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TESTING FOR ASYMMETRIC INFORMATION IN
INSURANCE MARKETS WITH UNOBSERVABLE TYPES

VALENTINO DARDANONI AND PAOLO LI DONNI

Abstract. In two important recent papers, Finkelstein and McGarry [25] and
Finkelstein and Poterba [28] propose a new test for asymmetric information in
insurance markets that considers explicitly unobserved heterogeneity in insur-
ance demand. In this paper we propose an alternative implementation of the
Finkelstein-McGarry-Poterba test based on the identification of unobservable types
by use of finite mixture models. The actual implementation of our test follows
some recent advances on marginal modelling as applied to latent class analysis;
formal testing procedures for the null of asymmetric information and for the hy-
pothesis that private information is indeed multidimensional can be performed by
imposing restrictions on the behavior of these unobservable types. To show the
potential applicability of our approach, we look at the long term insurance market
as analyzed in Finkelstein and McGarry [25], where we also find strong evidence
for both asymmetric information and multidimensional unobserved heterogeneity.

JEL Classification Numbers D82, G22, I11
Keywords Asymmetric Information, Unobservable Types, Latent Class Analysis,
Long Term Insurance Market.

1. Introduction

The effects of asymmetric information for the efficient operation of insurance mar-

kets has been one of the most actively research topics in economics in the past thirty

years, starting from the classic Rothschild and Stiglitz [38] paper. On the other hand,

empirical research on the presence of asymmetric information in specific insurance

markets is rather less established and the evidence whether asymmetric information

exists in specific insurance markets is not yet really settled.1 Much empirical research

has used the so called “positive correlation test” of Chiappori and Selanié [13], which

rejects the null of absence of asymmetric information in a given insurance market

when, conditional on insurer’s characteristics used by companies to price contracts,

Date: October 23, 2008.
1See e.g Barsky et al. [1], Ettner [22], Hurd et al. [32], Philipson and Becker [36], Mitchell et al.
[35], Cawley and Philipson [10], Chiappori and Salanié [13], Chiappori [11], Cardon and Hendel
[8], de Meza and Webb [19], Dionne et al. [21], Finkelstein and Poterba [26], Bernheim et al. [6],
McCarthy and Mitchell [34], Brown and Finkelstein [7], Finkelstein and Poterba [27], Cohen [14],
Cohen and Einav [15], Chiappori et al. [12], Fang et al. [23], for a small sample of the growing
empirical literature on asymmetric information in various insurance markets.
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individuals with more insurance experience more of the insured risk. In two impor-

tant recent papers, Finkelstein and McGarry [25] and Finkelstein and Poterba [28]

(respectively FM and FP henceforth), after observing that the positive correlation

test runs into difficulties when individuals have private information not only about

their risk class but also about their risk preferences and other characteristics which

affect insurance demand, propose and implement a new test for asymmetric infor-

mation that considers explicitly unobserved heterogeneity in insurance demand. In

particular, the null hypothesis of absence of asymmetric information can be rejected

if, conditionally on insurer’s characteristics used to price insurance contracts, there

are other observable characteristics that are correlated with both insurance coverage

and ex post risk occurrence. Typical examples of observable variables which are not

used to price insurance contracts but may potentially affect both insurance choice

and risk occurrence, include, for example, wealth, occupation, and risk reducing or

increasing behavior such as preventive care and smoking. The wide applicability of

the Finkelstein-McGarry-Poterba test (henceforth called the FMP test) is witnessed

in Cutler, Finkelstein and McGarry [16] (CFM henceforth), where asymmetric infor-

mation is tested in five different insurance markets (namely life, acute private health,

annuities, long-term care, and Medigap), using smoking and drinking behavior, mor-

tality occupational risk, use of preventive care and seat belts as observables which

are not used to price insurance contracts but are good proxies for unobservable risk

attitudes and true risk class.

