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INSURANCE MARKETS WITH UNOBSERVABLE TYPES
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ABSTRACT. In two important recent papers, Finkelstein and McGarry [25] and
Finkelstein and Poterba [28] propose a new test for asymmetric information in
insurance markets that considers explicitly unobserved heterogeneity in insur-
ance demand. In this paper we propose an alternative implementation of the
Finkelstein-McGarry-Poterba test based on the identification of unobservable types
by use of finite mixture models. The actual implementation of our test follows
some recent advances on marginal modelling as applied to latent class analysis;
formal testing procedures for the null of asymmetric information and for the hy-
pothesis that private information is indeed multidimensional can be performed by
imposing restrictions on the behavior of these unobservable types. To show the
potential applicability of our approach, we look at the long term insurance market
as analyzed in Finkelstein and McGarry [25], where we also find strong evidence
for both asymmetric information and multidimensional unobserved heterogeneity.

JEL Classification Numbers D82, G22, 111
Keywords Asymmetric Information, Unobservable Types, Latent Class Analysis,
Long Term Insurance Market.

1. INTRODUCTION

The effects of asymmetric information for the efficient operation of insurance mar-
kets has been one of the most actively research topics in economics in the past thirty
years, starting from the classic Rothschild and Stiglitz [38] paper. On the other hand,
empirical research on the presence of asymmetric information in specific insurance
markets is rather less established and the evidence whether asymmetric information
exists in specific insurance markets is not yet really settled." Much empirical research
has used the so called “positive correlation test” of Chiappori and Selanié [13], which
rejects the null of absence of asymmetric information in a given insurance market
when, conditional on insurer’s characteristics used by companies to price contracts,
Date: October 23, 2008.

See e.g Barsky et al. [1], Ettner [22], Hurd et al. [32], Philipson and Becker [36], Mitchell et al.
[35], Cawley and Philipson [10], Chiappori and Salanié [13], Chiappori [11], Cardon and Hendel
[8], de Meza and Webb [19], Dionne et al. [21], Finkelstein and Poterba [26], Bernheim et al. [6],
McCarthy and Mitchell [34], Brown and Finkelstein [7], Finkelstein and Poterba [27], Cohen [14],
Cohen and Einav [15], Chiappori et al. [12], Fang et al. [23], for a small sample of the growing

empirical literature on asymmetric information in various insurance markets.
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TESTING FOR ASYMMETRIC INFORMATION 2
individuals with more insurance experience more of the insured risk. In two impor-
tant recent papers, Finkelstein and McGarry [25] and Finkelstein and Poterba [28]
(respectively FM and FP henceforth), after observing that the positive correlation
test runs into difficulties when individuals have private information not only about
their risk class but also about their risk preferences and other characteristics which
affect insurance demand, propose and implement a new test for asymmetric infor-
mation that considers explicitly unobserved heterogeneity in insurance demand. In
particular, the null hypothesis of absence of asymmetric information can be rejected
if, conditionally on insurer’s characteristics used to price insurance contracts, there
are other observable characteristics that are correlated with both insurance coverage
and ex post risk occurrence. Typical examples of observable variables which are not
used to price insurance contracts but may potentially affect both insurance choice
and risk occurrence, include, for example, wealth, occupation, and risk reducing or
increasing behavior such as preventive care and smoking. The wide applicability of
the Finkelstein-McGarry-Poterba test (henceforth called the FMP test) is witnessed
in Cutler, Finkelstein and McGarry [16] (CFM henceforth), where asymmetric infor-
mation is tested in five different insurance markets (namely life, acute private health,
annuities, long-term care, and Medigap), using smoking and drinking behavior, mor-
tality occupational risk, use of preventive care and seat belts as observables which
are not used to price insurance contracts but are good proxies for unobservable risk
attitudes and true risk class.

