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Abstract

This paper uses French food-expenditure data to examine the e¤ect of
the local prices of 23 food product categories on the distribution of Body
Mass Index (BMI) in a sample of French adults. A dynamic choice model
using standard assumptions in Physiology is developed. It is shown that
the slope of the price-BMI relationship is a¤ected by the individual�s Phys-
ical Activity Level (PAL). When the latter is unobserved, identi�cation
of price e¤ects at conditional quantiles of the BMI distribution requires
quantile independence between PAL and the covariates, especially income.
Using quantile regressions, unconditional BMI distributions can then be
simulated for various price policies. In the preferred scenario, increasing
the price of soft drinks, breaded proteins, deserts and pastries, snacks
and ready-meals by 10%, and reducing the price of fruit and vegetables
in brine by 10% would decrease the prevalence of overweight and obesity
by 24% and 33% respectively. The fall in health care expenditures would
represente up to 1.39% of total health care spendings in 2004.

�I am grateful to Christine Boizot-Szantai for research assistance, to Olivier Allais, Ar-
naud Basdevant, Andrew Clark, Pierre Dubois, Sébastien Lecocq, David Madden and Anne-
Laure Samson for discussions and suggestions, and to seminar participants at the 2005 EAAE
Congress (Copenhagen), INRA-IDEI (Toulouse), INRA-GAEL (Grenoble), the York Seminar
in Health Econometrics, INRA-EC (Blois), JESF 2007 (Lille), SFER conference 2007 (Paris),
the Erasmus School of Economics (Rotterdam), AUHE seminar (Leeds), and the 17th Euro-
pean Workshop on Health Economics and Econometrics (Coimbra, 2008) for helpful comments
on various versions of this paper.
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1 Introduction

In 2002, 37:5% of French adults were overweight and 9:4% were obese, compared

to �gures of 29:7% and 5:8% respectively in 1990 (OECD Health Data, 2005).1

These trends have become a major public health concern, as re�ected in the goal

of the National Plan for Nutrition and Health (PNNS 2006-2010) to reduce the

prevalence of adult obesity by 20%. In this perspective, this paper asks whether

appropriate food price policies may help to attain this public health objective.2

The mechanism underlying the food price / body weight relationship is well

known. When food prices are lower, ingesting food calories becomes cheaper,

and calorie intake is likely to rise. Body weight then increases to restore the

metabolic equilibrium between calorie intake and calorie expenditure. Cutler et

al. (2003) note that the full price of calorie intake has fallen over the past forty

years, as the cost of primary food products and food preparation have declined.

Technical progress has been biased in favour of energy-dense food. As a result,

the cost of a healthy and well-balanced diet is now much higher than that of

an energy-dense diet (Drewnowski and Darmon, 2004). In France, for instance,

long-run time series clearly reveal a fall in the price of vegetables processed

with cheap additives (sugars and fats) relative to the price of vegetables in

brine (Combris et al., 2006). This suggests that taxing food calories to rise

their price may change trends in overweight and obesity.

However, the main economic rationale for taxation would not be any public

health goal, but rather the existence of externalities. For instance, the medical

cost of obesity was about 2:6 billion Euros in 2002 and 3:6 billion Euros in 2006

(Emery et al., 2007; IGF-IGAS, 2008). Taxing food would further help solve the

ex ante moral hazard problem that arises from the inability of Social Security

to charge individuals fairly (Strnad, 2005). In this perspective the consumer is

held responsible for his/her health, and the primary goal of the tax is to raise

revenue. A smaller elasticity of food demand (and therefore of body weight)

may then be desirable (Chouinard et al., 2007).

Public health concerns and economics can be reconciled when we consider

less classic normative goals, for instance correcting the "internalities" that en-

sue from rationality failures, or from a Senian standpoint, making healthy food
1According to the World Health Organisation�s international standards, a Body Mass Index

(BMI: weight in kg divided by height squared in meters) over 25 signals overweight. Beyond
30, the individual is obese.

2Perhaps surprisingly, while public health authorities remain cautious about price policies,
French consumer associations have taken a �rm position in favour of a tax on snacks, carbo-
hydrated drinks and confectionery (Cf. the lobbying campaign by the federation of consumer
associations "UFC Que Choisir?" in favour of a nutritional VAT, www.quechoisir.org). In the
U.S., consumer associations have traditionally been opposed to taxes (Sheu, 2006), while price
interventions have long been advocated by the public health sector (see for instance Brownell
K., 1994, "Get slim with higher taxes", New York Times, 15/12/1994, A29.).
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products (typically fruit and vegetables) more a¤ordable, in order to help con-

sumers to adjust their food habits. Here, the environment is held responsible, to

some extent, not the consumer. The point of the policy is to change behaviour,

which is feasible only if the elasticity of calorie demand is high enough, and

taxes and subsidies are transmitted to consumer prices.

A tax on calories may not be very e¢ cient, as monitoring costs would be

substantial - the recipes of food producers change constantly -, and human en-

ergy requirements are heterogenous (Leicester and Windmeijer, 2004). As such,

considering taxes or subsidies for speci�c product categories is more interesting.

