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Abstract

This paper takes a finte mixture approach to model heterogeneity in incentives and selection
effects of drug coverage on the total drug expenditure among the Medicare elderly US popula-
tion. Evidence is found that the positive drug expenditures of the entire elderly popultion can
be decomposed into two groups of relatively healthy with lower average expenditures and rel-
atively unhealthy with higher average expenditures, accounting for approaximately 25% and
75% of the population, respectively. The incentive effects of drug insurance, i.e. ex post moral
hazard, are much stronger in magnitude for the unhealthy group. There is also evidence of
adverse selection into drug insurance, and this appears to be greater for the higher-expenditure
component.



1. Introduction and background

In the United States, Medicare Part A, a public insurance program which covers hospitalization for
specified duration, provides insurance coverage for most elderly after age 65. To cover physician
services and most outpatient care, voluntary enrollment in Medicare Part B is necessary. The basic
Medicare plan did not offer outpatient prescription drug coverage until an optional Part D plan for
drug coverage was implemented in January 1, 2006. Prescription drug expenditure is an important
component of healthcare spending for the elderly. Kaiser Family Foundation (2005) estimates
that in 2005 the total prescription drug expenditure of the elderly was about $120.6 billion or
an annual spending of $2,864 per person. The Medicare beneficiaries spent over 36 percent of
total outpatient drug expenditure nationwide even though they constituted only 13 percent of the
U.S. population (Cook, 1999). But, in 2002, nearly half of the Medicare beneficiaries lacked drug
coverage for at least part of the year (Kaiser Family Foundation, 2005). Before 2006, those wanting
prescription drug coverage did so using a variety of supplementary insurance plans that included
employer-sponsored plans (ESI), Medigap plans and Medicare managed care plans (MMC). With
the expansion of the Medicare benefits to include drug coverage, a change that is widely perceived
to be a major policy initiative, it is of special interest to evaluate the contribution of drug coverage
to the total prescription drug expenditure.

This paper attempts to study the effect of such insurance coverage on the total prescription
drug expenditure using a model specification that allows for endogenous unobserved selection
into health plans and discrete form of heterogeneity captured using a 2-component finite mixture
model. Atherly (2001) indicates that a high proportion of the existing literature on supplemental
insurance does not control for self-selection on unobservables. Whereas some studies of Medicare
supplemental insurance attempt to control for unobserved selection (Sing et al., 2008; Curtis et al.,
2004), others argue for limited or no role for such a selection effect (Lillard et al. (1999); Shea et
al (2006)). Treating this as an open research issue, we propose and apply a Bayesian estimation
procedure that attempts to decompose the selection effect from the pure incentive effect of insur-

ance. When econometric models of drug expenditure treat the insurance status as exogenous, the



selection and incentive effects are confounded. An additional complication arises from possible
heterogeneity in the expenditure behavior of the elderly. It is plausible that such heterogeneity
cannot fully be controlled for by the standard observable covariates that are typically included in
regression analysis. To allow for unobserved heterogeneity we propose to use a fairly flexible func-
tional form, the latent class model that has been used in a number of previous studies of healthcare
utilization, e.g., Deb and Trivedi (1997, 2002), Conway and Deb (2005), and Bago d’Uva (2005,
2006). However, these studies consider models in which the insurance status is exogenous. We
extend the model specification to allow for endogenous insurance and then develop a Bayesian
estimator for this new model.

The relationship between the Medicare supplemental insurance and the utilization of prescrip-
tion drugs of the elderly has been investigated intensively in the US literature (e.g. Poisal and
Murray, 2001; Piette et al., 2004; Goldman and Philipson, 2007) using both pre- and post 2006
data. A consistent finding is that the elderly with drug coverage spend more on prescription drugs.
But the estimates of the incentive effect of insurance have a wide range. Li and Trivedi (2009),
henceforth LT(2009), survey these findings and provide their own analysis using 2003 and 2004
data from Medicare Current Beneficiary Survey (MCBS). Using an extended version of the endoge-
nous two-part model of Deb, Munkin and Trivedi (2006), LT (2009) provide a detailed empirical
analysis of the effects of seven types of insurance status, controlling for endogenous sample se-
lection. Such disaggregation allows one to study the diversity of responses among different types
of insurance plans that vary in the drug benefits that they offer; that is, as plans vary in terms of
coinsurance rates, coverage of brand-name versus generic drugs, use of expenditure caps and so
forth, disaggregation by plan types is a way of capturing heterogeneity in responses. Overall, drug
benefits offered by employer sponsored insurance plans (ESI) are the most generous and those
from the Medigap plans the least generous. To reduce biases due to aggregation careful delineation
of differences in plans is desirable. The estimated effects of prescription drug insurance may also
vary with the approach used to control for self-selection. This consideration motivates LT (2009)

to provide a comparative econometric analysis from Bayesian and classical viewpoints. However,



sometimes such disaggregation may not be possible due to lack of data, and at other times it may
be avoided (as in this paper) for reasons of computational tractability.