In this paper we propose an alternative implementation of FMP test based on the

identification of unobservable types by use of finite mixture models. In particular, we

consider using the set of observable variables which would be typically used in FMP

test as indicators for the unobservable risk attitude and true risk class which affect

both insurance choice and ex post risk occurrence. The actual implementation of

our test follows some recent advances of marginal modelling (Bergsma and Rudas [5]

and Bartolucci, Colombi and Forcina [2]) as applied to latent class analysis (Huang

and Bandeen-Roche [31], Bartolucci and Forcina [4] and Dardanoni, Forcina and

Modica [18]). These methods allow us to identify a finite number of unobservable

“types” which have heterogeneous risk attitudes and belong to different true risk
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classes; formal testing procedures for the null of asymmetric information and for the

hypothesis that private information is indeed multidimensional (as forcibly argued by

FM, FP and CFM) can then be performed by imposing restrictions on the behavior

of these unobservable types.

To show the potential applicability of our approach, we look at the long term

insurance market as analyzed in FM. Confirming FM’s results, we find that there is

strong evidence for both asymmetric information and multidimensional unobserved

heterogeneity.

2. FMP Test for asymmetric information

FM and FP consider the following model:

I = I(x, ra, rc, εi)

O = O(x, ra, rc, εo)

where I denotes purchase of insurance and O denotes actual risk occurrence, which

are assumed functions of a vector of observable characteristics X which are used by

insurance companies to place the buyer into a risk class, Ra and Rc denote respec-

tively unobservable individual’s risk attitude and true risk class, and εi, εo denote

uncorrelated errors. The basic premise of the FMP test is that there is no asym-

metric information if Ra, and Rc are ignorable in the two conditional probabilities

below (we assume here that I and O are actually binary variables, but the FMP

test holds with appropriate modifications in more general cases):

Pr(I = 1 | x, ra, rc) = Pr(I = 1 | x)

Pr(O = 1 | x, ra, rc) = Pr(O = 1 | x)
(1)

Since Ra, and Rt are not directly observed, the FMP test is actually implemented

by searching for any candidate unused observed variable which proxies for either Ra

or Rc, which we denote by Z. The FMP test is then based on the following null

hypothesis of ignorability of Z:

Pr(I = 1 | x, z) = Pr(I = 1 | x)

Pr(O = 1 | x, z) = Pr(O = 1 | x).
(2)
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3. Testing for asymmetric information with unobservable types

An alternative implementation of the FMP test (1) can be obtained by using

a finite mixture model which identifies the unobservable “types” which represent

different combinations of risk attitude and true risk class. Since finite mixture mod-

els allow both the marginal distribution of the types and the distribution of the

responses conditional on the types to be unconstrained (with the only limitation

that the number of types is finite), assuming that (Ra, Rc) are discrete random vari-

ables, we can always rewrite (Ra, Rc) as a random variable U taking values in, say,

{1, . . . ,m}, which define m unobservable heterogeneous “types”.2 Thus, when no

additional structure is imposed on the distribution of the types, they can capture

the multidimensional nature of private information which is has been convincingly

stressed by FM, FP and CFM. However, as explained for example by Bartolucci and

Forcina [3], the monotonicity assumption implies that, after a suitable reordering

of the types, the conditional expectation of each response variable is an increasing

function of the types’ distribution; hence, if the monotonicity assumption holds, one

cannot exclude the presence of an unique underlying unobserved variable represent-

ing types in some increasing order.

Given the distribution of unobservable types U , equation (1) can be rewritten as

Pr(I = 1 | x, u) = Pr(I = 1 | x)

Pr(O = 1 | x, u) = Pr(O = 1 | x).
(3)

Now, suppose we have a set of observable indicators of risk attitude/class such as

any of the candidate unused observed variable Z, and suppose also we have k of

these indicators Z1, . . . , Zk. We assume that they are actually binary variables (this

restriction aims to simplify the discussion, but our analysis can be performed as

long as these indicators are discrete). Let Z denote the vector of these k indicators.