In this paper we propose an alternative implementation of FMP test based on the
identification of unobservable types by use of finite mixture models. In particular, we
consider using the set of observable variables which would be typically used in FMP
test as indicators for the unobservable risk attitude and true risk class which affect
both insurance choice and ex post risk occurrence. The actual implementation of
our test follows some recent advances of marginal modelling (Bergsma and Rudas [5]
and Bartolucci, Colombi and Forcina [2]) as applied to latent class analysis (Huang
and Bandeen-Roche [31], Bartolucci and Forcina [4] and Dardanoni, Forcina and
Modica [18]). These methods allow us to identify a finite number of unobservable

“types” which have heterogeneous risk attitudes and belong to different true risk
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classes; formal testing procedures for the null of asymmetric information and for the
hypothesis that private information is indeed multidimensional (as forcibly argued by
FM, FP and CFM) can then be performed by imposing restrictions on the behavior
of these unobservable types.

To show the potential applicability of our approach, we look at the long term
insurance market as analyzed in FM. Confirming FM’s results, we find that there is
strong evidence for both asymmetric information and multidimensional unobserved

heterogeneity.

2. FMP TEST FOR ASYMMETRIC INFORMATION

FM and FP consider the following model:
I'= I(CE, TayTey Ei)

0= O(CB, TayTe, 60)

where I denotes purchase of insurance and O denotes actual risk occurrence, which
are assumed functions of a vector of observable characteristics X which are used by
insurance companies to place the buyer into a risk class, R, and R. denote respec-
tively unobservable individual’s risk attitude and true risk class, and ¢;, €, denote
uncorrelated errors. The basic premise of the FMP test is that there is no asym-
metric information if R,, and R, are ignorable in the two conditional probabilities
below (we assume here that I and O are actually binary variables, but the FMP

test holds with appropriate modifications in more general cases):

Pr(I=1|x,ry,r.)=Pr(I=1]x) M
Pr(O=1]|z,r,,r.)=Pr(O=1|x)

Since R,, and R; are not directly observed, the FMP test is actually implemented
by searching for any candidate unused observed variable which proxies for either R,
or R., which we denote by Z. The FMP test is then based on the following null

hypothesis of ignorability of Z:

Pr(I=1|x,z)=Pr(I=1]x)
Pr(O=1|z,2)=Pr(O=1]z).
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3. TESTING FOR ASYMMETRIC INFORMATION WITH UNOBSERVABLE TYPES

An alternative implementation of the FMP test (1) can be obtained by using
a finite mixture model which identifies the unobservable “types” which represent
different combinations of risk attitude and true risk class. Since finite mixture mod-
els allow both the marginal distribution of the types and the distribution of the
responses conditional on the types to be unconstrained (with the only limitation
that the number of types is finite), assuming that (R,, R.) are discrete random vari-
ables, we can always rewrite (R,, R.) as a random variable U taking values in, say,
{1,...,m}, which define m unobservable heterogeneous “types”.? Thus, when no
additional structure is imposed on the distribution of the types, they can capture
the multidimensional nature of private information which is has been convincingly
stressed by FM, FP and CFM. However, as explained for example by Bartolucci and
Forcina [3], the monotonicity assumption implies that, after a suitable reordering
of the types, the conditional expectation of each response variable is an increasing
function of the types’ distribution; hence, if the monotonicity assumption holds, one
cannot exclude the presence of an unique underlying unobserved variable represent-
ing types in some increasing order.

Given the distribution of unobservable types U, equation (1) can be rewritten as

Pr(I=1|x,u)=Pr(Il=1]|x)
Pr(O=1|z,u)=Pr(O=1]x).

(3)

Now, suppose we have a set of observable indicators of risk attitude/class such as
any of the candidate unused observed variable Z, and suppose also we have k of
these indicators 71, ..., Z,. We assume that they are actually binary variables (this
restriction aims to simplify the discussion, but our analysis can be performed as
long as these indicators are discrete). Let Z denote the vector of these k indicators.
Classical latent class analysis (see e.g. the seminal paper by Goodman [29]) tries to

identify U by using the vector of binary responses Y = [I, O, Z]|, by exploiting the

2For example, if R, takes, say, three possible values describing three different attitudes towards
risk, and R, takes four possible values describing four different true risk classes, then there are
m = 12 possible unobservable “types” described by U. In practice, unobservable types which are
not sufficiently distinct in the data are actually clumped together.
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so-called local independence assumption, which states that the unobservable vari-
able U makes observed responses conditionally independent. If a variable U which
defines a set of unobservable types and makes Y conditionally independent could
be identified, then U would capture unobservable risk attitudes and classes since
knowing U would imply, say, that knowledge of any observable variable Z; would be
irrelevant for predicting insurance purchase I, ex post risk occurrence O or any other
indicator Z;, and vice versa. In other words, under local independence, responses
can be considered as observable manifestations of underlying true characteristics
and preferences.