Our approach is related to that of Shang and Goldman (2007) who analyzed the effect of drug
coverage in Medigap market and implemented the discrete factor method in the two-part model.
They assume that the population can be partitioned into three types with different sets of unob-
servable factors affecting plan choice and drug expenditure. The discrete factor model introduces
the error terms for the plan choice equation, hurdle expenditure equation and conditional expen-
diture equation that jointly allow for endogeneity as well as unobserved individual heterogeneity.
Our Bayesian analysis also allows for correlated unobserved individual heterogeneity, conditional
on positive expenditure. However, we avoid the two-part structure and concentrate on conditional
model of positive expenditures.

To develop the methodological framework for endogenous selection in a latent class model,
we have made some simplifications. First, we will assume that a dichotomous indicator of drug
coverage adequately captures the treatment effect of drug insurance in a meaningful way. This
involves a strong assumption that combining the incentive effect for those who are only enrolled in
the basic Medicare and those enrolled in a supplemental plan without drug coverage is a reasonable
approximation that will not affect the identifiability of the key parameters we want to study; how-
ever, for a more cautious appraisal of this issue see (Atherly (2002), Sing et al. (2008); Khan et al.
(2007)). We assume that our qualitative inferences regarding the aggregate incentive effects of drug
insurance and the presence of adverse selection remain valid despite aggregation; see (Goldman et
al, 2006). Previous work on expenditure modeling has extensively used the two-part ("hurdle")
model which allows the data generating process for positive expenditures to differ from that for
zero expenditures; see, for example, Deb et al (2006) and LT (2009). For the data analyzed here
the share of positive expenditure is relatively high, around 93%. We will therefore concentrate on
modeling the positive expenditures only. While extending our framework to the case of this hurdle
model is a desirable objective, its success is likely to depend on having a better division into zeros

and positives than in our sample.



The remainder of this paper is organized as follows. Section 2 develops the methodology
for Bayesian analysis of 2-component latent class model with endogenous dummy variable, under
assumption of bivariate normality. Section 3 provides the framework for calculating treatment

effects. Section 4 presents our empirical application. Section 5 concludes.

2. The 2-component latent class model

2.1. Heteroskedasticity

Since most of individuals in our sample have positive drug expenditure we will conduct a condi-
tional analysis considering only observations with positive expenditures. The expenditure variable
usually displays skewness and it is standard to take its logarithmic retransformation and assume
normality. Specify the logarithm of the positive values of Y to be linear in X, a set of exogenous

explanatory variables, such that
ElnY|Y >0,X) = Xp, 2.1

where (3 is a parameter vector. The main interest is usually centered on estimating F(Y|X) and
all associated with that partial effects and elasticities. Given the estimated conditional mean (2.1),
one has to transform back from logarithm to variable Y to make inference about F (Y| X).

The dependent variable is assumed to be linear in the set of explanatory variables X and normal
error e ~ N (0, 0?) such as

InY = X8 +e. (2.2)

After estimating the parameters of the model the main interest lies in calculating marginal
effects of Y with respect to X for the actual expenditure variable. The assumption of lognormality

allows us to retransform the dependent variable and consistently estimate ¢ = E (exp [e]) as
$ = exp [0.507] . (2.3)

Duan (1983) suggested that robustness of this estimator depends critically on whether the posi-

tive expenditure is indeed lognormally distributed. He proposed an alternative robust smearing



estimator defined as

P= D expe, 2.4)

where ¢€; are the fitted residuals. Mullahy (1998) emphasized that for consistent estimation of para-
meter [ in the conditional mean (2.1) it is sufficient to assume that F(e|Y > 0, X ). However, this
assumption does not imply statistical independence of e and X. Specifically, Mullahy considered
several examples and showed analytically that E (exp [e]) can depend on X and, therefore, the use
of the (homoskedastic) smearing estimator will fail to address heteroskedasticity of the multiplying

factor ¢ = p(X). This is likely to cause misleading estimates.

