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Abstract
Many analyses of health care costs involve use of data with varying periods of observation

and right censoring of cases before death or the end of the episode of illness. The prominence of
observations with no expenditure for some short periods of observation and the extreme skewness
typical of these data raise concerns about the robustness of estimators based on inverse probability
weighting (IPW) with the survival from censoring probabilities. They also cannot distinguish
between the effects of covariates on survival and intensity of utilization, which jointly determine
costs. In this paper, we propose a new estimator that extends the class of two-part models to deal
with random right censoring, and more fully incorporates the information from the censored
periods. Our model also addresses issues about the time to death in these analyses and separates
the survival effects from the intensity effects. Using simulations we highlight our proposed
estimator compared to the inverse probability estimator, which shows bias when censoring is large
& covariates affect survival. We find our estimator to be unbiased and also more efficient for these
designs. We apply our method and compare it to the IPW method using data from the Medicare-

SEER files on prostate cancer.

Keywords: Censored costs, inverse probability weighting, episode of illness, survival versus

intensity effects
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1. Introduction

Longitudinal profiles of heath care costs and utilization data arising out of claims databases
and from clinical trials are widely used for heath technology assessments, for estimating the costs
of an episode of illness and for many other purposes. Usually, the analyst can never observe all the
patients until the end of their episode of illness or treatment or until they die. So an integral aspect
of the analytical problem is dealing with the censoring of the observations. It has been convincingly
established that traditional survival models, which are used to deal with censoring in time-to-event
data, fail to address censoring in costs data even when the censoring are assumed to be random
because inherent patient heterogeneity with respect to cost accumulation implies that the
cumulative cost at the censoring time is positively correlated with the cumulative cost at the

endpoint of interest (Lin, 1997, 2000).

In order to deal with such censoring, researchers have proposed survival-adjusted (Lin,
1997; the “LIN97” estimator henceforth) or inverse-survival probability of censoring weighted
estimators that are consistent for the rate of accumulation of costs (Bang and Tsiatis 2000; Lin
2000a, 2000b; the “BTL00” estimator henceforth). Under the assumptions of continuous death
and censoring times, Lin’s 1997 estimator is biased (Lin, 1997). Lin avoids this problem by
assuming discrete death times, which could be made to coincide with the end points for the blocks
of time over which a patient’s cost history is expressed. Recognizing this assumption as a limitation
of the LIN97 method, Bang and Tsiatis (2000) propose an alternative estimator, based on inverse
probability weighting with survival from censoring probabilities, which allows for continuous death
and censoring times. This approach has also been adopted by Lin in his subsequent papers (2000a,

2000b, 2003).

Although, the BTL0O approach provides a powerful approach to deal with random
censoring in cost data, there are a couple of limitations. First, an estimator following the BTL0O
approach does not use information from the periods where censoring is observed.! This may lead
to loss of efficiency in estimation, which can have serious consequences for the idiosyncratic cost
distributions. Second, most estimators that apply the BTLOO methods fail to distinguish between
the effect of a covariate on survival and intensity of utilization, both of which affect costs jointly.

Understanding these differential effects is important giving the theoretical underpinnings of cost

1 We consider the interval-data where an individual patient's cost-trajectory is chopped in to
various time intervals. Therefore, only the interval where censoring is observed, but not any of the
previous intervals, is dropped from estimation.
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analyses, which are conducted to reign in inefficient utilization but to promote practices that

increase survival.

In this paper, we develop a novel estimator that extends the LIN97 survival-adjusted
estimator and that is consistent under the assumptions of continuous distributions of death and
censoring times and also accounts for a variety of additional aspects of the cost-accumulation
process, such as the widely observed increases in costs at the very end-of-life. Throughout, we
assume that the analyst has data on a representative sample of the population of interest that
contain some information about the rate of accumulation or timing of cost for each patient over
time from the first observation (at the incidence of the illness or the initiation of the treatment
episode) until the last time point at which the patient is observed. Furthermore, there are several
specific issues that we address in this work that have not been addressed so far in the literature;
they include - 1) use of non-linear two-part models appropriate for modeling skewed outcomes in
the presence of censoring; 2) variable rates of accumulation of costs over time; 3) spikes in cost-
accumulation due to end-of-life care; and 4) a more parametric approach to deal with censoring
that is non-informative, which could potentially generate efficiency gains over currently existing
and more popular non-parametric approaches. All our discussions consider the opportunity to
adjust for covariates in estimating the mean total costs per patient. One important contribution of
our estimator is that it explicitly separates the marginal effect of covariate on total costs into a
portion that is brought about by affecting survival and another that is due to affecting the rates of

cost-accumulation if alive.

The paper is structured as follows: Section 2 lays out a theoretical structure of cost-
accumulation over the lifetime of a patient or an episode or for a fixed period of time and defines
the primary parameter of interest in the presence of deaths and non-informative censoring; it
describes the data that is typically available for analysis in health-care and usually arises from a
long-term clinical trial or a claims database and reviews the LIN97 and BTLOO estimators. Section 2
also describes our proposed estimator. Section 3 contains simulations that illustrate the
performance of our proposed estimator in terms of bias and efficiency. Section 4 illustrates the
application of our estimator along with the BTLOO estimator to the analysis of prostate cancer costs.

Section 5 concludes with a discussion.
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2. Theoretical Model, Available Data and Estimators under Censoring
2.1. A theoretical model for accumulation of costs.

We start by laying out the theoretical model for the cost accumulation process. We assume
that time begins with the start of an episode of illness or with initiation of treatment. We set the
time index t for this defining event at ¢t = 0 (index time). If the cases start at different calendar times,
they are assumed to arrive at random. The time ¢ is continuous. Our interest lies in estimating the
population average of the total costs over the time period T, where at least one patient in the

sample is observed to be alive until T.

