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Abstract

This paper presents a new multivariate copula-based modeling approach for analyz-
ing cost-offsets between drug and nondrug expenditures. Estimates are based on panel
data from the Medical expenditure panel Survey (MEPS) with quarterly measures of
medical expenditures. The approach allows for nonlinear dynamic dependence between
drug and non-drug expenditures as well as asymmetric contemporaneous dependence.
The specification uses the standard hurdle model with two significant extensions. First,
it is adapted to the bivariate case. Second, because the cost-offset hypothesis is inher-
ently dynamic, the bivariate hurdle framework is extended to accommodate dynamic
relationships between drug and nondrug spending. The econometric analysis is imple-
mented for six different groups defined by specific health conditions. There is evidence
of modest cost-offset impact effect of expenditure on prescribed drugs.

JEL codes: C51, C33, 111
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1. Introduction

In 2006 prescription drug expenditures accounted for around 10% of the US health budget.
For the elderly this component of the healthcare expenditures is even more important,
accounting for expenditure exceeding $120 billion in 2005 and amounting to nearly $2,800
per person (Kaiser Family Foundation, 2005). The expansion of Medicare Part D through
the Medicare Modernization Act of 2005 is expected to increase the growth rate of this
expenditure component even further.

Should policy makers be concerned about the growth of prescription drug expenditures,
or do expenditures on prescription drugs pay for themselves through reduced usage of other,
possibly more expensive, health services? The strength and extent of substitution between
prescription drugs and other medical services is the key aspect of the issue. However,
there are plausible arguments that complementarity between prescribed drug and non-
drug expenditure might be expected. Overall the empirical evidence is mixed. In the U.S.,
while some health policy advocates argue that the use of new prescription drugs reduces
total health care costs, many states are intensifying efforts to control rising prescription
drug costs in their Medicaid programs (Cunningham, 2005). Thus it appears that answers
to these questions remain unresolved in both scientific and policy arenas. This paper
investigates these issues using a new econometric framework applied to quarterly panel
data on prescribed drug and non-drug expenditures.

Econometric measurement of substitution and complementarity is complex. At the
very least, a bivariate model is required, and one which can accommodate the presence of
a significant proportion of zero-valued outcomes for both categories of expenditures. An
additional complication comes from the heterogeneity of individuals and medical services
that vary in their degree of substitutability, as the relationship between drug therapy and
other medical usage varies across a range of medical services. This motivates disaggregation
by health status and condition. A further complication is that both substitution and
complementarity have a dynamic dimension, but most econometric studies to date have
used static equilibrium frameworks and cross section data. This feature motivates our
formulation of a dynamic panel data version of the bivariate two-part model. A leading
issue is the difficulty of separating the pure incentive effects of health insurance from those

due to adverse or advantageous selection, especially when such selection cannot be fully



controlled through observed characteristics. Thus it is not surprising that econometric
results and inferences tend to vary across different studies.

This paper presents a new multivariate copula-based modeling approach for analyzing
cost-offsets between drug and nondrug expenditures based on panel rather than the more
commonly used cross section data. Such data support a dynamic reduced-form type ap-
proach which does not focus on the details of the mechanism through which cost-offsets
may arise. The estimation approach, based on copula functions, can potentially explain
why existing empirical results are varied. The approach allows for nonlinear dynamic de-
pendence between drug and non-drug expenditures as well as asymmetric contemporaneous
dependence. Our richer data set is built up from monthly event files of individual respon-
dents. The resulting sample also permits disaggregation at the level of specific health
conditions, thus allowing us to test the main hypotheses using data that are relatively less
heterogenous than in many cross section settings.

In the remainder of the paper, section 2 elaborates the statement of the cost-offset
hypothesis. Sections 3 and 4 deal with the model specification, including that of its dynamic
features. The data and the empirical results are described and discussed in sections 5 and

6. Section 7 concludes.

2. The cost-offset hypothesis

The study of the cost-offsets in structural settings has a sound basis but is challenging
for reasons already noted. Previous analyses of these questions have followed a variety of
different approaches. One strand of the literature analyzes the relationship between the
Medicare supplemental insurance and the utilization of prescription drugs of the elderly;
see, for example, Poisal and Murray, (2001), and Goldman and Philipson (2007). Of
greater direct relevance to this paper is the strand in the literature which concentrates on
the relationship between drug expenditures and cost sharing and on the substitution effects
resulting from changes in cost sharing; see Gaynor, Li and Vogt (2007), Goldman et al.
(2004), Joyce et al., (2002). Such an approach is “structural” in the sense that it focuses on
the mechanism though which prescription drug usage impacts other types of health care.
For example, Gaynor et al. (2007) use individual level data on health insurance claims and

benefits; they report evidence of substitution between outpatient care and prescription drug



expenditures, with 35 percent of reductions in prescription drug expenditures being offset
by increases in other medical expenditures. Another example of a structural approach
is Shang and Goldman (2007) who use Medicare Current Beneficiary Survey (MCBS)
panel data to examine spending of Medicare beneficiaries with and without supplemental
drug coverage. They report that “ ... a $1 increase in prescription drug spending is
associated with a $2.06 reduction in Medicare spending. Furthermore, the substitution
effect decreases as income rises, and thus provides support for the low-income assistance
program of Medicare Part D.” Stuart and Grana (1995) and a series of coauthored articles
by Stuart (2004, 2005, 2007) are other examples of studies that investigate cost-offsets of
prescription drugs.

A different reduced form approach to uncovering potential substitution is illustrated by
Lichtenberg (1996, 2001) who analyzes the direct impact of (especially newer) prescription
drug expenditures on other types of expenditures, especially hospital care. His analysis
based on Medical Expenditure Panel Survey (MEPS) data involves direct regression of other
expenditures on measures of prescription drug use. His results indicate that “ ... persons
consuming newer drugs had significantly fewer hospital stays than persons consuming older
drugs.” Some health policy advocates argue that, on average, use of new prescription drugs
reduces total health care costs, but Zhang and Soumerai (2007) show that those results are
not robust to changes in specification.

Another strand of literature emphasizes complementarity between drug and nondrug

spending. For example, Stuart et al. (2007) argue,

“Kconomic theory also posits that when the price of a complementary good
falls, both the demand for the good itself and the complement will rise. This
leads to a second way in which Part D might affect Medicare Part A (hospitals)
and Part B (medical) spending. Because physician services complement to
prescription drug fills, we expect that people with prescription drug coverage
will be more likely to visit physicians and thereby spend more on Medicare Part
B services. Furthermore, increased physician usage could lead to increased rates

of diagnostic checks, surgeries, and other expensive procedures.”

The extant literature on the direct non-structural approach for testing the cost-offset

hypothesis is potentially problematic. Indeed some features of this approach are at odds



with the standard static consumer behavior theory. For example, standard static models
of consumer demand do not directly introduce current or past expenditures as explanatory
variables for explaining other expenditure variables, but such dependence can clearly arise
in a dynamic setting. For example, purchases of durable consumer goods at time t will
generally affect consumption of nondurables and durables beyond t. Analogously, the longer
lasting health effects of prescribed medications, if they exist, may impact the use of other
medical services in the future. Thus, it is of interest to test whether expenditures on
prescribed medications have predictive value for other future medical expenditures (after
controlling for the effects socioeconomic factors, as well as insurance and health status).

Currently there is not available a rigorous derivation of a cost-offset model from a
dynamic model of health care consumption. While our approach uses somewhat ad hoc
functional forms and distributional assumptions, it provides a starting point for devel-
oping models suitable for empirical study of dependence structures. It addresses several
important econometric and modeling issues that will typically arise in such contexts.

