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Body mass index (BMI), weight(kg)/ height(m)2, is a widely used measure for obesity in

medical science. In economics, there appeared studies (e.g., Cawley (2004) and Burkhauser

and Cawley (2008)) showing that BMI has a negative (or no) effect on wage. But BMI is a

tightly specified function of weight and height, and there is no priori reason to believe why the

particular function is the best to combine weight and height. In this paper, we address the

question of weight effect on wage, employing two-wave panel data for white females; the same

panel data with more waves were used originally in Cawley (2004). We posit a semi-linear

model consisting of a nonparametric function of height and weight and a linear function of

the other regressors. The model is differenced to get rid of the unit specific effect, which

results in a difference of two nonparametric functions with the same shape. We estimate

each nonparametric function with a ‘marginal integration method’, and then combine the

two estimated functions using the same shape restriction. We find that there is no weight

effect on wage up to the average weight, beyond which a large negative effect kicks in. The

effect magnitude is greater than that in Cawley (2004) who used a linear BMI model. The

linear model gives the false impression that there would be a wage gain by becoming slimmer

than the average and that the ‘obesity penalty’ is less that what it actually is.
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1 Introduction

Consider a nonparametric “related-effect” panel data model:

Yit = ρ(Ci,Xit) + αi + Uit, i = 1, . . . , N, t = 1, 2 (1.1)

where Yit is a response variable, Ci is a time-constant regressor, Xit is a time-variant regressor,

ρ(Ci,Xit) is an unknown function of Ci and Xit, αi is an unobserved time-constant error

possibly related to Ci and Xit, and Uit is a time-variant error such that

E(Uit|Ci,Xi1,Xi2, αi) = a time-constant function of Ci and αi, t = 1, 2; (1.2)

i indexes individuals and t indexes time periods. Assume iid (independent and identically

distributed) across i to often omit the subscript i in the rest of this paper. This moment

condition includes the moment being zero as a special case.

The expression “related-effect” refers to αi being possibly related to regressors. In the

panel data literature, related-effect is usually called “fixed-effect,” which is, however, also

used for cases where αi is estimated (along with the model parameters) regardless of its

relationship with regressors. In (1.2), all period regressors are in the conditioning set (‘strict

exogeneity’), which is typically invoked in the panel related-effect literature as can be seen

in Manski (1987), Honoré (1992), Kyriazidou (1997) and Lee (1999), although there are

exceptions as in Holtz-Eakin et al. (1988), Chamberlain (1992) and Wooldridge (1997).

A standard way to deal with the ‘unit-specific term’ αi is first-differencing across the

two periods. For instance, when

ρ(Ci,Xit) = β1 + βcCi + βxXit + βxcXitCi + βxxX
2
it, (1.3)

first-differencing yields

Yi2 − Yi1 = βx(Xi2 −Xi1) + βxc(Xi2 −Xi1)Ci + βxx(X
2
i2 −X2

i1) + Ui2 − Ui1. (1.4)

While first-differencing is straightforward with a parameterized regression function as (1.3), a

misspecified parametric function in general leads to inconsistent estimators. The goal of this

paper is to explore a kernel nonparametric estimation for the semi-linear regression function,

using the idea of ‘marginal integration’ in Linton and Nielsen (1995) and Newey (1994).

The linear model (1.3) suggests that, if a series-approximation is used for the nonpara-

metric model, then we may not need a set-up fancier than the usual linear model to handle
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the related-effect. But series approximation, as a global nonparametric method, has prop-

erties different from kernel method which is a local approximation. The two methods have

pros and cons. A difficulty with series approximation relative to kernel method is that, if

the regression function is high-dimensional only in a small area, then series approximation

will force this feature into the whole support of the regression function. Another difficulty is

that, while choosing the order of series approximation can be done automatically, say with

cross validation (CV), the order taking integers is too rough a measure for the degrees of

smoothing, while the degree of smoothing can be chosen as finely as desired in kernel meth-

ods. An advantage of series approximation is that a series-approximated model can be fit as

a familiar linear model, and thus many familiar estimation/test techniques for linear models

are applicable. But this linear model analogy is “deceiving” in theory, as the convergence

rate of a series-approximation estimator is slower than the usual N−12 rate.

The nonparametric model (1.1) is relevant, e.g., for nonparametric growth curve estima-

tion (see Müller (1988) and references therein) where Yit is the height of a child, Ci is gender,

Xit is nutrition, and αi captures the genetic factors. The prime example we have in mind

in this paper is the effect of body mass index index (BMI) on wage where BMI is defined

as weight in kg divided by squared height in meters. As height Ci is fixed for adults while

weight Xit changes, the real effect of interest is the effect of weight Xit on Yit = ln(wageit).

While BMI specifies ρ(c, x) as proportional to x/c2, from modeling viewpoint, this is a very

tight specification–think of all possible functional forms of c and x. It will be a remarkable

luck of draw if the functional form x/c2 holds up well in reality.

Since wage depends on variables other than weight and height, we will generalize the

nonparametric model into a semi-linear model

Yit = ρ(Ci,Xit) +W 0
itβ + αi + Uit (1.5)

where Wit is the other regressors possibly affecting wage. Not to get distracted by Wit, how-

ever, we will examine (1.1) withoutWit in detail first, and then (1.5) later; the generalization

with Wit does not take much extra work.

Li and Stengos (1996) extended Robinson’s (1988) two-stage approach for cross-section

semi-linear models to panel data without much concern on αi. Lin and Carroll (2006) exam-

ined semi-linear panel data models where ρ is a function of time-varying regressors. Although

a differenced model was considered briefly for matched-pair samples, Lin and Carroll (2006)
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primarily looked at ‘unrelated-effect’ (or random-effect) models. Henderson et al. (2008)

applied the Lin and Carroll (2006) approach to panel semi-linear models to estimate differ-

enced semi-linear models with ‘profile-based’ kernel methods. Despite these studies, models

of the form (1.5) with a time-constant Ci non-separable from Xit in the nonparametric part

have not been specifically examined in the literature as far as we are aware of. Also our

marginal integration approach to be explained in the next section is much simpler than the

profile-based kernel methods.