We follow the notations used by O’Hagan and Stevens (2004). Let the cumulative cost up to
and including time ¢t for a random patient in the population be denoted by M(t). M(t) is a non-
decreasing function of t for any specific individual. Let VV denote the time to death for this patient.
Formally, we suppose that M(t) = M(V) for all t =2 V, because no further accumulation of costs occurs
after death. Hence M(T) can be seen as the accumulated cost to time T or death, whichever occurs
earlier. Let R(t) = dM(t) /dt denote the rate of accumulation of cost at anytime point ¢, t < T.2 R(t) is

also called the (non-cumulative) cost-function. Therefore, the total costs for this patient is given by

T
M(T)= [ R(t)dt,where R(t)=0ift>V (1)
t=0

which is the area under this per-period cost-function curve until 7. When time is represented as K

+1 discrete blocks of, not necessarily equal, durations (months or year)3 rather than continuous, let
the end of each block period be denoted as a;, az, as,.. ax:1 = T, which are the same for all patients. In
this case, under some general assumptions, R(a;) can be approximated with (M(q;) - M(a;.1))/(a; - a;-

1),j=1,2,. K+1, where ap = 0 and M(0) = 0. The total costs expression is then given by:

K+1
M(T) = iR(aj]-(aj—aj_lj whereR(a;)=0if a; 1>V (2)
j=1

Because this is the typical format in which most observed datasets are available, we will stick to this

discrete formulation for the rest of the paper.

2 O’Hagan and Stevens (2004) point out that M(t) will typically be a step function and hence not
continuous, but by definition it is always right-continuous.

3 This approach will be useful later in practice because in many observational datasets, the last

interval may be of duration that is very dissimilar to other periods of observation due to death,

attrition, or administrative censoring (e.g., end of the field phase of the study or trial).
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The cumulative cost M(T) is the principal random variable of interest, and our primary

interest is in its expectation:

= E(M(T)). (3)
Because V, or the time of death, is stochastic in nature, one can reformulate (2) in the following two
ways. Estimation following either of these empirical forms produces identical results as long as
every individual in the sample is observed to the minimum (V, T); that is in the absence of any

censoring. The first alternative form of (2) is expressed as:

K+1 b
pu=E| Y I(ay<V<a,) - (R(a;))-(a;— a; ;) (4)
b=1 =

where I(.) is an indicator function. Equation (4) accumulates over the individual-specific
trajectories of costs and then averages over patients. This is reflective of the minimal-data case
mentioned in Lin (1997, 2003) and in O’Hagan and Stevens (2004), where only accumulated cost
per patient over a certain time interval is available. Estimation following this formulation follows a
pattern mixture approach that uses fully conditional model for the outcome conditional on death

times (Ribaudo et al, 2001; Pauler et al., 2003).
The second formulation of (2) can be expressed as

K+1
u= Y Pr(V>a;,)-E(R(a;)[V>a; ) (a,—a;4) (5)
j=1

Pr(V>a;) =S(a) is more popularly known as the survivor function. Equation (5) averages period-

specific costs over patients who were alive at the beginning of that period and then accumulates the
costs over different periods. This representation is reflective of the interval -data that contain
some information about the cost trajectories for each patient. Estimation using this formulation
requires the estimation of a directly parameterized regression conditioning on being alive (Pepe et

al, 1999; Kurland and Heagerty, 2005)

2.2. Typically available data and estimators of mean costs under censoring

In many studies, we would not expect to observe all patients until T or V. Patients whose
observation period ceases before T or VV are censored. Let C denote the censoring time. We expect
to have the following format for our observed data. Each subject is observed over a minimum

period of L = Min(T, V, C). Time covariates VV and C are continuous. Each subject provides a vector
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of total costs, Y =(Y;,.Y, ), over interval increments in time (say, 2 months or 6 months) where the

last interval with observed costs for a subject is (ap-1, a»], with ap.; <L < ap, L = T for some

subjects.* We compute a variable U; containing the observed duration for each interval:

Uj =4a; - 01 if min(C, V) > qa;
=min(CV) - a4 if a;_; <min(C,V)<a;
=0 otherwise (6)

Additionally, for each interval, denote a death indicator (D)) and a censoring indicator (4;) as

follows:
if min(C, V) <a; D; = I(min(C, V)=V); 4; = I(min(C, V)=C);

if min(C, V) >a; D;=0&A=0 (7)

where I(.) is an indicator function.

The observed data vector for each subject, where X is a vector of covariates, is given as
{Y,.X,L,D,A,U}
The data is setup so that each observation represents a subject-interval combination.

Lin (1997) proposes an estimator, LIN97, for the population unconditional mean cost in

time interval j. Itis given as

. Y H{Min(CV)>a; 4 )}-S(a;y)-{M(a;)-M(a; )}
HjLin= D I{Min(C,V)>a; 1)}

where the estimator adjusts the costs accumulated in the jth interval by multiplying with S j (a j_1) ,

; (8)

which is the Kaplan-Meier survival (from death) estimator for the (j-1)t interval, and averages over
those who were alive and uncensored at the beginning of that interval. Note that the LIN97
estimator explicitly assumes that all censoring in that interval occurs at the end of that interval, i.e.

ata;. Otherwise, i; ;;, is not a consistent estimator of y; because those patients observed to die in

the interval (i.e. not censored) will not be a representative sample of those who actually die in that
interval (Lin, 1997).
To address this limitation, Bang and Tsiatis (2000) propose a weighted complete-case

estimator, BTL0O, within each interval:

4 These periods need not be of equal duration.
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Aj- (M(aj)_M(aj—l))
K; {min(V,a;)}

ﬂj,BT=”_IZ (9)

where A; =I{C 2min(V,a;)} denotes an indicator for person intervals where the person is not

censored till the end of that interval (or death, if it happens within the interval) and 12']- (a;) isthe

Kaplan-Meier survival (from censoring) estimator for the jth interval. The rationale behind this

estimator is that each subject, who we observe to die in the jth interval or reach the end of the jth

interval without censoring, represents on average 1/ K j(a;) individuals who might have been

censored. Bang and Tsiatis (2000) claim that this estimator, by focusing only on person intervals
where there is no censoring, allows for censoring to occur anywhere within an interval. This

inverse survival from censoring weighted estimator was also adopted by Lin (2000, 2003).

There are however some limitations to the BTLOO estimator. First, the estimator is not set
up to easily separate the effect of covariates on survival versus on intensity in utilizations, both of
which can be quite informative for economic analyses. Although Lin's (2003) work shows how to
estimate conditional cost-estimators among patients who survive a given interval or who die in a
given interval, it does not decompose covariate effects on the unconditional mean into a part that is
attributable to a survival effect and a part that is due to variable rates of cost accumulation. Second,
efficiency of the BTLOO estimator is called into question, a property it shares with other inverse
probability weighting approaches. On one hand, when censoring is high, the estimator drops data
from all intervals where a person in censored thereby loosing information and generating
inefficiency. On the other hand, since the estimator requires an explicit model for time to censoring,
estimators for such a censoring model could be inefficient when censoring is low, and that can add
to the inefficiency of the overall estimator. To address these limitations, we develop the proposed

estimator described in the next sections.