We model the cost-offset hypothesis within the statistical framework of the joint bivari-
ate distribution of two types of expenditures, prescribed medications and other nondrug
expenditures, denoted y; and g9, respectively. We allow for a potentially long term non-
linear dynamic impact of current medical expenditures on health status and on future
health-related expenditures. Within such a framework we attempt to estimate the time
profile of the impact of drug expenditures on current and future nondrug expenditures, the
key parameters of interest being dys+/0y1+—-. Identification of these parameters requires
panel data. Within our framework, the cost-offset hypothesis implies negative dependence
between the two types of expenditures. We adopt a copula framework which accommodates
a flexible formulation of dependence and marks a departure from the usual assumption of

linear dependence.

3. Model specification

The distributions of quarterly drug and nondrug expenditures have substantial numbers of
zeros, approximately 60-70 percent for drug expenditures and 30-40 percent for nondrug
expenditures. To capture this feature we propose a bivariate hurdle model of expenditures.

In the univariate case, the hurdle or two-part model is ubiquitous in the health economics



literature (Pohlmeier and Ulrich, 1995). Either logit or probit is the commonly used
functional form for the first part, which describes whether spending is positive. For the
second part, which models positive spending, much of the older literature used OLS to
estimate the parameters of the logarithm of expenditures. More recently, models based on
the gamma distribution have been preferred (Manning, Basu, and Mullahy, 2005), in part
because they tend to fit the data better, and also because they have the added advantage
of not requiring, post estimation, a retransformation to the raw scale. We take this basic
setup from the literature on expenditures and extend it in two significant ways. First, it
is adapted to the bivariate case. Second, because the cost-offset hypothesis is inherently
dynamic, we specify dynamic relationships within the bivariate hurdle framework.! We
develop a model of the joint distribution of drug and nondrug expenditures because this
will lead to a number of parameters relevant to the cost-offsets hypothesis.

Consider two non-negative outcomes 31 and ys each with a significant fraction of zeros.
The bivariate hurdle model specifies a statistical process for each of the four configurations
of outcomes, y1 = 0,y2 = 0 (denoted by (39, %9) in what follows); y1 > 0,32 = 0 (y;, ¥9);
y1 = 0,2 > 0 (y?,y;) and y; > 0,92 > 0 (yf,y;). Each configuration maps to a data
distribution given by a product of a bivariate hurdle probability and a density for the

positive outcomes,

¥, y5 — F(pn=0,92=0 (1)

y1 > 0,y2 =0) x fi(y1ly1 > 0)

( )

yi ) — F( )

¥,y — F(y1=0,y2 > 0) X fa(y2|y2 > 0)
( )

yiys — F(y1 > 0,52 > 0) x fi2(y1, y2ly1 > 0,52 > 0),

where F' is a bivariate distribution defined over binary outcomes, fi; and fy are univariate
densities defined over positive, continuously distributed outcomes, and fio is a bivariate
density defined over a pair of positive, continuously distributed outcomes. We first de-
scribe the univariate densities f;,j = 1,2. Then we describe the joint distribution F' and
the joint density fi2. Note that, for notational convenience, we first describe the setup
without conditioning variables. Conditioning on covariates and lagged dependent variables

is described later.

"There are some similarities in the framework of this paper and that of Bien et. al (2008), who use a
bivariate hurdle for counts with an application to financial data.



3.1. Specification of f;

Positive expenditures are specified according to the gamma density,

1
exp(—y; /)y,

MF(%‘)

Note that E(y;|y; > 0) = n;u;, j = 1,2 and skewness and kurtosis of the gamma distrib-

Fiyjly; > 0) = for j = 1,2;u; > 0;7; > 0. 2)

utions are positively related to 1/ n;. Thus the specification allows the shape parameter to

be different for drug and nondrug expenditures.

3.2. Specification of F' and fis

It is likely that stochastic dependence between drug and nondrug expenditures is asymmet-
ric, with equally plausible arguments in favor of lower or upper tail dependence. Unlike the
typical bivariate probit setup for joint binary outcomes or the seemingly unrelated linear
regression setup, both of which emphasize linear correlations, copula-based dependence
measures allow for more flexible patterns. Dependence in a copula-based model derives
from the functional form of the copula itself, which is specified by the researcher. Some
copulas exhibit dependence that is highly nonlinear and asymmetric. Thus, a copula-based
model has the potential to more accurately capture the complex, nonlinear relationship be-
tween drug and nondrug expenditures. Our statistical framework uses the copula approach

to generate the desired joint distributions, F' and fio.

3.2.1. Copula basics

The copula approach to multivariate distributions was pioneered by Sklar (1973) and ex-
tended to conditional distributions by Patton (2006). Within this framework the copula
parameterizes a multivariate distribution in terms of its marginal distributions conditional

on information set Z;_1. For an m-variate joint distribution function G, the copula satisfies

Gty Ymit|Zi—1) = C(G1(y1t|Zi-1), - G (Ymt|Ze-1)5 0), (3)

where G(y;t|Z;—1) denotes the marginal distribution function of the 4t component and
0 is a scalar-valued dependence parameter. Given the marginal distributions, and a cop-

ula function C(-), the above equation generates a joint conditional distribution. A fully



parametric implementation requires the choice of suitable functional forms of marginal
distributions G1, ..., Gi, and the functional form of the copula.

The literature offers a vast array of copula functional forms which to choose (Nelsen,
2006). Because we have no a priori expectations regarding the dependence structure for
our data, we have experimented with a variety of copulas: (1) Gaussian; (2) Clayton; (3)
Clayton survival; (4) Frank. By changing the functional form of the copula, many differ-
ent dependence patterns between marginal distributions can be explored, including both
nonlinear and asymmetric tail dependence. Properties of these well established functional
forms are discussed in the literature (Joe, 1997; Nelsen, 2006; Cherubini et al., 2004; Trivedi
and Zimmer, 2007).2

Anticipating our results, we have found strong evidence that, in general, the best fit to
the data is obtained using the Clayton copula. The bivariate Clayton (1978) copula takes
the form

Cluy,ug;0) = (uy? +uy? —1)7Y% >0 (4)

where u; = G~ (y;|Z;—1) with the dependence parameter  restricted to the region (0, c0).
As 0 approaches zero, the marginals become independent. As 6 approaches infinity, the
copula attains the Fréchet upper bound, but for no value does it attain the Fréchet lower
bound. The Clayton copula exhibits asymmetric dependence in that dependence in the
lower tail is stronger than in the upper tail, but this copula cannot account for negative
dependence. It is not always easy to interpret estimates of 6 for different copulas. Thus
it is helpful to transform 6 to more easily interpreted measures of concordance such as
Kendall’s 7 (Nelsen, 2006) which is comparable across copulas. For the Clayton copula the
formula for converting 6 is 7 = 60/(6 + 2).

In using the Clayton copula, contemporaneous dependence between drug and nondrug
spending is restricted to be positive, and therefore, we not surprisingly find that contempo-
raneous dependence is positive. However, in our formulation the choice of copula does not
restrict the direction of dynamic dependence, which is our principal concern. Preliminary
analysis indicated that other copulas that permit negative contemporaneous dependence

also produced positive contemporaneous dependence. Therefore, our findings of positive

?The Gaussian copula does not permit any tail dependence. The Clayton copula supports only positive
dependence and lower tail dependence. The Clayton survival and Gumbel copulas are suitable for modeling
positive upper tail dependence. Frank’s copula captures both positive and negative dependence.



contemporaneous dependence appear to be robust across different copula specifications.
The main benefit of the Clayton copula is its ability to capture lower tail dependence,

which, as demonstrated below, is omnipresent in health care expenditures data.

3.2.2. Specification of F'

We use the probit formulation for the marginal distributions for the bivariate hurdle part
of the model, i.e., Pr(y; > 0) = ®;(:). Let the joint probability distribution of positive

drug and nondrug expenditures be
Fy1>0,y2>0) =C(21(-), P2 () ;60) (5)

where C' is one of the copula functions described above, and 6y is a dependence parameter.