Taxes on confectionery, carbohydrated drinks or snacks already exist in a num-

ber of U.S. states, although not for nutritional reasons (Jacobson and Brownell,

2000). Beyond these products, if the policy objective is to shift the BMI dis-

tribution to the left, then all energy-dense products might be covered a priori

by a tax: soft drinks as well as foie gras, whatever their cultural legitimacy. As

such, I here try to identify the e¤ects of the prices of 23 food product categories,

which cover the entire diet, on the BMI distribution of French adults. Given any

normative objective, the results may provide clues for the choice of a relevant

tax base.3

Empirical work on the price-BMI relationship is relatively scarce. Lak-

dawalla and Philipson (2002) use regional variations in food taxes in the US

to estimate the role of food prices in the rise of obesity. Holding BMI and the

socio-demographic composition of the population constant, they �nd that the

fall in supply price resulted in a 0.72 unit increase in BMI between 1981 and

1994, representing 41% of the growth in BMI over this period. Sturm et Datar

(2005) present evidence that lower fruits and vegetables price predict smaller

increase in body weight between the kindergarten and the third grade for Amer-

ican children. Asfaw (2006) relies on a single cross-section of a household survey

to study the relationship between the prices of nine food groups and average

BMI in Egyptian women. He �nds, as expected, signi�cant negative e¤ects for

energy-dense products, and positive e¤ects for less dense products. Using seven

repeated cross-sections of the Monitoring The Future survey (1997-2003), Powell

et al. (2007) report positive, albeit not signi�cant, e¤ects of the price of fruits

and vegetables on the BMI of American adolescents. The current paper also

uses repeated cross-sections and spatial price variation to identify the price-BMI

relationship, but improves on previous work in three ways. First, the prices of

all food product categories are considered, therefore controlling the pattern of

3By working at a relatively disaggregated level, I want to identify a feasible price inter-
vention, since opposition from numerous pressure groups would be encountered. Ideally, the
tax base has to be not so wide as to produce sizeable coalitions of opponents and to override
collective representations of food products�healthiness, but not so narrow as to be ine¢ cient.
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substitution between products. Second, food prices are carefully constructed so

as to capture only supply-driven price variations. Third, the identi�cation of

price e¤ects when individuals�Physical Activity Levels (PAL) are not observed

is extensively discussed.

I employ data from the French TNS WorldPanel household survey. This

data set provides socio-demographic information at the household level, and

household scanner data of food-at-home expenditures throughout the year. The

BMI of all household members was self-reported annually between 2002 and

2005; we focus here on adults. One challenge posed by the use of scanner

data is that they do not provide truly exogenous prices, but rather unit values

computed by dividing expenditures by quantities. Unit values are endogenous,

as they re�ect households� tastes for quality, which are unobserved and may

be correlated with BMI. Empirical inference here relies on the spatial price

variations that are generated by the peculiar spatial structure of the French retail

market. Using assumptions widely-used in consumption economics, I construct

exogenous local price indices that capture these variations.

A linear dynamic equation, which links body weight at time t + 1 to body

weight at time t, prices and income, is derived from a theoretical model that

brings together standard assumptions from Physiology and Economics. The

key prediction is that the coe¢ cients on the right-hand side (RHS) variables

depend structurally on the PAL. Since the latter is unobserved, there is slope

heterogeneity in the price-BMI relationship. Identi�cation then requires some

form of independence between PAL and the RHS variables. Since independence

between PAL and body weight at time t � 1 is not credible, and given that
individual body weight shows little time variance in the data, it is eventually

assumed that body weight is at a stationary level. Price and income elasticities

of the whole BMI distribution can then be estimated by quantile regressions, as

long as PAL is quantile independent of the RHS variables. The price e¤ects are

estimated separately for men and women.

I then simulate the impact of several scenarii of price policy on the uncon-

ditional BMI distribution. In my preferred scenario, increasing the prices of

non alcoholic beverages (other than water), pastries, ready-meals and snacks

by 10%, and reducing the prices of fruit and vegetables in brine by 10% would

reduce the prevalence of overweight and obesity by 24% and 33%, and the med-

ical cost of obesity by 960 to 2133 million Euros. However, these results should

be read cautiously, as the standard errors of the elasticities are large and there

is some fragility in the quantile estimates.

Section 2 presents the data. Section 3 explains in detail how prices are con-
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structed. Section 4 sets up the theoretical framework, and Section 5 discusses

identi�cation issues. Section 6 reports the main results and discusses the sta-

tistical limits of the analysis. Section 7 simulates the impact of several price

scenarios, and Section 8 concludes.