2.3. A more refined model

We propose a novel estimator that extends the LIN97 estimator to allow for continuous
death and censoring times and also accounts for a variety of idiosyncratic characteristics of the cost
distribution and the cost accumulation process. We follow the theoretical model in Equation (5)

that is automatically set-up to handle random censoring in cost data. Both death and censoring can
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occur in the middle of an interval and that should affect how we define the rate of cost

accumulation function R(a;).> We redefine R(a;) as
R(a) =R(a)=(M(a;)-M(a;1))/(a; - a;4) ifMin(C, V) 2 @

= (M(a;) - M(a;4))/(a; - ajq), if Min(C, V) > a;1, where a; =Min(a;,C,V)
(10)

In intervals where death or censoring occurs, the rate is calculated using the cumulated costs within

the interval up to death or censoring and divided by U; defined earlier.

Equation (5) can be rewritten as

K+1

u=Y Pr(V>a; 1)-E(R(j)|V>a;4)(a;-a; ) (11)
j=1

Note that the formulation in (11) calls for an estimator that would differ from traditional estimators

of interval-data on costs. The observed cumulative costs (M(j) - M( j-1)) within an interval may

not necessarily be the same as the true cumulative costs within that interval if censoring occurs in
the middle of an interval. A conscious effort must be made to account for probability that the
person may die within that interval but after the censoring and to assess the expected time to the
death event. Itis essential if we want to understand separately the utilization and survival effects;
we expect many analysts to be interested in that decomposition of economic analysis. We assume
that the individual rate at which we observe costs to accumulate within that interval before
censoring would be the same rate at which, had there been no censoring, cost would have
continued to accumulate for that individual within that interval up to the end of the interval or

death, whichever occurs first.

The model in equation (11) does not require us to have censoring or death occur only at the
end of intervals (as in LIN97) or to drop observations on costs during estimation for those intervals

where censoring occurs in the middle of the interval (as in BTL00).6 Instead, it allows us to

5 This is in contrast to the model proposed by Lin(1997) where censoring times was assumed to be
discrete and was assumed to occur only at the end of the intervals. Bang and Tsiatis (2000) noted
that such discretization of censoring times may serve as a reasonable approximation but is not true
in general. Lin (1997) mentioned that this assumption is trivial as one can redefine the time
intervals so that the end of the intervals match with the censoring times. However, this could be
quite complicated in practice.

6 The assumption of constant rates of accumulation within a period is more robust when the
intervals are ‘thin’ or of short duration. Thinner intervals lead to even more highly skewed and
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parametrically extrapolate the cost accumulation beyond the censoring time for that interval

period, after accounting for both the probability and time to death within that interval.

Equation (11) can be further extended to look at the different accelerated cost-
accumulation towards end-of life. A large literature exists on the cost of health care at the end-of-
life care and the corresponding resource utilization (Scitovsky, 1984). Recently Brown et al (2002)
demonstrated the there is a U-shaped pattern of cost-history among cancer patients with the left
side of the U corresponding to initial treatment and the right side reflecting a substantial spike in
costs during the last 6 months of life. To incorporate this aspect of cost accumulation, we can

rewrite (11)

as
K+1 K+1 E(R(j)-(V-a,_{)]a;,_4<V<a;)-h(a;)+
u="3 Pr(v>a;)-{C;-h(a;)+Cyj-(1~h(a; )} = 3. Pr(V >a,)- (~ | S i)
P = E(R(j)IV>a;)-(a;-a;)-(1=h(a;))
(12)

where h(a;)=Pr(a; 4 <V <a; [V >a;_)isthe hazard of death during interval (a;, a;1] given that
the subject was observed to be alive till a. Equation (12) captures the fact that the rate of

accumulation of costs during the interval where the subject dies may be different from those who

do not die in this interval. Therefore, C;; = E(R(j) ‘(V-aj41)]aj4<V<q ) represent the expected

costs of an individual if the subject dies in that interval while C,; = E(ﬁ(j) |V > aj)-(a]- —a;_1)

represents the expected costs of the same individual had he not died in that interval. Although we
have illustrated this partitioning of intervals using the one interval in which death occurs, other
flexible approaches where multiple intervals leading up to death can be used to represent the
different cost accumulation process preceding death. That is, one can use the expression

a, <V <ay,; |V'>a,where [ is some fixed integer. The value of I can also be estimated using more

semi-parametric and Bayesian estimators.

leptokurtotic distribution of subject-interval level costs data, as well as a larger density mass at the
zero-cost level. These features support the use of two-part and other non-linear models which we
utilize in our empirical section.



Do not cite or distribute without permission

2.4. An estimator for the proposed model

A fundamental difference between our estimator and other proposed estimators (Lin (1997,
2000), Bang and Tsiatis (2000)) for the y parameter is that our estimator requires a parametric
extrapolation of survival and cost functions to all periods for patients after they are observed to die
or be censored in the data.” This is typical of two-part or multi-part models used in cost and
expenditure data for uncensored data (Duan et al., 1983; Blough et al., 1999; and Jones, 2000). The
extrapolation of the cost-function has two parts: one for the specific time period in which censoring
occurs (based on the rationale in equations (10) and (11)) and another for all time periods beyond

(not including) the time period in which the censoring or death occurs.