Classical latent class analysis (see e.g. the seminal paper by Goodman [29]) tries to

identify U by using the vector of binary responses Y = [I, O,Z], by exploiting the

2For example, if Ra takes, say, three possible values describing three different attitudes towards
risk, and Rc takes four possible values describing four different true risk classes, then there are
m = 12 possible unobservable “types” described by U . In practice, unobservable types which are
not sufficiently distinct in the data are actually clumped together.
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so-called local independence assumption, which states that the unobservable vari-

able U makes observed responses conditionally independent. If a variable U which

defines a set of unobservable types and makes Y conditionally independent could

be identified, then U would capture unobservable risk attitudes and classes since

knowing U would imply, say, that knowledge of any observable variable Zi would be

irrelevant for predicting insurance purchase I, ex post risk occurrence O or any other

indicator Zj, and vice versa. In other words, under local independence, responses

can be considered as observable manifestations of underlying true characteristics

and preferences.

However, classical latent class models are not useful in our specific context, and

in particular the assumption of local independence may be too restrictive for this

application. The first point to notice is that equation (3) implies that insurance

choice and risk occurrence depend not only on U but also on the set of covariates X

used by insurance companies to classify individuals in different risk classes; moreover,

it seems likely that the probability of belonging to any given unobservable type

may also depend on X. Secondly, we may want to allow some residual association

between I and O even after conditioning on the unobservable heterogeneity U . Thus,

we use recent advances in latent class analysis with discrete responses which allow

for these extensions. In particular, Huang and Bandeen-Roche [31] explain how

a discrete response finite mixture model can be identified and estimated in the

presence of covariates, under the local independence assumption, Bartolucci and

Forcina [4] extend it by allowing residual association on responses in the context of

capture/recapture models, and Dardanoni, Forcina and Modica [18] apply a model

similar to that considered in this paper to study the direct effect of parents’ schooling

on children’s scholastic achievements.

Suppose we have data on a set of k indicators for risk attitudes/classes, a vector

of covariates x which describes the variables used by insurance companies to price

insurance contracts, and the two binary responses I and O; the proposed model can

be written as a multivariate logit model with fixed effects as:
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λI = αI(u) + x
′
βI

λO = αO(u) + x
′
βO

λZi
= αZi

(u), i = 1, . . . , k

λU(u) = αU(u) + x
′
βU(u), u = 1, . . . ,m− 1

λIO = αIO

(4)

where λIO denotes the log-odds ratio between I and O which captures the residual as-

sociation between insurance purchase and risk occurrence, and λU(u) = log
(Pr(U=u+1)

Pr(U=u)

)
denote the set of consecutive logits.

Within model (4),

• the null hypothesis of absence of asymmetric information (that is, equation

2) can be tested by imposing the restriction that the fixed effects aI(u)

and aNH(u) are constant across types U . This can be implemented with a

standard LR test which has asymptotic chi-squared distribution with 2 ×

(m− 1) degrees of freedom in the presence of m types;

• the null hypothesis that there is a underlying unidimensional unobservable

variable U such that choices are monotonically dependent on it can be tested

by setting a system of linear inequalities as explained for example in Bar-

tolucci and Forcina [3]. Techniques of order restricted inference can be

used to show that the likelihood ratio test statistic for the monotonicity

null is asymptotically distributed as a mixture of chi-squared distributions

(see Gourieroux and Monfort [30] for a general exposition, Dardanoni and

Forcina [17] for an explanation of how the mixing weights can be calculated

by simulations, and Kodde and Palm [33] for bounds on the test distribu-

tion).

4. An application to long-term care insurance

FM study the long-term insurance market in the USA, and in particular the

relationship between insurance purchase and subsequent nursing home use. Long-

term care expenditure risk is one the greatest financial risks faced by the elderly in

US; to get a quantitative feeling of its importance, the amount of expenditure in
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nursing home care in 2004 was about 1.2% of the US GDP. Furthermore, as argued

by FM, it is a good market to study since it is not heavily regulated. Their data

comes from the Health and Retirement Survey (HRS); the average age of respondent

is 78, and about 11% of individuals in the sample have long-term care insurance (a

binary variable which we denote by I) in 1995; 16% of the individuals in the sample

enter a nursing home (a binary variable which we denote by NH) in the following

5 years period.

FM notice that in the sample there is negative correlation between insurance

purchase and nursing home use. They also perform the Chiappori and Salanié

test for asymmetric information, conditioning on risk classification by calculating,

by means of a standard actuarial model,3 the probability of nursing home use as

estimated by insurance companies. FM perform the Chiappori and Salanié test by

using both a bivariate probit and two single equation probits, and they always find

conditional negative association. The same results are found using the subsample

which excludes the chronically ill and includes only the wealthier individuals.