It is easy to derive the following related probabilities:

Fy1=0y2=0) = 1-21()—=22()+C(21(),P2();60);
Fy1>0,y2=0) = ®&1(-)=C(®1(-)P2(-);00);
Fy1=0,y2>0) = ®o(-) =C(Py(-)P2(-);00)-

3.2.3. Specification of fis

We use the gamma density for the marginal distributions for the copula-based joint distri-

bution of positive drug and nondrug expenditures. That is,

for j =1,2;p; >O;77;-F >0

Forexp(—y;/u )
fj_(yj‘y1>07y2>0): ] T .
j

7
1’ T(n))
and

Fra(yn,yolyr > 0,52 > 0) = ¢ (F{ (), F5 (1)50+) x fiF () x 57 () (6)

where lower case c¢(+) represents the copula density, and Ff is the cumulative distribution
function (cdf) version of f;r . Note that, while we have specified p;, which we parameterize
to be the same as in the specifications of f; for parsimony, nj is not necessarily the same

as 1;, a proposition we test in our empirical analysis.



4. Dynamics and estimation

We now introduce the specifications for conditioning on covariates, dynamics via lagged
dependent variables and individual-level random effects. We first describe how they are
specified for the bivariate hurdle specification and then we describe how they are specified

for the models of positive expenditures.

4.1. Specification of conditional means in F

For the marginal distributions ®; (+|Z;—1,Xit) , P2 (+|Z¢—1, Xit) we specify

Pr(yie > 0) =@ (hot({yr,i—j}) + xiBor + o15) (7)
Pr(y2ie > 0) =P (hoa({yr,it—j}) + XiBo2 + 02i) , (8)

1=1,..,.N;t=3,..T; k=1,2; 5 =1,2,...,J and J < T. The functions hg; are defined
over the elements of the set {yj ;+—;} which includes lagged outcomes and ayg;; are random
intercepts.

We allow for independent effects of lagged binary indicators of expenditures in addition

to lagged continuous expenditure variables. Thus the specifications for hg; are given by

2 J 2 J
hor{yr,it—i} = Z Z’ylkjl(yk’it,j >0) + Z Z Ouj In (max(ypi—j,1)) for 1 =1,2. (9)
k=1 j=1 k=1 j=1
That is, the lagged expenditures are entered as their logarithms when they are positive,
zero otherwise, along with an indicator for whether the lagged expenditure is greater than
zero or not.> As we explain in greater detail below, the dynamics of this bivariate model
are characterized by (’yljk,éljk, j=1,2,k=12; [ =1,2). The random intercepts are

further specified as

2 2

Qpj; = ig)\gj + ZTkl(yk,iO > 0) + ng In (max(ymo, 1)) +eopi; kK=1,2. (10)
k=1 k=1

This extends the standard random effect panel model along two dimensions. Following
Mundlak (1978) and Chamberlain (1984), we allow for correlation between aqy; and x;;

and, following Wooldridge (2005), we allow for the effects of initial conditions by specifying

3There are no positive expenditures less than $1.



agr; to be a function of y;0, a vector of initial values of the outcome variables allowing for
separate effects for the binary indicator and continuous expenditure variables. The term
€oki may be interpreted as unobserved heterogeneity uncorrelated with x;; and ygio. To
allow for possible dependence between y1;; and yo;+ induced by unobserved heterogeneity,
(€014 €02i) have a joint bivariate distribution whose functional form is not initially explicitly
stated. Given this distribution, the correlated random effects bivariate model integrates
out the random effects (1,e2). Different functional forms of the joint distribution arise
from different parametric assumptions about the joint distribution of the random effects.
Whereas we do not explicitly carry out this integration, we use several different functional
forms of the bivariate joint distribution (i.e. the hurdle copula). Underlying each functional
form is some form of dependence. We let the data decide which functional form best fits
the data.

The estimation of the univariate dynamic probit model in the presence of initial con-
ditions has been discussed by Heckman (1981) and more recently by Wooldridge (2005);
Arumapalam and Stewart (2009) compare the two approaches. The estimation of this
model requires a further assumption about initial conditions. We follow Wooldridge’s con-
ditional maximum likelihood approach under the assumption that the initial conditions are

nonrandom.

4.2. Specification of conditional means in fi, fo and fio

For the marginal distributions f;(y;|y; > 0,Z;—1,%;) and ff(yj|y1 > 0,y2 > 0,741, Xit)

we specify

pie = exp [hg1({yki—s}) + X8 + ay1il (11)
poie = exp [hga({yri—s}) + XiBa + il , (12)

i1=1,..N;t=3,.T; k=1,2; j=1,2,...,J and J < T in parallel to the specifications
for the marginal distributions in the hurdle part of the model. Again, the functions hgp
are defined over the elements of the set {yj —;} which includes lagged outcomes and agg;
are random intercepts. As in the specification for the binary choices, we allow for indepen-

dent effects of lagged binary indicators of expenditures in addition to lagged continuous

10



expenditure variables via

2 g 2 g
ha({yrit—s} =YY el Wkie—j > 0) + Y Y by In (max(ypse—j, 1)) for I =1,2,

k=1 j=1 k=1 j=1
(13)
and
2 2
Qg = XAip + Z T+x1(Yri0 > 0) + ZCH; In (max(ygio, 1)) + €4kis k£ =1,2.  (14)
k=1 k=1

As is typical in gamma regressions, the parameters n; and 7, are specified as scalars.

4.3. Estimation and inference

As described in equation (1), in our set-up there are four categories of bivariate realizations:
Dy =y2 =0 (2) y1 > 0,52 =0; 3) y = 0,92 > 0; (4) y1 > 0,y2 > 0. The
joint likelihood is formed using the probability expression for each realization. Using the
marginal and joint expressions described above, the log likelihood function for the bivariate
hurdle model is

InL = ) [In(F(y1 =0,y2 =0),Z;—1,Xit;60)] (15)
0.0

+ > I (F(y1 > 0,y2 = 0), Zy—1, Xit; 0o) + In (f1 (|Z—1,%at))]
o

+ > In(F(y1 =0,y2 > 0),Zy—1,%4t; 00) + In (fo (+|Ze—1, %it))]
it

+ > [In(F(y1 > 0,y2 > 0),Z1—1,%4t; 00) + In fra(y1, y2lyr > 0,92 > 0,Zi—1, x5 604)] .
it

Note that the log likelihood function contains two dependence parameters; 6y captures
dependence between the probabilities of having any drug and nondrug expenditures. Sim-
ilarly, the term 6. represents dependence between drug and nondrug expenditures when
both are positive.

For purposes of estimation, it is convenient to note that the log likelihood decomposes

into two parts which can be maximized separately, i.e., In L = In L1 + In Ly where

Inl; = Zln (F(y1 =0,y = 0),It_1,x,-t;90) + Z In (Fy1 >0,y = O,It_l,Xit;H()) (16)
0,0 o
+ > In(F(y1 =0,y2 > 0),Z;—1,%4;600) + > In(Fy1 > 0,y2 > 0,Z;_1,X;;0p)
0,+ +,+

11



and

InLy = > In(f1(|Ze—1, %)) + > In(f2 (-[Ze-1,%at)) (17)
+,0 0,+
+ > In fia(y1, yolyr > 0,92 > 0,Zp—1, X5 04).
++

In I; and In Ly are maximized separately using a Newton-Raphson algorithm with numeri-
cal derivatives. Upon convergence, robust standard errors that adjust for clustering at the

individual level are calculated and used for inference throughout.