2.2. Finite Mixture of Normal Distributions

Assume that we have N independent observations (¢ = 1, ..., N) and the dependent variable of in-
terest, Y;, the logarithm of drug expenditure, is continuous. Assume that the population consists of
k homogenous subpopulations such that the dependent variable is generated by a k-component fi-
nite mixture of normal distributions. One of the modeling goals is to allow for a binary endogenous
treatment variable in the conditional means of the components. Model the endogenous binary treat-
ment variable d; as generated by latent variable D; that measures the difference in utility derived

by individual 7 in the treated and untreated states respectively,

such that

where I{.} is the indicator function, T; is a set of exogenous variables and u; YN [0,1]. Itis
assume that W; contains at least one variable which does not affect drug expenditure.

The main observed variable of interest Y;, the logarithm of expenditure. Introduce k latent

variables Y;; (7 = 1, ..., k) distributed N (,uji, o?) and parameterize the means such that



where X is a set of exogenous regressors, €;; ~ N (O, 0’?). The set of exogenous variables W;
contains at least one variable not included in X;. We utilize the approach of Geweke, Gowrisankaran,
and Town (2003) and introduce random variable u; directly in to the conditional mean. The way
endogeneity of the treatment variable d; can be modeled is by imposing a potential correlation be-
tween the errors in the treatment equation (2.5) and the mean (2.6) . However, things are simplified
substantially if u; is introduced directly in the mean equation (2.6). The unobservable variables that
affect the choice of the treatment variables also affect the expenditure variable, and the combined

error term in the expression (2.6) conditional on d; is not centered at zero
E (5jui + Eij’di) £ 0.

The variable of interest Y; is distributed as a finite mixture of normals Y;; ~ N (uij, a?)
with probability p;;. We allow these probabilities to depend on regressors. Finite mixtures is a
way of modeling heterogeneous individuals, however, there is a possibility that the probabilities of
belonging to a component change with individuals as opposed to being a fixed number across the

entire sample. The probabilities must satisfy the following constraint

k
Z pij =1
j=1

Introduce latent variable z;; such that

o 1 if observation ¢ belongs to component j
K 0 otherwise

Then the observability condition is
Y; =Yj; if and only if z;; = 1.

In order to allow the state probabilities to depend on covariates we follow Geweke and Keane
(2007b) and specify the multinomial probit model to determine the state probabilities. Let k& — 1

latent variables be defined as

. iid



and let M;; be restricted to zero. Then the components are identified as
zj; = lifand only if M;; > My (for VI, 1 =1,..., k). (2.8)
The set of covariates V' in general is different from X. The observability condition is
Y; ~ N (p;5,073) if and only if z;; = 1.

Denote z; = (21, 22, --zik), ¥V = (Y, -, Vy), 0 = (U%,...,Jz) , Ri = (Xi,di, ), 05 =
(Bj,0,95)s 0 = (01,...,0k,7,0) and A; = (X;, W;,V;,0). The joint density of observed and

latent data for individual ¢ is

f(Diydi, Yij, M, 2, Yi|Ay) = p(Di|A;)
xp(di| Di, A;)
xp (Yijldi, Di, A;)
xp (M;|d;, Dy, Yij, A;)
(

Xp\Zi, Y;|Mla dia Div }/tLja A’L)

or

exp (—0.5 (D; — Wia)2>
= NoTS [d;I{D; > 0} + (1 — d;) I{D; < 0}]

exXp (—0.50';2 (Y;J — X,Lﬁ] — pjdi — 6j (Dz — WZOt))2>

X

j=1 277(7]

k
xexp |05 (My — Viv;)?
j=1

k k
X D Miz=1 I vi=v) (Hﬂ—oo,Mm (M; >>
j=1

=1

The MCMC algorithm of the model requires a Metropolis-Hastings step as follows.
1. Draw M;; (j = 2, ..., k) independently from N [Vﬂj, 1].
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. Select state j = j* such that M;;« > M;; Vj =1,..., k.

. We accept the draw with probability

Uj_*l exp (—().5(7]-_*2 (Yz - Xiﬁj* - pj*di - 5]'* (Dz — Wia))2>

1
_ _ 2 b b
o7 exp (—().5aj 2(Y; = XiB; — p;ds — 65 (D; — Wia)) )

where j denotes the current state determining the component for observation 4, corresponding

to z;; = 1.

