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Body mass index (BMI), weight(kg)/ height(m)?2, is a widely used measure for obesity in
medical science. In economics, there appeared studies (e.g., Cawley (2004) and Burkhauser
and Cawley (2008)) showing that BMI has a negative (or no) effect on wage. But BMI is a
tightly specified function of weight and height, and there is no priori reason to believe why the
particular function is the best to combine weight and height. In this paper, we address the
question of weight effect on wage, employing two-wave panel data for white females; the same
panel data with more waves were used originally in Cawley (2004). We posit a semi-linear
model consisting of a nonparametric function of height and weight and a linear function of
the other regressors. The model is differenced to get rid of the unit specific effect, which
results in a difference of two nonparametric functions with the same shape. We estimate
each nonparametric function with a ‘marginal integration method’, and then combine the
two estimated functions using the same shape restriction. We find that there is no weight
effect on wage up to the average weight, beyond which a large negative effect kicks in. The
effect magnitude is greater than that in Cawley (2004) who used a linear BMI model. The
linear model gives the false impression that there would be a wage gain by becoming slimmer

than the average and that the ‘obesity penalty’ is less that what it actually is.
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1 Introduction

Consider a nonparametric “related-effect” panel data model:
Yz’t:P(Ci,Xit)‘FOZi‘FUit, izla"'aNa t:172 (11)

where Y;; is a response variable, C; is a time-constant regressor, X;; is a time-variant regressor,
p(Ci, Xjy) is an unknown function of C; and Xj;, «a; is an unobserved time-constant error

possibly related to C; and X, and Uy is a time-variant error such that
E(Ui|Ci, Xi1, Xi2, i) = a time-constant function of C; and «;, t=1,2; (1.2)

i indexes individuals and t indexes time periods. Assume iid (independent and identically
distributed) across ¢ to often omit the subscript ¢ in the rest of this paper. This moment
condition includes the moment being zero as a special case.

The expression “related-effect” refers to «; being possibly related to regressors. In the
panel data literature, related-effect is usually called “fixed-effect,” which is, however, also
used for cases where «; is estimated (along with the model parameters) regardless of its
relationship with regressors. In (1.2), all period regressors are in the conditioning set (‘strict
exogeneity’), which is typically invoked in the panel related-effect literature as can be seen
in Manski (1987), Honoré (1992), Kyriazidou (1997) and Lee (1999), although there are
exceptions as in Holtz-Eakin et al. (1988), Chamberlain (1992) and Wooldridge (1997).

A standard way to deal with the ‘unit-specific term’ «; is first-differencing across the

two periods. For instance, when
p(Cis Xit) = By + BeCi + BoXit + BreXitCi + Bua X (1.3)
first-differencing yields
Yio — Y1 = B,(Xi2 — Xi1) + Boe(Xiz — Xi1)Ci + Boo (X7 — X7) + Uiz — Uan. (1.4)

While first-differencing is straightforward with a parameterized regression function as (1.3), a
misspecified parametric function in general leads to inconsistent estimators. The goal of this
paper is to explore a kernel nonparametric estimation for the semi-linear regression function,
using the idea of ‘marginal integration’ in Linton and Nielsen (1995) and Newey (1994).
The linear model (1.3) suggests that, if a series-approximation is used for the nonpara-

metric model, then we may not need a set-up fancier than the usual linear model to handle



the related-effect. But series approximation, as a global nonparametric method, has prop-
erties different from kernel method which is a local approximation. The two methods have
pros and cons. A difficulty with series approximation relative to kernel method is that, if
the regression function is high-dimensional only in a small area, then series approximation
will force this feature into the whole support of the regression function. Another difficulty is
that, while choosing the order of series approximation can be done automatically, say with
cross validation (CV), the order taking integers is too rough a measure for the degrees of
smoothing, while the degree of smoothing can be chosen as finely as desired in kernel meth-
ods. An advantage of series approximation is that a series-approximated model can be fit as
a familiar linear model, and thus many familiar estimation/test techniques for linear models
are applicable. But this linear model analogy is “deceiving” in theory, as the convergence
rate of a series-approximation estimator is slower than the usual N2 rate.

The nonparametric model (1.1) is relevant, e.g., for nonparametric growth curve estima-
tion (see Miiller (1988) and references therein) where Yj; is the height of a child, C; is gender,
X+ is nutrition, and «; captures the genetic factors. The prime example we have in mind
in this paper is the effect of body mass index index (BMI) on wage where BMI is defined
as weight in kg divided by squared height in meters. As height C; is fixed for adults while
weight X;; changes, the real effect of interest is the effect of weight X;; on Yy = In(wage;).
While BMI specifies p(c, z) as proportional to z/c?, from modeling viewpoint, this is a very
tight specification—think of all possible functional forms of ¢ and z. It will be a remarkable
luck of draw if the functional form x/c? holds up well in reality.

Since wage depends on variables other than weight and height, we will generalize the

nonparametric model into a semi-linear model
Vit = p(Ci, Xit) + Wi+ i + U (1.5)

where W;; is the other regressors possibly affecting wage. Not to get distracted by W;;, how-
ever, we will examine (1.1) without Wy in detail first, and then (1.5) later; the generalization
with W;; does not take much extra work.

Li and Stengos (1996) extended Robinson’s (1988) two-stage approach for cross-section
semi-linear models to panel data without much concern on «;. Lin and Carroll (2006) exam-
ined semi-linear panel data models where p is a function of time-varying regressors. Although

a differenced model was considered briefly for matched-pair samples, Lin and Carroll (2006)



primarily looked at ‘unrelated-effect’ (or random-effect) models. Henderson et al. (2008)
applied the Lin and Carroll (2006) approach to panel semi-linear models to estimate differ-
enced semi-linear models with ‘profile-based’ kernel methods. Despite these studies, models
of the form (1.5) with a time-constant C; non-separable from Xj; in the nonparametric part
have not been specifically examined in the literature as far as we are aware of. Also our
marginal integration approach to be explained in the next section is much simpler than the
profile-based kernel methods.