5. Data

The data for this study come from the 1996-2006 waves of the Medical Expenditure Panel
Survey (MEPS) collected by the Agency for Healthcare Research and Quality (AHRQ)
from which we construct a number of subsamples of substantive interest. MEPS consists
of a series of five interviews over a two-and-a-half year period from which an 8 quarter panel
is constructed for each respondent. Person-specific socioeconomic information and monthly
health insurance status comes from the Household Component Full Year files. Informa-
tion on monthly health care spending comes from the Household Component Event files.
Spending is accumulated at the quarterly level and includes spending from all sources on
the following services: prescription drugs (including refills), office-based visits, outpatient
visits, inpatient hospital visits, and emergency room visits. The latter three categories in-
clude both facility and separately-billed-doctor expenses. The sample excludes individuals
who report quarterly drug or nondrug spending above the 99.5 percentile of all positive
spenders. Finally, all spending measures are adjusted for inflation using the medical CPI
(http://www.bls.gov /cpi/), with fourth quarter 2006 serving as the base period.

We construct six subsamples of data for analysis as the full sample is likely too het-
erogeneous to be insightful. Each sample considers individuals 18 years of age and older
as children are likely to have different health conditions and treatment protocols. The
first two subsamples attempt to introduce homogeneity along age and insurance dimen-
sions. Thus they consist of (1) an elderly sample consisting of individuals ages 65 and older
(N = 78,162), and (2) well-insured individuals covered by both medical and prescription

drug insurance (N = 289,374). Four additional subsamples focus on subjects with specific

12



health ailments: (3) diabetes (N = 42,702), (4) mental illness (N = 76, 848), (5) arthritis
(N =91,230), (6) heart problems (N = 120, 552).

Table 1 presents descriptive statistics for quarterly drug and nondrug spending. Not
surprisingly, the probability of positive spending appears to vary somewhat with respect
to health problems, insurance, and age. The same is true for spending among positive
spenders, with the highest spending occurring among the elderly and those with diabetes,
arthritis, and heart conditions. The relatively large means of quarterly medical spending,
in comparison to the smaller medians, indicate long upper tails. Also, as expected, the
quarterly data exhibit substantial serial dependence. In Table 1, we also report the first
order serial correlation coefficient for the indicator of positive spending as well as for the
logarithm of expenditure (with its value set to zero when expenditure is zero). Two patterns
are immediately apparent. First, nondrug expenditures display substantially more serial
correlation than drug expenditures. Second, the serial correlation in the indicator variable
is uniformly larger than the serial correlation in the corresponding continuous expenditure
variable.

Sample means for explanatory variables appear in Table 2. The samples exhibit dif-
ferences in socioeconomic and health characteristics. The elderly sample has lower rates
of employment, smaller family sizes, and higher rates of public insurance. The diabetes,
arthritis, and heart condition samples are older and have larger numbers of blacks, lower
rates of employment, and higher rates of public insurance. The mental illness sample has
more females, less blacks, and higher divorce rates compared to the other samples. The
sample of individuals with prescription drug coverage is younger, whiter, healthier, more
educated, and more likely to be employed and married. Differences between the subsam-
ples highlight heterogeneity in health care markets and motivate separate consideration of

the different groups.

5.1. Covariates in marginal distributions

The specification of the mean of the marginal distributions, controlling for both the initial
conditions and correlated random effects, was provided in the preceding section. We now
discuss the covariates in greater detail.

First, all marginal models use a common vector of covariates. Specifically, the lag

13



structure is specified to be the same for all outcomes. This restriction follows from the
results of Patton (2006) who developed “conditional” copula modeling by including lagged
dependent variables on the right hand side similar to what is proposed here. The model
is a nonlinear vector autoregressive system of equations. By including previous-period
expenditures variables on the right hand side, it captures dynamic dependence between
drug and nondrug expenditures. Note that the model is not a simultaneous equations
system in the traditional sense.

In most previous applications of conditional copulas, usually in models of continuous
outcomes, and in the literature on dynamic binary response models, the lag is restricted to
one period. For potential flexibility, given that our data periodicity is quarterly, we include
two lags on both 1[y; > 0] and y;-r. Specifically we use four variables at one- and two-period

lags to measure past expenditures:

1. one and two-period lagged values of a dichotomous indicator for positive drug expen-

ditures;

2. one and two-period lagged values of a dichotomous indicator for positive nondrug

expenditures;

3. one and two-period lagged values of log of drug expenditures with the variable coded

as zero when the expenditure is zero.

4. one and two-period lagged values of log of nondrug expenditures with the variable

coded as zero when the expenditure is zero.

The vector X includes all explanatory variables listed in Table 2, with dummies for
individual chronic conditions rather than the number of chronic conditions.* The vector
X also includes measures of age squared and an interaction between age and female and
its square. Counting control variables in X, quarter dummies, lagged spending measures,
initial conditions, and the “Mundlak terms”, each marginal distribution includes a total of

91 explanatory variables plus an intercept term.’

“The chronic condition dummies indicate the presence of cancer, diabetes, arthritis, asthma, hyperten-
sion, a mental condition, a urine condition, and a heart condition.

5 . . .

°For some of the subsamples, the number of explanatory variables is less because some variables are

14



6. Results

We first report model selection criteria for choice between different copulas. Next, we de-
scribe the results of a number of specification tests to highlight the importance of a number
of key specification features of the bivariate hurdle model and parameter estimates of the
dynamic relationships. We then report on the properties of contemporaneous association
and tail dependence highlighted by the copula. Finally, because the dynamic relationships
inherent in the parameter estimates are quite complicated, we report on calculations of
partial effects which illustrate the dynamics much more transparently.

Table 3 reports Bayes Information Criteria (BIC) statistics for several combinations of
copulas. For each subsample, the Clayton copula provides a superior fit in both parts of
the model, except for three models for continuous expenditures for which there is little
discrimination across models. Therefore, all results presented and discussed below are
based a version of equation (15) in which all copulas are specified as Clayton.

Parameter estimates from the bivariate hurdle model with Clayton copulas are reported
in Tables 4-9. The left panel of results corresponds to the hurdle part, and the right panel
reports findings for positive expenditures. Only estimates of the autoregressive parameters
are shown in the tables along with a number of specification tests and the copula para-
meters. The models include a rich set of controls, as outlined above, but these are not
shown in the tables in the interest of brevity. Tables of results for the full models are
available upon request. Although not shown, we note that the estimated coefficients of the
control variables are similar in sign to previous studies of medical care access and spending.
Not surprisingly, the most important determinants of medical spending, both in terms of
magnitude and statistical significance, are health status measures. Individuals with health
problems and/or physical limitations are more likely to have positive spending and have
higher levels of spending compared to their more healthy counterparts.

The dynamic relationships between the two types of expenditures are captured by the

coefficients of functions of lagged expenditures, both as binary indicators of any expenditure

omitted. For example, the sample consisting of subjects with prescription drug coverage omits the indicator
for prescription drug coverage. The time-varying variables used to calculate Mundlak terms are: age, age
squared, female*age, female*age squared, married, widow, divorced, family size, education, log of income,
employed, firm size, govtjob, private insurance, public insurance, prescription drug coverage, very good
health, good health, fair health, poor health, physical limitation, injury, cancer, diabetes, mental illness,
arthritis, asthma, urine condition, hypertension, and heart condition.
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and the logarithm of expenditures. There is clear evidence of own and cross lagged effects of
spending in both the binary response or hurdle part and the continuous part of the model.
Rather that discussing every own and cross effect in Tables 4-9, the discussion that follows
focuses on the relationship between lagged drug spending and current period nondrug
spending, as this relationship informs on the presence and magnitude of cost-offsets.

In the hurdle component of the model, a consistent pattern emerges across the subsam-
ples: Indicators of lagged positive drug spending are associated with lower probabilities of
present-quarter nondrug spending. The 1-quarter lagged indicator of positive drug spend-
ing is negative and significant in all six subsamples, while the 2-quarter lagged indicator
is negative and significant in the elderly, arthritis, and heart condition samples. In con-
trast, the actual amounts of lagged (logged) drug spending are positively related to the
probability of present-quarter nondrug spending. (The only lagged logged drug spending
measure that is not significant is the 2-quarter lag in the diabetes sample.) Although neg-
ative coefficients of the lagged binary indicators are larger in magnitude than the positive
coefficients of the lagged (logged) spending variables, it is difficult to ascertain whether
this is evidence of cost-offsets, as the lagged measures correspond to different scales. Fur-
thermore, contemporaneous dependence, discussed in the following subsection, appears to
be unambiguously positive. We attempt to quantify these various off-setting effects below.