. The latent vectors D; (i = 1,...N) are conditionally independent with normal distribution

Z; Y [ﬁi,ﬁfl] where

H = 1+ 8o,

k
— —1 _
D, = W,a+ H; E (5]'0]-2(}/;]‘ —Riej)
Each variable is truncated such that
D;>0ifd; =1and D; < 0ifd; =0.

. Draw Yj; for each ¢ and j when z;; = 0, from the full conditional density N (uji, O'?). If
Zij = 1 then Y;j =Y.

. Let the prior distribution of o be N [g, H ;1] . Then the full conditional distribution of « is
a~N [@, F;l] where

H, = H, +ZW’ 1+Za2 -2

o]
I

Ha+Z{W’ 1+252 2| D,

—W’Z(S 0% (Yij — Rif)}].



7. Let the prior distributions be v; ~ N ['yj, H ;jl] , 7 = 1,...,k. Then the full conditional

distribution of ; is v; ~ N [fTJ, H v, ] where

N
IT E: /=2
H'Yj - E’Y]’—i_ ]%110'.7 RZ
=1

_ —1
v, = H,

J

N
-2
E”/jﬁ + ZR;UJ Yij
i=1

8. Assign priors a;z ~ G (nj/2, (gj/2)_1> , 7 =1, ..., k. Then the full conditional ofa;2 is

N 2 -1
9i (Yij — Rib))
5 > 2

nj—i—N

G 5

i=1
3. Treatment Effects

Next we calculate the average treatment effect (ATE), the average treatment effect for the treated
(ATET) and the local average treatment effect (LATE) for each component in the mixture. Defi-
nition of dependent variable Y; establishes the link between the observed and counterfactual out-
comes as

Y; = d; Y+ (1 —d;)YP.

7

The average treatment effect is defined as the expected outcome gain from receipt of treatment for
a randomly chosen individual. One can show that for a randomly chosen individual the ATE for

component j is

N
E[Y} —Y)|X] = %Z exp (X8, 4+ 0.5 (67 + 03)) [exp (p;) — 1] . (3.1

i=1
We calculate the ATE parameters averaging with respect to the sample and posterior distrib-
utions of the parameters.
The treated group consists of individuals with drug coverage. Denote by ® (+) c.d.f. of the stan-

dard normal distribution. The expected outcome gain for those who actually receive the treatment
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is calculated by the ATET,
1 0
E[Y] —-Y; | X, W,d =1]

as

1N<I>Wa+5
NE:
=1

exp (XiB; 4 0.5 (6% + 03)) [exp (p;) — 1] (3.2)

We will calculate the LATE effect with respect to the premium required to pay for the insurance
plan. Denote it by W, the instrument component in the set of explanatory variable W in the in-
surance equation. The instrument should affect the decision to receive treatment when W}, changes
from a “lower” value to a “higher” value. Denote W9 and W two realizations of T/ in which all
the components are equal except for the instrument Wy, for which it takes the “lower” and “higher”
values respectively. Then the local average treatment effect is defined as the expected outcome gain

for those induced to receive treatment at ! but who would not have received treatment at W9,
E[Y] =YX, WO W d(W°) =0,dW") =1].

which is estimated as

a+5) “o (Wt
NZ ® (WOa)
X exp (Xiﬁj +0.5 ((Sj2 + U?)) [exp (pj) — 1] . (3.3)

4. Application to drug expenditure of Medicare beneficiaries

4.1. Data

The data used in this paper are closely related to the 2003-04 MCBS those used in LT (2009),
the main difference being that we also add the data for 2005. Further, our analysis only uses
positive-valued expenditures. While we provide the essential information for making the current
paper self-contained, the reader is referred to that earlier paper for a more complete description of

methods and conventions.
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Three data sources were linked to generate the data. The Medicare Current Beneficiary Survey
(MCBS) is the main source of information regarding demographics, plan enrollment and prescrip-
tion drug expenditure. The Area Resource File (ARF) and the State County File (SCF) provide

extra sources for the instrumental variables.

4.1.1. MCBS data

MCBS, a continuous survey of a representative sample of the Medicare population, contains plan
attribute information that can serve as instrumental variables for modeling plan choice. It also con-
tains regional information that can be linked to other datasets such as ARF and SCF that are useful
in the analyzing regional Medicare markets. The “Cost and Use” file provides information on
Medicare utilization, expenditures, insurance coverage, health status and demographic characteris-
tics. Our sample excludes enrollees with Medicaid or other public plans as well as those who hold
more than one health plan or who switch plans during the year. Due to panel structure of the data
we have multi-year observations on some individuals. As our analysis is cross sectional we only
use one observation per year per individual, the convention being to use the first time the individual
is sampled. The final sample contains 7,280 observations from three years, the breakdown being
3,503 from 2003, 1,825 from 2004 and 1,952 from 2005. The MCBS also provides information on
supplemental insurance, source of the plan, the premium paid, and coverage of prescription drug
expenses. This paper does not use all the information because of its level of aggregation.