The rest of this paper is organized as follows. Section 2 presents our kernel estimator
for a normalized version of p(c,z) in (1.1) using the marginal integration idea, assuming
that C; and Xj; are continuously distributed. Section 3 examines the augmented model (1.5)
using the two-stage method in Robinson (1988). Section 4 presents our empirical analyses
for the same data as used in Cawley (2004) that were originally drawn from NLSY (National
Longitudinal Survey of Youth). Finally, Section 5 draws conclusions.

Showing our main conclusion in advance, we find no weight effect on wage up to the
average weight, beyond which there is a fairly large negative effect. That is, for each given
height, the log wage function is flat over the under-weight range and then declines rapidly
over the over-weight range. This is in contrast to what Cawley (2004) found using a model
linear in BMI (and the other regressors) where the effect magnitude of BMI is smaller than
our effect over the over-weight range. This seems to be due to combining zero effect over the
under-weight range and the relatively greater effect in absolute value over the over-weight
range. Hence our main finding can be summed up as follows: there is no wage gain by
becoming slimmer than normal, but there is a higher wage gain than suggested in the linear

model if over-weight.

2 Marginal Integration
2.1 Main Idea
First-difference (1.1) to get

AY; = N(Cz'sz'la X; ) + AU; where AY; = Yo — Y1, AU; = U — Ui and
w1(Ci, Xin, Xi2) = p(Ci, Xi2) — p(Ci, Xin).



Let fi(c,z1,x2) denote a kernel nonparametric estimator for p(c,z1,x2). Two marginally

integrated versions of fi(c, x1,x2) are
. 1 .
faleo1) = > ile, w1, Xig) =P /P(C» 2) fa(@2)dza — plc, 1) = pey (e, 71)
i
N 1 N »
HCQ(C7 .172) S NZM(Q Xil?'rQ) - p(C, :1:2) - p(c7 xl)fl(xl)d‘rl S /"LCQ(C7 $2)
i

where f; denotes the X-density for time ¢t. There is no difficulty in estimating u; the question

is how to take the advantage of the additive structure of y in p.

Observe
m(c,x) = frea(c, x);ﬂd(c’x) —P m(e,x) where
m<67 37) = pea(c; ) ; fer (€, T) _ p(c, x) _ /p(c, .’L‘) fi(z) ;— f2($) de.

Hence m(c, x) is a consistent estimator for p(c,x) up to a function of of c¢. Each of —[i(c, )
and fizs(c,x) is a valid estimator for p(c,x) up to a function of ¢. But, by combining the
two estimators as in this display, we are taking advantage of the information/restriction that
the probability limits of —/i,;(c, ) and fi4(c, z) are the same. Due to the constant 1/2, the
resulting estimator has the standard deviation (SD) twice smaller than when only a single
estimator is used.

If p(c,z) = x/c* as in BMI, then

[ plem PR, L [ A,

—F
= m(c,x) = xc—;z(x) where Fia(x) = /3:

fi(z) ; fa(2) .
Hence the normalized version m(c, x) of p is just a ‘X-mean’-centered version of p where the
X-mean is obtained using the simple-averaged marginal densities.

Before we proceed further, we make two remarks. Firstly, although we assumed that the

same functional form p holds in the two periods, we can in fact easily allow a time-varying

intercept, say T¢:
Yie = 7¢ + p(Ci, Xit) + s + Uy = p(Cy, X1, Xio) = AT + p(Ci, Xio) — p(Ci, Xin)

where A7 = 79 — 71. But A7 will get cancelled in the difference fio(c, ) — fi.1(c, ). This

shows that a time-varying intercept is allowed in the model. Secondly, over a short period



of time, f1 = fo can happen; for the BMI example, the marginal distribution of weight may

not change although some people gain weight while some people lose. With f; = fa,
miea) = plea) [ ple.onfa(o)ds where fi = fo = f

[m(c,z)fo(z)dz = 0 by construction. With p(c, z) = z/c? as in BMI,

x——lj(a:) where E(z) = /;cfo(x)dx

m(c,x) = g

2.2 Estimation Details

Define
Z; = (Ci, X, Xi2)'.
Let f.(z) be the density function for Z = z; the components of z will be denoted also as z1,
z9, and z3. For a three-dimensional product kernel K (z) = L(z1)L(z2)L(23) and a bandwidth
h, define

_ _ e :§Z(Z),
z = h3z 7 z i M( )—fz(z)a

e.g., we may use the product of three N(0,1) densities for K: K(z) = ¢(z1)p(z2)p(23).
In practice, to account for the scale differences among the regressors, it is necessary to

use a different bandwidth for each regressor proportional to its SD as in

; 1 c X1 — a1 Xig — 3
fz(Z) ]\TO'CO'Q[;lO'g[;gh?’Z O'cho) ¢( 6’x1h0 ) (ﬁ( &x2h0 )

where 6., 6,1 and 6,9 are the sample SD’s for C;, X;1 and Xj9, respectively, and h3 in the
preceding display is replaced by the product of the three different bandwidths &.hg, 61ho
and G40ho. Then, set hg = pN~Y7 to try, say p = 0.5,1,2,3. The best way to choose p is
drawing f. (z) when the dimension of z is small. In our case, z is three-dimensional, and thus
we can draw only its two-dimensional ‘cross-sections’. Then choose a value of p that gives
“not too rough nor too smooth” cross-sectional figures. A practical rule-of-thumb value for
p is 1, which can be used at the first attempt.