However, classical latent class models are not useful in our specific context, and
in particular the assumption of local independence may be too restrictive for this
application. The first point to notice is that equation (3) implies that insurance
choice and risk occurrence depend not only on U but also on the set of covariates X
used by insurance companies to classify individuals in different risk classes; moreover,
it seems likely that the probability of belonging to any given unobservable type
may also depend on X. Secondly, we may want to allow some residual association
between I and O even after conditioning on the unobservable heterogeneity U. Thus,
we use recent advances in latent class analysis with discrete responses which allow
for these extensions. In particular, Huang and Bandeen-Roche [31] explain how
a discrete response finite mixture model can be identified and estimated in the
presence of covariates, under the local independence assumption, Bartolucci and
Forcina [4] extend it by allowing residual association on responses in the context of
capture/recapture models, and Dardanoni, Forcina and Modica [18] apply a model
similar to that considered in this paper to study the direct effect of parents’ schooling
on children’s scholastic achievements.

Suppose we have data on a set of k indicators for risk attitudes/classes, a vector
of covariates & which describes the variables used by insurance companies to price
insurance contracts, and the two binary responses I and O; the proposed model can

be written as a multivariate logit model with fixed effects as:
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A= ar(u) + ' B,

Ao = ao(u) +x B,

Az, =ag(u), i=1,....k

Mo(u) = ap(u) + ' By(u), u=1,...,m—1

Ao = Qo

where \;o denotes the log-odds ratio between I and O which captures the residual as-

sociation between insurance purchase and risk occurrence, and Ay (u) = log (
denote the set of consecutive logits.

Within model (4),

Pr(U=u+1)

Pr(U=u)

e the null hypothesis of absence of asymmetric information (that is, equation

2) can be tested by imposing the restriction that the fixed effects a;(u)
and aypg(u) are constant across types U. This can be implemented with a
standard LR test which has asymptotic chi-squared distribution with 2 x
(m — 1) degrees of freedom in the presence of m types;

the null hypothesis that there is a underlying unidimensional unobservable
variable U such that choices are monotonically dependent on it can be tested
by setting a system of linear inequalities as explained for example in Bar-
tolucci and Forcina [3]. Techniques of order restricted inference can be
used to show that the likelihood ratio test statistic for the monotonicity
null is asymptotically distributed as a mixture of chi-squared distributions
(see Gourieroux and Monfort [30] for a general exposition, Dardanoni and
Forcina [17] for an explanation of how the mixing weights can be calculated
by simulations, and Kodde and Palm [33] for bounds on the test distribu-

tion).

4. AN APPLICATION TO LONG-TERM CARE INSURANCE

FM study the long-term insurance market in the USA, and in particular the

relationship between insurance purchase and subsequent nursing home use. Long-

term care expenditure risk is one the greatest financial risks faced by the elderly in

US; to get a quantitative feeling of its importance, the amount of expenditure in

)
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nursing home care in 2004 was about 1.2% of the US GDP. Furthermore, as argued
by FM, it is a good market to study since it is not heavily regulated. Their data
comes from the Health and Retirement Survey (HRS); the average age of respondent
is 78, and about 11% of individuals in the sample have long-term care insurance (a
binary variable which we denote by I) in 1995; 16% of the individuals in the sample
enter a nursing home (a binary variable which we denote by NH) in the following
5 years period.

FM notice that in the sample there is negative correlation between insurance
purchase and nursing home use. They also perform the Chiappori and Salanié
test for asymmetric information, conditioning on risk classification by calculating,
by means of a standard actuarial model,® the probability of nursing home use as
estimated by insurance companies. FM perform the Chiappori and Salanié test by
using both a bivariate probit and two single equation probits, and they always find
conditional negative association. The same results are found using the subsample
which excludes the chronically ill and includes only the wealthier individuals.