In the second part of the model, which describes positive spending, none of the lagged
measures of drug spending, either binary of logged amounts, appears to be significantly
related to nondrug spending. Therefore, we expect that cost-offsets, to the extent that
they exist, are largely driven by the hurdle part of the model.

The chi-square test of the null hypothesis that the initial conditions have zero coeffi-
cients is reported in Tables 4-9; this refers to the 7; term in (10). The joint null is rejected
in every case, for both parts of the model, at p < 0.01. The tables also report a chi-square
test that the “Mundlak terms” are jointly insignificant. This refers to the joint significance
of the A; coefficients in (10) of the correlated random effects specification. This null hy-
pothesis is also conclusively rejected in every case. Both these tests support the desirability
of our more flexible random effects specification. Finally, the tables report tests of the hy-
pothesis that n; = n;r for j = 1,2, i.e., the shape parameters of the gamma distributions for

y; and y; are the same in the specifications of the densities in y;", 99, 9, y5" and y;, v5 .
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The null hypothesis of equality is rejected in every case. In addition, although we do not
report test statistics, it is clear that skewness and kurtosis are significantly higher for drug

than for nondrug expenditures.

6.1. Contemporaneous and tail dependence

The copula dependence parameters 6y and 6., reported at the bottom of Tables 4-9, mea-
sure contemporaneous dependence between drug and nondrug spending, after controlling
for the influence of all explanatory and lagged spending variables. Although less inter-
esting from a policy perspective, contemporaneous dependence represents an important
benchmark, as most previous studies have estimated contemporaneous cost-offsets based
on cross sectional data. Our results indicate that the Clayton copula gives the best fit,
and this copula supports positive contemporaneous dependence. The results show strong
evidence of positive contemporaneous dependence in all subsamples and for both parts of
the model. Both 6y and 6, are estimated with high degrees of precision, so this appears
to be a robust finding.

Contemporaneous dependence is larger in magnitude in the hurdle part, with 6y between
1.00 and 1.30 (Kendall’s tau between 0.33 and 0.39). By comparison, in the second part,
0. is between 0.20 and 0.25 (Kendall’s tau between 0.09 and 0.11). The interpretation is
that an individual’s probabilities of positive drug and nondrug spending are more closely
related than the amounts of drug and nondrug spending.

The illustrate contemporaneous dependence, post estimation we set explanatory vari-
ables equal to their mean values and coefficients equal to their estimated values for each
subsample. From the estimated bivariate density, we then draw 2000 Monte Carlo real-
izations of (Pr(y; > 0),Pr(y2 > 0)) for the hurdle part and (y1,y2) for the second part.

These simulated pairs are reported graphically in Figures 1 and 2. The figures illustrate
Cvw)

. Informally, lower

the degree of lower tail dependence, formally defined as lim,_, g+
tail dependence is evident when events that occur with lower cumulative probabilities tend
to occur together. Lower tail dependence is visually summarized by the extent of clustering
in the lower left corners of Figures 1 and 2, and is stronger for the positive part than the
hurdle part. Note that the lower tail dependency measure for the Clayton copula is 2-1/0

which indicates that a larger 6 value is associated with greater lower tail dependency. The
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implication from Figure 1 is that quarters in which an individual has low probability of
incurring drug expenses tend to be the same quarters of low probability of nondrug ex-
penses. Similarly, Figure 2 indicates that quarters of low drug spending also exhibit low

nondrug spending.

6.2. Dynamic dependence and partial effects

In principle, the dynamic dependence and partial effects are functions of each of the lagged
expenditure coefficients. However, the complexity of the model makes it impossible to
fully understand these effects directly from coefficients. Therefore, we compute measures
of effects that are analogous to the average partial effect proposed by Wooldridge (2005).
We define the average partial effect (APE) on y+ of the effect of y;;—1 as

1 0
APEy(yji-1) = E(alysy 10 ko1, ¥io90X") = Bty 1,0 kpo1, ¥ 2. X")  (18)

where 7,k = 1,2 and yﬁll and y](-g)fldenote values of y;;_1 over which the partial effect
is desired. All other covariates in the model, including other lagged endogenous regressors
Y—k,t—1,Yt—2 and exogenous covariates x are fixed at representative values denoted by “*”.
Different conventions may be used to set x*; see, for example Stuart et al. (2007). This

measure is limited because it only captures the one-period impact on yz(f ) of the lagged

change in binary-valued variable ygtlzl.
In the context of the bivariate hurdle model, it is also insightful to examine the decom-
position of APFE into the effects on the probability or hurdle part of the model and the

continuous outcome, conditional on it being positive. Thus we define

1 0
APEIg(yj,t—l) = Pr(yk: = 1|y§,t)—17yik,t—lvyzlwx;k) — Pr(yes = 1|y](‘,t)—1’yik,t—layr—zvX*)
(19)
as the partial effect on the probability of a positive outcome and

1
APE} (yje-1) = Blyrelyes > 0,85 1 v ko1, Y2, X7) (20)

0

— Blyralyee > 0,957 107 k1,57 2%

as the partial effect conditional on the outcome being positive. Note that Pr(yy: =

Ykt > O,y%n_)l,yik,t_l,yf,Q,x*) for m = 0,1 are ob-

1‘3/9('?—)1’ Y ki1 Vi X") and E(yky

tained directly from the marginal probit and gamma distributions respectively. The cal-
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culation of E(yk7t|y](-721,yik +—1,Yi_9,X"),m = 0,1 involves terms from both hurdle and

conditional parts of the model. Specifically

E(yk,t y‘g?f)layik,tfl:y:—Q?X*) = Pr(yj = 07yk > 0) X E2(yk‘y] = ank > 0)

+ Pr(y; > 0,y > 0) x Ef (yly; > 0,y > 0)

In this paper, we calculate APE’s corresponding to the cost offset hypothesis, i.e.,
we calculate the effects of drug expenditures at time (¢ — 1) on non-drug spending at
time t. Specifically, we set 3/]('?2—1 = 0 (no drug expenditure) and calculate APE’s over
the empirically observed values of yj(-’ltl1 (positive values of drug expenditure). These
are reported in the 6 panels of Figure 3; APE®?, APETand APFE reading from left to

right. Although we display the APFE’s over the entire range of y( t)fl we believe they are

1
Js
most reliable in the interior of the range of observations, e.g., between the 25th and 75th
percentiles of observed values.

The vertical lines in the graphs mark the 25th and 75th percentiles of positive drug ex-
penditures in the data. Within this range, estimated APF, shown in the rightmost panels,
are negative for five of the six subsamples. For all six samples, the magnitude of APE de-
creases from the 25th to the 75th percentile. Taking the 65 and older sample as an example,
previous quarter drug spending at the 25th percentile (approximately $40) is associated
with a current quarter reduction in nondrug spending of approximately $50. Similarly
previous quarter drug spending at the 75th percentile (approximately $200) translates to
a current quarter reduction in nondrug spending of approximately $10. Estimates of APE
within the 25th to 75th percentile range for the other samples are as follows: continuously
insured: —$25 to —$5, diabetes: —3$90 to —$30, arthritis: —$60 to —$10, heart condition:
—$70 to —$10. For the mental illness sample, the change in nondrug spending switches
from approximately —$20 at the 25th percentile to +$10 at the 75th percentile.