With ji(z) = §:(2)/f-(2), obtain the averaged (i.c., integrated) versions and their linear

combination:

. 1 .
fale,z) = > ile, w1, Xia),  fiea(c, w2) ZM ¢, Xi1, 2)
5

ﬂc2<cv 37) _ ﬂcl (Cv {IZ)
5 .

m(c, )



A three-dimensional graph is needed to plot m(c, x), but in practice, it will be simpler to plot
a number of two-dimensional graphs with c¢ fixed at some points. If the BMI functional form
is correct, fixing ¢ means that the resulting graphs should be all linear because p(c, z) = x/c2.
In our empirical analysis later, we will fix ¢ at the lower quartile (LQ), median (MED) and

upper quartile (UQ).

2.3 Asymptotic Variance

For a two-dimensional regression function, say m(z1,x2), in a cross-section linear model
Y: = m(Xi1, Xi2) + Ui, Linton and Nielsen (1995) stated that, under the homoskedasticity

assumption E(U|X] = z1, Xo = 12) = 02,

T — [ m(z1,x To)dx} ~ s)%ds - o2 Mm
VR (@1) =~ [ mleraoa(eds) = N, [ 1025 0* [ 12 dan)
where mi(x1) = /m(a:l,xg)q(xg)dmg

for a weighting function ¢(z3), m(x1,z2) is a kernel estimator with the product kernel
L((Xi1—x1)/h)L((Xi2—x1)/h) and f(z1,x2) is the joint density function for (X; = z1, Xo =
x3).

A couple of extensions for this finding are notable. First, for heteroskedastic errors,

o? [{q(z2)?/ f(x1,22) }dzs should be replaced with

2 q(w2)2
/ LT o ) 2

Second, for mi(x1) + ma(z2) where ma(x2) is defined analogously to mi(x1), its asymp-
totic variance is just the sum of the two individuals variances, that is, m(z1) and me(x2)
are asymptotically independent. The sum is considered here because mj(x;) was designed
originally for additive nonparametric models, say m(x1,z2) = mi(x1) + ma(z2). Third, if
q(x2) = fa(x2), then the asymptotic variance allowing for heteroskedasticity becomes

2 2 fa(x2)? o — | 021 fo(z2) .
/L(S) dS/U ($1,$2)f<$17$2)d 2 —/ ( 1, 2)—f1|2($1’$2)d 2

where fijo(w1|z2) = f(21,22)/ f2(x2). This asymptotic variance also holds when the empirical

distribution is used for g(z2)dzy as in Linton (1997) to result in

. 1 .
ml(xl) = N Zm(:tl,Xig).
7



In the following, we present the asymptotic distribution for m(c, z) for the three-regressor
case. The main steps in deriving the asymptotic variance for the above two-regressor case

are presented in Lee (2010).

Generalizing the two-regressor case to three-regressor case, we get

\% ~ X 2

Nh2{ﬂcl (Cv x) — He1 (C’ x)} N[O, {/ L(8)2d3}2 V 1cx]7 View = /0’2(0, x, $2)—f{z’(x?;2)da?2

VNR2{fio(c, ) — peo(c,z)} ~~ NJO {/ L(5)2ds}Vae], Vo /02(C 21,7) fi(z1)? -
c2\& c2\& ) cx]s cx = N y 7]0(07 1. $)

where 02(0,961,332) = V(AY|C =c¢, X1 =1, X9 = x9).

As the two estimators are asymptotically independent, we get

VNR2{m(c,x) —m(c,x)} ~ NJO, {/L(S)st}QW]'

Define
file, 1, x2) as fu(c, 1, x2) with its AY replaced with (AY)?.

Then ji(c, 1, z2) —P E{(AY)?|c, 21,22}, and thus

fi(c, w1, m2) — {ji(c, 1, 29) Y2 —P 0*(c, w1, 2).

Observe now

X
View = /02(07957372)%&(372)%2 o~ %ZJQ(C,x,Xiz)—f(E;;{L)

12

i ez Xo) — (flc. . X:0))? M %
sz:[{:u’( ) 7Xz2) </~L< ) 7X%2)) }f(c,l‘,Xig)] = Viee-

Doing analogously,

AXa) | _ v

Vace & 5 DI Xa,2) = (e X)) )= Vi

fle, X1, x)

Therefore, a 95% asymptotic point-wise confidence interval (CI) for m(c, ) is

. View + V2
2 . cx cx 1/2
m(e,z) + 1.96/L(S) ds {—4Nh2 e

[ L(s)?ds is a known number; with L(-) being the N(0,1) density, [ L(s)*ds ~ 0.283. As
noted already, we use a different bandwidth for each regressor in practice; for our problem,

we use d.hg, 6,1ho and 6,2k In this case, the last display becomes

A Vlcx ‘7261‘ 1
+£1.96 | L(s)%ds- "
m(c, ) / (s)7ds {4N&c&x1h% + 4N6C6x2h(2)}

8



Although the above CI can be used for different points of z (with ¢ fixed at one value)
to get a ‘confidence band (CB)’ connecting those CI’s, this lowers the coverage probability
of the CB. For instance, suppose we obtain m(c,z) for 31 different evaluation points (@),
j =1,...,31, of x. Then, with the asymptotic independence across the evaluation points
holding, the coverage probability of the CB is only 0.95%! = 0.204. If we use the critical value
2.93 instead of 1.96, then the coverage probability of the CB becomes 0.99663! = 0.900 as
the coverage probability of one CI is 0.9966. We will be using 2.93 later for our CB’s, but it
should be noted that the CB’s obtained this way are likely to be too conservative, because
the asymptotic independence is indeed “asymptotic”. In reality, adjacent CI’s are likely to
be positively related. That is, if one CI at z(!) contains ple, a:(l)), then another CI at z(?) is

likely to contain p(c,z(®)) as well when z() and z(?) are close to each other.