MCBS provides information on demographic (age, gender, race, education level, family in-
come, marital status, children), socioeconomic (e.g., income), and extensive list of health status
variables (including chronic conditions, disability and activity limitations).

To handle endogeneity of plan choice we need individual-specific or plan-specific instrumental
variables that affect plan choice, but are not directly correlated with drug expenditure. Premium is
a natural instrument for insurance choice, as it is essentially a sunk cost after purchase of a plan

and hence should not affect health care utilization. For additional detail, see LT (2009).
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4.1.2. ARF and SCF data

Several county level variables can serve as individual specific instruments for plan choice. We use
the county managed medicare (MMC) penetration rate in the preceding year as a measure of the
market power of MMC when the elderly make the plan choice decision and this lagged variable
should not affect the current year’s drug expenditure. The information on the number of MMC
enrollees and the number of eligible Medicare beneficiaries in each county in each year is provided
by the SCF; this information is used to calculate the MMC penetration rate. For additional details

see LT (2009).

4.1.3. Sample Summary Statistics

The summary statistics for enrollees by insurance status are provided in Table 1. The logarithm of
total drug expenditure, LNAAMTTOT, is the dependent variable and drug coverage (COVRX) is
the binary endogenous treatment variable. Figure 1 plots the dependent variable and it is clear that
its distribution is non-central. The vector of covariates X in the both components of the expenditure
variable is the same. It consists of the drug coverage dummy, self-perceived health status variables
VEGOOD, GOOD, FAIR and POOR (excellent health status is the excluded category), indicators
of present and past smoking habits, SMOKNOW and SMOKEVER, indicators for heart and other
health conditions, HEARTCOND and OTHCOND, geographical location variables NOREAST,
WEST, SOUTH and MSA, variables that proxy for socioeconomic status: AGE, WHITE, MALE,
MARRY, WIDOW, LVALONE, DEGRCYV, number of children living, CHNLNM, logarithm of
personal income, LNINCOME, employment status, JOBSTAT, and year dummies YEAR2004,
YEAR2005. Vector W of the insurance equation does not include COVRX, includes all X vari-
ables, plus the identifying instrumental variables PENET and MOAMT.

One needs a valid instrumental variable to identify the treatment effects and key endogeneity
parameters. We use two such variables, PENET and MOAMT. Variable MOAMT is defined at the
monthly premium amount paid for the insurance coverage. It is a plan attribute and should not

affect the expenditure variable. For computational simplicity we have aggregated different types of
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drug coverage plans. For example, some may cover both generics and brand-name drugs whereas
others only cover generics. Of course, the monthly premiums on average would be higher for
the more generous coverage. Using paid premium as one of the instruments helps to control for
heterogeneity in the treatment variable. The decision to purchase drug insurance also depends upon
access to plans. It is known that such access varies geographically. The ARF and SCF data base
provide additional sources of information that potentially expands the set of instruments. Several
county level variables can serve as individual specific instruments. For example, since the county
MMC penetration rate in the preceding year can measure the market power of MMC that affects
the plan choice but not the current year’s drug expenditure. Combining information on the number
of MMC enrollees and the number of eligible Medicare beneficiaries in each county, the MMC
penetration rate can be generated; see LT (2009) for additional detail.

Finally, the set of covariates in the probability equation V' includes indicators for heart and
other chronic health conditions, HEARTCOND and OTHCOND, respectively, and logarithm of
personal income, LNINCOME. If it is true that the two components are differentiated based on
health conditions and ability to pay for the prescribed medicine, then these variables should have a

strong effect on the probabilities.