The rest of this paper is organized as follows. Section 2 presents our kernel estimator

for a normalized version of ρ(c, x) in (1.1) using the marginal integration idea, assuming

that Ci and Xit are continuously distributed. Section 3 examines the augmented model (1.5)

using the two-stage method in Robinson (1988). Section 4 presents our empirical analyses

for the same data as used in Cawley (2004) that were originally drawn from NLSY (National

Longitudinal Survey of Youth). Finally, Section 5 draws conclusions.

Showing our main conclusion in advance, we find no weight effect on wage up to the

average weight, beyond which there is a fairly large negative effect. That is, for each given

height, the log wage function is flat over the under-weight range and then declines rapidly

over the over-weight range. This is in contrast to what Cawley (2004) found using a model

linear in BMI (and the other regressors) where the effect magnitude of BMI is smaller than

our effect over the over-weight range. This seems to be due to combining zero effect over the

under-weight range and the relatively greater effect in absolute value over the over-weight

range. Hence our main finding can be summed up as follows: there is no wage gain by

becoming slimmer than normal, but there is a higher wage gain than suggested in the linear

model if over-weight.

2 Marginal Integration

2.1 Main Idea

First-difference (1.1) to get

∆Yi = μ(Ci,Xi1,Xi2) +∆Ui where ∆Yi ≡ Yi2 − Yi1, ∆Ui ≡ Ui2 − Ui1 and

μ(Ci,Xi1,Xi2) ≡ ρ(Ci,Xi2)− ρ(Ci,Xi1).
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Let μ̂(c, x1, x2) denote a kernel nonparametric estimator for μ(c, x1, x2). Two marginally

integrated versions of μ̂(c, x1, x2) are

μ̂c1(c, x1) ≡
1

N

X
i

μ̂(c, x1,Xi2)→p

Z
ρ(c, x2)f2(x2)dx2 − ρ(c, x1) ≡ μc1(c, x1)

μ̂c2(c, x2) ≡
1

N

X
i

μ̂(c,Xi1, x2)→p ρ(c, x2)−
Z

ρ(c, x1)f1(x1)dx1 ≡ μc2(c, x2)

where ft denotes the X-density for time t. There is no difficulty in estimating μ; the question

is how to take the advantage of the additive structure of μ in ρ.

Observe

m̂(c, x) ≡ μ̂c2(c, x)− μ̂c1(c, x)

2
→p m(c, x) where

m(c, x) ≡ μc2(c, x)− μc1(c, x)

2
= ρ(c, x)−

Z
ρ(c, x)

f1(x) + f2(x)

2
dx.

Hence m̂(c, x) is a consistent estimator for ρ(c, x) up to a function of of c. Each of −μ̂c1(c, x)
and μ̂c2(c, x) is a valid estimator for ρ(c, x) up to a function of c. But, by combining the

two estimators as in this display, we are taking advantage of the information/restriction that

the probability limits of −μ̂c1(c, x) and μ̂c2(c, x) are the same. Due to the constant 1/2, the

resulting estimator has the standard deviation (SD) twice smaller than when only a single

estimator is used.

If ρ(c, x) = x/c2 as in BMI, thenZ
ρ(c, x)

f1(x) + f2(x)

2
dx =

1

c2

Z
x
f1(x) + f2(x)

2
dx

=⇒ m(c, x) =
x−E12(x)

c2
where E12(x) ≡

Z
x
f1(x) + f2(x)

2
da.

Hence the normalized version m(c, x) of ρ is just a ‘X-mean’-centered version of ρ where the

X-mean is obtained using the simple-averaged marginal densities.

Before we proceed further, we make two remarks. Firstly, although we assumed that the

same functional form ρ holds in the two periods, we can in fact easily allow a time-varying

intercept, say τ t:

Yit = τ t + ρ(Ci,Xit) + αi + Uit =⇒ μ(Ci,Xi1,Xi2) ≡ ∆τ + ρ(Ci,Xi2)− ρ(Ci,Xi1)

where ∆τ ≡ τ2 − τ1. But ∆τ will get cancelled in the difference μ̂c2(c, x) − μ̂c1(c, x). This

shows that a time-varying intercept is allowed in the model. Secondly, over a short period
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of time, f1 = f2 can happen; for the BMI example, the marginal distribution of weight may

not change although some people gain weight while some people lose. With f1 = f2,

m(c, x) = ρ(c, x)−
Z

ρ(c, x)f0(x)dx where f1 = f2 ≡ f0;R
m(c, x)f0(x)dx = 0 by construction. With ρ(c, x) = x/c2 as in BMI,

m(c, x) =
x−E(x)

c2
where E(x) =

Z
xf0(x)dx.

2.2 Estimation Details

Define

Zi ≡ (Ci,Xi1,Xi2)
0.

Let fz(z) be the density function for Z = z; the components of z will be denoted also as z1,

z2, and z3. For a three-dimensional product kernel K(z) = L(z1)L(z2)L(z3) and a bandwidth

h, define

f̂z(z) ≡ 1

Nh3

NX
i=1

K(
Zi − z

h
), ĝz(z) ≡ 1

Nh3

NX
i=1

K(
Zi − z

h
)∆Yi, μ̂(z) ≡ ĝz(z)

f̂z(z)
;

e.g., we may use the product of three N(0, 1) densities for K: K(z) = φ(z1)φ(z2)φ(z3).