[t is important to point out that the rationale for extrapolating costs to time periods beyond
observed death for a patient is to represent the population level costs for the cohort of patients

with similar observed characteristics as this sampled patient, not all of whom die in that period.
Estimation follows under three parts:

a) PART-1: Use a flexible accelerated failure-time model, such as those based on

generalized gamma distribution for time, to estimate the individual’s survival function
after taking into account censoring. Let S j(X)and fzj( X ) be the estimated survivor

function and the hazard function for an interval t. (We have suppressed the notation for
individuals for clarity). The predictions are obtained for all time periods for all

patients.

b) PART-2: Among those subject intervals, (aj.;, aj], where we observe the subject to die,

i.e.where a; ; <V <a; & D;=1, estimate a generalized linear model (or models if a two-

part specification is necessary) for the observed cost functions after conditioning on

covariates X and Uj (as death can occur anywhere in the middle of the interval). Use

parameter estimates from this model to predict costs, 61]' (X ), for every subject-interval

in the data. A complication arises when predicting the costs for a subject-interval where
the subject is not observed to die, as if it was a death-interval, is that we have to account
for the stochastic nature of U within that interval. That is we have to account for what
would the costs be if the patient died inside that interval but at different times. To

account for this, for every subject interval, we simply average the predictions that are

7 Note that we do not extrapolate beyond the maximum time that any patient is observed in the
data.
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conditional of each value of U after weighting with the observed distribution of U among

intervals where patients are observed to die. Therefore,

Cij(X)=[Cyj(X,u)dF(U | ay <V <ay.)

c) PART-3: Next, among those subject intervals, (a;.;, aj], where patients are not observed
to die including those where we only observe costs over a partial duration due to

censoring, i.e. where (D;=0&A;=0) or (A;=1&a; ; <C<a; ), estimate a generalized

linear model (or models if a two-part specification is necessary) for the observed cost

functions after conditioning on covariates X and interval duration U;. We use parameter

estimates from this model to predict costs, 6‘2 j(X ), for every subject-interval in our data

conditional on the full length of every interval (i.e., set U; = (a; - aj.1)).

d) Following (12), the estimated cost function for interval j for any individual is given as
(%) =8;(X )| hy(X)-Cy (X )+(1=hy(X)-Cyy(X) ]

K
and 24(X)=) i;(X) (13)
j=1

We expect that by the law of large numbers, the estimator, élj (X) and éZj ( X ) should converge in
probability to C;;(X) and C;;(X) respectively. It then follows from Slutsky's theorem and the
consistency of the Kaplan-Meier estimator that [tj (X ) converges in probability to u;(X ). We rely

on simulations to establish the properties of this estimator.

The marginal effect of a covariate X on (X ) is given by

aﬂ(X] ZEMJ(X)

K a§ i(X)

25 R C0-(C40)+(1=hi(X)-(E00) | (14)
) h;(X aC, (X ) aC, (X

+5;(X)- a; ) (C1y(X)=Coy (X)) +hy (X][ 181; )}+[1—hj(xj.{%ﬂ

Although the formula seems daunting, the implementation is relatively simple as one just estimates

the marginal effects from each of the three regressions above and plugs them into equation (14).
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One very interesting feature of this estimator is that it explicitly separates the marginal effect of
each covariate on total accumulated costs into two parts: a portion that is brought about by
affecting survival, and another that is due to affecting the rates of cost-accumulation. Standard
4 280X)
oX

error for (X ) an can be readily obtained via bootstrapping.

3. Simulations
3.a. Designs

Simulation 1: We start by using Lin’s (2003) design points to carry out extensive
simulations to evaluate our proposed estimator and to compare it to the BTLOO estimator (Bang
and Tsiatis, 2000, Lin, 2000, Lin 2003) which relies on inverse probability weighting of the
observed cost function using the survival probability of censoring. Following Lin (2003), the
survival and censoring times are generated from the exponential distribution with mean m and the
uniform (0,c) distribution respectively. Maximum follow-up time is set to 10 equally spaced
intervals, (0, 10], at the end of which all survival times and cost accumulation processes are
censored. We study the combinations of (m, c)= (5,40), (5,20), (10, 40) and (10, 20) that yield
approximately 20, 30, 40 and 50% censored survival times. Additionally, we also study a (10,12)
combination that was not a part of Lin’s (2003) original design points, but that generates censoring

of about 60% typical for many long-term administrative datasets.

Costs for individual 7 in the kth interval are generated using:

Yo =| 10k =1)uf +10V; > 6 )(1; +uy;)

H(tyy <V, <t {(m+ug J(Vi—ti g ) +uf }Jeﬂ"f ,k=1,.,10;i=1,.n (15)
where ni,uki,uf{,and uif are independent random variables with the uniform (0,1) distribution for

n; and uy;, and uniform (0,5) and (0,10) distributions for uf,and uif, respectively. As Lin (2003)

describes, this data generation mechanism creates a J-shaped time patterns in costs typical of most
cost accumulation processes, especially cancer patients (Brown et al, 2002). These shapes for

different death cohorts are illustrated in Figure 2.

We set X to be a treatment indicator with 500 (= n/2) subjects in each of the two groups and

PBissetto1l. We study the coefficient on X estimated by the BTLOO-estimator for comparison to
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the results presented in Lin (2003). However, in order to compare results across estimators, we
focus on the average incremental effect of the treatment on the cost scale rather than focusing on

regression coefficients. Therefore, interest lies in the incremental effect parameter:

10

A=Y (u(X=1)~p4 (X =0)), (16)
k=1

where 1 (X)=E(y,; | X). We also study other variants of the design points used under

Simulation 1. For each estimator and data generating mechanism, we examine 1000 replicates.
Standard errors are computed from the summary statistics across the replicates. The following two
simulation designs also involve 1000 replicates of n=1000 with half in the treatment group (X=1)

and half not (X=0).

Simulation 2: Here we study a variant of the data generating process in (15) where the
effect of X is allowed to differ during the end-of-life interval (slope = f +1) compared to non-end-of-

life intervals (slope = f§):

Vii :[1(](:1) ul +I1(V; > t,) (1 +uy, )
+I(tk_1 <V1’ Stk)exi {(771 +uki)(Vi _tk—1)+“ifH eﬁ,Xi' k= 1;.., 10, i= 1,..n (17)

Comparison across alternative estimators is made based on the incremental effect parameters in

(16).

Simulation 3: Finally, we study another variant of Simulation 1, when the treatment X is
allowed to affect survival as well as the costs incurred while alive. Specifically, X is assumed to have
a 30% increase in the mean survival time, which is in line with our empirical example about the
effect of lesser differentiated grades of cancer. We let survival times be generated from an
exponential distribution of mean = m*exp(0.3*X). Otherwise, the design points for yi; are the same
as in (15). Again, comparison across alternative estimators is made based on the incremental effect

parameters in (16).

We apply both the BTLOO estimator and our proposed estimator to these three simulation
settings. The BTLOO estimator estimates 4 () using a log-link generalized linear model where
observed costs are regressed on the X and indicators for time intervals weighted by the inverse
probability of survival from censoring. The probability of survival from censoring is estimated

using a Cox proportional hazard model accounting for death. Observations from only those
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intervals where a patient is not censored for the entire interval are used for estimation. Predictions,
after turning on and off the X indicator variable, from this model are made to the time intervals and
the patients used in estimation, while estimates for other patient-intervals are held at zero.