4.2. Application

In general a finite mixture model with any number of components can be used to fit the data.
However, in our application we concentrate on a two-component model. Our main specification is
consistent with health economics literature which finds strong empirical support for two subpopu-
lations of "higher" and "lower" level users. These correspond to relatively healthy and unhealthy
individuals. Finite mixture models have some distinct features that make the estimation process
non-trivial. For example, classical estimation requires carefully chosen starting values. The ob-
jective function is potentially multimodal which could lead the maximizer away from the global
maximum. That makes the estimation somewhat unstable. Bayesian estimation, on the other hand,

has its own problems with the Gibbs sampler because the objective function is invariant with re-
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spect to all possible permutations of the components. In other words, it is not clear to allocate a
draw from the Gibbs sampler with respect to the components and prevent label switching. This
problem of estimation is especially serious when the number of components is misspecified (see
Fruhwirth-Schnatter (2001), Geweke (2007a)). The Markov chains have bad mixing properties
such that the entire support of the posterior distribution is not visited. For example, Celeux, Hurn
and Robert (2000) report difficulties with the Gibbs sampler.

When the estimated function of interest is component invariant Fruhwirth-Schnatter (2001)
shows that a random permutation sampler is able to solve the convergence problem and the pro-
duced Markov chains have very good properties. However, when the estimated function is com-
ponent specific and the number of components is correctly identified Geweke (2007a) shows that
finite mixture models display robust properties provided estimation is based on large samples and
there exist justifiable constrains that allows one to separate the components at each draw of the
Markov chains. In our application, there is a number of constraints that could be tested to pro-
duce practically identical results. These include p; > py, 61 > J2 and 0 > o3, and each serves
as a good identifying restriction. The incentives and selection effects of COVRX are expected to
be different between the "higher" and "lower" expenditure groups, which justifies the use of the
constraints. We run our MCMC algorithm for 20,000 replications after discarding first 1000 repli-
cations of the burn-in phase. The chains show very good mixing properties with the autocorrelation
function of the parameters dying after at most 10 lags. The results are presented in Table 2.

It is interesting that all three variables, HEARTCOND, OTHCOND and LNINCOME, have a
negative and very strong impact on the probability to belong to a component. Our interpretation
is that the higher mean components consists of relatively less healthy people with higher levels of
income. The average probability of belonging to the higher expenditure subpopulation, taken over
the entire sample, is estimated to be 0.75.

With age people in our sample are less likely to have drug coverage. On the other hand, whites,
married, widowed and living in a metropolitan statistical area are more likely to have it. HEART-

COND positively affect the coverage probability, but OTHCOND has no effect. Consistent with
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expectation education and income increase drug coverage. Surprisingly smoking variables do not
affect drug coverage, being employed decreases the probability of it.

We are able to identify two components. The first component has a smaller mean (5.98) than
the second one (7.40), but the main difference between the components is in the variance parameter,
effect of COVRX and the covariance parameter. We interpret these components as healthy and
unhealthy. Males spend less on drug in both groups, while whites spend more. Marital status has
no effect on the amounts spent, smokers spend more. Expenditure goes up with education and as
health status indicators move from good health to poor health. This is consistent for both groups.
HEARTCOND has a strong positive effect on expenditure but other chronic conditions increase
expenditure only for the unhealthy group. Employment status has a negative effect on the amounts
spent for both groups. There is no measurable impact of income on drugs for the healthy group
and it is strong and positive for the unhealthy one. One qualification of the preceding description
is that the mean of the lower-expenditure group is slightly overestimated as our analysis is for the
population with positive expenditures. The sample estimate of the proportion with zero expenditure
is around 7-8%.

We estimate completely different variance parameters for the healthy and unhealthy groups,
1.753 (0.103) and 0.497. This indicates that the healthy group is much more heterogeneous with
a greater spread of expenditure values, relative to the unhealthy group. The covariance parameters
01, 62, 0.096 (0.090) and 0.089 (0.037) show that the selection effects are strong in the unhealthy
group only, which is consistent with expectations of adverse selection into the drug coverage group.
Finally the impact of drug coverage is strong and significant for both group, 0.341 (0.169) and
0.226 (0.066). However, in order to understand the magnitudes of the effects one has to calculate
the treatment effect. These results are consistent with positive moral hazard or incentive effect of
drug insurance. This result is consistent with many estimates available in the literature.

Our exclusion restrictions are strongly correlated with the drug coverage variable. The posterior
means and standard deviations of PENET and MOAMT are 0.020 (0.002) and —0.001 (0.0002)

respectively. These instruments drive the probability of treatment from 0.012 to 0.968.
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4.3. Average Treatment Effects

The estimated treatment parameters are given in Table 3. As can be seen from the results the
treatment effects are of very different magnitudes for the healthy and unhealthy components. The
ATEs are $397 and $502, respectively, which is about 100 dollars higher for the second component.
The ATET is interpreted as the average gain in the dependent variable from the treatment for the
subpopulation which actually selected into the treatment. The ATET is higher than ATE by $15 and
$24, respectively, for the healthy and unhealthy groups. Therefore, those who actually self-select
into purchasing additional drug coverage derive a greater incentive effect to utilize the insurance.
That is, evidence of adverse selection, consistent across both subpopulations, is suggested by the
observed difference between ATE and ATET estimates.