In practice, to account for the scale differences among the regressors, it is necessary to

use a different bandwidth for each regressor proportional to its SD as in

f̂z(z) =
1

Nσ̂cσ̂x1σ̂x2h30

X
i

φ(
Ci − c

σ̂ch0
) · φ(Xi1 − x1

σ̂x1h0
) · φ(Xi2 − x2

σ̂x2h0
)

where σ̂c, σ̂x1 and σ̂x2 are the sample SD’s for Ci, Xi1 and Xi2, respectively, and h3 in the

preceding display is replaced by the product of the three different bandwidths σ̂ch0, σ̂x1h0

and σ̂x2h0. Then, set h0 = pN−1/7 to try, say p = 0.5, 1, 2, 3. The best way to choose p is

drawing f̂z(z) when the dimension of z is small. In our case, z is three-dimensional, and thus

we can draw only its two-dimensional ‘cross-sections’. Then choose a value of p that gives

“not too rough nor too smooth” cross-sectional figures. A practical rule-of-thumb value for

p is 1, which can be used at the first attempt.

With μ̂(z) = ĝz(z)/f̂z(z), obtain the averaged (i.e., integrated) versions and their linear

combination:

μ̂c1(c, x1) ≡
1

N

X
i

μ̂(c, x1,Xi2), μ̂c2(c, x2) ≡
1

N

X
i

μ̂(c,Xi1, x2)

m̂(c, x) ≡ μ̂c2(c, x)− μ̂c1(c, x)

2
.
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A three-dimensional graph is needed to plot m(c, x), but in practice, it will be simpler to plot

a number of two-dimensional graphs with c fixed at some points. If the BMI functional form

is correct, fixing c means that the resulting graphs should be all linear because ρ(c, x) = x/c2.

In our empirical analysis later, we will fix c at the lower quartile (LQ), median (MED) and

upper quartile (UQ).

2.3 Asymptotic Variance

For a two-dimensional regression function, say m(x1, x2), in a cross-section linear model

Yi = m(Xi1,Xi2) + Ui, Linton and Nielsen (1995) stated that, under the homoskedasticity

assumption E(U |X1 = x1,X2 = x2) = σ2,

√
Nh{m̃1(x1)−

Z
m(x1, x2)q(x2)dx}Ã N{0,

Z
L(s)2ds · σ2

Z
q(x2)

2

f(x1, x2)
dx2}

where m̃1(x1) ≡
Z

m̂(x1, x2)q(x2)dx2

for a weighting function q(x2), m̂(x1, x2) is a kernel estimator with the product kernel

L((Xi1−x1)/h)L((Xi2−x1)/h) and f(x1, x2) is the joint density function for (X1 = x1,X2 =

x2).

A couple of extensions for this finding are notable. First, for heteroskedastic errors,

σ2
R {q(x2)2/f(x1, x2)}dx2 should be replaced withZ

σ2(x1, x2)
q(x2)

2

f(x1, x2)
dx2.

Second, for m̃1(x1) + m̃2(x2) where m̃2(x2) is defined analogously to m̃1(x1), its asymp-

totic variance is just the sum of the two individuals variances, that is, m̃1(x1) and m̃2(x2)

are asymptotically independent. The sum is considered here because m̃1(x1) was designed

originally for additive nonparametric models, say m(x1, x2) = m1(x1) + m2(x2). Third, if

q(x2) = f2(x2), then the asymptotic variance allowing for heteroskedasticity becomesZ
L(s)2ds

Z
σ2(x1, x2)

f2(x2)
2

f(x1, x2)
dx2 =

Z
σ2(x1, x2)

f2(x2)

f1|2(x1|x2)
dx2.

where f1|2(x1|x2) ≡ f(x1, x2)/f2(x2). This asymptotic variance also holds when the empirical

distribution is used for q(x2)dx2 as in Linton (1997) to result in

m̂1(x1) =
1

N

X
i

m̂(x1,Xi2).
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In the following, we present the asymptotic distribution for m̂(c, x) for the three-regressor

case. The main steps in deriving the asymptotic variance for the above two-regressor case

are presented in Lee (2010).

Generalizing the two-regressor case to three-regressor case, we get

√
Nh2{μ̂c1(c, x)− μc1(c, x)} Ã N [0, {

Z
L(s)2ds}2V1cx], V1cx ≡

Z
σ2(c, x, x2)

f2(x2)
2

f(c, x, x2)
dx2

√
Nh2{μ̂c2(c, x)− μc2(c, x)} Ã N [0, {

Z
L(s)2ds}2V2cx], V2cx ≡

Z
σ2(c, x1, x)

f1(x1)
2

f(c, x1, x)
dx1

where σ2(c, x1, x2) ≡ V (∆Y |C = c,X1 = x1,X2 = x2).

As the two estimators are asymptotically independent, we get

√
Nh2{m̂(c, x)−m(c, x)}Ã N [0, {

Z
L(s)2ds}2V1cx + V2cx

4
].

Define

μ̃(c, x1, x2) as μ̂(c, x1, x2) with its ∆Y replaced with (∆Y )2.

Then μ̃(c, x1, x2)→p E{(∆Y )2|c, x1, x2}, and thus

μ̃(c, x1, x2)− {μ̂(c, x1, x2)}2 →p σ2(c, x1, x2).

Observe now

V1cx =

Z
σ2(c, x, x2)

f2(x2)

f(c, x, x2)
f2(x2)dx2 ' 1

N

X
i

σ2(c, x,Xi2)
f2(Xi2)

f(c, x,Xi2)

' 1

N

X
i

[{μ̃(c, x,Xi2)− (μ̂(c, x,Xi2))
2} f̂2(Xi2)

f̂(c, x,Xi2)
] ≡ V̂1cx.

Doing analogously,

V2cx ' 1

N

X
i

[{μ̃(c,Xi1, x)− (μ̂(c,Xi1, x))
2} f̂1(Xi1)

f̂(c,Xi1, x)
] ≡ V̂2cx.

