may be interpreted as one which

decomposes the raw estimate of the treatment effect into pure incentive and selection components.

Under exogeneity this decomposition is not identi�ed. The estimated average treatment effects

under the exogeneity assumption are ATEEx1 =576 (4.6) and ATEEx2 =811 (3.6) for the healthy and

unhealthy components respectively. This is additional evidence in favor of adverse selection.

Finally we calculate the LATE parameter using additional information not presented in the

summary table. We know the information on the premiums paid by the individuals for the insurance

plans that they have. The average premiums can be calculated for those with and without drug
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coverage for employment sponsored insurance, Medigap and Medicare managed care plans. These

averages are used asW 0
k andW

1
k in calculating the LATE parameters. Three different sets of LATE

are calculated for the three different plans: ESI, Medigap and MMC. The local average treatment

effect is calculated as the expected drug expenditure increase for those induced to receive drug

coverage at W 1
k value of the premium amount, which would not have been received at the W

0

level. The results indicate that such gains are about $390 for healthy component and a much higher

$1880 for the unhealthy group.

5. Conclusion

Unobservable self-selection into drug coverage has been detected and controlled for in many em-

pirical analyses. Based on simulated equilibrium premiums for drug coverage, Pauly and Zeng

(2006) found the evidence of adverse selection into drug coverage. Khan et al. (2007) used �xed

effects to control for self-selection and concluded that cross-sectional models for the effect of drug

bene�t on drug utilization are subject to substantial endogeneity bias. Our �ndings indicate that

there is heterogeneity in incentives and selection effects among the elderly. In general the entire

elderly population can be viewed as represented by two groups of relatively healthy and unhealthy

individuals. The incentives effects are much stronger in magnitude for the unhealthy group which

account for about 75 percent of the elderly population. We are able to identify a signi�cant selec-

tion effect only for the second component which corresponds to the higher mean expenditure. The

sign of the selection effect indicates adverse selection of relatively less healthy individuals into the

higher expenditure group.
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Table 1: Variable de�nition and summary statistics.
COVRX=0 COVRX=1

Number of observations 2821 4459 7280
Expenditure mean (st. dev.)
AAMTTOT total drug expenditure 1503 (1540) 2295 (2448) 1988 (2177)
LNAAMTTOT logarithm of drug expend. 6.75 (1.28) 7.20 (1.23) 7.03 (1.27)
Insurance plan types
COVRX = 1 if cover prescribed drug 0 1 0.61 (0.49)
Demographic characteristics
AGE age 77.7 (7.5) 76.75 (7.1) 77.1 (7.3)
MALE =1 if male 0.46 (0.49) 0.43 (0.49) 0.45 (0.49)
WHITE =1 if white 0.89 (0.31) 0.91 (0.28) 0.91 (0.29)
HEARTCOND =1 if one of heart cond. 0.79 (0.41) 0.79 (0.40) 0.79 (0.40)
OTHCOND =1 if other chronic cond. 0.60 (0.49) 0.62 (0.48) 0.61 (0.49)
MARRY if married 0.51 (0.50) 0.59 (0.49) 0.56 (0.49)
WIDOW if widowed 0.39 (0.49) 0.34 (0.47) 0.36 (0.48)
LVALONE if lives alone 0.37 (0.48) 0.30 (0.45) 0.33 (0.47)
CHNLNM number of children living 3.05 (2.11) 3.02 (1.91) 3.03 (1.99)
MSA =1 if metro area 0.61 (0.49) 0.77 (0.42) 0.71 (0.46)
NOREAST =1 if northeast 0.12 (0.32) 0.16 (0.36) 0.15 (0.35)
WEST = 1 if west 0.13 (0.33) 0.22 (0.42) 0.19 (0.39)
SOUTH =1 if south 0.45 (0.49) 0.37 (0.48) 0.40 (0.49)
DEGRCV highest grade completed 4.40 (1.96) 4.92 (2.01) 4.72 (2.01)
JOBSTAT if working now 0.11 (0.31) 0.10 (0.30) 0.10 (0.31)
LNINCOME logarithm of income 9.82 (1.03) 10.11 (0.95) 9.99 (0.99)
Health characteristics
VEGOOD = 1 if very good health 0.29 (0.45) 0.31 (0.46) 0.30 (0.46)
GOOD = 1 if good health 0.36 (0.48) 0.34 (0.47) 0.35 (0.48)
FAIR = 1 if fair health 0.16 (0.36) 0.15 (0.36) 0.16 (0.36)
POOR = 1 if poor health 0.05 (0.22) 0.04 (0.21) 0.05 (0.21)
SMOKNOW =1 if smoke now 0.10 (0.30) 0.09 (0.28) 0.09 (0.29)
SMOKEVER =1 if ever smoked 0.59 (0.49) 0.59 (0.49) 0.59 (0.49)