2 Data

I use �ve waves of data drawn from the TNS French household panel survey

(2001-2005). The data set has several speci�c features that to an extent limit

the empirical analysis. Each year, up to 8000 households are observed. Each

household leaves the panel after four years, during which all purchases with

a barcode are recorded.4 Additional information is provided on the products�

labelled characteristics. For instance, the fat content of cheese is speci�ed,

but not the calorie content of a ready-meal. For purchases of products without

barcodes (e.g. fresh meat bought at the butcher), the panel is split into two sub-

panels. The �rst sub-panel is dedicated to fresh meat and �sh, and the second

to fresh fruit and vegetables. Hence, information on household purchases is not

exhaustive. Individual food consumption and food-away-from-home intake are

not observed.

The causal structural chain that connects prices to BMI is as follows. First,

households and/or individuals buy products for food-at-home or food-away-

from-home consumption. Food prices play a role at this stage. Second, pur-

chases for food-at-home are shared between household members. A large part

is consumed, and the remainder is wasted. It is not possible to recover indi-

vidual consumption from household purchases for food-at-home without strong

statistical assumptions and without ignoring food-away-from-home.5 Third, in-

dividual consumption is converted into calories. Obviously, the structure of the

TNS data set does not allow us to identify the structural chain which links prices

to household purchases, individual consumption, calories and ultimately weight.

As a consequence, this paper focusses directly on the relationship between food

prices and BMI.

2.1 Sample selection

The starting sample (Sample 1: N = 21407 individual-year observations) con-

sists of observations without missing values, and for which it was possible to

assign food prices. I also drop observations in the �rst and 99th percentiles of

the BMI distribution for robustness. Descriptive statistics for all variables are

4The barcodes themselves (Universal Product Codes) are not provided with the data.
5One attempt to do so is Bonnet et al. (2007).

5



presented in Appendix B, Table B3. These statistics, as are all those in the

paper, were adjusted for yearly sampling weights at the household level.6

2.2 Body Mass Index

From 2002 to 2005, the BMIs of all household members were self-reported. I am

not able to correct for declaration biases, as correction equations that are valid

for the whole population are not available.7 While overweight and obesity are

probably underestimated, this may be less of a concern here than in the OECD

Health Data (2005). According to the latter, there were 9:4% of obese adults

in France in 2002. In Sample 1, the corresponding �gure is 10:4%. The sample

prevalence of overweight is 44:6% as against 37:5% in the OECD data.

The left side of Figure B1 in Appendix B plots the distribution of the BMI

in Sample 1. This distribution is not Gaussian according to standard statistical

tests. Skewness is strongly positive, since the distribution has an elongated

right tail. Applying a logarithmic transformation does not eliminate skewness.

Empirical modelling takes this issue seriously by using quantile regressions.

Last, for 86:5% of those individuals who can be followed over two consecutive

years (14576 transitions are observed), body weight remains stable (see Table

B1). This stability will be exploited in the econometric analysis.

2.3 23 product categories

Purchases are �rst classi�ed into food products, whose de�nition takes into

account nutritional information that is labelled, and therefore available to the

consumer. For instance, there is a distinction between mid-fat Brie cheese (fat

content between 30 and 59%) and full-fat Brie cheese (fat content over 60%).

Likewise, I distinguish diet/light sodas from standard ones. Overall, there are

more than 350 food products.

Food products are then sorted into 23 product categories, for which I want

to construct exogenous prices: mineral water, alcohol, soft drinks, vegetables in

brine, fruit in brine, processed vegetables, processed fruit, cereals, meat in brine

and eggs, seafood in brine, processed seafood, cooked meat, breaded proteins,

yoghurt and fresh uncured cheese, cheese, milk, animal fats and margarine,

oils, sugar and sweets, pastries and desserts, sweet and fatty snacks including

6These weights are rescaled to sum to the yearly number of observations, and therefore
account for their relative representativity.

7Body weight is measured with errors that can be decomposed into two parts. First, there
are deliberate declaration biases. It has been found in a company cohort of French middle-aged
subjects that weight is systematically underestimated and height is systematically overesti-
mated, leading to an underestimation of BMI that is larger for women (-0.44 kg/m2) than
for men (-0.29 kg/m2). Overweight status, age, education and occupation are signi�cantly
correlated with this declaration bias (Niedhammer et al., 2000). Second, there are errors due
to rounding to the nearest integer value, heaping and digit preferences.
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breakfast cereals, salty and fatty snacks, and ready-meals. Each category is

made up of between 1 and 77 food products. Appendix B, Table B2, provides

more details on the food categories with some examples.

This classi�cation is intended to depict collective representations of food

products� healthiness, as any taxation policy will require some support from

public opinion. This concern, as well as advice from health professionals, leads

me to distinguish between breaded meat and �shes, and cooked meat and meat

in brine, but also fruit or vegetables in brine (even canned or frozen) from

fruit and vegetables that are prepared with additives, such as fats or syrups.

Some food products are not classi�ed in their "natural" category, when their

nutritional quality may have been profundly altered by the production process.

For example, breakfast cereals are considered as sweet and fatty snacks, and

not as cereals. Olives fall in the "salty and fatty snacks" category rather than

in the "fresh fruits" category.