Therefore, a 95% asymptotic point-wise confidence interval (CI) for m(c, x) is

m̂(c, x)± 1.96
Z

L(s)2ds · { V̂1cx + V̂2cx
4Nh2

}1/2.R
L(s)2ds is a known number; with L(·) being the N(0, 1) density, R L(s)2ds ' 0.283. As

noted already, we use a different bandwidth for each regressor in practice; for our problem,

we use σ̂ch0, σ̂x1h0 and σ̂x2h0. In this case, the last display becomes

m̂(c, x)± 1.96
Z

L(s)2ds · { V̂1cx
4Nσ̂cσ̂x1h20

+
V̂2cx

4Nσ̂cσ̂x2h20
}1/2.
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Although the above CI can be used for different points of x (with c fixed at one value)

to get a ‘confidence band (CB)’ connecting those CI’s, this lowers the coverage probability

of the CB. For instance, suppose we obtain m̂(c, x) for 31 different evaluation points x(j),

j = 1, ..., 31, of x. Then, with the asymptotic independence across the evaluation points

holding, the coverage probability of the CB is only 0.9531 = 0.204. If we use the critical value

2.93 instead of 1.96, then the coverage probability of the CB becomes 0.996631 = 0.900 as

the coverage probability of one CI is 0.9966. We will be using 2.93 later for our CB’s, but it

should be noted that the CB’s obtained this way are likely to be too conservative, because

the asymptotic independence is indeed “asymptotic”. In reality, adjacent CI’s are likely to

be positively related. That is, if one CI at x(1) contains ρ(c, x(1)), then another CI at x(2) is

likely to contain ρ(c, x(2)) as well when x(1) and x(2) are close to each other.

3 Semi-Linear Model

Recall the semi-linear model with an extra regressor vectorWit in (1.5). First-differencing

yields, with ∆Wi ≡Wi2 −Wi1,

∆Yi = μ(Ci,Xi1,Xi2) +∆W
0
iβ +∆Ui (3.1)

which is a semi-linear cross-section model. As the time-constant elements of Wit drop out in

this differenced model, there is no need to include time-constant elements in Wit even if they

are relevant for Yit.

Following the Robinson’s (1988) idea of removing the nonparametric component, take

E(·|Ci,Xi1,Xi2) on (3.1) to get

E(∆Y |Ci,Xi1,Xi2) = μ(Ci,Xi1,Xi2) +E(∆W 0
i |Ci,Xi1,Xi2)β. (3.2)

Subtract (3.2) from (3.1) to get

∆Yi −E(∆Y |Ci,Xi1,Xi2) = {∆Wi −E(∆Wi|Ci,Xi1,Xi2)}0β +∆Ui. (3.3)

Using this, the following three-stage estimator can be done.

First, obtain kernel estimators, say Ê(∆Y |Ci,Xi1,Xi2) and Ê(∆Wi|Ci,Xi1,Xi2), for the

conditional means in (3.3). Second, get the Least Squares Estimator (LSE) bN for β of

∆Yi − Ê(∆Y |Ci,Xi1,Xi2) on ∆Wi − Ê(∆Wi|Ci,Xi1,Xi2);
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the estimator is
√
N -consistent under some regularity conditions. Third, construct the ‘∆Y −

∆W 0bN residual’

Qi ≡ ∆Yi −∆W 0
ibN

and proceed as in the preceding section treating Qi as ∆Yi.

Some remarks are in order. First, since bN is
√
N -consistent while the ensuing nonpara-

metric procedure is
√
Nh2-consistent, using bN is as good as knowing β asymptotically. That

is, we can ignore the presence ofWi as far as estimating ρ(Ci,Xit) goes. Second, we can easily

allow β to vary over time: replace ∆W 0
iβ with W 0

i2β2 −W 0
i1β1 to estimate β2 and β1 using

bothWi2 and −Wi1 as the regressors. Third, for our purpose of estimating ρ, β does not have

to be estimated “perfectly”, because we just need the residual Qi. That is, estimating each

of β is not of concern; rather, the function W 0
itβ as a whole should be estimated accurately

even if each component of β may not be. Hence, if Wit has a multicollinearity problem, it

would be better to use part of Wit instead of using all of Wit so that β for the used part can

be estimated accurately rather than all components of β get estimated inaccurately.

4 Empirical Analysis: Weight Effect on Wage

4.1 Two Far-Apart Waves for White Females

Our study uses the same data as used in Cawley (2004) who drew the original data from

NLSY (the National Longitudinal Survey of Youth)–we are grateful to Professor Cawley for

providing us the data. The panel data used in Cawley (2004) has about 100,000 observations

when pooled. Cawley found that only white females have significant negative weight effects

on wage that are stable across different models and estimators. His main finding summarized

in the abstract of the paper is that two SD (roughly 65 pounds) weight difference is associated

with 9 percent wage difference. This came from LSE using BMI as a regressor along with

some other regressors.

Burkhauser and Cawley (2008) found that BMI is not a good measure of obesity, as

BMI does not distinguish muscle weight and fat weight; they obtained the correct obesity

classification using body fat percentage (and some others). This resulted in misclassifying

many non-obese persons to obese, and the problem is severe for men but weak for women

as there are far more muscular men than women. Phrases cited in Burkhauser and Cawley

(2008) condemning BMI are “Farewell to Body-Mass Index” and “the final nail in the casket
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for body-mass index as an independent cardiovascular risk factor”. These demonstrate that

BMI is an error-ridden measure of obesity, and the measurement error is likely to bias the

estimated BMI effect toward zero. But Burkhauser and Cawley (2008) still found that BMI

is a reliable measure for white female obesity, almost as good as body fat percentage in

explaining employment status. Hence, among the various gender and ethnic groups examined

in Cawley (2004), we use only while females in our empirical analysis. The original unbalanced

panel data in Cawley (2004) has 13 unequally spaced waves for the period 1981-2000. Our

analysis is based on a balanced panel of N = 1302 only for two waves 1986 and 2000 for the

following reasons.

First, an unbalanced panel data set is cumbersome to use for difference-based methods

because we should make sure of differencing two waves only for those individuals observed

in the two waves. This problem can be avoided if we trim the unbalanced panel to make it

balanced, but there is a trade-off: more waves means the smaller N . In our case, using the

two waves 1986 and 2000 gives N = 1302, but if we try to use eight equally spaced (every

other year) waves, then N becomes about 600.