Estimates of APFE become smaller as previous quarter drug spending increases, primar-
ily because estimates of APE?, shown in the leftmost panels, are positive and increasing
between the 25th and 75th percentiles of drug spending. For all six samples, previous quar-
ter drug spending at the 25th percentile is associated with an approximate 1 percentage
point increase in the probability of positive current period nondrug spending. On the other

hand, previous quarter drug spending at the 75th percentile translates to an approximate
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4 or 5 percentage point increase in the probability of positive current quarter nondrug
spending.

For all six samples, estimates of APE™, which appear in the middle panels, are negative
between the 25th and 75th percentiles of previous quarter drug spending. For the diabetes
and heart condition samples, estimated APE™ become larger in magnitude (more negative)
as previous quarter drug spending increases. For the other four samples, the estimated
APE™ become smaller in magnitude as previous quarter drug spending increases.

The overall APE estimates suggest modest cost-offsets in nondrug spending in the
quarter following an increase in drug expenditures. The only instance in which there is no
cost-offset is among those with mental illnesses who experience relatively large increases
in previous quarter drug spending. Over most of the distribution of drug spending, the
magnitudes of cost-offsets are less than dollar-for-dollar, indicating that increases in drug

spending translate to increases in aggregate medical spending.

6.3. An alternative measure of cost-offset

The APE’s defined above estimate partial effects that are “marginal” over the distribu-
tion of current drug expenditures. But, given that drug expenditures at time ¢ are often
predicated on nondrug spending at time ¢ via prescription refill rules and/or physician
monitoring behavior, it is important to identify cost offsets conditional on specific values
of current drug expenditures, especially as the preferred Clayton-copula formulation sug-
gests positive contemporaneous association along with left tail dependence between the
two types of spending. Therefore, we define the conditional average partial effect (CAPE)

on yi ¢ given y;; of the effect of y;;_1 as

1 * * *
CAPE]C (yj7t71) = E(yk,t|yj('7t)_17 Yjts y—k,t—la Yi—2,X ) (21)

0
- FE (yk,tlyj(-,t)_l, Yits Yort—1,Yi-2:X);

where j,k = 1,2 and j # k and y§7115)_1 and y](g)_ldenote values of y;;—1 over which the
partial effect is desired. The key difference between APE described by equation (18) and
CAPE described by equation (21) is the additional conditioning on y;; in the calculation
of CAPE. Thus CAPE}, shows how APE}(y;—1) changes with y;;. Analogous to APEY

and APE™, we also define CAPE® and CAPE™, each of which conditions additionally on
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Yyt as
1 * * * 0 * * *
CAPEQ(yji—1) = Pr(yr: = 1|yg(',t)71’y]',ﬁyfk,tfl)yt—%x )=Pr(yp: = 1|y§',t)717yj7t’ Yiki-1Yi-2,X)

(22)

and

1 * * *
APE]:—(yj,t—l) = E(yk,t’yk,t > 07 y]("t)flv Yjity yfk,tfla Yi—2,X ) (23)
0 * k k
- Eklyrs > O)y](',t)flayj,hyfk,tflay]f—%x )-
Calculation of the conditional (on y;;) expectations is considerably more complicated

than the unconditional expectations needed for the calculation of the APE’s. For the

hurdle probabilities,

Pr(y; =0,y; > 0)
Pr(y; =0)

1
Pr(yy,. = 1!y§,t)_1,yj,t =0,9 k11, Y12, X") =

and
Pr(y; = 0,y; > 0)

Pr(yj > 0)

where the terms in the numerator involve the copula formulation and the terms in the

1
Pr(yk,t = 1|y§7t),17yj,t > Ovy*fhtflayz(—%X*) =

denominator are the probit marginals. For the expectations in the “positives” part of the

model,

o)
/ le(yj7vk‘yj >ank>0)
Vi v

(1) * * *
Ykt > 0,95 1, Yty Yok t—1:Yi—2: X )=
gt £ (Wjly; > 0,yx > 0)

E(yk,t

lim v, —0

which is computed using numerical integration.

CAPE" estimates, presented in the leftmost panels, suggest that conditional on posi-
tive current quarter drug spending, previous quarter drug spending between the 25th and
75th percentiles is associated with an approximate 1 percentage point reduction in the
probability of current period nondrug spending. In contrast, when conditioned on zero
current quarter drug spending, CAPE? estimates are positive.

CAPET estimates, shown in the middle panels, are negative regardless of the condi-
tioning value of current period drug spending. However, estimates are larger in magnitude
(more negative) when conditioning on the 75th percentile of current quarter drug spending,

compared to the 25th percentile.
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Finally, overall CAPF estimates, shown in the rightmost panels, suggest that while the
existence of dynamic cost-offsets is robust to conditioning on present quarter drug spending,
the magnitudes of cost-offsets depend on the amount of present period drug spending.
When conditioning on positive current period drug spending (whether at the 25th or 75th
percentiles), cost-offsets are larger than dollar-for-dollar at the median of the distribution of
drug spending, with the exception of the mental illness sample. Cost offsets become smaller
than dollar-for-dollar as previous quarter drug spending becomes larger. Furthermore,
conditioning on larger current quarter drug spending produces stronger evidence of larger-

than-dollar-for-dollar cost offsets.

7. Conclusion

Previous research on the relationship between drug and nondrug spending has produced
mixed results. This is due to several empirical complications. First, with high proportions
of zeros, health care spending measures cannot be easily described by a single statistical
distribution. Second, the bivariate dependence between drug and nondrug spending might
exhibit substantial departures from normality. Third, the contemporaneous relationship
between drug and nondrug spending might be fundamentally different from the economi-
cally more relevant dynamic relationship. Fourth, as medical effects of prescription drugs
might be fast-acting, investigating the dynamic relationship between drug and nondrug
spending requires panel data recorded at relatively high frequency.

This paper proposes a dynamic nonlinear multivariate hurdle model of drug and non-
drug spending. Using nationally-representative quarterly data on medical expenditures,
the model is estimated for six policy-relevant subsamples. The models produce evidence
of positive contemporaneous dependence, somewhat similar to previous studies. However,
the models produce negative dynamic dependence across numerous samples and specifi-
cations, which we interpret as evidence of cost-offsets. Average partial effects (APE),
analogous to those proposed by Wooldridge (2005), suggest that cost-offsets are smaller
than dollar-for-dollar. Conditional average partial effects (CAPE), calculated similarly to
APFE but conditioned on specific values for current quarter drug spending, reveal that for
median values of previous quarter drug spending, cost-offsets are larger than dollar-for-

dollar for reasonably large current period drug spending (i.e., above the 25th percentile of
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drug spending). However, cost-offsets are smaller than dollar-for-dollar as previous quarter
drug spending become larger.

These results hold important implications for public health insurance policies. If cost-
offsets are larger than dollar-for-dollar, then aggregate health care spending might be
reduced by encouraging increased spending on prescription drugs. Although our results
indicate larger than dollar-for-dollar cost-offsets might exist under certain conditions, those
conditions are likely to be too unpredictable to allow formulation of appropriate policies.
For example, CAPFE estimates suggest that larger than dollar-for-dollar cost-offsets exist
between previous quarter drug spending and current quarter nondrug spending when: (1)
current quarter drug spending is reasonably large and (2) previous quarter drug spending is
not too large. It seems difficult to implement policies based on these conditions, as spending
for certain drugs might be highly unexpected, and because new drug development and

changing demographics will probably alter the distribution of drug spending in the future.
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Table 1 : Quarterly medical spending by subsample