Section 3 hereafter explains how I construct local prices for these 23 cate-

gories.

2.4 Control variables

A number of economic, social and demographic potential confounders will be

controlled for. Household income is measured over 18 intervals. I use the mean

of each interval to construct a continuous proxy. Households in the highest

category (over 7000 Euros a month) are dropped. Income is equivalenced and

de�ated by the yearly Consumer Price Index provided by the National Statis-

tical O¢ ce (INSEE) for households, according to their position in the income

distribution (reference: 2004 Euros). Unit values were also de�ated by this

CPI before being used for the construction of the price indices in the next sec-

tion. The regressions will control for home-production of fruit and vegetables

(FRUITSORVEG). A dummy (MEALPLANNER) indicates if the individual is

responsible for household food expenditure, as the meal planner may be bet-

ter able to control her/his weight through food choices if s/he is not prone to

impulse buying.

Other control variables are: gender, household structure, education (six qual-

i�cation levels, since education renders health production through food choices

more e¢ cient). A quadratic trend in age will be included, as well as a dummy

crossed with gender which indicates recent pregnancy/birth in the household

(BABYWOMEN and BABYMAN). Last, regional and time di¤erences in tastes

are controlled for with a set of dummies for region (which groups together sev-

eral "departements"), the type of residential area, and the calendar year. Hence,

price e¤ects are identi�ed by local deviations from the regional taste e¤ects, as
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is usually the case in estimation of food demand systems.

3 The construction of local food prices

By dividing, for each household and for any given food product, yearly ex-

penditure by the quantity purchased, a household-speci�c unit value can be

constructed. Unfortunately, unit values are not exogenous, as they also re�ect

households�tastes for quality. We can imagine that households with higher av-

erage BMIs are more likely to buy, in a given food category, products that are

more energy-dense, and the latter have generally lower unit values. To construct

exogenous prices from unit values, I �rst suppose that the law of one price holds

at the level of spatio-temporal clusters c (following Deaton, 1988). They are

de�ned as follows: two households belong to the same cluster if their purchases

are observed over the same calendar year t, and they live in the same or adjacent

"departement" (roughly the size of a US county), and the same or similar type

of residential area.8 This paper therefore relies on spatial and time variations

in prices to identify the price-BMI relationship.

A number of authors then construct cluster-speci�c prices by computing

cluster-averages of unit values (see for instance Asfaw, 2006). However, this

requires the undesirable assumption that the distribution of tastes be similar

across clusters, so that between-cluster di¤erences in average unit values re�ect

only di¤erences in supply prices. I therefore implement a second approach,

which involves two steps. First, household paasche price indices at the level of

food categories are constructed from unit values computed for food products.

Second, following Cox and Wohlgenant (1986), for each food category, I regress

the price index on observable household characteristics that are likely to capture

quality e¤ects, and a set of cluster �xed e¤ects. The latter represent my measure

of local prices.

3.1 Procedure

3.1.1 Food categories as Hicks aggregates

The data set provides the quantities qhclj , and unit values �
hc
lj associated with the

yearly expenditure of household h in cluster c on food product j in category l.

Each food product aggregates items of di¤erent qualities, which are unobserved.

8There are 94 departements in Metropolitan France (Corsica is not covered by the sur-
vey), and each departement has between two and nine neighbours. There are eight types of
residential area, from "rural" to "urban units with more than 20000 inhabitants (excluding
Greater Paris)" and "Greater Paris". These residential area are ordered according to their
size so that it is easy to de�ne closeness. For instance, in a given year t, a household living
in a urban unit of between 2000 and 4999 inhabitants is close to households in the same or
adjacent departements who live in urban units of between 5000 and 9999 residents or in rural
areas. These belong to the same cluster c.
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Following Deaton (1988), I assume that the relative prices of items within each

product category l are �xed everywhere. Hence, product categories are treated

as Hicks aggregates. As such, if �!p l is the vector of unobserved prices for items
in product category l, there exists a scalar �cl such that

�!p l = �cl�!p 0l , where
�!p 0l

is the relative-price structure. �cl a linear homogeneous price level for category

l in cluster c, and di¤erences in �cl between clusters re�ect spatial and time

heterogeneity in supply prices. The goal here is to construct a measure of �cl .
9

Let �!p lj and �!p 0lj be vectors extracted from
�!p l and �!p 0l that collect the prices

of all di¤erent qualities of food product j, and �!q hcj the corresponding vector

of unobserved quantities purchased by household h. The average unit value of

food product j in category l for household h is:

�hclj =
�!p lj :�!q hclj
�!
1 :�!q hclj

= �cl

�!p 0jl:
�!q hclj

�!
1 :�!q hclj

(1)

where �hc;0lj =
�!p 0lj :

�!q hclj�!
1 :�!q hclj

can be considered as a quality index (Deaton, 1988), and
�!
1 :�!q hclj = qhclj .