Second, if we use more than two waves, then we can use each pair for the waves. This

brings up the question on how to combine multiple estimators (one from each possible pair)

to find an optimal estimator; recall that, even for two waves, we have a linear combination

of two estimators. This does not seem to be an easy task theoretically, to say the least. Also

even if this is done, the resulting optimal estimator is likely to depend on the estimators’

variances and covariances. As will be noted later, unfortunately, the asymptotic variance

and its estimator presented above do not work well for our data; the main problem is the

appearance of f̂(c, x1, x2) in the denominator becoming very small and thus blowing the

variance estimator “off the chart”. Hence we use a bootstrap for our data, which is admittedly

ad-hoc. Going further with the ad-hoc bootstrap variance-covariance estimates to obtain the

optimal estimator might be too far-fetching. In addition, deriving a CB with the optimal

estimator would call yet another round of bootstrap, and the whole procedure would be

extremely time-consuming.

Third, for our three-stage procedure, the main explanatory power for ρ(c, x) comes from

the variation in weight. As weight tends to change little year to year, even if we use all the

waves, the extra gain brought in by using all waves instead of two far-apart waves is likely to

be small. Hence we chose the two waves 1986 and 2000 for our analysis, taking into account
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this “far-apartness” and sample size.

4.2 Descriptive Statistics and Densities

Table 1: Descriptive Statistics for White Females

Wave 1986 Wave 2000

Mean (SD) Min, Max Mean (SD) Min, Max

wage ($) 7.65 (3.99) 1, 47.7 12.7 (10.9) 1, 146

weight (lb) 139 (29.5) 84.6, 279 161 (41.8) 82.3, 572

in school 0.151 (0.358) 0, 1 0.048 (0.215) 0, 1

age youngest 0.985 (1.99) 0, 13 6.45 (6.08) 0, 27

# kids 0.651 (0.932) 0, 5 1.63 (1.20) 0, 6

married 0.474 (0.500) 0, 1 0.672 (0.470) 0, 1

married but 0.114 (0.318) 0, 1 0.233 (0.423) 0, 1

job experience 5.03 (2.54) 0, 11.4 14.0 (5.90) 0, 23.7

job tenure 2.09 (2.14) 0, 10.1 6.17 (5.80) 0, 23.1

local unemp<6 0.257 (0.437) 0, 1 0.878 (0.328) 0, 1

local unemp>9 0.296 (0.457) 0, 1 0.026 (0.160) 0, 1

white collar 0.630 (0.483) 0, 1 0.373 (0.484) 0, 1

part-time 0.788 (0.409) 0, 1 0.895 (0.307) 0, 1

north east 0.190 (0.393) 0, 1 0.174 (0.379) 0, 1

north central 0.312 (0.463) 0, 1 0.318 (0.466) 0, 1

south 0.325 (0.469) 0, 1 0.339 (0.474) 0, 1

height (inch) 64.7 (2.20) 56.2, 72.1

age 24.6 (2.21) 21, 29

schooling 13.1 (2.26) 0, 20

schooling-dad 11.4 (4.25) 0, 20

schooling-mom 11.5 (3.22) 0, 20

intelligence 0.163 (0.908) -3.21, 2.40

Whereas the detailed information on the original data can be found in Cawley (2004),

Table ‘Descriptive Statistics for White Females’ presents the mean, standard deviation (SD),

minimum and maximum of the variables used in our study. The variable ‘wage’ is bottom-
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coded at $1, ‘age youngest’ is the age of the youngest child, ‘married’ is married with the

spouse present, ‘married but’ is married with spouse absent, ‘job experience’ is the years of

the actual work experience, ‘job tenure’ is the years at the current job, ‘local unemp<6’ is

the county unemployment rate less than 6%, ‘local unemp>9’ is the county unemployment

rate greater than 9%, “part-time’ is working less than 20 hours per week, ‘schooling’ is the

highest grade completed, and ‘intelligence’ is a measure of cognitive ability from the ten

Armed Services Aptitude Battery tests administered in 1980.

In addition to these regressors, dummy variables indicating whether some variables are

missing or not were also used as regressors in the LSE below and in the three-stage procedure

to estimate ρ, but their descriptive statistics are omitted in Table 1; those dummies will not

be further mentioned. According to Cawley (2004), the sample selection problem of using

only those who work does not seem to matter much, and we proceed along with this statement

without further mentioning the sample selection aspect in the remainder of this paper.

As height and weight are of prime interest to our study, we drew their densities in Figure

1. The height density suggests a possibility of bimodality, which may be interpreted as two

groups of heights. The weight densities show that, as the white females get older, their

weight distribution gets more dispersed toward the right tail, i.e., on average the women

became more obese.

Figure 1: Density Functions for Height and Weights (1986,1990)
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Figure 2: Weight (1986,1990) Density Contours and Data Plots

To get a more detailed understanding on weight change, Figure 2 presents the contours

and data plot along with the 45% equality line for 1986 and 2000 weights. Clearly, most

women became heavier over the 14 year span, and there is no other visible interesting pat-

tern such as bimodality or only some weight-subgroup getting heavier. Heteroskedasticity

depending on the earlier weight is also noticeable on the right panel. When LSE was run for

2000 weight on 1986 weight, the result is

Weight 2000
SD (t−value):

= 6.857
5.15 (1.33)

+ 1.111
0.04 (28.0)

× (Weight 1986), R2 = 0.613.

Adding other regressors to this equation raises R2 somewhat but R2 seems to fall short of

0.65 no matter what.

4.3 Panel LSE

We applied panel LSE as explained in Lee (2002); the LSE allows an arbitrary correlation

for αi+Ui1 and αi+Ui2. The LSE results are in Table 2 ‘Panel LSE and MDE for Ln(Wage):

White Females’. There are three columns with bN (tv), among which the first two are for

1986 and 2000. The columns indicate that the estimates tend to differ across the two years.