3 Semi-Linear Model

Recall the semi-linear model with an extra regressor vector Wj; in (1.5). First-differencing

yields, with AW; = W;9 — Wil,
AY; = p(Cy, Xir, Xia) + AW/ B + AU; (3.1)

which is a semi-linear cross-section model. As the time-constant elements of W;; drop out in
this differenced model, there is no need to include time-constant elements in W;; even if they
are relevant for Yj;.

Following the Robinson’s (1988) idea of removing the nonparametric component, take

E(-|Cy, Xi1, Xi2) on (3.1) to get
E(AY|Cy, X1, Xi2) = u(Ci, X, Xio) + E(AW]|Ci, Xi1, Xi2)8. (3.2)

Subtract (3.2) from (3.1) to get
AY; — E(AY|Ci, Xi1, Xi2) = {AW; — E(AW;|Cs, X1, Xi2) Y B+ AU (3.3)

Using this, the following three-stage estimator can be done.
First, obtain kernel estimators, say E’(AY|C¢, Xi1, Xj2) and E(AWACQ, Xi1, Xi2), for the
conditional means in (3.3). Second, get the Least Squares Estimator (LSE) by for 5 of

AY; — B(AY|Cy, Xi1, Xi2) on AW, — E(AW;|Ci, Xi1, Xio);



the estimator is v/ N-consistent under some regularity conditions. Third, construct the ‘AY —
AW'by residual’
Qi = AY; — AW/by

and proceed as in the preceding section treating @); as AY;.

Some remarks are in order. First, since by is v/N-consistent while the ensuing nonpara-
metric procedure is vV N h2-consistent, using by is as good as knowing 3 asymptotically. That
is, we can ignore the presence of W as far as estimating p(C;, X;;) goes. Second, we can easily
allow (3 to vary over time: replace AW/ with W),8, — W/, 3; to estimate (5 and (; using
both W;s and —W;; as the regressors. Third, for our purpose of estimating p, 5 does not have
to be estimated “perfectly”, because we just need the residual @);. That is, estimating each
of B is not of concern; rather, the function W/, as a whole should be estimated accurately
even if each component of 8 may not be. Hence, if W;; has a multicollinearity problem, it
would be better to use part of W;; instead of using all of W;; so that § for the used part can

be estimated accurately rather than all components of 8 get estimated inaccurately.

4 Empirical Analysis: Weight Effect on Wage

4.1 Two Far-Apart Waves for White Females

Our study uses the same data as used in Cawley (2004) who drew the original data from
NLSY (the National Longitudinal Survey of Youth)—we are grateful to Professor Cawley for
providing us the data. The panel data used in Cawley (2004) has about 100,000 observations
when pooled. Cawley found that only white females have significant negative weight effects
on wage that are stable across different models and estimators. His main finding summarized
in the abstract of the paper is that two SD (roughly 65 pounds) weight difference is associated
with 9 percent wage difference. This came from LSE using BMI as a regressor along with
some other regressors.

Burkhauser and Cawley (2008) found that BMI is not a good measure of obesity, as
BMI does not distinguish muscle weight and fat weight; they obtained the correct obesity
classification using body fat percentage (and some others). This resulted in misclassifying
many non-obese persons to obese, and the problem is severe for men but weak for women
as there are far more muscular men than women. Phrases cited in Burkhauser and Cawley

(2008) condemning BMI are “Farewell to Body-Mass Index” and “the final nail in the casket

10



for body-mass index as an independent cardiovascular risk factor”. These demonstrate that
BMI is an error-ridden measure of obesity, and the measurement error is likely to bias the
estimated BMI effect toward zero. But Burkhauser and Cawley (2008) still found that BMI
is a reliable measure for white female obesity, almost as good as body fat percentage in
explaining employment status. Hence, among the various gender and ethnic groups examined
in Cawley (2004), we use only while females in our empirical analysis. The original unbalanced
panel data in Cawley (2004) has 13 unequally spaced waves for the period 1981-2000. Our
analysis is based on a balanced panel of N = 1302 only for two waves 1986 and 2000 for the
following reasons.

First, an unbalanced panel data set is cumbersome to use for difference-based methods
because we should make sure of differencing two waves only for those individuals observed
in the two waves. This problem can be avoided if we trim the unbalanced panel to make it
balanced, but there is a trade-off: more waves means the smaller N. In our case, using the
two waves 1986 and 2000 gives N = 1302, but if we try to use eight equally spaced (every
other year) waves, then N becomes about 600.

Second, if we use more than two waves, then we can use each pair for the waves. This
brings up the question on how to combine multiple estimators (one from each possible pair)
to find an optimal estimator; recall that, even for two waves, we have a linear combination
of two estimators. This does not seem to be an easy task theoretically, to say the least. Also
even if this is done, the resulting optimal estimator is likely to depend on the estimators’
variances and covariances. As will be noted later, unfortunately, the asymptotic variance
and its estimator presented above do not work well for our data; the main problem is the
appearance of f (c,x1,m2) in the denominator becoming very small and thus blowing the
variance estimator “off the chart”. Hence we use a bootstrap for our data, which is admittedly
ad-hoc. Going further with the ad-hoc bootstrap variance-covariance estimates to obtain the
optimal estimator might be too far-fetching. In addition, deriving a CB with the optimal
estimator would call yet another round of bootstrap, and the whole procedure would be
extremely time-consuming.