As an explanation of these puzzling results, FM argue that there are two con-
flicting sources of private information, namely individual’s true risk class and risk
attitudes; individuals who are higher risk tend to both buy more insurance and use
more the nursing home, while individuals who are more risk averse tend to buy
more insurance but are less likely to use the nursing home. Therefore, two types of
people buy insurance: individuals with private information that they are high risk
and individuals with private information that they have high risk aversion. Ex post,
the former are higher risk then predicted; the latter are lower risk. In aggregate, ex
post those who buy more insurance are not higher nursing home users. In terms of
the FMP test (2), the absence of asymmetric information is formally rejected since
various unused observable proxies Z such as preventive activities, wealth or seat belt

use affect both insurance purchase and nursing home use.

3They alternatively use as controls a rich set of covariates typically used by insurance companies
to price contracts, but their results do not change significantly.



TESTING FOR ASYMMETRIC INFORMATION 8
5. ASYMMETRIC INFORMATION IN LONG-TERM CARE INSURANCE WITH

UNOBSERVABLE TYPES

We implement the test (3) by using FM dataset from the Health and Retirement
Survey as reported in table 3 of their paper (FM [25] pg. 946).* As indicators
for U we use six binary variables: Drinking (DR) which takes the value 1 if the
subject has less than three drinks per day; Smoking (SM) which takes value 1 if
the subject currently does not smoke; Seat Belt (SB) which takes value 1 if the
subject always wears seat belts; Preventive Care (PC) which takes value 1 if the
subject has taken any gender appropriate preventive care procedures in the past
year; Subjective Probability (SP) which takes value 1 if the subject believes with
positive probability that she will use a nursing home in the following 5 years; Wealth
(W E) which takes value 1 if the subject belongs to the highest wealth quartile. In
the sample 96% of respondents report no drinking problem, 77% always use seat belt,
91% do not smoke, 28% are in the top wealth quartile, 51% believe with positive
probability that they will enter a NH in the future, and 94% undertook some gender-
appropriate preventive health care procedure. As covariates X we use the insurance
company’s estimate of the probability of using the nursing home, which is calculated
by FM from a standard actuarial model. We create 10 risk categories by considering
deciles, so X is actually a vector of 9 dummies.

Parameters in model (4) are estimated by the EM algorithm; a technical appendix

discusses estimation and identification of the model.?

6. RESULTS

The first issue when dealing with finite mixture models is to determine the number
of types U. The standard approach in the literature is to use an information crite-
rion such as Akaike Information Criteria (AIC) or Schwartz’s Bayesian Information
Criteria (BIC) which penalize the likelihood for parameters’ proliferation. Calculat-
ing the AIC and BIC values for model (4) (reported in table 1 below), in this sample
we arrive at the conclusion that three types are adequate to model the unobservable

4FM’s dataset is available in the AER website. We thank FM, and the AEA for their policy of
providing data for published articles.
5We are grateful to Antonio Forcina for kindly providing the Matlab code for the estimation.
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heterogeneity. With three types, simulations (as explained in the appendix) reveal

that parameters are solidly identified.

TABLE 1. Model

2LC 3LC 4L.C
LL |-15055 | -14989 | -14987
BIC | 30481 | 30503 | 30650
AIC | 30197 | 30102 | 30133

We then test the presence of residual association of I and N H; the log-odds ratio
is equal to 0.053 with a standard error of 0.173. Thus we conclude that in this
sample there is no evidence of residual association between insurance purchase and
nursing home use, as confirmed by the LR test which has a test statistic equal to
0.079 with 1 df (p-value 0.778).

The final model we estimate has 62 parameters: 36 regression coefficients 3;,
By, By(U = 1) and B, (U = 2); 6 fixed effects a;(u) and ayy(u); 18 logits of
the conditional probabilities for the indicators; and 2 intercepts for the marginal
probability for U. Parameters estimates and their standard errors are reportedo
in Appendix B. Notice that in this simpler model without residual association we
can apply Theorem 1 in Huang and Bandeen-Roche [31] to establish parameters’
identification without resorting to simulations.

Table 2 below reports the conditional probabilities for the six indicators for the
three types, and Table 3 below shows the estimated probabilities of purchasing
insurance and using a nursing home for the ten risk classes and the three types. A
glance at the tables reveals substantial heterogenous attitudes and behaviors towards
risky activities by the three types. However, there seems to be a natural ordering
of the three types in terms of their cautiousness, such that, going from “types 1”
to “types 2”7 and then to “types 37, there is a significant increase in the probability
of using seat belts and preventive care, of refraining from smoking, and believing
that one may need a nursing home in the near future with positive probability. The
probability of eventually not using the nursing home is also increasing in U.