Testing for the parameter constancy, we reject the H0 with the Wald test statistic 51.7 and

p-value 0.02. But the parameter constancy for BMI and height only was not rejected with

the Wald test statistic 0.416 and p-value 0.812.
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Table 2: Panel LSE and MDE for Ln(Wage): White Females

Variables bN (tv) 1986 bN (tv) 2000 bN (tv) MDE

one 0.636 (0.36) -2.735 (-0.49) 1.433 (3.24)

BMI -0.010 (-3.64) -0.008 (-4.52) -0.010 (-6.23)

height 0.004 (0.72) 0.004 (0.66) 0.006 (1.24)

age 0.111 (0.87) 0.220 (0.85) 0.019 (1.03)

age2/100 -0.276 (-1.11) -0.308 (-0.98) -0.064 (-2.33)

age×schooling 0.003 (1.13) 0.000 (0.09) 0.002 (2.95)

schooling -0.115 (-1.69) -0.065 (-0.44) -0.091 (-4.55)

schooling2/10 0.027 (2.83) 0.042 (1.95) 0.031 (3.88)

schooling-dad 0.005 (1.12) 0.010 (1.61) 0.005 (1.30)

schooling-mom -0.007 (-0.97) 0.005 (0.59) -0.002 (-0.32)

in school -0.032 (-0.83) -0.031 (-0.57) -0.049 (-1.64)

intelligence 0.093 (5.02) 0.056 (2.82) 0.075 (5.34)

intelligence2×10 -0.001 (-0.52) 0.003 (1.83) 0.001 (0.90)

age youngest -0.001 (-0.08) -0.004 (-1.68) -0.003 (-1.21)

# kids -0.032 (-1.65) -0.011 (-0.76) -0.019 (-1.82)

married -0.028 (-0.94) 0.102 (1.89) 0.007 (0.29)

married but 0.020 (0.46) 0.159 (2.78) 0.064 (2.06)

job experience 0.032 (3.59) 0.030 (5.80) 0.024 (6.24)

job tenure 0.066 (3.78) 0.050 (5.58) 0.057 (10.3)

(job tenure)2 -0.004 (-1.55) -0.002 (-3.40) -0.002 (-6.08)

local unemp<6 0.091 (2.83) 0.226 (4.67) 0.130 (5.13)

local unemp>9 -0.033 (-1.05) 0.075 (0.71) 0.001 (0.02)

white collar 0.183 (5.93) 0.091 (2.73) 0.151 (7.13)

part-time 0.088 (2.36) -0.013 (-0.18) 0.081 (2.63)

north east -0.066 (-1.52) -0.072 (-1.35) -0.081 (-2.36)

north central -0.132 (-3.41) -0.185 (-3.74) -0.166 (-5.52)

south -0.102 (-2.69) -0.141 (-2.83) -0.120 (-4.04)

The last column with MDE (minimum distance estimator) is obtained imposing the all-

parameter constancy restriction; the numbers in this MDE column may be regarded as an

15



weighted average of the 1986 and 2000 columns, and they are shown as a ‘reference’; see

Lee (2002) for the implementation details of the MDE if interested. Although the model

specification differs somewhat from that in Cawley (2004), the estimate for BMI is almost

the same, hovering around −0.01.

4.4 Marginal Integration for Height-Fixed Log Wage Function

In this section, we apply the three-stage procedure to estimate ρ(c, x):

1. Ê(∆Y |Ci,Xi1,Xi2) and Ê(Wit|Ci,Xi1,Xi2), t = 1, 2, are estimated with the kernel

method where the product of N(0, 1) kernels is used and the bandwidth for each re-

gressor is 2 ∗ SD × N−1/6 (= 1.7 ∗ SD × N−1/7 for 3-dimensional smoothing) where

the multiplicative factor 2 was chosen by ‘eye-balling’ on the final ρ(c, x) figures. In

theory, high-order kernels are needed, but they performed poorly, which is why the

usual normal kernels were employed.

2. LSE of ∆Yi − Ê(∆Y |Ci,Xi1,Xi2) on Wit − Ê(Wit|Ci,Xi1,Xi2), t = 1, 2, was done to

get bN . Recall that we rejected the H0 : parameter constancy for the regressors other

than BMI and height.

3. With Qi ≡ ∆Yi − (W 0
i1,W

0
i2)bN , μ̂(c, x1, x2) for μ(c, x1, x2) = E(Q|C = c,X1 =

x1,X2 = x2) was obtained. Then μ̂c1(c, x) = N−1P
i μ̂(c, x,Xi2) and μ̂c2(c, x) =

N−1P
i μ̂(c,Xi1, x) were obtained to get the final estimator

m̂(c, x) ≡ μ̂c2(c, x)− μ̂c1(c, x)

2
→p ρ(c, x)−

Z
ρ(c, x)

f1(x) + f2(x)

2
dx.

Figure 3 presents the three functions μ̂c2(c, x) (top), −μ̂c1(c, x) (bottom) and m̂(c, x).

Clearly m̂(c, x) falls halfway between the other two curves. Because of the women getting

heavier over time, we have f2 6= f1, which makes
R
ρ(c, x)f2(x)dx 6=

R
ρ(c, x)f1(x)dx. As

the result, the levels of the top and bottom curves differ. The averaged in-between curve

m̂(c, x) picks up the same curvature information/restriction while re-leveling the curve with

the averaged density of f1 and f2.

Whereas the 2000 curve is monotonically declining, the 1986 curve has a trough at weight

' 220 pounds. This seems to have occurred because the 1986 curve has − R ρ(c, x)f2(x)dx,
and there are many obese women with high wages in 2000. The women were young in 1986
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and thus mostly employed by others getting paid relatively low, but this has changed by 2000.