3.1.2 Local Paasche price indices

In order to weight the unit values by the household�s structure of consump-

tion, local Paasche indices are computed at the level of each category for each

household:

Phcl =

PJl
j=1 q

hc
lj �

hc
ljPJl

j=1 q
hc
lj �

0
lj

(2)

where Jl is the number of food products in l and �0lj is a reference unit value

for food product j. Here, the reference unit values are average unit values for

purchases made in 2004 in Paris and surrounding departements and, accordingly,

the price levels in this cluster are normalised, i.e. �0l = 1.

3.1.3 Adjusting prices for quality e¤ects

Using (1) and (2):

ln
�
Phcl

�
= ln(�cl ) + ln

0@ PJl
j=1 q

hc
lj �

hc;0
ljPJl

j=1 q
hc
lj E

�
�h

0c;0
lj jh0 2 fparis; 2004g

�
1A

| {z }
�hcl

(3)

9The treatment of product categories as Hicks aggregates may seem approximate, but is
quite standard in consumption economics.
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where �hcl is a quality index for category l. If food products were perfectly

homogenous in quality, then �hcl = 1, and Phcl would identify �cl . However,

although the classi�cation of food purchases was constructed so as to de�ne

homogenous food products, a certain amount of heterogeneity may still remain.

Following Cox and Wohlgenant (1986), a widely-used method is then to specify

�hcl as a function of a vector of observable variables Zhc and an error-term e�hcl :
ln(�hcl ) = �lZ

hc + e�hcl (4)

implying:

ln
�
Phcl

�
= ln(�cl ) + �lZ

hc + e�hcl (5)

�l is estimated by an OLS regression of ln
�
Phcl

�
on Zhc after a within-cluster

transformation of (5). Then, ln(�cl ) is identi�ed by computing the cluster mean

of the residuals:

\ln(�cl ) = E
�
ln
�
Phcl

�
� b�lZhc jh 2 c	 (6)

This will be my price index for product category l. It is (up to an additive con-

stant) an unbiased measure of ln(�cl ) as long as E
ne�hcl jh 2 co = 0: the average

value of unobservable factors that a¤ect quality choices must not systematically

di¤er between clusters. This is my second key assumption.10

The estimation of the quality e¤ect in (5) basically control for the following

variables: real equivalenced income; education, age and occupation of the meal

planner; household structure; self-production of fruits and vegetables; region of

residence; ownership of a micro-wave and a freezer, and the size of the latter.

The quality index �hcl depends on quantities qhclj purchased by the household,

and the latter are functions of household income and supply prices.11 My third

important assumption is that variations in quality induced by variations in

supply-prices can be proxied by variables that describe the local structure of the

retail market. The latter are constructed from exhaustive yearly geocoded data

on hypermarkets and supermarkets. After several tests, the most interesting

10 It is possible, for instance, that ethnicity is correlated with quality choice (through cultural
foodways), BMI (through gene expression), and that the racial mix in some clusters depart
signi�cantly from the national average (in the suburbs of big cities for instance). If we used
U.S. data, this would produce a downward bias on the price e¤ects. However, the literature has
provided no evidence for France that, controlling for observable factors, ethnicity is correlated
with the di¤erence between "true prices" and unit values.
11The structural approach to quality, quantity and prices proposed by Crawford et al.

(2003) produces an equation for unit values that is similar to (5), with ln
�P

qhclj

�
as an

explicit control variables. In prelimiary regressions, I tried to introduce this variable without
success, because it has to be instrumented and the instruments they propose (see their section
3.1.) are weak.
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results are obtained with a single indicator: the surface (in m2) of supermarkets

and hypermarkets in a radius of 20 km around the city of residence.12 Since

having a car potentially expand the choice set for a given market structure, I

also introduce a dummy for car ownership.

The regression results show that unit values always depend positively on

income (with elasticities between 0.065 for fresh fruits and 0.21 for sea products

in brine). The characteristics of the meal planner, the local retail market and

the region of residence also have some in�uences. In the end, the estimated

price indices di¤er strongly from the average unit values.

3.2 Comments

3.2.1 Source of price variations

Descriptive statistics show that, in the estimation sample, between-individual

standard deviations of prices are slightly higher than within-time standard de-

viations, so that the identi�cation of price e¤ects will rely more on spatial than

time variation in prices (see Table B4 in Appendix B). There are also very few

outlying values, in the sense that the maxima and minima are generally close

to the means � two standard deviations.
A key question is whether the variance is produced by actual variations in

supply prices. There is an ongoing debate over the level of retail prices in France,

as compared to other EU countries. A number of reports have emphasised that

appropriate zoning regulations would bene�t consumers, by introducing more

competition in local markets and thus lowering prices (see inter alia, Canivet,

2004). Descriptive work has shown that the structure of retail distribution is

largely characterised by a lack of spatial competition. In about 60% of the 630

consumption areas, a single national retail group has more than 25% of the

market share, with the second �rm lying at least 15 points behind (ASTEROP,

2008). Analysis of the price of a well-de�ned consumer basket con�rms that

there are signi�cant spatial variations in price, even for supermarkets belonging

to the same retail group.13 As a result, I suppose that the variance in food

prices is largely due to the structure of the food retail market

12 I tried for instance to distinguish between the surface in hard-discount and the surface in
standard stores, but both variables were highly collinear.
13See the study by the consumer association "UFC Que-Choisir?", published in the magazine