An alternative estimate of adverse selection in the two components is generated by comparing
estimates of ATE from the model that allows for endogenous selection and from that which does
not. Denote by ATEE“d, 7 = 1,2, the estimate from the model with endogeneity, and by ATE?X
the corresponding estimate from the model without endogeneity. Then the presence of adverse
selection implies that

ATE™ < ATE},

where as under favorable (or advantageous) selection the direction of the inequality is reversed.
For consistency the second calculation is also based on Bayesian methodology implemented under
the restriction that §; = d2 = 0 which means that the insurance and expenditure decisions are
independent. The model allowing for endogeneity of treatment may be interpreted as one which
decomposes the raw estimate of the treatment effect into pure incentive and selection components.
Under exogeneity this decomposition is not identified. The estimated average treatment effects
under the exogeneity assumption are ATEY*=576 (4.6) and ATEE*=811 (3.6) for the healthy and
unhealthy components respectively. This is additional evidence in favor of adverse selection.
Finally we calculate the LATE parameter using additional information not presented in the
summary table. We know the information on the premiums paid by the individuals for the insurance

plans that they have. The average premiums can be calculated for those with and without drug
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coverage for employment sponsored insurance, Medigap and Medicare managed care plans. These
averages are used as W,S and Wk1 in calculating the LATE parameters. Three different sets of LATE
are calculated for the three different plans: ESI, Medigap and MMC. The local average treatment
effect is calculated as the expected drug expenditure increase for those induced to receive drug
coverage at W,C1 value of the premium amount, which would not have been received at the W°
level. The results indicate that such gains are about $390 for healthy component and a much higher

$1880 for the unhealthy group.
5. Conclusion

Unobservable self-selection into drug coverage has been detected and controlled for in many em-
pirical analyses. Based on simulated equilibrium premiums for drug coverage, Pauly and Zeng
(2006) found the evidence of adverse selection into drug coverage. Khan et al. (2007) used fixed
effects to control for self-selection and concluded that cross-sectional models for the effect of drug
benefit on drug utilization are subject to substantial endogeneity bias. Our findings indicate that
there is heterogeneity in incentives and selection effects among the elderly. In general the entire
elderly population can be viewed as represented by two groups of relatively healthy and unhealthy
individuals. The incentives effects are much stronger in magnitude for the unhealthy group which
account for about 75 percent of the elderly population. We are able to identify a significant selec-
tion effect only for the second component which corresponds to the higher mean expenditure. The
sign of the selection effect indicates adverse selection of relatively less healthy individuals into the

higher expenditure group.
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Table 1: Variable definition and summary statistics.

COVRX=0

COVRX=1

Number of observations

2821

Expenditure

AAMTTOT total drug expenditure 1503 (1540)
LNAAMTTOT logarithm of drug expend. 6.75 (1.28)
Insurance plan types

COVRX =1 if cover prescribed drug 0
Demographic characteristics

AGE age 77.7 (7.5)
MALE =1 if male 0.46 (0.49)
WHITE =1 if white 0.89 (0.31)
HEARTCOND =1 if one of heart cond. 0.79 (0.41)
OTHCOND =1 if other chronic cond. 0.60 (0.49)
MARRY if married 0.51 (0.50)
WIDOW if widowed 0.39 (0.49)
LVALONE if lives alone 0.37 (0.48)
CHNLNM number of children living 3.05(2.11)
MSA =1 if metro area 0.61 (0.49)
NOREAST =1 if northeast 0.12 (0.32)
WEST =1 if west 0.13(0.33)
SOUTH =1 if south 0.45 (0.49)
DEGRCV highest grade completed 4.40 (1.96)
JOBSTAT if working now 0.11 (0.31)
LNINCOME logarithm of income 9.82 (1.03)
Health characteristics

VEGOOD =1 if very good health 0.29 (0.45)
GOOD =1 if good health 0.36 (0.48)
FAIR = 1 if fair health 0.16 (0.36)
POOR =1 if poor health 0.05 (0.22)
SMOKNOW =1 if smoke now 0.10 (0.30)
SMOKEVER =1 if ever smoked 0.59 (0.49)
Year dummies