The trough might be an outcome of the reverse causality of high wage causing obesity. To

deal with the reverse causality, Cawley (2004) instrumented BMI with a sibling BMI, but he

could not reject the H0 that the estimates do not change with or without the instrument. In

addition to the trough presence, the weight effect seems slightly stronger in 1986 (when the

women were young) than in 2000 (when the women were relatively old). It might be better

to restrict the same functional form restriction only up to, say 190 lb. Here we also note

some outliers in weight: the maximum weight is only 279 lb 1986, but there were 10 women

above 300 in 2000, 2 above 400 and 1 above 500.

Figure 3: Ln(Wage) vs. Weight 2000 (top), 1986 (bottom) and Combined at MED Height

In drawing a CB (confidence band) around m̂(c, x), as already noted, the asymptotic

variance estimator did not work well due to the random denominator f̂(c, x1, x2). Instead, we

applied nonparametric bootstrap, resampling from the original data with replacement. One

way of getting a CB is using the lower and upper 5% bootstrap quantiles at each evaluation

point (c, x). But this requires a rather high bootstrap repetition number. To save time, we
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did the bootstrap 31 times to obtain the bootstrap SDboot(c, x), and the CB used is

m̂(c, x)± 2.93× SDboot(c, x), where c is fixed at LQ, MED and UQ heights;

i.e., in Figures 4-6, the log wage function is shown with height fixed respectively at the LQ

(63.2 inches; about 160cm), MED (64.9 inches; about 165cm) and UQ (66.5 inches; about

170cm). Admittedly, there is no proof that this bootstrap is consistent in the sense of giving

the correct asymptotic coverage error. But with the asymptotic variance estimator failing,

there seems to be no other way to gauge the precision in estimating m(c, x) with m̂(c, x).

Figure 4: Ln(Wage) Function at LQ Height (about 160cm)

Looking at Figures 4-6, the log wage function appears flat (or increasing slightly) up

to the average weight of 140-160 pounds, and then decreasing rapidly afterward. The curve

drops more rapidly for relatively shorter women (with LQ or MED height) than taller women

(with MED or UQ height), which is natural because the same amount of weight gain is more

visible for shorter women. In Figure 4, it is virtually impossible to fit a linear line in the CB,

implying a significant nonlinear effect; in Figure 5, it is possible to fit a linear line but not

the zero line, implying a significant effect but not necessarily a non-linear effect; in Figure 6,

the zero line can be fit, implying no significant effect.

Based on the linear model results as in Cawley (2004), one might conclude that there

is a wage gain in reducing weight regardless of the current weight, implying a wage gain
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Figure 5: Ln(Wage) Function at MED Height (about 165cm)

Figure 6: Ln(Wage) Function at UQ Height (about 170cm)
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in becoming slimmer than the normal (average) weight. But our nonparametric estimator

paints a different picture: there is a wage gain only for those over-weight, but there is no

wage gain (or even a loss) for those with the average or lower weight. Recall the main finding

of Cawley (2004): 65 pound loss for 9% wage gain. Figures 4-6 show the gain of about 20%,

17% and 8% over the 60 pound loss from about 220 to 160 lb. Hence the weight-loss gain for

those over-weight is greater than what the linear model suggests. This is because essentially

the linear model estimate is a mixture of the zero effect over the under-weight range and the

negative effect over the over-weight range. This is one of the most interesting findings from

the nonparametric method–something one could not have foreseen using only the linear

model.

As an obesity measure, BMI is not bad at all for while females but poor for males, as

observed in Burkhauser and Cawley (2008). Cawley (2004) could not find any BMI effect for

white males using linear models. In the appendix, we apply the same nonparametric three-

stage procedure to the while males in the NLSY data to see indeed no significant findings.

In a sense, this provides a support to our methodology. Despite no significant findings, some

interesting features do exist for white males; see the appendix if interested.

5 Conclusions

Does obesity matter for wage? The answer is yes at least for white females in the U.S.

when body mass index (BMI) is used as a measure of obesity; this was the finding from

the conventional linear models. But BMI is a rather special–in fact, too tightly specified–

function of weight and height. As popular as BMI may be, it is highly unlikely that the single

functional form is suitable for different response variables for which BMI have been used, and

this means that there is likely to be a better functional form than BMI that relates weight

and height to wage. In this paper, we posited a semi-linear panel data model where the model

has a nonparametric function ρ(Ci,Xit) of height Ci and weight Xit and a linear function of

the other regressors. After removing the unit-specific effect by first-differencing the model, in

essence, we ended up with μ(Ci,Xi1,Xi2) = ρ(Ci,Xi2)− ρ(Ci,Xi1). The main task was then

to recover ρ from a nonparametric estimator of μ, imposing the restriction that μ consists of

two functions of the same form. We did the task using the nonparametric marginal integration

approach. Differently from the linear model finding, we found no evidence of wage gain from
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weight loss for normal- (or under-) weight women. Also, for over-weight women, the gain

from weight loss is greater than what the linear model suggested.

Our study warns against using BMI in a blindfolded fashion. Rather, for each response

variable of interest, there should be a more suitable function of weight and height than BMI,

which should be sought after. When the response variable is related to some illness/disease,

although the difference between the “advices” from the linear and the semi-linear models

may not be much for a single individual, giving the wrong advice using the linear function

may amount to many lives lost unnecessarily for the entire population.

APPENDIX

This appendix applies the same three-stage procedure to the white males in the NLSY

data for waves 1986 and 2000. Descriptive statistics of the white males are in Table 3. As in

the white females, the white males also gained weight over the 14 year span.

Table 4 displays the panel LSE and MDE results, which indicate that there is no signifi-

cant linear relationship between ln(wage) and BMI. Figure 7 corresponding to Figure 3 shows

the graphs for 2000 (top), 1986 (bottom) and the combination (middle). It is interesting to

see that the under-weight are penalized more severely in 2000 than in 1986, whereas the

over-weight are penalized less severely in 2000 than in 1996. This may be explained by the

growing trend of valuing fitness and muscle: the under-weight is penalized more these days

due to lack of muscles, but the over-weight is not because muscle weight can take a higher

proportion of weight in 2000 than in 1986.