Que Choisir?, 455, January 2008. As an illustration, compared to the national average, the
price of a basket of national-brand products bought in a store owned by the retailing group
Carrefour is more expensive in the 14th district of Marseilles (south-east of France, +2.5%)
and Drancy (near Paris, +0.6%), and cheaper in the 8th district of Marseilles (-3.5%) and
Lille (North of France, -0.1%).
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3.2.2 Other remarks

A number of comments are in order. First, there are potentially 3008 clusters for

the analysis (94 departements times 8 types of residential area times four years).

Clusters with less than 25 households were dropped from the sample for greater

precision, and household sampling weights were used everywhere. Second, some

indices can be computed in one sub-panel only. These prices are then imputed

to individuals in the other sub-panel, by matching on the variables that identify

clusters. Third, expenditures on food away-from-home are not observed and,

therefore, their prices can not be constructed. A number of papers have found

empirical evidence of the role of the food-away-from-home sector in the U.S.

(Chou et al., 2004; Rashad et al., 2006, Powell et al., 2007). Since the prices

of food-at-home are likely to be positively correlated with the prices of food

away-from-home, the elasticities may be biased away from zero.

4 The food price - BMI relationship: Frame-
work.

4.1 Physical activity and the food price-BMI relationship

For Physiology, body weight is an adjustment variable in the balance equation

between calorie intake and expenditure. Therefore, relative trends in the full

price of intake and expenditure may explain trends in the prevalence of over-

weight and obesity. As outlined in the introduction, trends in food prices are

now well documented. However, evidence on calorie expenditure is scarce and

mixed. Cutler et al. (2003) note that, in the developed world, the majority

of the shift away from highly-active jobs occurred in the 1960s and 1970s, be-

fore the major rise in obesity. However, using US microdata, Lakdawalla and

Philipson (2006) uncover empirical evidence of a relationship between the fall

in job-related exercise and the increase in BMI over 1982-2000. There has also

been an increase in leisure-time physical exercise, which concerns essentially the

better-educated (Sturm, 2004).

To my knowledge, previous work has not investigated in depth how physical

activity moderates the impact of changes in food prices. More precisely, it seems

to be generally admitted that the e¤ect of the latter and the former on body

weight are separable. However, this assumption does not generally hold, if one

is willing to fully consider the consequences of the energy-balance equation.

I now de�ne more precisely this equation. IntakesK are produced exclusively

by food consumption while, following the Physiology literature, expenditures are

expressed as a multiple E (> 1) of the Basal Metabolic Rate (BMR), where
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E is a normalised index for Physical Activity Level (PAL, see AFSSA, 2001).

Instantaneous changes in body weightW at time � are described by a di¤erential

equation:

_W� = 
 [K� � E�BMR� ] (7)

where 
 is a constant for the conversion of calories into Kgs per time unit � .

The World Health Organisation recommends specifying the BMR as a linear

function of weight:

BMR� = �+ �W� (8)

where the parameters � and � depend on age and gender (UNU/WHO/FAO,

2004). For any well-de�ned physical activity (e.g. walking one hour at a speed

of 3km/h), calorie expenditures E�BMR� increase with body weight

The rational consumer then chooses, under a budget constraint, the con-

sumption basket that maximises the hedonic pleasure derived from food intake,

while taking into account its potential impact on future well-being through

changes in body weight, as shown in equation (7). In this context, Appendix

A presents a model of the consumer�s weight-control problem that combines

standard assumptions from rational-choice theory and the above assumptions

from Physiology. One important limit of the model is that PAL is supposed to

be pre-determined.14 However, letting the PAL appear explicitly in the model

is su¢ cient to show that physical expenditure a¤ects the slope of the price-BMI

relationship.

To capture the intuition behind this result, consider two naive individuals

with, initially, the same preferences, budget, environment and body weight.

They di¤er only by their PALs because, for example, they are in di¤erent jobs.

Then, if PALs do not enter the utility function, price changes a¤ect their calorie

intakes similarly. However, the body weight of the individual with the higher

PAL will be less a¤ected, because s/he burns a greater fraction of any calories

ingested. The �ow of kilograms, as described by equation (7), will be lower,

and so will be the change in body weight. I now propose an expression for the

14While this assumption is likely to hold for work- and commuting-related energy expendi-
tures, this may not be the case for leisure-time physical activity. A recent general population
survey on the health behaviour of the French ("Enquête Conditions de Vie des Ménages", IN-
SEE, 2001) shows that 69.1% of the population do not exercise at least once a week. Only 5.8%
exercise explicitly to slim. The barriers to exercise are taste (36.9%), lack of time (31.9%), im-
pairments to health (21.7%), and "other reasons" (9.4%), which may include prices. Regarding
the latter, access to community facilities in France is heavily subsidised and the prevalence
of local physical activity facilities does not notably di¤er between low- and high-income areas
(Martin-Houssart and Tabard, 2002). Hence, endogenising the choice of leisure-time physical
activity would essentially require us to take the consumer�s time constraint into account.
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price-BMI relationship that is derived from Appendix A�s model, and which

provides a starting point for the empirical work.