On the other hand, this monotonic pattern does not hold in this sample for the
drinking behavior and wealth indicators, and also for the probability of buying

insurance. The question naturally arises then whether these apparent violations
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of monotonicity are due to sampling variations, or rather to the presence of more
than one underlying unobservable variable which pull U in different directions. As
discussed above, techniques of order restricted inference can be employed to test
the monotonicity assumption; since U has three levels, the assumption that the
conditional probability of a given response is monotonically increasing in U involves
imposing two inequality constraints. The LR test statistic for the monotonicity
null is equal to 1.973, 2.301 and 6.343 respectively for the DR, W E and I. The
conservative 5% critical value (Kodde and Palm ([33], page 1246) is equal to 5.138;
thus, while violations of monotonicity in the two indicators DR and W E are small
enough that they can be assumed to be due to sampling variation, the non monotonic
pattern of insurance purchase suggests the presence of more than one underlying
unobservable variables which have contrasting effects on the decision to purchase
insurance. In particular, our results are in accord with the analysis of FM who
found insurance purchase and risk occurrence depend on private information on
both cautiousness and risk type, which then operate in offsetting directions.

A glance at table 5 reveals also that the odds of being a type 2 rather than 1
increase with the risk class used by insurance company (the vector B, (U = 1) is
increasing in X ), while the odds of being a type 3 rather than 2 individual decrease
with it (the vector B, (U = 2) is decreasing). Thus the probability of being a
given type U seem to also follow a non monotonic pattern with respect to the
risk classification by the insurance company, whereas the probability of being an
unobservable type U = 1, 2, 3 first increases and then decreases with being classified
as a high risk by the insurance company.

TABLE 2. Indicators’ conditional probabilities

DR | SM | SB | PC | SP | WE
11]0.837 | 0.627 | 0.633 | 0.825 | 0.361 | 0.189
210993 | 0.937 | 0.664 | 0.912 | 0.470 | 0.118
310978 | 0.968 | 0.893 | 0.994 | 0.564 | 0.464

U
U
U

We then turn our attention to testing the null of absence of asymmetric informa-
tion (equation 3). The LR test statistic is equal to 62.83, which is asymptotically
distributed as a chi-square with 4 degrees of freedom (p-value 0.0001); therefore

the null of absence of asymmetric information is soundly rejected in this sample.
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In particular, returning on Table 3 below, it seems that the three heterogeneous
types behave quite differently regarding to their probabilities of purchasing insur-
ance (type 3 individuals on average have almost ten times as much probability of
buying insurance than type 1’s and almost twice as much probability than type 2’s)
and their probability of future nursing home use (type 1 individuals on average have
1.7 times as much probability of using the nursing home than type 3’s, and 1.3 times

as much probability than type 2’s).

TABLE 3. Insurance and nursing home conditional probabilities

11 12 13 14 15 16 I7 18 19 110 avg.
U=1]0.099 | 0.108 | 0.090 | 0.078 | 0.114 | 0.096 | 0.096 | 0.105 | 0.076 | 0.137 | 0.096
U=2]0.025|0.027 | 0.022 | 0.019 | 0.029 | 0.024 | 0.024 | 0.026 | 0.018 | 0.035 | 0.024
U=3]0.191] 0.206 | 0.174 | 0.152 | 0.215 | 0.186 | 0.184 | 0.199 | 0.149 | 0.253 | 0.184

NH1 | NH2 | NH3 | NH4 | NH5 | NH6 | NH7 | NH8 | NH9 | NH10 | avg.
U=1]0.056| 0.080 | 0.097 | 0.120 | 0.177 | 0.184 | 0.261 | 0.383 | 0.356 | 0.498 | 0.190
U=210.041 ] 0.059 | 0.072 | 0.090 | 0.134 | 0.140 | 0.204 | 0.310 | 0.286 | 0.418 | 0.148
U=3]0.030 | 0.043 | 0.053 | 0.066 | 0.101 | 0.105 | 0.156 | 0.245 | 0.224 | 0.342 | 0.114

Thus, our results confirm the apparently puzzling “favorable selection” phenomenon
which is reported in many other empirical insurance markets investigations, which
concerns the existence of individuals who are both more likely to buy insurance
and less likely to incur risk they have bought insurance for; as eloquently argued
by FM, FP and CFM, the root of this apparent phenomenon may be precisely the
multidimensionality of private information detected above.