As an explanation of these puzzling results, FM argue that there are two con-

flicting sources of private information, namely individual’s true risk class and risk

attitudes; individuals who are higher risk tend to both buy more insurance and use

more the nursing home, while individuals who are more risk averse tend to buy

more insurance but are less likely to use the nursing home. Therefore, two types of

people buy insurance: individuals with private information that they are high risk

and individuals with private information that they have high risk aversion. Ex post,

the former are higher risk then predicted; the latter are lower risk. In aggregate, ex

post those who buy more insurance are not higher nursing home users. In terms of

the FMP test (2), the absence of asymmetric information is formally rejected since

various unused observable proxies Z such as preventive activities, wealth or seat belt

use affect both insurance purchase and nursing home use.

3They alternatively use as controls a rich set of covariates typically used by insurance companies
to price contracts, but their results do not change significantly.
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5. Asymmetric information in long-term care insurance with

unobservable types

We implement the test (3) by using FM dataset from the Health and Retirement

Survey as reported in table 3 of their paper (FM [25] pg. 946).4 As indicators

for U we use six binary variables: Drinking (DR) which takes the value 1 if the

subject has less than three drinks per day; Smoking (SM) which takes value 1 if

the subject currently does not smoke; Seat Belt (SB) which takes value 1 if the

subject always wears seat belts; Preventive Care (PC) which takes value 1 if the

subject has taken any gender appropriate preventive care procedures in the past

year; Subjective Probability (SP ) which takes value 1 if the subject believes with

positive probability that she will use a nursing home in the following 5 years; Wealth

(WE) which takes value 1 if the subject belongs to the highest wealth quartile. In

the sample 96% of respondents report no drinking problem, 77% always use seat belt,

91% do not smoke, 28% are in the top wealth quartile, 51% believe with positive

probability that they will enter a NH in the future, and 94% undertook some gender-

appropriate preventive health care procedure. As covariates X we use the insurance

company’s estimate of the probability of using the nursing home, which is calculated

by FM from a standard actuarial model. We create 10 risk categories by considering

deciles, so X is actually a vector of 9 dummies.

Parameters in model (4) are estimated by the EM algorithm; a technical appendix

discusses estimation and identification of the model.5

6. Results

The first issue when dealing with finite mixture models is to determine the number

of types U . The standard approach in the literature is to use an information crite-

rion such as Akaike Information Criteria (AIC) or Schwartz’s Bayesian Information

Criteria (BIC) which penalize the likelihood for parameters’ proliferation. Calculat-

ing the AIC and BIC values for model (4) (reported in table 1 below), in this sample

we arrive at the conclusion that three types are adequate to model the unobservable

4FM’s dataset is available in the AER website. We thank FM, and the AEA for their policy of
providing data for published articles.
5We are grateful to Antonio Forcina for kindly providing the Matlab code for the estimation.
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heterogeneity. With three types, simulations (as explained in the appendix) reveal

that parameters are solidly identified.

Table 1. Model
2LC 3LC 4LC

LL -15055 -14989 -14987
BIC 30481 30503 30650
AIC 30197 30102 30133

We then test the presence of residual association of I and NH; the log-odds ratio

is equal to 0.053 with a standard error of 0.173. Thus we conclude that in this

sample there is no evidence of residual association between insurance purchase and

nursing home use, as confirmed by the LR test which has a test statistic equal to

0.079 with 1 df (p-value 0.778).

The final model we estimate has 62 parameters: 36 regression coefficients βI ,

βNH , βU(U = 1) and βU(U = 2); 6 fixed effects aI(u) and aNH(u); 18 logits of

the conditional probabilities for the indicators; and 2 intercepts for the marginal

probability for U . Parameters estimates and their standard errors are reportedo

in Appendix B. Notice that in this simpler model without residual association we

can apply Theorem 1 in Huang and Bandeen-Roche [31] to establish parameters’

identification without resorting to simulations.