Drug expenditure

Nondrug expenditure

Statistic all 1(>0) |>0 all 1(> 0) | >0
65 and older
Mean 49.18 0.29 168.42  2824.92 0.67 2824.92
Median 0.00 90.68 422.58 422.58
1st order serial corr  0.19 0.18 0.43 0.38
Continuously insured - medical and Rx
Mean 29.20 0.21 139.14  1925.60 0.46 1925.60
Median 0.00 74.15 322.85 322.85
1st order serial corr  0.19 0.18 0.42 0.37
Diabetes
Mean 69.09 0.34 202.31 3258.39 0.70 3258.39
Median 0.00 110.23  470.04 470.04
1st order serial corr  0.17 0.15 0.42 0.35
Mental Illness
Mean 55.79 0.31 178.63  2406.50 0.61 2406.50
Median 0.00 98.09 414.17 414.17
1st order serial corr  0.20 0.19 0.44 0.38
Arthritis
Mean 51.75 0.32 162.53  2608.91 0.66 2608.91
Median 0.00 91.44 442.35 442.35
1st order serial corr  0.18 0.17 0.43 0.37
Heart condition

Mean 58.02 0.32 180.73  2750.15 0.66 2750.15
Median 0.00 99.11 404.76 404.76
1st order serial corr  0.16 0.15 0.40 0.33
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Table 2: Sample means by subsample

65 and Fully mental heart

older  insured diabetes illness arthritis condition
Socioeconomic
Age 74.6 44.8 59.2 47.7 57.7 60.7
Female 0.59 0.53 0.56 0.68 0.63 0.58
Black 0.12 0.11 0.19 0.10 0.15 0.18
Hispanic 0.12 0.13 0.24 0.16 0.15 0.14
Married 0.52 0.69 0.58 0.49 0.56 0.58
Divorced 0.10 0.11 0.16 0.21 0.17 0.15
Widow 0.34 0.04 0.17 0.11 0.17 0.18
Family size 1.90 2.98 2.60 2.65 2.41 2.41
Education 11.25 13.40 11.14 12.30 11.89 11.81
Northeast residence omitted
Midwest residence 0.22 0.24 0.19 0.22 0.22 0.21
West residence 0.38 0.35 0.43 0.36 0.39 0.42
South residence 0.21 0.23 0.23 0.26 0.23 0.20
Metropolitan statistical area 0.74 0.81 0.75 0.77 0.75 0.75
Employed 0.17 0.83 0.43 0.62 0.50 0.47
Log income 5.15 5.23 5.15 5.16 5.17 5.17
Firm size 1.07 12.89 5.73 7.73 6.19 6.22
Government job 0.02 0.16 0.08 0.11 0.09 0.09
Health
Excellent health omitted
Very good health 0.27 0.35 0.17 0.26 0.25 0.25
Good health 0.32 0.26 0.35 0.31 0.32 0.35
Fair health 0.18 0.07 0.29 0.19 0.21 0.21
Poor health 0.06 0.02 0.14 0.09 0.10 0.09
Physical limitation 0.56 0.19 0.55 0.43 0.55 0.48
Injury 0.21 0.21 0.23 0.30 0.32 0.23
Number of chronic conditions 1.75 0.74 2.52 1.79 2.08 2.13
Insurance
Private Insurance 0.55 1.00 0.55 0.63 0.64 0.63
Public Insurance 0.44 0.00 0.35 0.24 0.28 0.29
Have Prescription drug insurance 0.34 1.00 0.46 0.56 0.52 0.52
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Table 3: Maximized log likelihoods for models with alternative copulas

Copula Subsample Hurdle InL.  Conditional Inl. ~ Overall InL
Models with Clayton copula

Clayton 65 and older -81341* -594359 -675700*
Continuously insured  -280333* -1425303* -1705636*
Diabetes -45777* -347241 -393018*
Mental illness -81647* -539333* -620981*
Arthritis -96854* -689050 -785904*
Heart condition -131270* -916224* -1047494*

Models with Survival Clayton copula

Survival Clayton 65 and older -81934 -594359 -676293
Continuously insured -283909 -1425319 -1709228
Diabetes -46009 -347249 -393258
Mental illness -82470 -539352 -621822
Arthritis -97865 -689041* -786907
Heart condition -131991 -916232 -1048223

Models with Frank copula

Frank 65 and older -81531 -594357* -675888
Continuously insured -281689 -1425343 -1707032
Diabetes -45822 -347237* -393059
Mental illness -81887 -539344 -621231
Arthritis -97167 -689057 -786224
Heart condition -131411 -916235 -1047646

Models with Gaussian copula

Gaussian 65 and older -81527 -594369 -675896
Continuously insured -281123 -1425348 -1706471
Diabetes -45837 -347246 -393084
Mental illness -81864 -539357 -621221
Arthritis -97176 -689061 -786237
Heart condition -131448 -916243 -1047691

* denotes model with best fit for given subsample
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Table 4: Bivariate two-part model: coefficients of lagged variables
Sample: ages 65 and older

Hurdle part

Positive spending part

1(drugt> 0) l(nondrugt> O) drug, nondrugy
1(drug;_1> 0) 0.016 -0.145%* -0.283%* -0.058
(0.028) (0.032) (0.044) (0.063)
1(nondrug;_1> 0) -0.020 0.030 -0.087%  -0.967**
(0.023) (0.026) (0.039) (0.059)
In (drug;_q) 0.022%* 0.046** 0.062** -0.001
(0.006) (0.007) (0.009) (0.013)
In (nondrug;_) 0.023** 0.076** 0.021%*  0.187**
(0.003) (0.004) (0.006) (0.008)
1(drug;_o> 0) -0.023 -0.105%* -0.175%* -0.029
(0.028) (0.031) (0.045) (0.066)
1(nondrug; o> 0) 0.123%* 0.184%** 0.026 -0.416%*
(0.024) (0.026) (0.041) (0.059)
In (drug;_o) 0.030%* 0.036** 0.057** 0.005
(0.006) (0.007) (0.009) (0.013)
In (nondrug;_o) -0.003 0.023** -0.005 0.060%*
(0.004) (0.004) (0.006) (0.008)
X2 test for initial conditions = 0 303.3%* 560.7%* 42.7%* 43.7%*
X2 test for Mundlak terms = 0 322.5%* 196.6** 144.6%* 88.9%*
X2 test for ;= - - 11.9% 1743%*
o; 0+ 1.245 0.200
(0.020) (0.021)
Kendall’s Tau 0.384 0.091
(0.004) (0.009)
InL -96854 -689050
N 91230 62983

Robust standard errors in parentheses
** p<0.01, * p<0.05
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Table 5: Bivariate two-part model: coeflicients of lagged variables
Sample: continuously insured - medical and prescription drug

Hurdle part

Positive spending part

1(drugt> 0) l(nondrugt> O) drug, nondrugy
1(drug;_1> 0) 0.076 -0.161%* -0.215%* -0.084
(0.041) (0.047) (0.062) (0.093)
1(nondrug; 1> 0) -0.052 0.030 -0.057 -1.023**
(0.033) (0.038) (0.055) (0.086)
In (drug;_q) 0.007 0.047%* 0.049** 0.004
(0.008) (0.010) (0.012) (0.019)
In (nondrug;_) 0.021%* 0.074%* 0.015 0.173%*
(0.005) (0.006) (0.008) (0.011)
1(drug;_9> 0) 0.006 -0.052 -0.169%* -0.005
(0.041) (0.047) (0.063) (0.098)
1(nondrug;_o> 0) 0.031 0.169** -0.091 -0.707**
(0.034) (0.038) (0.055) (0.084)
In (drugs;_o) 0.020* 0.026%* 0.0427%* -0.005
(0.008) (0.009) (0.012) (0.019)
In (nondrug;_o) 0.010 0.032%* 0.016* 0.100%*
(0.005) (0.006) (0.008) (0.011)
X2 test for initial conditions = 0 90.5%* 158.2%* 21.8%* 9.90%*
X2 test for Mundlak terms = 0 225.5%* 115.5%* 101.1%* 92.5%*
X2 test for ;= - - 1.78 931.3%
0o; 60+ 1.062 0.195
(0.028) (0.031)
Kendall’s Tau 0.347 0.0890
(0.006) (0.013)
InL -45777 -347241
N 42702 31680