4.2 Speci�cation of the price-BMI relationship

Proposition 1 If, as an approximation, the consumer�s indirect utility is quadratic,
then body weights at time t+ 1 and t are linked by the following relationship:

Wt+1 =Wt�(Et) + [1� �(Et)] �(pt; It; Et) (9)

where �(Et) is a conservation factor, and �(pt; It; Et) is a linear function of

food prices pt and income It, and can be written as:

�(pt; It; Et) =

PL
l=1 �l ln(plt) + �I ln(It)� Et�0

� ln (�(Et))
(10)

Appendix A shows that depreciation is greater for more active individuals (�

falls as E rises). It is smaller when the marginal e¤ect of body weight on optimal

calorie intake increases. �(pt; It; Et) is the stationary weight that would pertain

in the absence of shocks to prices, income and PAL. This stationary equilibrium

is stable as long as the marginal e¤ect of body weight on calorie intake is lower

than its marginal e¤ect on calorie expenditures.

The coe¢ cients �l and �I depend on preference parameters, while �0 also

depends on the physiological parameter � in equation (8). The fact that the PAL

a¤ects the slope of the price-BMI relationship is not due to the parameterisation

of utility. On the contrary, and logically, assuming that PALs and prices do

not interact in the production of body weight would impose strong restrictions

on the form of the optimal level of calorie intake and, ultimately, individual

preferences.

Equations (9) and (10) specify how body weight is a¤ected by prices and

income, but not body mass index at time t, BMIt. We must therefore divide

each side of the equation by H2 = height2 (in meters squared) to obtain a

speci�cation for BMIt:

BMIt+1 = �(Et)BMIt+ [1� �(Et)]
�
LP
l=1

�l
� ln(�(Et))P

�
lt +

�I
� ln(�(Et))I

�
t +

Et�0
ln(�(Et))

1
H2

�
where P �lt =

ln(plt)
H2 and I�t =

ln(It)
H2 are log-prices and log-income adjusted for

height-squared. Following Section 3, the prices ln(plt) will be measured by
\ln(�cl ).
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The e¤ect of prices on BMI cannot be identi�ed without further assump-

tions regarding the level of physical activity: there is slope heterogeneity in the

relationship between the RHS variables and current body weight. As Et is un-

observed, it will be denoted eEt for the sake of clarity in the remainder of the
paper. I further adopt the following more compact notations:

For X = l; I, ��X
� eEt�= �X

� ln(�( eE)) ; �X

� eEt�= h1� �( eEt)i ��X � eEt�
��0

� eEt� =
eE�0

ln(�( eE)) ; �0

� eEt�= h1� �( eEt)i ��0 � eEt�
4.3 Price e¤ects

A priori, raising the price of all food items should decrease calorie intake, and

therefore shifts the body weight distribution to the left. It is therefore unsur-

prising to �nd a negative relationship between BMI and aggregate food prices.

But, when there are many food groups, as shown by Schroeter et al. (2008) or

Auld and Powell (2008), the e¤ect of a change in the price of one food group

depends on the own- and cross-price elasticities of consumption, and on their

relative energy densities (see Appendix A for a formal argument).

To illustrate this point, consider an increase in the price of some high-calorie

products (e.g. snacks), but not all energy-dense products (e.g. pastries). Imag-

ine that individuals substitute the former by the latter, and that the cross-price

elasticity is strongly positive, while the own-price elasticity is fairly small. Then

it could be the case that the fall in calories provided by snacks may be more

than compensated by an increase in calories provided by pastries.

The estimation results will therefore depend on the choice of the nomencla-

ture for classifying and aggregating food products. The more the energy-dense

products are grouped together in a single category (including cereals, oil, sugar

and sweets, most ready-meals and snacks, meat products, alcohol etc), the more

likely it is that a signi�cant negative e¤ect of price on BMI will be obtained.

However, this does not necessarily identify a feasible price intervention, since

opposition from numerous pressure groups would be encountered. Ideally, we

want to identify a tax base that is not so wide as to produce sizeable coali-

tions of opponents and to override collective representations of food products�

healthiness, but not so narrow as to be ine¢ cient.

5 Econometric modelling

This section �rst discusses model identi�cation. This is not possible without

assuming independence of PAL and BMI, which is obviously not credible. How-

ever, seeing that, for most people, body weight is stable over two consecutive
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years, I focus on the price-BMI relationship at the stationary equilibrium. The

latter is identi�ed only if we assume some form of independence between PAL,

on the one hand, and the covariates on the other, and especially income. Quan-

tile regression techniques can then be applied to estimate the stationary model

(11) in the subsample of individuals at a stationary equilibrium.