Predictions are averaged over all patients and summed over intervals to obtain an estimate of 4.

The proposed estimator estimates () uses the three parts described in section 3 and

expressed in equation (13). We use an exponential accelerated failure time model to estimate the
probability of survival from death accounting for censoring. We use a log-link generalized linear
model where observed costs are regressed on the X, duration till the end of observation within an
interval and indicators for time intervals where patients were not observed to die (i.e. they include
intervals during which censoring occurs). Third, we use another log-link generalized linear model
where observed costs are regressed on the X, duration between start of interval and death and
indicators for time intervals for those where individuals were observed to die. Predictions, after
turning on and off the X indicator variable, from these models are made to all time intervals for
each patient. For the third model, predictions for each patient-interval were averaged over the
observed distribution of duration between start of an interval and death. Finally, predictions are

averaged over all patients and summed over all intervals to obtain an estimate of 4.

3.b. Results

Table 1 summarizes the results from our simulations. Under the Simulation 1 design, the
BTLOO estimator produces unbiased estimates of the log-scale slope parameter 3 for X. This result
conforms to what Lin had reported (2003). When the target of inference shifts to the cumulative
costs, both our proposed estimator and the BTLOO estimator are found to be unbiased. However,

the BLTOO estimator has a 4 to 11 times higher variance for the estimate of the incremental effect

of X on accumulated costs, A , the compared to our estimator. Interestingly, the variance estimates
from BTLOO decreases with increasing censoring rate, implying the important role of the survival
model for time to censoring. Variance estimates from our estimator are not affected by the degree
of censoring. Figure 2 presents the true levels of outcomes and the predicted means from both the
estimators by time intervals and levels of X for one of the design datasets (m=10, c=20). We find
both estimators produces unbiased estimates of time interval specific mean at both levels of X,
although the BTLOO estimator shows slight under-prediction at higher time intervals, where
censoring is high, for X=1. However, the differences between predictions and true values do not

reach statistical significance for any of the intervals.
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Under Simulation 2 design points, where treatment X also affects the differential costs of
dying, the results are found to be very similar to the Simulation 1 results. The estimated standard
errors from any estimator for the effect of X on cumulative costs are much higher under this design
than the previous one, more so for BTLOO estimator than our proposed estimator. The ratio of
estimated variance between BTL0O and our estimator now ranges from 4 to 17. Figure 2 presents
the true levels of outcomes and the predicted means from both the estimators by time intervals and
levels of X for one of the design datasets (m=10, c=20). The results again are very similar to that in
Simulation 1, with the BTLOO showing slight under-prediction at higher time intervals for X=1, but

none are significantly different from the true means.

Simulation 3 design points, where the treatment X has an effect on survival itself, give us
different results. Here, the covariate X affects both the rate of cost accumulation and also survival.
Here the efficiency gains from our estimator is not as much as it was under the previous scenarios.
For the design point, (m= 18*exp(0.3*X), c=20), the bias in the overall incremental effect estimator
with BTLOO does not reach statistical significance. However, when one looks at time interval-
specific BTLOO estimates of conditional mean for X=1 (Figure 2), it clear that the BTLOO estimator is
significantly under-predicting the mean costs for higher time points where there is more censoring.

This is not the case for X=0, where survival times are shorter.

In fact, for the next design point in this simulation series, where censoring is even higher,
BTLOO is found to be a biased estimator for the overall incremental effect. Our proposed estimator

appears to be unbiased in this regard across all design points.

4. Empirical Example
4.a. Data

We draw data from the linked SEER-Medicare for patients with prostate cancer. SEER is an
epidemiologic surveillance system consisting of population-based tumor registries designed to
track cancer incidence and survival in the United States. The registries collect information about all
primary cancers that a person may develop. The SEER-Medicare database consists of clinical data
collected by the SEER registries linked to claims for health services collected by Medicare for its
beneficiaries. The database contains information about the incident prostate cancer diagnosis and
treatment provided within four months of diagnosis and includes data on the characteristics of the
tumor, the demographic characteristics of the patient, and zip-code-level and census-tract-level

characteristic of patient's residence at first diagnosis.
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We restrict our analysis to 66-year and older male patients receiving a diagnosis of prostate
cancer between 1995 and 2002, and our data run from 1994 through 2004. By including data
through the end of 2004, we have follow-up data for each patient from at least 2 years up to 10
years for some patients. Each person must also have at least one year of data in Medicare before
their diagnosis so that we can assess their comorbid conditions. Thus our population includes no
one aged less than 66. Our data exclude outpatient pharmacy data because this study period

predates the introduction of Medicare Part D.

Patients enrolled in HMOs with Medicare are dropped because Medicare does not have
claims data for such participants. We also restricted patients to have eligibility for both Part A and
Part B for the first two year since diagnosis because we can uniformly apply this restriction to all
patients in our data. Beyond two years, loss of eligibility for either Part of Medicare is considered to
be a censoring event (for example, enrollees who only have Part A coverage will have missing data
for their physician services). Other restrictions include restricting the analysis to clinically
localized cancer patients who received either of three treatment post diagnosis: radical
prostatectomy, external-beam radiation therapy, or watchful waiting. We drop patient receiving a

combination of radiation and surgery.

We identify the clinical stages for each patient at diagnosis using the definitions used by
Meltzer et al (2001). According to their definitions, clinical stage A comprise of tumors that are
clinically localized and non-palpable on rectal exams; B, clinically localized but palpable and C,
palpable with evidence of local extension beyond the prostate. Cancer grade was classified as Well,

Moderate of Poor based on the Gleason Score.

The cost trajectories of patients since diagnosis are calculated with two-month intervals
until death, censoring or the end of the 10 year period. By construction, every patient is allowed to
possess 60 two-month intervals in the dataset corresponding to a 10 year period. However,
observed costs were missing for intervals beyond the death or censoring interval for a patient. We
treat all costs after death as true zeroes, while costs between censoring and death are treated as
missing. Our primary outcome was cumulative medical expenditures over 10 years. In all our
analysis, we adjust for year of diagnosis, demographics such as age, race, marital status, Charlson
co-morbidity index, and indicators for the Elixhauser co-morbid conditions both in the year
preceding diagnosis, health care expenditure quartiles in the year prior to diagnosis and zip-code
level characteristics ((income, education, and racial mix). See Table 2 for a list of the covariates and

their sample means.
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Formally, the criterion for having prostate cancer is having an ICD-0-38 diagnosis indicating
prostate cancer. 146,174 cases were provided to us by SEER / Medicare. Our exclusions on
coverage and stage of illness lead to a drop of 37 percent. This leaves us with a potential sample of

63 percent (92,494 cases). Our estimation uses a random 10 percent of these cases (N = 9,250).