Third, for our three-stage procedure, the main explanatory power for p(c, z) comes from
the variation in weight. As weight tends to change little year to year, even if we use all the
waves, the extra gain brought in by using all waves instead of two far-apart waves is likely to

be small. Hence we chose the two waves 1986 and 2000 for our analysis, taking into account

11



this “far-apartness” and sample size.

4.2 Descriptive Statistics and Densities

Table 1: Descriptive Statistics for White Females

Wave 1986 Wave 2000
Mean (SD)  Min, Max  Mean (SD)  Min, Max
wage ($) 7.65 (3.99) 1,477 127 (109) 1, 146
weight (1b) 139 (20.5)  84.6,279 161 (41.8)  82.3, 572
in school 0.151 (0.358) 0,1 0.048 (0.215) 0,1
age youngest  0.985 (1.99) 0, 13 6.45 (6.08) 0, 27
# kids 0.651 (0.932) 0,5 1.63 (1.20) 0,6
married 0.474 (0.500) 0,1 0.672 (0.470) 0,1
married but  0.114 (0.318) 0,1 0.233 (0.423) 0,1
job experience 5.03 (2.54) 0,114 14.0 (5.90) 0, 23.7
job tenure 2.09 (2.14) 0, 10.1 6.17 (5.80) 0, 23.1
local unemp<6 0.257 (0.437) 0,1 0.878 (0.328) 0,1
local unemp>9 0.296 (0.457) 0,1 0.026 (0.160) 0,1
white collar 0.630 (0.483) 0,1 0.373 (0.484) 0,1
part-time  0.788 (0.409) 0,1  0.895 (0.307) 0,1
north east  0.190 (0.393) 0,1  0.174 (0.379) 0,1
north central  0.312 (0.463) 0,1 0.318 (0.466) 0,1
south 0.325 (0.469) 0,1  0.339 (0.474) 0,1
height (inch)  64.7 (2.20)  56.2, 72.1
age 24.6 (2.21) 21,29
schooling 13.1 (2.26) 0, 20
schooling-dad 11.4 (4.25) 0, 20
schooling-mom  11.5 (3.22) 0, 20
intelligence ~ 0.163 (0.908) -3.21, 2.40

Whereas the detailed information on the original data can be found in Cawley (2004),

Table ‘Descriptive Statistics for White Females’ presents the mean, standard deviation (SD),

minimum and maximum of the variables used in our study. The variable ‘wage’ is bottom-
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coded at $1, ‘age youngest’ is the age of the youngest child, ‘married’ is married with the
spouse present, ‘married but’ is married with spouse absent, ‘job experience’ is the years of
the actual work experience, ‘job tenure’ is the years at the current job, ‘local unemp<6’ is
the county unemployment rate less than 6%, ‘local unemp>9’ is the county unemployment
rate greater than 9%, “part-time’ is working less than 20 hours per week, ‘schooling’ is the
highest grade completed, and ‘intelligence’ is a measure of cognitive ability from the ten
Armed Services Aptitude Battery tests administered in 1980.

In addition to these regressors, dummy variables indicating whether some variables are
missing or not were also used as regressors in the LSE below and in the three-stage procedure
to estimate p, but their descriptive statistics are omitted in Table 1; those dummies will not
be further mentioned. According to Cawley (2004), the sample selection problem of using
only those who work does not seem to matter much, and we proceed along with this statement
without further mentioning the sample selection aspect in the remainder of this paper.

As height and weight are of prime interest to our study, we drew their densities in Figure
1. The height density suggests a possibility of bimodality, which may be interpreted as two
groups of heights. The weight densities show that, as the white females get older, their
weight distribution gets more dispersed toward the right tail, i.e., on average the women

became more obese.

White Female Height Density White Female Weight Densities
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Figure 1: Density Functions for Height and Weights (1986,1990)
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Figure 2: Weight (1986,1990) Density Contours and Data Plots

To get a more detailed understanding on weight change, Figure 2 presents the contours
and data plot along with the 45% equality line for 1986 and 2000 weights. Clearly, most
women became heavier over the 14 year span, and there is no other visible interesting pat-
tern such as bimodality or only some weight-subgroup getting heavier. Heteroskedasticity
depending on the earlier weight is also noticeable on the right panel. When LSE was run for

2000 weight on 1986 weight, the result is

Weight 2000 = 6.857 + 1.111 x (Weight 1986), R? = 0.613.
SD (t—value): 5.15 (1.33)  0.04 (28.0)

Adding other regressors to this equation raises R? somewhat but R? seems to fall short of

0.65 no matter what.

4.3 Panel LSE

We applied panel LSE as explained in Lee (2002); the LSE allows an arbitrary correlation
for a;; +U;1 and «; + Uja. The LSE results are in Table 2 ‘Panel LSE and MDE for Ln(Wage):
White Females’. There are three columns with by (tv), among which the first two are for
1986 and 2000. The columns indicate that the estimates tend to differ across the two years.
Testing for the parameter constancy, we reject the Hy with the Wald test statistic 51.7 and
p-value 0.02. But the parameter constancy for BMI and height only was not rejected with
the Wald test statistic 0.416 and p-value 0.812.
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Table 2: Panel LSE and MDE for Ln(Wage): White Females