Year dummies
YEAR2004 = 1 if year 2004 0.29 (0.45) 0.23 (0.42) 0.25 (0.43)
YEAR2005 = 1 if year 2005 0.22 (0.41) 0.29 (0.45) 0.27 (0.44)
Instruments
PENET mmc penet. rate 7.43 (10.85) 13.93 (14.69) 11.4 (13.7)
MOAMT monthly premium per person 88.7 (81.9) 77.9 (99.3) 82.1 (93.1)
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Table 2. Posterior means and standard deviations.
Equation COVRX Comp 1 Comp 2 COVRX Comp 1 Comp 2
CONST -1.073 3.876 6.119 GOOD 0.000 0.544 0.324

0.261 1.059 0.236 0.050 0.118 0.039
AGE -0.013 0.004 -0.006 FAIR 0.071 1.189 0.522

0.002 0.006 0.002 0.058 0.151 0.052
MALE -0.203 -0.422 -0.083 POOR 0.010 1.271 0.742

0.037 0.097 0.029 0.085 0.228 0.066
WHITE 0.135 0.285 0.159 SMOKNOW -0.054 -0.354 -0.102

0.055 0.139 0.041 0.057 0.141 0.041
HEARTCOND 0.095 0.744 0.234 SMOKEVER 0.042 0.173 0.024

0.039 0.118 0.045 0.036 0.090 0.026
OTHCOND 0.056 0.194 0.257 DEGRCV 0.050 0.055 0.014

0.033 0.113 0.028 0.008 0.023 0.006
MARRY 0.368 0.086 0.015 JOBSTAT -0.138 -0.412 -0.165

0.065 0.180 0.051 0.053 0.130 0.041
WIDOW 0.286 0.086 0.118 LNINCOME 0.136 -0.002 0.074

0.060 0.158 0.050 0.017 0.098 0.019
LVALONE -0.044 0.027 -0.053 YEAR2004 -0.091 0.018 0.086

0.047 0.118 0.035 0.038 0.100 0.028
CHNLNM -0.004 -0.006 0.006 YEAR2005 0.240 0.237 0.408

0.008 0.021 0.006 0.038 0.101 0.027
MSA 0.205 -0.021 -0.063 PENET 0.020

0.039 0.094 0.027 0.002
NOREAST 0.131 -0.228 0.043 MOAMT -0.001

0.052 0.134 0.038 0.0002
WEST 0.054 -0.474 -0.154 COVRX 0.341 0.226

0.055 0.130 0.039 0.169 0.066
SOUTH -0.025 0.083 0.033 �1; �2 0.096 0.089

0.038 0.106 0.029 0.090 0.037
VEGOOD 0.012 0.373 0.066 �1; �2 1.753 0.497

0.050 0.119 0.039 0.103 0.077
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Table 3. Treatment effects.
ATE ATET LATE 1 LATE 2 LATE 3�

W 1
k ;W

0
k

�
(91; 67) (176; 137) (52; 48)

Obs. 7280 4459 7280 7280 7280
Component 1

397 412 387 389 387
3.1 4.2 3.1 3.1 3.1

Component 2
502 526 1882 1894 1878
2.3 3.0 7.7 7.8 7.7
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