Expenditures are for a two month period or any fraction thereof if the patient died or is
censored during the two month period. All inpatient (facility) charges are assigned to the period
containing the admission date. No attempt was made to spread these costs over the time spanned
by the admission or discharge date. All back-to-back hospitalizations are treated as one hospital
stay. All expenditures are Medicare allowed charges. Adjustments have been applied.

Expenditures are in nominal terms.

4.b. Estimators

We apply both a BTLOO estimator and also our proposed estimator to this data. For the
BTLOO estimator, we use a two-part model to model the zero part (with a logistic model) and the
non-zero part (log-link Gamma GLM model). The adjusted Kaplan Meier estimator for surviving
censoring is obtained using a Cox proportional hazards model. These probability estimates are used

to inverse weight the mean predictions from the two-part model.

In addition, we also apply our proposed estimator this data. Our estimator comprises of

three parts as follows:

ESTM1: An accelerated failure time model with generalized gamma regression to estimate

probability of survival from death and hazard of dying in any interval.

ESTM2: A Gamma GLM model with square-root link to estimate the cost function for

intervals where death was observed

ESTM3: A two-part model (logistic for the zero part, and an EEE model (Basu and Rathouz,
2005) for the non-zero part) to estimate the cost function for intervals where

death was not observed.

For the survival estimators for censoring (as in BTL0OO) or death (as in our model), covariate list

includes those listed in Table 2. For each of the cost estimators, in addition to these covariates in

8 International Classification of Diseases for Oncology, Third Edition.
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the specification for the linear predictor a continuous measure of time in the form of the 2-month
interval number since diagnosis, year-since-diagnosis indicators and also interaction of the year
dummies with time are also included. ESTM2 additionally contains the duration variable (eq (6)) as

a covariate.

We use the two-part model for the BTLOO and the ESTM3 part of our estimator to enhance the
robustness of the estimation. For periods of observation less than a year, here two months, medical
expenditures have the characteristic that a substantial fraction of the cases will not have any
expenditure in the two-month period. For the reminder, expenditures are quite skewed, especially
if there is an inpatient stay. We do not use least squares regression on log expenditures for any of
the estimators because of the retransformation problem in the presence of heteroscedasticity in the
cost data (Manning, 1998; Mullahy 1998). The two-part models are more robust for health
expenditure data for fixed periods (typically a year).

We perform a variety of goodness of fit tests for both estimators using costs from the observed
patient-intervals with no death or censoring. We present time-interval specific and cumulative
results on grade-specific costs for both the 2-year since diagnosis mark (since there was no
censoring till two years) and also the 10 year -since diagnosis mark. Standard errors are obtained

via 500 clustered bootstrap replicates.

4.c. Results

Descriptive statistics for various patient characteristics, stratified by grade at diagnosis are
given in Table 2. Patient diagnosed with well and moderate grade are slightly younger than those
diagnosed with poor grade. They also have slightly lower expenditures in the pre-period. Many of

the other comorbidities appear to be moderately balanced across grades.

Both the BTLOO and also our estimator pass many of the goodness of fit tests, with Pearson
correlations between raw-scale residuals and predictions of -0.03 and -0.005, respectively, and no

systematic patterns in residuals across deciles of the predictions.

The adjusted survival (from death) graph by grade is displayed in Figure 3(a). In line with
clinical knowledge, we find that better grade at diagnosis is associated with better survival.
Compared to poor grade, patients diagnosed with well grade have a 33% (95% CI: 20%, 46%) and
patients diagnosed with moderate grade have a 30% (95% CI: 23% to 37%) larger mean time to

death. Survival times for patient diagnosed with well and moderate grades are not significantly
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different from each other. Figure 3(b) illustrates the probability of “survival from censoring” in our
dataset, which is primarily used to compute the inverse probability weight for the BTLOO estimator.
Figures 3 (c) and (d) illustrate the grade-specific estimated trajectory of costs under our proposed
estimator and the BTL estimator respectively. The biggest discrepancy between these two

estimators comes during the later intervals, where censoring is considerably high.

Our proposed estimator shows a flatter trend in costs from fourth year onwards compared
to BTLOO estimator, with the costs of patient diagnosed with well or moderate grade cancer
reaching the levels of those diagnosed with poor grade from the seventh year onwards. We
attribute this to the better survival associated with well or moderate grade cancer compared to
poor grade cancer. We do not see such trends with the BTLOO estimator. In fact, the interval
specific differences in estimated mean between BTL0OO and our estimator are statistically significant
from the beginning of the third year for well and moderate grades and from the beginning of the

seventh year for poor grade cancers.

Table 3 presents the 2-year and 10-year grade-specific results. For the 2-year-since-
diagnosis mark, we do not see substantial difference (differences were statistically significant for
poor grade) between our estimator and the BLT0O0 estimator, although our estimator is slightly
more efficient. In fact estimates from our estimator are found to be more in line with the poor
grade-specific cumulative observed costs in this time period of $18,036. Both our proposed
estimator and the BTLOO estimator find significant differences in 2-year costs between moderate
and poor and also between well and poor grades; however, these differences were significantly
higher for BTLOO than ours. More interestingly, our estimator finds much of the difference in
cumulative costs in the first two years between grades is due to intensity of utilization rather than

due to survival effects, which is in line with the clinical knowledge in this area.

Since there are no censoring in this data during the first two years after diagnosis, the
discrepancies in estimates for poor grade point out to the challenges in modeling a heterogeneous
cost-accumulation process without accounting for the different parts of the distribution moving at
different paces, like what we have attempted to capture with our estimator. In fact, to further check
the overall specifications of either BTLOO or our estimator, we compare the predictions from both
the estimators as well as to the observed costs in the first two years (Figure 4). Any differences in
this period can be attributed to specification problems alone. We find that much of the difference

between estimators in the first two years is due to BTLOO over-predicting the costs on the first
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interval; but starting from the second interval there are no major systematic patterns of bias for

either estimator .