Variables by (tv) 1986 by (tv) 2000 by (tv) MDE
one 0.636 (0.36) -2.735 (-0.49)  1.433 (3.24)
BMI -0.010 (-3.64) -0.008 (-4.52) -0.010 (-6.23)
height 0.004 (0.72)  0.004 (0.66)  0.006 (1.24)
age 0.111 (0.87)  0.220 (0.85)  0.019 (1.03)
age?/100  -0.276 (-1.11) -0.308 (-0.98) -0.064 (-2.33)
agexschooling ~ 0.003 (1.13)  0.000 (0.09)  0.002 (2.95)
schooling  -0.115 (-1.69) -0.065 (-0.44) -0.091 (-4.55)
schooling?/10  0.027 (2.83)  0.042 (1.95)  0.031 (3.88)
schooling-dad 0.005 (1.12)  0.010 (1.61)  0.005 (1.30)
schooling-mom  -0.007 (-0.97)  0.005 (0.59) -0.002 (-0.32)
inschool  -0.032 (-0.83) -0.031 (0.57) -0.049 (-1.64)
intelligence  0.093 (5.02)  0.056 (2.82)  0.075 (5.34)
intelligence?x 10 -0.001 (-0.52)  0.003 (1.83)  0.001 (0.90)
age youngest  -0.001 (-0.08) -0.004 (-1.68) -0.003 (-1.21)
# kids -0.032 (-1.65) -0.011 (-0.76) -0.019 (-1.82)
married 20,028 (-0.94)  0.102 (1.89)  0.007 (0.29)
married but  0.020 (0.46)  0.159 (2.78)  0.064 (2.06)
job experience  0.032 (3.59)  0.030 (5.80)  0.024 (6.24)
job tenure 0.066 (3.78)  0.050 (5.58)  0.057 (10.3)
(job tenure)?  -0.004 (-1.55) -0.002 (-3.40) -0.002 (-6.08)
local unemp<6  0.091 (2.83)  0.226 (4.67)  0.130 (5.13)
local unemp>9 -0.033 (-1.05)  0.075 (0.71)  0.001 (0.02)
white collar ~ 0.183 (5.93)  0.091 (2.73)  0.151 (7.13)
part-time 0.088 (2.36) -0.013 (-0.18)  0.081 (2.63)
north east  -0.066 (-1.52) -0.072 (-1.35) -0.081 (-2.36)
north central ~ -0.132 (-3.41) -0.185 (-3.74) -0.166 (-5.52)
south 10.102 (-2.69) -0.141 (-2.83) -0.120 (-4.04)

The last column with MDE (minimum distance estimator) is obtained imposing the all-

parameter constancy restriction; the numbers in this MDE column may be regarded as an
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weighted average of the 1986 and 2000 columns, and they are shown as a ‘reference’; see
Lee (2002) for the implementation details of the MDE if interested. Although the model
specification differs somewhat from that in Cawley (2004), the estimate for BMI is almost

the same, hovering around —0.01.

4.4 Marginal Integration for Height-Fixed Log Wage Function

In this section, we apply the three-stage procedure to estimate p(c, x):

1. E(AY|Ci,Xi1,Xi2) and E(Wit]Ci,Xil,Xig), t = 1,2, are estimated with the kernel
method where the product of N(0,1) kernels is used and the bandwidth for each re-
gressor is 2% SD x N~Y6 (= 1.7« SD x N~Y7 for 3-dimensional smoothing) where
the multiplicative factor 2 was chosen by ‘eye-balling’ on the final p(c,x) figures. In
theory, high-order kernels are needed, but they performed poorly, which is why the

usual normal kernels were employed.

2. LSE of AY; — E(AY|Cy, Xi1, Xi2) on Wy, — E(Wy|Cy, Xi1, Xi2), t = 1,2, was done to
get by. Recall that we rejected the Hy : parameter constancy for the regressors other

than BMI and height.

3. With Q; = AY; — W/, W))bn, f(c,xz1,x2) for p(c,z1,22) = E(Q|C = ¢, X1 =
z1, X2 = m2) was obtained. Then fiq(c,z) = N71Y, (e, x, Xi2) and fi(c,x) =

N=13" (e, Xi1,2) were obtained to get the final estimator

m(c,x) =

ﬂc2<c7 37) ; ﬂcl(cvx) N p(C, .’L') o /,O(C, ZL‘) fl(a:) ;‘ f2(x) dr.

Figure 3 presents the three functions fi.y(c, z) (top), —fi.1(c,z) (bottom) and m(c, x).
Clearly m(c,x) falls halfway between the other two curves. Because of the women getting
heavier over time, we have fo # fi, which makes [ p(c,z)f2(x)dz # [ p(c,z)fi(z)dz. As
the result, the levels of the top and bottom curves differ. The averaged in-between curve
m(c, x) picks up the same curvature information/restriction while re-leveling the curve with
the averaged density of fi and fo.

Whereas the 2000 curve is monotonically declining, the 1986 curve has a trough at weight
~ 220 pounds. This seems to have occurred because the 1986 curve has — [ p(c, z) f2(x)dz,

and there are many obese women with high wages in 2000. The women were young in 1986

16



and thus mostly employed by others getting paid relatively low, but this has changed by 2000.
The trough might be an outcome of the reverse causality of high wage causing obesity. To
deal with the reverse causality, Cawley (2004) instrumented BMI with a sibling BMI, but he
could not reject the Hy that the estimates do not change with or without the instrument. In
addition to the trough presence, the weight effect seems slightly stronger in 1986 (when the
women were young) than in 2000 (when the women were relatively old). It might be better
to restrict the same functional form restriction only up to, say 190 1b. Here we also note
some outliers in weight: the maximum weight is only 279 Ib 1986, but there were 10 women
above 300 in 2000, 2 above 400 and 1 above 500.