Table 2 below reports the conditional probabilities for the six indicators for the

three types, and Table 3 below shows the estimated probabilities of purchasing

insurance and using a nursing home for the ten risk classes and the three types. A

glance at the tables reveals substantial heterogenous attitudes and behaviors towards

risky activities by the three types. However, there seems to be a natural ordering

of the three types in terms of their cautiousness, such that, going from “types 1”

to “types 2” and then to “types 3”, there is a significant increase in the probability

of using seat belts and preventive care, of refraining from smoking, and believing

that one may need a nursing home in the near future with positive probability. The

probability of eventually not using the nursing home is also increasing in U .

On the other hand, this monotonic pattern does not hold in this sample for the

drinking behavior and wealth indicators, and also for the probability of buying

insurance. The question naturally arises then whether these apparent violations
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of monotonicity are due to sampling variations, or rather to the presence of more

than one underlying unobservable variable which pull U in different directions. As

discussed above, techniques of order restricted inference can be employed to test

the monotonicity assumption; since U has three levels, the assumption that the

conditional probability of a given response is monotonically increasing in U involves

imposing two inequality constraints. The LR test statistic for the monotonicity

null is equal to 1.973, 2.301 and 6.343 respectively for the DR, WE and I. The

conservative 5% critical value (Kodde and Palm ([33], page 1246) is equal to 5.138;

thus, while violations of monotonicity in the two indicators DR and WE are small

enough that they can be assumed to be due to sampling variation, the non monotonic

pattern of insurance purchase suggests the presence of more than one underlying

unobservable variables which have contrasting effects on the decision to purchase

insurance. In particular, our results are in accord with the analysis of FM who

found insurance purchase and risk occurrence depend on private information on

both cautiousness and risk type, which then operate in offsetting directions.

A glance at table 5 reveals also that the odds of being a type 2 rather than 1

increase with the risk class used by insurance company (the vector βU(U = 1) is

increasing in X), while the odds of being a type 3 rather than 2 individual decrease

with it (the vector βU(U = 2) is decreasing). Thus the probability of being a

given type U seem to also follow a non monotonic pattern with respect to the

risk classification by the insurance company, whereas the probability of being an

unobservable type U = 1, 2, 3 first increases and then decreases with being classified

as a high risk by the insurance company.

Table 2. Indicators’ conditional probabilities
DR SM SB PC SP WE

U = 1 0.837 0.627 0.633 0.825 0.361 0.189
U = 2 0.993 0.937 0.664 0.912 0.470 0.118
U = 3 0.978 0.968 0.893 0.994 0.564 0.464

We then turn our attention to testing the null of absence of asymmetric informa-

tion (equation 3). The LR test statistic is equal to 62.83, which is asymptotically

distributed as a chi-square with 4 degrees of freedom (p-value 0.0001); therefore

the null of absence of asymmetric information is soundly rejected in this sample.
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In particular, returning on Table 3 below, it seems that the three heterogeneous

types behave quite differently regarding to their probabilities of purchasing insur-

ance (type 3 individuals on average have almost ten times as much probability of

buying insurance than type 1’s and almost twice as much probability than type 2’s)

and their probability of future nursing home use (type 1 individuals on average have

1.7 times as much probability of using the nursing home than type 3’s, and 1.3 times

as much probability than type 2’s).

Table 3. Insurance and nursing home conditional probabilities
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 avg.

U = 1 0.099 0.108 0.090 0.078 0.114 0.096 0.096 0.105 0.076 0.137 0.096
U = 2 0.025 0.027 0.022 0.019 0.029 0.024 0.024 0.026 0.018 0.035 0.024
U = 3 0.191 0.206 0.174 0.152 0.215 0.186 0.184 0.199 0.149 0.253 0.184

NH1 NH2 NH3 NH4 NH5 NH6 NH7 NH8 NH9 NH10 avg.
U = 1 0.056 0.080 0.097 0.120 0.177 0.184 0.261 0.383 0.356 0.498 0.190
U = 2 0.041 0.059 0.072 0.090 0.134 0.140 0.204 0.310 0.286 0.418 0.148
U = 3 0.030 0.043 0.053 0.066 0.101 0.105 0.156 0.245 0.224 0.342 0.114

Thus, our results confirm the apparently puzzling “favorable selection” phenomenon

which is reported in many other empirical insurance markets investigations, which

concerns the existence of individuals who are both more likely to buy insurance

and less likely to incur risk they have bought insurance for; as eloquently argued

by FM, FP and CFM, the root of this apparent phenomenon may be precisely the

multidimensionality of private information detected above.