Figures 8-10 corresponding to Figures 4-6 show negative effects for being under-weight

as well as being over-weight. However, differently from the white female case, the zero line

can fit in all three figures, implying no significant effects in all figures. Nevertheless, if we

look at the estimated lines in Figures 8-10, then the following features are notable.

First, a wage gain of about 12% from 50 lb loss from about 280 to 230 can be seen.

Differently from the white females, this feature is similar across the LQ, MED and UQ

heights, possibly because the interquartile range is small (about 6 cm) for males compared

with that for females (about 10cm). Second, the starting weight for wage loss is about 230

that is well above the 2000 average weight 197. This is in sharp contrast to the females, for
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whom the starting weight for wage loss is about 160 that is almost the same as the 2000

average weight 161. Third, the wage loss from being under-weight is more visible than for

females; for females, hardly any wage loss was seen from being under-weight.

Table 3: Descriptive Statistics for White Males

Wave 1986 Wave 2000

Mean (SD) Min, Max Mean (SD) Min, Max

wage ($) 2.11 (0.497) 1, 4.78 2.58 (0.650) 1, 6.21

weight (lb) 175 (30.2) 108, 348 197 (38.7) 73.2, 471

in school 0.137 (0.344) 0, 1 0.018 (0.134) 0, 1

age youngest 0.533 (1.577) 0, 21 4.55 (5.36) 0, 29

# kids 0.415 (0.759) 0, 1 1.58 (1.31) 0, 9

married 0.403 (0.491) 0, 1 0.679 (0.467) 0, 1

married but 0.060 (0.238) 0, 1 0.181 (0.385) 0, 1

job experience 5.24 (2.68) 0, 11.4 14.4 (6.71) 0, 23.9

job tenure 2.32 (2.40) 0, 12.4 7.22 (6.30) 0, 24.9

local unemp<6 0.273 (0.446) 0, 1 0.876 (0.329) 0, 1

local unemp>9 0.280 (0.449) 0, 1 0.023 (0.151) 0, 1

white collar 0.357 (0.479) 0, 1 0.221 (0.415) 0, 1

part-time 0.841 (0.366) 0, 1 0.982 (0.134) 0, 1

north east 0.191 (0.393) 0, 1 0.176 (0.381) 0, 1

north central 0.340 (0.474) 0, 1 0.345 (0.476) 0, 1

south 0.289 (0.454) 0, 1 0.307 (0.461) 0, 1

height (inch) 69.9 (2.38) 62.6, 78.7

age 24.6 (2.27) 21, 29

schooling 13.0 (2.30) 0, 20

schooling-dad 11.6 (4.35) 0, 20

schooling-mom 11.5 (3.28) 0, 20

intelligence 0.119 (0.947) -3.53, 2.10
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Table 4: Panel LSE and MDE for Ln(Wage): White Males

Variables bN (tv) 1986 bN (tv) 2000 bN (tv) MDE

one -0.997 (-0.70) 5.130 ( 1.15) 1.071 ( 2.71)

BMI 0.000 ( 0.02) -0.004 (-1.55) -0.003 (-1.40)

height 0.013 ( 2.82) 0.001 ( 0.27) 0.010 ( 2.78)

age 0.149 ( 1.42) -0.125 (-0.57) 0.046 ( 2.79)

age2/100 -0.266 (-1.24) 0.111 ( 0.39) -0.138 (-5.56)

age×schooling 0.001 ( 0.25) 0.001 ( 0.56) 0.004 ( 6.74)

schooling -0.038 (-0.60) -0.148 (-1.31) -0.131 (-5.80)

schooling2/10 0.018 ( 1.69) 0.056 ( 3.23) 0.023 ( 2.58)

schooling-dad -0.001 (-0.33) 0.012 ( 2.16) 0.004 ( 1.18)

schooling-mom -0.006 (-1.06) -0.002 (-0.21) -0.002 (-0.38)

in school -0.185 (-4.53) -0.108 (-0.94) -0.177 (-4.82)

intelligence 0.085 ( 4.97) 0.122 ( 5.93) 0.096 ( 6.94)

intelligence2×10 0.001 ( 0.51) 0.000 (-0.03) 0.000 ( 0.31)

age youngest 0.000 (-0.03) -0.003 (-1.22) -0.002 (-0.87)

# kids 0.020 ( 0.97) 0.016 ( 1.18) 0.029 ( 2.64)

married 0.055 ( 1.90) 0.190 ( 4.08) 0.091 ( 3.86)

married but 0.067 ( 1.42) 0.107 ( 2.10) 0.051 ( 1.57)

job experience 0.022 ( 2.74) 0.036 ( 5.32) 0.018 ( 4.74)

job tenure 0.069 ( 4.68) 0.029 ( 3.21) 0.035 ( 6.59)

(job tenure)2 -0.005 (-3.10) -0.001 (-2.25) -0.001 (-4.60)

local unemp<6 0.017 ( 0.55) 0.199 ( 4.42) 0.047 ( 2.03)

local unemp>9 -0.109 (-3.99) 0.023 ( 0.25) -0.078 (-3.18)

white collar 0.032 ( 1.13) 0.123 ( 3.09) 0.070 ( 3.23)

part-time 0.089 ( 2.28) -0.319 (-1.47) 0.084 ( 2.29)

north east -0.003 (-0.07) -0.018 (-0.36) 0.009 ( 0.28)

north central -0.080 (-2.36) -0.143 (-3.07) -0.082 (-2.94)

south -0.090 (-2.57) -0.091 (-1.98) -0.066 (-2.33)
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Figure 7: Ln(Wage) vs. Weight 2000 (top), 1986 (bottom) and Combined at MED Height

Figure 8: Ln(Wage) Function at LQ Height (about 175cm)
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Figure 9: Ln(Wage) Function at MED Height (about 178cm)

Figure 10: Ln(Wage) Function at UQ Height (about 181cm)
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