N
d T T T T

Ln(wage)

Log wage function (combined) _
— — — Log wage regression function for period 2 (2000)
— Log wage regression function for period 1 (1986)

o}
d i i 1 1 1 i i 1
70 90 110 130 150 170 190 210 230 250

Weight in pounds

Figure 3: Ln(Wage) vs. Weight 2000 (top), 1986 (bottom) and Combined at MED Height

In drawing a CB (confidence band) around 7(c,x), as already noted, the asymptotic
variance estimator did not work well due to the random denominator f (c,x1,m2). Instead, we
applied nonparametric bootstrap, resampling from the original data with replacement. One
way of getting a CB is using the lower and upper 5% bootstrap quantiles at each evaluation

point (¢, z). But this requires a rather high bootstrap repetition number. To save time, we
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did the bootstrap 31 times to obtain the bootstrap S Dyt (c, z), and the CB used is
m(c,z) £ 2.93 X SDpoot(c,x), where ¢ is fixed at LQ, MED and UQ heights;

i.e., in Figures 4-6, the log wage function is shown with height fixed respectively at the LQ
(63.2 inches; about 160cm), MED (64.9 inches; about 165c¢cm) and UQ (66.5 inches; about
170cm). Admittedly, there is no proof that this bootstrap is consistent in the sense of giving
the correct asymptotic coverage error. But with the asymptotic variance estimator failing,

there seems to be no other way to gauge the precision in estimating m(c, z) with m(c, ).
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Figure 4: Ln(Wage) Function at LQ Height (about 160cm)

Looking at Figures 4-6, the log wage function appears flat (or increasing slightly) up
to the average weight of 140-160 pounds, and then decreasing rapidly afterward. The curve
drops more rapidly for relatively shorter women (with LQ or MED height) than taller women
(with MED or UQ height), which is natural because the same amount of weight gain is more
visible for shorter women. In Figure 4, it is virtually impossible to fit a linear line in the CB,
implying a significant nonlinear effect; in Figure 5, it is possible to fit a linear line but not
the zero line, implying a significant effect but not necessarily a non-linear effect; in Figure 6,
the zero line can be fit, implying no significant effect.

Based on the linear model results as in Cawley (2004), one might conclude that there

is a wage gain in reducing weight regardless of the current weight, implying a wage gain
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Figure 5: Ln(Wage) Function at MED Height (about 165cm)
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Figure 6: Ln(Wage) Function at UQ Height (about 170cm)
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in becoming slimmer than the normal (average) weight. But our nonparametric estimator
paints a different picture: there is a wage gain only for those over-weight, but there is no
wage gain (or even a loss) for those with the average or lower weight. Recall the main finding
of Cawley (2004): 65 pound loss for 9% wage gain. Figures 4-6 show the gain of about 20%,
17% and 8% over the 60 pound loss from about 220 to 160 1b. Hence the weight-loss gain for
those over-weight is greater than what the linear model suggests. This is because essentially
the linear model estimate is a mizture of the zero effect over the under-weight range and the
negative effect over the over-weight range. This is one of the most interesting findings from
the nonparametric method—something one could not have foreseen using only the linear
model.

As an obesity measure, BMI is not bad at all for while females but poor for males, as
observed in Burkhauser and Cawley (2008). Cawley (2004) could not find any BMI effect for
white males using linear models. In the appendix, we apply the same nonparametric three-
stage procedure to the while males in the NLSY data to see indeed no significant findings.
In a sense, this provides a support to our methodology. Despite no significant findings, some

interesting features do exist for white males; see the appendix if interested.

5 Conclusions

Does obesity matter for wage? The answer is yes at least for white females in the U.S.
when body mass index (BMI) is used as a measure of obesity; this was the finding from
the conventional linear models. But BMI is a rather special—in fact, too tightly specified—
function of weight and height. As popular as BMI may be, it is highly unlikely that the single
functional form is suitable for different response variables for which BMI have been used, and
this means that there is likely to be a better functional form than BMI that relates weight
and height to wage. In this paper, we posited a semi-linear panel data model where the model
has a nonparametric function p(Cj, X;;) of height C; and weight X;; and a linear function of
the other regressors. After removing the unit-specific effect by first-differencing the model, in
essence, we ended up with u(C;, X;1, Xi2) = p(Cy, Xi2) — p(Ci, Xi1). The main task was then
to recover p from a nonparametric estimator of y, imposing the restriction that p consists of
two functions of the same form. We did the task using the nonparametric marginal integration

approach. Differently from the linear model finding, we found no evidence of wage gain from
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weight loss for normal- (or under-) weight women. Also, for over-weight women, the gain
from weight loss is greater than what the linear model suggested.

Our study warns against using BMI in a blindfolded fashion. Rather, for each response
variable of interest, there should be a more suitable function of weight and height than BMI,
which should be sought after. When the response variable is related to some illness/disease,
although the difference between the “advices” from the linear and the semi-linear models
may not be much for a single individual, giving the wrong advice using the linear function

may amount to many lives lost unnecessarily for the entire population.

APPENDIX

This appendix applies the same three-stage procedure to the white males in the NLSY
data for waves 1986 and 2000. Descriptive statistics of the white males are in Table 3. As in
the white females, the white males also gained weight over the 14 year span.

Table 4 displays the panel LSE and MDE results, which indicate that there is no signifi-
cant linear relationship between In(wage) and BMI. Figure 7 corresponding to Figure 3 shows
the graphs for 2000 (top), 1986 (bottom) and the combination (middle). It is interesting to
see that the under-weight are penalized more severely in 2000 than in 1986, whereas the
over-weight are penalized less severely in 2000 than in 1996. This may be explained by the
growing trend of valuing fitness and muscle: the under-weight is penalized more these days
due to lack of muscles, but the over-weight is not because muscle weight can take a higher
proportion of weight in 2000 than in 1986.