Next, we compared the grade-specific 10-years cumulative costs estimated by BTLOO and
our proposed estimator (Table 3). We find that compared to our estimator, the BTLOO estimates for
the 10-year cumulative costs produces lower estimates of cumulative costs for all grades, and
especially so for well and moderate grade that have better survival, which is in line with our
simulation results. Our estimates of the incremental costs between poor grade and well or
moderate grades are half as those of the BTLOO estimator, the differences being statistically
significant. Our estimator also finds that if we only look at the increased intensity of utilization for
patients diagnosed with poor grade, the incremental costs would have been close to what BTL0O
estimates. However, the fact that poor grade is associated with decreased survival induces cost-
savings that are highly significant. Accounting for these effects brings down the overall incremental

effects of poor grade on costs compared to well/moderate grades.

We do not find major differences in efficiency between the two estimators in this empirical
example. However, such a comparison may be unfair as with costs data the variance is often a
power function of the mean, and the BTLOO estimator produces lower (potentially biased)

estimates of the mean.

5. Conclusions.

In this paper, we have presented a method for dealing with cost data that are censored at
random, such as the type that occurs if a study ends before all the patients have died or their
episode of either illness or treatment ends. This is a common occurrence in studies that look at
individuals with chronic illnesses or illnesses that can affect the survival of patients. Our model
builds on the prior literature on censored cost analysis, particularly the work by Bang and Tsiatis
(2000) and Lin (various dates, esp. 2000 and 2003) that relies on inverse probability weighting
(IPW). In this work, we have subjected these earlier models and our own to comparisons using the
simulation design proposed by Lin (2003) augmented by some additional data generating designs
that involve situations where individuals can die within, rather than at the end of a fixed period of

observation, and where the treatment variables can also affect the likelihood of surviving.

What we find is that existing estimators based on inverse probability weighting to address

censoring can be sometimes biased (especially when censoring is large and covariates affect
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survival) and inefficient estimators for the incremental effect of treatment on costs or Average
Treatment Effects assessed on raw or actual cost scale. This last result (inefficiency) is a well

known property of [IPW approaches.

Our new estimator addresses this type of data with both censoring and deaths. At least for
the simulations that Lin (2003) and we have considered, our new approach appears to be
consistent under simulation. We plan to use a more extensive set of simulations to see if this

property holds up.

In addition to the simulation work, we have applied the Bang-Tsiatis-Lin IPW (BTL0O)
approach and our proposed estimator to data on prostate cancer survival and Medicare costs and
estimate incremental effect of cancer grade at diagnosis on costs. The results indicate that their
approach and ours generate similar results when looking a 2-year cost where there is no censoring
and the differential effects of grade on survival are small. However, when looking at the 10-year
costs, the estimated effects of grade of the cancer differ substantially across estimators. This
appears to be the result of the differential effect of grade on survival over the longer period, which
conforms to the Simulation 3 result of bias in the BTLOO approach when there is an effect of
treatment or other covariates on survival but those effects are partly masked due to heavy

censoring.

Future work developing the proposed model further and validating it with other datasets

will be quite useful.
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Table 1: Simulation results for the estimation of f and 4 using BTL and our proposed estimators

 under BTLOO- A under BTLOO- Aunder Var(BTL0O)
% m c estimator estimator our estimator /Var(Our
Estimator)
Censorin Bias SE Bias SE Bias SE
g
Simulation 1
20 40 0.0009 0.061 -0.25 2.61 -0.007 0.78 11.2
30 20 -0.0005 0.078 1.22 2.05 -0.03 0.83 6.1
40 10 40 -0.0026 0.040 -0.39 2.05 0.02 0.70 8.6
50 10 20 0.0004 0.048 -0.90 1.73 0.11 0.76 52
60 10 12 -0.0012 0.072 -2.32 1.52 0.03 0.79 3.7
Simulation 2
20 40 - - 2.28 5.79 -0.61 1.41 16.9
30 20 - - 0.48 4.38 -0.59 1.51 8.4
40 10 40 - - 1.34 3.98 -0.42 1.25 10.1
50 10 20 - - 0.21 3.12 -0.49 1.32 56
60 10 12 - - -1.89 2.99 -0.49 1.42 4.4
Simulation 3
- 5*exp(0.3X) 40 - - -0.50 2.16 1.20 0.80 7.3
- 5*xp(0.3X) 20 - - -1.20 1.70 1.22 0.84 4.1
- 10%exp(0.3X) 40 - - -1.22 1.75 1.25 0.70 6.25
- 10%exp(0.3X) 20 - - -1.81 1.58 1.25 0.70 5.1
- 10%exp(0.3X) 12 - - -3.40 1.29 1.29 0.97 1.8

Bias averaged over 1000 replicates each of n=1000. SE = standard deviation of estimates across
1000 replicates. Var(.) = SE*2.
Simulation 1: True value of 4 under the (m, c¢) = (5,40) and (5,20) mechanisms is 19.9 and under
the (10, 40), (10, 20) and (10, 12) mechanisms is 21.1.
Simulation 2: True value of 4 under the (m, ¢)= (5,40) and (5,20) mechanisms is 44.15 and under
the (10, 40), (10, 20) and (10, 12) mechanisms is 38.85.
Simulation 3: True value of 4 under the (m, c)= (5*exp(0.3X),40) and (5*exp(0.3X),20) mechanisms
is 20.3 and under the (10*exp(0.3X), 40), (10*exp(0.3X), 20) and (10*exp(0.3X), 12) mechanisms is
21.1.

Bold-face indicates significant bias at 5% level.
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Table 2 Dependent variables and covariates: Labels and sample means.