Robust standard errors in parentheses

# p<0.01, * p<0.05
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Table 6: Bivariate two-part model: coeflicients of lagged variables
Sample: diabetes

Hurdle part Positive spending part
1(drugt> 0) l(nondrugt> O) drug, nondrugy

1(drug;_1> 0) 0.089** -0.117%* -0.149%* -0.046
(0.032) (0.036) (0.050) (0.072)
1(nondrug;_1> 0) 0.002 0.105** -0.096*  -0.910**
(0.025) (0.028) (0.043) (0.062)
In (drug;_q) 0.003 0.038%* 0.0327%* -0.001
(0.007) (0.008) (0.010) (0.015)
In (nondrug;_) 0.022%* 0.066** 0.022%*  0.166**
(0.004) (0.004) (0.006) (0.008)
1(drug;_9> 0) 0.009 0.040 -0.180%* 0.023
(0.032) (0.036) (0.051) (0.074)
1(nondrug;_o> 0) 0.091%** 0.274** 0.022 -0.458**
(0.026) (0.028) (0.044) (0.064)
In (drugs;_o) 0.023%* 0.004 0.057** -0.004
(0.007) (0.008) (0.010) (0.015)
In (nondrug;_o) 0.004 0.020%** -0.009 0.065%*
(0.004) (0.004) (0.006) (0.008)
X2 test for initial conditions = 0 242.6** 781.5%* 35.5%* 17.0%*
X2 test for Mundlak terms = 0 195.9%* 151.4%* 105.5 88.4%**
X2 test for ;= - - 10.7%* 1811%*
o; 0+ 0.997 0.224
(0.020) (0.022)
Kendall’s Tau 0.333 0.101
(0.004) (0.009)
InL -81341 -594359
N 78162 55848

Robust standard errors in parentheses
** p<0.01, * p<0.05
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Table 7: Bivariate two-part model: coeflicients of lagged variables
Sample: mental condition

Hurdle part

Positive spending part

1(drugt> 0) l(nondrugt> O) drug, nondrugy
1(drug;_1> 0) 0.059* -0.139%* -0.131%* -0.081
(0.025) (0.027) (0.040) (0.061)
1(nondrug;_1> 0) -0.049* -0.016 -0.098%*  _1.112%*
(0.020) (0.022) (0.033) (0.053)
In (drug;_q) 0.009 0.043%* 0.031** 0.004
(0.005) (0.006) (0.008) (0.012)
In (nondrug;_) 0.023** 0.073%* 0.024%%  0.192%*
(0.003) (0.003) (0.005) (0.007)
1(drug;_9> 0) -0.000 -0.042 -0.208** -0.020
(0.025) (0.027) (0.041) (0.061)
1(nondrug;_o> 0) 0.057+* 0.215%* -0.035 -0.499**
(0.020) (0.022) (0.035) (0.053)
In (drugs;_o) 0.018%* 0.021%* 0.056** 0.006
(0.005) (0.006) (0.008) (0.012)
In (nondrug;_o) 0.006* 0.021%** 0.004 0.073%*
(0.003) (0.003) (0.005) (0.007)
X2 test for initial conditions = 0 246.4** 548.1%* 42.4%* 22.6%*
X2 test for Mundlak terms = 0 548.9%* 244 .5%* 139.2%* 174.8%*
X2 test for cvg;= @ - - 1.56 2520%*
0o; 0+ 1.070 0.238
(0.016) (0.018)
Kendall’s Tau 0.348 0.106
(0.003) (0.007)
InL -131270 916224
N 120552 84980

Robust standard errors in parentheses

# p<0.01, * p<0.05
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Table 8: Bivariate two-part model: coeflicients of lagged variables
Sample: arthritis

Hurdle part Positive spending part
1(drugt> 0) l(nondrugt> O) drug, nondrugy

1(drug;_1> 0) 0.001 -0.229%* -0.145%* 0.051
(0.031) (0.034) (0.050) (0.073)
1(nondrug; 1> 0) 0.004 0.020 -0.174%F  -1.106**
(0.026) (0.029) (0.044) (0.067)
In (drug;_q) 0.029** 0.062** 0.032%* -0.021
(0.006) (0.007) (0.010) (0.015)
In (nondrug;_) 0.018** 0.085%* 0.037%*%  0.206%*
(0.004) (0.005) (0.007) (0.009)
1(drug;_o> 0) -0.012 -0.100%* -0.218%* 0.074
(0.030) (0.033) (0.050) (0.071)
1(nondrug; o> 0) 0.033 0.176** 0.003 -0.532%*
(0.027) (0.029) (0.047) (0.067)
In (drugs;_o) 0.025%* 0.029%* 0.061** -0.026
(0.006) (0.007) (0.010) (0.014)
In (nondrug; ) 0.010% 0.026** 0.004 0.086**
(0.004) (0.005) (0.007) (0.009)
X2 test for initial conditions = 0 195.3%* 371.3%* 24 .4%* 40.8%*
X2 test for Mundlak terms = 0 317.5%* 282.5%* 101.8%** 87.1%*
X2 test for cpj= - - 9.13%* 1293**
0o; 60+ 1.267 0.246
(0.021) (0.023)
Kendall’s Tau 0.388 0.110
(0.004) (0.009)
InL -81647 -539333
N 76848 49601

Robust standard errors in parentheses
** p<0.01, * p<0.05
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Table 9: Bivariate two-part model: coeflicients of lagged variables
Sample: heart condition

Hurdle part

Positive spending part

1(drugt> 0) l(nondrugt> O) drug, nondrugy
1(drug;_1> 0) -0.007 -0.171%* -0.228%* -0.020
(0.020) (0.020) (0.034) (0.053)
1(nondrug;_1> 0) 0.077%* 0.015 -0.003 -0.995**
(0.016) (0.016) (0.029) (0.045)
In (drug;_q) 0.027%* 0.053%* 0.059** -0.015
(0.004) (0.004) (0.007) (0.011)
In (nondrug;_) 0.013%* 0.078** 0.013%*  0.213%*
(0.003) (0.003) (0.005) (0.006)
1(drug;_9> 0) -0.008 -0.082%* -0.293%* 0.016
(0.019) (0.019) (0.035) (0.052)
1(nondrug;_o> 0) 0.122%* 0.249%* 0.030 -0.395%*
(0.016) (0.016) (0.031) (0.046)
In (drugs;_o) 0.026%* 0.031%* 0.079** -0.007
(0.004) (0.004) (0.007) (0.011)
In (nondrug;_o) -0.002 0.005 -0.000 0.075%*
(0.003) (0.003) (0.005) (0.007)
X2 test for initial conditions = 0 804.6** 1543%* 57.2%% 32.9%*
X2 test for Mundlak terms = 0 1091%* 900.1** 305.2%* 210.1%*
X2 test for ;= - - 11.5% 3431 %
0o; 60+ 1.155 0.204
(0.010) (0.017)
Kendall’s Tau 0.366 0.093
(0.002) (0.007)
InL -280333 -1425303
N 289374 139969

Robust standard errors in parentheses

# p<0.01, * p<0.05
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Figure 1: Simulated probabilities from hurdle part (2000 points plotted)
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Figure 3: Average Partial Effects

Average Partial Effects: Sample of persons 65 years and older
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Figure 3: Average Partial Effects (cont.)

Average Partial Effects: Sample of persons with a mental illness
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Figure 4: Conditional Average Partial Effects

Conditional Average Partial Effects: Sample of persons 65 years and older
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Figure 4: Conditional Average Partial Effects (cont.)

Conditional Average Partial Effects: Sample of persons with a mental illness
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Conditional Average Partial Effects: Sample of persons with arthritis
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Conditional Average Partial Effects: Sample of persons with a heart condition
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