Figures 8-10 corresponding to Figures 4-6 show negative effects for being under-weight
as well as being over-weight. However, differently from the white female case, the zero line
can fit in all three figures, implying no significant effects in all figures. Nevertheless, if we
look at the estimated lines in Figures 8-10, then the following features are notable.

First, a wage gain of about 12% from 50 1b loss from about 280 to 230 can be seen.
Differently from the white females, this feature is similar across the LQ, MED and UQ
heights, possibly because the interquartile range is small (about 6 cm) for males compared
with that for females (about 10cm). Second, the starting weight for wage loss is about 230
that is well above the 2000 average weight 197. This is in sharp contrast to the females, for

21



whom the starting weight for wage loss is about 160 that is almost the same as the 2000

average weight 161. Third, the wage loss from being under-weight is more visible than for

females; for females, hardly any wage loss was seen from being under-weight.

Table 3: Descriptive Statistics for White Males

Wave 1986 Wave 2000
Mean (SD)  Min, Max  Mean (SD)  Min, Max
wage () 2.11 (0.497) 1,478  2.58 (0.650) 1, 6.21
weight (Ib) 175 (30.2) 108,348 107 (38.7)  73.2, 471
in school 0.137 (0.344) 0,1 0.018 (0.134) 0,1
age youngest  0.533 (1.577) 0, 21 4.55 (5.36) 0, 29
# kids 0.415 (0.759) 0,1 1.58 (1.31) 0,9
married  0.403 (0.491) 0,1  0.679 (0.467) 0,1
married but  0.060 (0.238) 0,1 0.181 (0.385) 0,1
job experience  5.24 (2.68) 0,114 14.4 (6.71) 0, 23.9
job tenure 2.32 (2.40) 0,124 7.22 (6.30) 0, 24.9
local unemp<6 0.273 (0.446) 0,1 0.876 (0.329) 0,1
local unemp>9 0.280 (0.449) 0,1 0.023 (0.151) 0,1
white collar 0.357 (0.479) 0,1 0.221 (0.415) 0,1
part-time 0.841 (0.366) 0,1 0.982 (0.134) 0,1
north east 0.191 (0.393) 0,1 0.176 (0.381) 0,1
north central  0.340 (0.474) 0,1 0.345 (0.476) 0,1
south 0.280 (0.454) 0,1  0.307 (0.461) 0,1
height (inch)  69.9 (2.38)  62.6, 78.7
age 24.6 (227) 21,29
schooling 13.0 (2.30) 0, 20
schooling-dad ~ 11.6 (4.35) 0, 20
schooling-mom  11.5 (3.28) 0, 20
intelligence 0.119 (0.947) -3.53, 2.10
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Table 4: Panel LSE and MDE for Ln(Wage): White Males

Variables by (tv) 1986 by (tv) 2000 by (tv) MDE
one -0.997 (-0.70)  5.130 ( 1.15)  1.071 ( 2.71)

BMI 0.000 ( 0.02) -0.004 (-1.55) -0.003 (-1.40)
height 0.013 (2.82) 0.001 (0.27)  0.010 ( 2.78)

age 0.149 ( 1.42) -0.125 (-0.57) 0.046 ( 2.79)
age?/100 -0.266 (-1.24)  0.111 ( 0.39) -0.138 (-5.56)
agexschooling ~ 0.001 ( 0.25) 0.001 ( 0.56) 0.004 ( 6.74)
schooling  -0.038 (-0.60) -0.148 (-1.31) -0.131 (-5.80)
schooling?/10  0.018 ( 1.69)  0.056 ( 3.23)  0.023 ( 2.58)
schooling-dad ~ -0.001 (-0.33)  0.012 ( 2.16)  0.004 ( 1.18)
schooling-mom  -0.006 (-1.06) -0.002 (-0.21) -0.002 (-0.38)
inschool  -0.185 (-4.53) -0.108 (-0.94) -0.177 (-4.82)
intelligence  0.085 ( 4.97)  0.122 (5.93)  0.096 ( 6.94)
intelligence?x 10 0.001 ( 0.51)  0.000 (-0.03)  0.000 ( 0.31)
age youngest 0.000 (-0.03) -0.003 (-1.22) -0.002 (-0.87)
# kids 0.020 (0.97) 0.016 ( 1.18)  0.029 ( 2.64)
married 0.055 ( 1.90)  0.190 ( 4.08)  0.091 ( 3.86)
married but  0.067 ( 1.42)  0.107 ( 2.10)  0.051 ( 1.57)
job experience  0.022 ( 2.74) 0.036 ( 5.32) 0.018 ( 4.74)
job tenure  0.069 ( 4.68)  0.029 ( 3.21)  0.035 ( 6.59)
(job tenure)?  -0.005 (-3.10) -0.001 (-2.25) -0.001 (-4.60)
local unemp<6  0.017 ( 0.55)  0.199 ( 4.42)  0.047 ( 2.03)
local unemp>9  -0.109 (-3.99) 0.023 ( 0.25) -0.078 (-3.18)
white collar ~ 0.032 ( 1.13)  0.123 ( 3.09)  0.070 ( 3.23)
part-time 0.089 ( 2.28) -0.319 (-1.47) 0.084 ( 2.29)
north east  -0.003 (-0.07) -0.018 (-0.36)  0.009 ( 0.28)
north central ~ -0.080 (-2.36) -0.143 (-3.07) -0.082 (-2.94)
south -0.090 (-2.57) -0.091 (-1.98) -0.066 (-2.33)
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Figure 8: Ln(Wage) Function at LQ Height (about 175cm)
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Figure 9: Ln(Wage) Function at MED Height (about 178cm)
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