Grade Grade Grade Overall

Variables (% or Mean(sd)) Well Moderate Poor
(N=614) (N=6805) (N=1831) (N=9250)

Pre-period expenditures quintiles**
Quintile 1 27.0% 29.5% 25.9% 28.6%
Quintile 2 11.1% 11.5% 13.2% 11.8%
Quintile 3 21.5% 19.5% 21.2% 20.0%
Quintile 4 18.2% 20.9% 20.4% 20.6%
Zip-code level characteristics (2000 Census)
% Non High School grads 19.3 17.7 18.5 18.0
% High School only 25.2 25.0 25.9 25.2
% Some college 28.7 28.4 28.4 28.4
% At least 4 years College 26.7 28.8 27.2 28.3
% Blacks 8.6 10.1 10.6 10.1
% Whites 69.7 71.8 69.8 71.3
% Hispanics 16.6 14.1 13.9 14.2
Pre-period comorbidities
Valvular disease 6.2% 5.3% 5.2% 5.4%
Pulmonary circulation disease 0.2% 0.6% 0.4% 0.5%
Peripheral vascular disease 7.3% 5.7% 6.0% 5.9%
Hypertension 32.1% 31.2% 31.5% 31.3%
Paralysis 1.8% 0.9% 0.8% 1.0%
Neurological disorders 4.1% 2.2% 2.7% 2.4%
Chronic pulmonary disease 11.9% 9.7% 9.8% 9.9%
Diabetes w/ Chrn. Comp. 3.3% 2.2% 2.3% 2.3%
Hypothyroidism 5.0% 4.9% 4.8% 4.9%
Renal failure 2.1% 1.6% 1.6% 1.6%
Liver disease 0.3% 0.4% 0.7% 0.4%
Solid tumor w/o metastasis 5.2% 4.6% 5.6% 4.8%
Rheumatoid arthritis 1.5% 1.8% 1.1% 1.6%
Coagulopthy 1.1% 1.3% 1.6% 1.4%
Obesity 0.2% 0.9% 1.3% 0.9%
Weight loss 0.3% 0.8% 0.3% 0.7%
Electrolyte disorder 4.6% 4.0% 4.0% 4.1%
Chronic blood loss anemia 1.1% 0.7% 0.3% 0.7%
Deficiency anemias 8.5% 7.7% 8.5% 7.9%
Alcohol abuse 0.3% 0.6% 0.5% 0.6%
Psychoses 0.8% 0.7% 0.9% 0.7%
Depression 2.1% 1.6% 1.6% 1.7%
Other demographics & clinical conditions at diagnosis
Age 74.8 (5.8) 74.2 (5.4) 76.2 (6.4) 74.6 (5.7)
White 79.6% 82.9% 79.4% 82.0%
Black 8.8% 10.0% 11.3% 10.1%
Single 7.7% 6.8% 6.7% 6.9%
Married 67.9% 70.7% 67.7% 69.9%
Stagel cancer 0.0% 54.2% 42.2% 48.2%
Stage2 cancer 7.2% 12.4% 18.0% 13.2%

*# Quintiles calculated based on total expenditure of entire sample, before any exclusion was
applied.
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Table 3: Comparison of estimated 10 year costs by grade. Means and (Standard errors)

BTLOO estimator

Proposed estimator

2-year Costs Incremental Costs

2-year Costs

Incremental Costs

Total Incremental Costs

due to Ratet

Incremental Costs

due to Survivaltt

Well 14,594 (762)+ - 15,009 (595) -
Moderate 15,408 (243)+ 414 (803) 15,719 (234) 710 (603) 727 (598) -16 (48)
Poor 19,178 (603)+ 4,310 (606)+ 18,365 (491)+* 2,646 (435)+* 2,870 (438)+ -225 (50)+
Poor vs. Well> 4,724 (886)+ Poor vs. Well> 3,356 (688)+ * 3,600 (703)+ -244 (65)+
BTLOO estimator Proposed estimator
10-year Costs Incremental Costs 10-year Costs Total Incremental Costs Incremental Costs
Incremental Costs due to Rate” due to Survival™
Well 40,267 (5,462)+ - 54,248 (7,055) * -
Moderate 43,015 (5,416)+ 2,748 (2,405) 56,607 (6,919)+ * 2,359 (2,796) 2,927 (2390) -569 (1481)
Poor 54,163 (6,962)+ 11,148 (2,228)+ 61,602 (7,643)+ * 4,995 (1,972)+ * 11,986 (2304)+ -6,991 (1574)+
Poor vs. Well=> 13,896 (3,172)+ Poor vs. Well=> 7,354 (2,928)+ * 15,019 (3407)+ -7,666 (2088)+

Note: + indicates significant at the 5 percent level or better.

* indicates estimate significantly different from corresponding BTLOO estimate at the 5% level.
1 Holding survival constant at that of the less advanced grade.
11 Holding Rate of cost accumulation constant at that of the advanced grade.

24



Do not cite or distribute without permission

20

4| — 4-yr death cohort
— 7-yr death cohort
10-yr deathcohort

15
!

Simulated mean outcome
10

5
1

0 1 2 3 4 5 6 7 8
Year since diagnosis

Figure 1: The J-shaped cost structure for our Simulation 1 data.

10

25



Do not cite or distribute without permission

For Simulation 1, m=10, c=20

For X =1 For X=0
w | w ]
- —e— True Values - —e— True Values
—G— BTLOO Estimator —G— BTLOO Estimator
---©--- Proposed Estimator ---8--- Proposed Estimator
So =
[T [T
= =
o o
L 2
© ©
£ £
k7 ®
it} ul
5 5
o o
20 20+
= =
o A o~
2 8 10 8 10
Time Time
For Simulation 2, m=10, c=20
For X =1 For X=0
o ISE
N —&— True Values N —&— True Values
—G— BTLOO Estimator —0G— BTLOO Estimator
---©--- Proposed Estimator ---6--- Proposed Estimator
w | w4
c c
@ @
(0] (o)
= =
o o
£ 2
© ©
go | EO
7 A
u ul
5 5
o o
2 2
= =
ol | w -+
o 1 o A
2 4 6 8 10 4 6 8 10
Time Time
H H - * * —
For Simulation 3, m=10*exp(0.3*X), c=20
For X =1 For X=0
—&— True Values —&— True Values
o —0G— BTLOO Estimator o —0G— BTLO0O Estimator
---©--- Proposed Estimator ---6--- Proposed Estimator
=4 c
@ @
Q [
= =
o o
Q o
© ©
£ £
ﬁ w - m 0 o
5 5
o o
2 2
= =
o 1 o A
8 10 8 10
Time Time

Figure 2: Estimated conditional (on X) time profiles using BTLOO and proposed estimator compared

to true values.
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Figure 3: (a) Predicted survival (from death) by grade; (b) predicted survival (from censoring); (c) mean cost profiles by grade predicted

using proposed estimator; (d) mean cost profiles by grade predicted using BTL0OO estimator.
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Figure 4: Goodness of fit for proposed and the BTL0O estimators during the first 22 months after diagnosis, during which there was no

censoring by construction of the dataset.
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