Finally, notice that while nursing home use is strongly correlated with the risk

class in which insurance companies put individuals (see the vector βNH in table 5

in Appendix B), there is no apparent relation between insurance purchase and risk

class; the LR test statistic for equality of the insurance purchase probabilities across

classes (constancy of βI in table 5 across deciles) is equal to 11.141 with 9 degrees

of freedom (p-value 0.2662). This result seems plausible since higher risk class

individuals on the one hand have higher probability of using the service which they

have bought insurance for, but on the other hand have to pay a greater insurance

premium for it.
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7. Appendix A: Estimation and Identification of Model (4)

7.1. Likelihood.

7.1.1. Incomplete data (observable) likelihood. Let Y = [I,NH,DR, SM, SB, PC,

SP,WE] denote the 8 observable binary response variables employed in model (4)

and y any of the 28 possible response configuration. Let then qy = Pr(Y1 =

y1, . . . Y8 = y8), denote the corresponding cell probabilities, which may be arranged

into the 28-sized vector q lexicographically by letting the elements of y with a larger

index run faster.

Assume we have observations on Y for n individuals, and let n be the 28-sized

vector containing the observed frequency table of Y , arranged in the same lexico-

graphic order as q. The (kernel of) the log-likelihood can then be written as

L(n, q) = n
′
log(q).

7.1.2. Complete data (unobservable) likelihood. Recall that (u,y) denotes any of the

m·28 possible (unobservable) response configurations, and p arrays the unobservable

joint distribution of (U,Y ). Let then m be the (m · 28)-sized vector containing the

unobservable frequency table of (U,Y ), arranged in the same lexicographic order as

p. The (kernel of) the complete data log-likelihood can then be written as

Λ(m,p) = m
′
log(p).

7.2. The maximization of the complete data log-likelihood. Maximization

of the unobservable log-likelihood can be seen as a problem of incomplete data which

may be tackled by the EM algorithm (Dempster, Laird and Rubin [20]).

7.2.1. The E Step. Since the multinomial is a member of the exponential family,

the conditional expectation involved in the E step is equivalent to computing the

posterior probability of U given the observed response configuration y, Pr(U = u |

y) = pu,y/qy, so that m(u,y) = n(y)Pr(u,y) by the expectation of the multinomial

distribution for U , where m(u,y) and n(y) denote the frequency of observations with

responses respectively given by (u,y) and y.
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7.2.2. The M step. Maximization of Λ with respect to the model parameters can be

implemented with the method of scoring. As explained for example in Bartolucci

and Forcina [4] and Dardanoni, Forcina and Modica [18], following the marginal

modelling approach of Bergsma and Rudas [5] and Bartolucci, Colombi and Forcina

[2], we can define an invertible and differentiable mapping from the (unobservable)

joint distribution of (U,Y ) to the vector of logits described in model (4) which is

linearly linked to the model parameters. In particular,

(1) rewrite model (4) as a multivariate linear logit system

λ = D(x)ψ

where where D(x) is a design matrix whose dependence on x reflects the

effect of the covariates on the different elements of the joint distribution, and

ψ is the vector which collects the model parameters α’s and β’s;

(2) the mapping from p to λ can be written in explicit form by constructing an

appropriate contrast matrix C (whose rows have elements summing to zero)

and a marginalization matrix M (a matrix made of 1’s and 0’s) such that

λ = C ln(Mp),

and Theorem 1 in Bartolucci–Colombi–Forcina [2] shows that this mapping

is invertible and differentiable for any p with strictly positive elements.

Given the mappings from p to λ and λ to ψ, the score vector and the expected

information matrix required for the computation are then obtained by the chain

rule.