Finally, notice that while nursing home use is strongly correlated with the risk
class in which insurance companies put individuals (see the vector By in table 5
in Appendix B), there is no apparent relation between insurance purchase and risk
class; the LR test statistic for equality of the insurance purchase probabilities across
classes (constancy of B; in table 5 across deciles) is equal to 11.141 with 9 degrees
of freedom (p-value 0.2662). This result seems plausible since higher risk class
individuals on the one hand have higher probability of using the service which they
have bought insurance for, but on the other hand have to pay a greater insurance

premium for it.
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7. APPENDIX A: ESTIMATION AND IDENTIFICATION OF MODEL (4)

7.1. Likelihood.

7.1.1. Incomplete data (observable) likelihood. Let Y = [I, NH,DR,SM,SB, PC,
SP,W E] denote the 8 observable binary response variables employed in model (4)
and y any of the 2% possible response configuration. Let then ¢y = Pr(Y; =
Y1, ... Ys = ys), denote the corresponding cell probabilities, which may be arranged
into the 28-sized vector g lexicographically by letting the elements of y with a larger
index run faster.

Assume we have observations on Y for n individuals, and let n be the 28-sized
vector containing the observed frequency table of Y, arranged in the same lexico-

graphic order as g. The (kernel of) the log-likelihood can then be written as

L(n,q) = n'log(q).

7.1.2. Complete data (unobservable) likelihood. Recall that (u,y) denotes any of the
m-28 possible (unobservable) response configurations, and p arrays the unobservable
joint distribution of (U,Y’). Let then m be the (m - 28)-sized vector containing the
unobservable frequency table of (U,Y), arranged in the same lexicographic order as

p. The (kernel of) the complete data log-likelihood can then be written as
A(m,p) = m’ log(p).

7.2. The maximization of the complete data log-likelihood. Maximization
of the unobservable log-likelihood can be seen as a problem of incomplete data which

may be tackled by the EM algorithm (Dempster, Laird and Rubin [20]).

7.2.1. The FE Step. Since the multinomial is a member of the exponential family,
the conditional expectation involved in the E step is equivalent to computing the
posterior probability of U given the observed response configuration y, Pr(U = u |
Y) = Puy/qy, so that m(u,y) = n(y)Pr(u,y) by the expectation of the multinomial
distribution for U, where m(u, y) and n(y) denote the frequency of observations with

responses respectively given by (u,y) and y.
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7.2.2. The M step. Maximization of A with respect to the model parameters can be
implemented with the method of scoring. As explained for example in Bartolucci
and Forcina [4] and Dardanoni, Forcina and Modica [18], following the marginal
modelling approach of Bergsma and Rudas [5] and Bartolucci, Colombi and Forcina
[2], we can define an invertible and differentiable mapping from the (unobservable)
joint distribution of (U,Y") to the vector of logits described in model (4) which is

linearly linked to the model parameters. In particular,

(1) rewrite model (4) as a multivariate linear logit system
A=D(x)y

where where D(x) is a design matrix whose dependence on x reflects the
effect of the covariates on the different elements of the joint distribution, and
1) is the vector which collects the model parameters o’s and (’s;

(2) the mapping from p to A can be written in explicit form by constructing an
appropriate contrast matrix C' (whose rows have elements summing to zero)

and a marginalization matrix M (a matrix made of 1’s and 0’s) such that
A=Cln(Mp),

and Theorem 1 in Bartolucci-Colombi-Forcina [2] shows that this mapping

is invertible and differentiable for any p with strictly positive elements.

Given the mappings from p to A and X to 1, the score vector and the expected
information matrix required for the computation are then obtained by the chain

rule.

7.3. Estimation of the variance matrix. While the EM algorithm is a very ro-
bust method of estimation of the model parameters in the presence of unobservables,
it does not provide a consistent estimate of the variance matrix of the model pa-
rameters, since the expected information matrix of the complete data likelihood is
based on the assumption that m is known. Thus, using its inverse as an estimate of
the variance matrix implies that standard errors will generally be underestimated.