YEAR2004 =1 if year 2004 0.29 (0.45)
YEAR2005 =1 if year 2005 0.22 (0.41)
Instruments

PENET mmc penet. rate 7.43 (10.85)
MOAMT monthly premium per person  88.7 (81.9)

4459

2295 (2448)
7.20 (1.23)

76.75 (7.1)
0.43 (0.49)
0.91 (0.28)
0.79 (0.40)
0.62 (0.48)
0.59 (0.49)
0.34 (0.47)
0.30 (0.45)
3.02 (1.91)
0.77 (0.42)
0.16 (0.36)
0.22 (0.42)
0.37 (0.48)
4.92 (2.01)
0.10 (0.30)
10.11 (0.95)

0.31 (0.46)
0.34 (0.47)
0.15 (0.36)
0.04 (0.21)
0.09 (0.28)
0.59 (0.49)

0.23 (0.42)
0.29 (0.45)

13.93 (14.69)
77.9 (99.3)

7280

mean (st. dev.)
1988 (2177)
7.03 (1.27)

0.61 (0.49)

77.1 (7.3)
0.45 (0.49)
0.91 (0.29)
0.79 (0.40)
0.61 (0.49)
0.56 (0.49)
0.36 (0.48)
0.33 (0.47)
3.03 (1.99)
0.71 (0.46)
0.15 (0.35)
0.19 (0.39)
0.40 (0.49)
4.72 (2.01)
0.10 (0.31)
9.99 (0.99)

0.30 (0.46)
0.35 (0.48)
0.16 (0.36)
0.05 (0.21)
0.09 (0.29)
0.59 (0.49)

0.25 (0.43)
0.27 (0.44)

11.4 (13.7)
82.1(93.1)
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Table 2. Posterior means and standard deviations.

Equation COVRX Compl Comp 2 COVRX Compl Comp 2
CONST -1.073 3.876 6.119 GOOD 0.000 0.544 0.324
0.261 1.059 0.236 0.050 0.118 0.039
AGE -0.013 0.004 -0.006 FAIR 0.071 1.189 0.522
0.002 0.006 0.002 0.058 0.151 0.052
MALE -0.203 -0.422  -0.083 POOR 0.010 1.271 0.742
0.037 0.097 0.029 0.085 0.228 0.066
WHITE 0.135 0.285 0.159  SMOKNOW  -0.054 -0.354  -0.102
0.055 0.139 0.041 0.057 0.141 0.041
HEARTCOND  0.095 0.744 0.234 SMOKEVER  0.042 0.173 0.024
0.039 0.118 0.045 0.036 0.090 0.026
OTHCOND 0.056 0.194 0.257 DEGRCV 0.050 0.055 0.014
0.033 0.113 0.028 0.008 0.023 0.006
MARRY 0.368 0.086 0.015 JOBSTAT -0.138 -0.412  -0.165
0.065 0.180 0.051 0.053 0.130 0.041
WIDOW 0.286 0.086 0.118  LNINCOME 0.136 -0.002 0.074
0.060 0.158 0.050 0.017 0.098 0.019
LVALONE -0.044 0.027 -0.053 YEAR2004 -0.091 0.018 0.086
0.047 0.118 0.035 0.038 0.100 0.028
CHNLNM -0.004 -0.006 0.006 YEAR2005 0.240 0.237 0.408
0.008 0.021 0.006 0.038 0.101 0.027
MSA 0.205 -0.021 -0.063 PENET 0.020
0.039 0.094 0.027 0.002
NOREAST 0.131 -0.228 0.043 MOAMT -0.001
0.052 0.134 0.038 0.0002
WEST 0.054 -0.474  -0.154 COVRX 0.341 0.226
0.055 0.130 0.039 0.169 0.066
SOUTH -0.025 0.083 0.033 01, 02 0.096 0.089
0.038 0.106 0.029 0.090 0.037
VEGOOD 0.012 0.373 0.066 01,092 1.753 0.497
0.050 0.119 0.039 0.103 0.077
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Table 3. Treatment effects.

ATE ATET LATE1 LATE2 LATE3

(Wi, W?) (91,67) (176,137)  (52,48)
Obs. 7280 4459 7280 7280 7280
Component 1
397 412 387 389 387
3.1 42 3.1 3.1 3.1
Component 2
502 526 1882 1894 1878
2.3 3.0 7.7 7.8 7.7
Figure 1
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