7.3. Estimation of the variance matrix. While the EM algorithm is a very ro-

bust method of estimation of the model parameters in the presence of unobservables,

it does not provide a consistent estimate of the variance matrix of the model pa-

rameters, since the expected information matrix of the complete data likelihood is

based on the assumption that m is known. Thus, using its inverse as an estimate of

the variance matrix implies that standard errors will generally be underestimated.

However, the correct information matrix may be computed from the complete data
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log-likelihood as explained for example in Bartolucci and Forcina [4] and Dardanoni,

Forcina and Modica [18].

7.4. Identifiability. Unfortunately there is no general result in the literature on

finite mixture models which can be applied to show that our general model is iden-

tifiable. Results of Rothenberg [37] and Catchpole and Morgan [9] indicate that the

model is identified whenever the Jacobian of the mapping between the observable

joint distribution q and the model parameters ψ is of full rank. Following the meth-

ods suggested by Forcina [24], identifiability of model (4) can then be checked by

sampling a reasonable number of canonical parameters of the distribution of q and

checking the full rank condition of the Jacobian. Since with 10000 runs we could not

find a single instance where the rank was any close to be being deficient, we have

good practical evidence that our model is indeed identifiable for a wide range of the

parameters’ space. However, as argued above, if residual association between I and

NH is zero, then our model becomes a special case of Huang and Bandeen-Roche

[31], and identifiability follows from their Theorem 1.
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8. Appendix B: Parameters’ estimates

Table 4. Estimated intercepts of model 4
Coef. S.E.

Latent variable U
αU (U = 1) 2.7257 0.8471
αU (U = 2) -1.7163 0.4582

Drinking problem
αDR(U = 1) 1.6426 0.2438
αDR(U = 2) 4.9505 1.0105
αDR(U = 3) 3.7982 0.2688

Seat belt use
αSB(U = 1) 0.5449 0.1625
αSB(U = 2) 0.6814 0.0880
αSB(U = 3) 2.1290 0.1554

Smoking
αSM (U = 1) 0.5226 0.2660
αSM (U = 2) 2.7101 0.2517
αSM (U = 3) 3.4269 0.3273

Top wealth quartile
αWE(U = 1) -1.4527 0.2216
αWE(U = 2) -2.0110 0.2124
αWE(U = 3) -0.1426 0.0923

Subjective probability to use NH
αSP (U = 1) -0.5674 0.1648
αSP (U = 2) -0.1200 0.0716
αSP (U = 3) 0.2610 0.0640

Preventive care behavior
αPC(U = 1) 1.5522 0.2028
αPC(U = 2) 2.3487 0.1312
αPC(U = 3) 5.2019 1.0637

Long term insurance
αI(U = 1) -1.8347 0.4719
αI(U = 2) -3.2967 0.4255
αI(U = 3) -1.0792 0.3813

Nursing home admission
αNH(U = 1) -0.0056 0.2877
αNH(U = 2) -0.3281 0.1034
αNH(U = 3) -0.6534 0.1959

Table 5. Parameters estimates of risk categories deciles
βU (U = 1) βU (U = 2) βI βNH

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.
1 -3.3391 0.8499 3.2678 0.6587 -0.3632 0.3993 -2.8110 0.2925
2 -2.8484 0.7992 2.9530 0.5499 -0.2677 0.3948 -2.4320 0.2628
3 -2.7158 0.7986 2.8548 0.5384 -0.4749 0.3994 -2.2179 0.2527
4 -2.0044 0.7718 2.4425 0.4683 -0.6330 0.3959 -1.9835 0.2285
5 -1.8368 0.7268 1.9208 0.4384 -0.2161 0.3737 -1.5306 0.1889
6 -1.2754 0.7579 1.9925 0.4344 -0.3971 0.3789 -1.4799 0.1906
7 -0.5548 0.7709 1.4735 0.4175 -0.4051 0.3642 -1.0314 0.1632
8 -1.0140 0.7208 1.4164 0.4197 -0.3082 0.3608 -0.4697 0.1510
9 -0.8846 0.6995 0.9252 0.4169 -0.6583 0.3649 -0.5869 0.1460
Rows report the risk categories deciles. Top decile is omitted.
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