However, the correct information matrix may be computed from the complete data
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log-likelihood as explained for example in Bartolucci and Forcina [4] and Dardanoni,

Forcina and Modica [18].

7.4. Identifiability. Unfortunately there is no general result in the literature on
finite mixture models which can be applied to show that our general model is iden-
tifiable. Results of Rothenberg [37] and Catchpole and Morgan [9] indicate that the
model is identified whenever the Jacobian of the mapping between the observable
joint distribution g and the model parameters ) is of full rank. Following the meth-
ods suggested by Forcina [24], identifiability of model (4) can then be checked by
sampling a reasonable number of canonical parameters of the distribution of q and
checking the full rank condition of the Jacobian. Since with 10000 runs we could not
find a single instance where the rank was any close to be being deficient, we have
good practical evidence that our model is indeed identifiable for a wide range of the
parameters’ space. However, as argued above, if residual association between [ and
NH is zero, then our model becomes a special case of Huang and Bandeen-Roche

[31], and identifiability follows from their Theorem 1.
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8. APPENDIX B: PARAMETERS’ ESTIMATES

TABLE 4. Estimated intercepts of model 4

Coef. S.E.

Latent variable U

ay(U =1) 2.7257 | 0.8471

ay(U =2) -1.7163 | 0.4582
Drinking problem

apr(U =1) 1.6426 | 0.2438

apr(U = 2) 4.9505 | 1.0105

apr(U = 3) 3.7982 | 0.2688
Seat belt use

asp(U=1) 0.5449 | 0.1625

asp(U =2) 0.6814 | 0.0880

asp(U =3) 2.1290 | 0.1554
Smoking

aspy (U =1) 0.5226 | 0.2660

asp (U =2) 2.7101 | 0.2517

aspy (U =3) 3.4269 | 0.3273
Top wealth quartile

awge(U =1) -1.4527 | 0.2216

awge(U =2) -2.0110 | 0.2124

awp(U = 3) -0.1426 | 0.0923
Subjective probability to use NH

asp(U=1) -0.5674 | 0.1648

asp(U=2) -0.1200 | 0.0716

asp(U =3) 0.2610 | 0.0640
Preventive care behavior

apc(U=1) 1.5522 | 0.2028

apc(U =2) 2.3487 | 0.1312

apc(U =3) 5.2019 | 1.0637
Long term insurance

ar(U=1) -1.8347 | 0.4719

ar(U =2) -3.2967 | 0.4255

ar(U =3) -1.0792 | 0.3813
Nursing home admission

ang(U=1) -0.0056 | 0.2877

ang(U =2) -0.3281 | 0.1034

ang(U =3) -0.6534 | 0.1959

TABLE 5. Parameters estimates of risk categories deciles

Bu(U =1)
Coeff. S.E.

Bu(U =2)
Coeff. | S.E.

Br
Coeff. | S.E.

BN
Coeff. | S.E.

-3.3391 | 0.8499
-2.8484 | 0.7992
-2.7158 | 0.7986
-2.0044 | 0.7718
-1.8368 | 0.7268
-1.2754 | 0.7579
-0.5548 | 0.7709
-1.0140 | 0.7208
-0.8846 | 0.6995

© 00 O Ui Wi+~

3.2678 | 0.6587
2.9530 | 0.5499
2.8548 | 0.5384
2.4425 | 0.4683
1.9208 | 0.4384
1.9925 | 0.4344
1.4735 | 0.4175
1.4164 | 0.4197
0.9252 | 0.4169

-0.3632 | 0.3993
-0.2677 | 0.3948
-0.4749 | 0.3994
-0.6330 | 0.3959
-0.2161 | 0.3737
-0.3971 | 0.3789
-0.4051 | 0.3642
-0.3082 | 0.3608
-0.6583 | 0.3649

-2.8110 | 0.2925
-2.4320 | 0.2628
-2.2179 | 0.2527
-1.9835 | 0.2285
-1.5306 | 0.1889
-1.4799 | 0.1906
-1.0314 | 0.1632
-0.4697 | 0.1510
-0.5869 | 0.1460

Rows report the risk categories deciles. Top decile is omitted.
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