5.1 Identi�cation

5.1.1 Identi�cation of the dynamic model

Since quantile regression techniques for dynamic models have not yet been de-

veloped, I here discuss only the identi�cation of the econometric counterpart of

(9) for the conditional mean. If we assume conditional mean independence be-

tween eEt and fBMIt; P �lt; I�t ;Hg, then taking the conditional mean with respect
to P �lt , I

�
t , H and BMIt yields:

E (BMIt+1jP �lt; I�t ;H) = E
h
�( eEt)iBMIt + LX

l=1

E
h
�l

� eEt�i ln(P �lt)
+E

h
�I

� eEt�i ln(I) +E h�0 � eEt�i 1

H2

and average dynamic price e¤ects E
�
�l

� eEt��can be identi�ed. How credible
is this identifying restriction? Although PAL is probably not correlated with

food prices15 , independence between PAL and income is less obvious, and related

evidence is scarce due to a lack of data. Descriptive statistics for Europe show

that leisure-time PALs are on average signi�cantly lower in the �rst quartile of

the income distribution, and do not di¤er over the remaining quartiles (Rütten

and Abu-Omar, 2004). In developed countries, the gradient between PAL and

SES is fairly �at, at least for men. In lower social classes, on-the-job physical

activity is more important and often o¤sets the de�cit in leisure-time physical

activity. Even when individuals are unemployed, they tend to walk more because

they use public transportation rather than cars. For women, on-the-job activity

may not be more demanding in lower social classes, so that the SES gradient

in PAL is rather positive. But the social gradient in PAL is weak or even

insigni�cant when SES is measured by income rather than education or social

15A recent general population survey on the health behaviour of the French ("Enquête Con-
ditions de Vie des Ménages", INSEE, 2001) shows that 69.1% of the population do not exercise
at least once a week. Only 5.8% exercise explicitly to slim. The barriers to exercise are taste
(36.9%), lack of time (31.9%), impairments to health (21.7%), and "other reasons" (9.4%),
which may include prices. Regarding the latter, access to community facilities in France is
heavily subsidised and the prevalence of local physical activity facilities does not notably di¤er
between low- and high-income areas (Martin-Houssart and Tabard, 2002). Introduction of a
time constraint may perhaps change this conclusion.
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class, and when we consider both work and leisure-time PAL (Dowler, 2001;

IARC, 2002; Gidlow et al., 2006)..

Nevertheless, while independence may indeed be credible for PAL and in-

come, the same is very unlikely for eEt and BMIt. The dynamic model has
random coe¢ cients correlated with at least one right-hand side variable. In

this case, the estimation of average elasticities is not trivial, as shown by Heck-

man and Vytlacil (1998) and Wooldridge (2005). Although this estimation is

potentially feasible, it is left for future research.16

5.1.2 Identi�cation of the stationary price-BMI relationship

Dynamic price e¤ects are not trivially identi�ed. However, for most individuals,

self-reported body weight is stable between t and t + 1 (see Section 2.1.). In

the model, stability implies that body weight is at a stationary equilibrium.

Hence, we consider the subsample of individuals for whom Wt+1 = Wt. This

is denoted Sample 2, and the descriptive statistics in Table B3 shows that the

related socio-demographic characteristics do not di¤er from those of Sample 1.

Equation (9) then implies:

BMIt+1 =
LX
l=1

��l

� eEt�P �lt + ��I � eEt� I�t + ��0 � eEt� 1

H2
(11)

Conditional mean e¤ects Taking the conditional mean with respect to P �lt,

I�t and H, we have:

E (BMIt+1jP �lt; I�t ;H)=
LP
l=1

E
h
��l

� eEt�i ln (pl)+E h��I � eEt�i ln (I)+E h��0 � eEt�i 1
H2

as long as conditional mean independence between eEt and fP �lt; I�t ;Hg holds. A
simple OLS estimator will then produce unbiased estimates of the average price

e¤ects.

Conditional mean regressions have at least two drawbacks. First, they are

not robust to outliers, e.g. individuals with very high or low BMI (although

the distribution was trimmed). Second, the BMI distribution is not Gaussian.

Hence, price elasticities of the conditional mean may not accurately characterise

changes in the conditional BMI distribution in response to price interventions,

16More speci�cally, following Wooldridge, we need to instrument BMIt by a set of variables
Q such that : (i) Q is strongly correlated with BMIt ; (ii) Q only a¤ects BMIt+1 through
BMIt ; (iii) eEt is mean-independent of Q, conditional on income, prices, and the set of control
variables Z ; (iv) the covariance between BMIt and eEt does not depend on fQ;Zg. Were
slopes to be homogenous, after di¤erentiation of the equation , we would typically instrument
�BMIt by lags of BMIt, which satisfy conditions (i) and (ii). However, it is not clear that
conditions (iii) and (iv) would hold
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especially for those who are in the right-hand tail, which is the most interesting

for public health. I here follow a number of papers in the �eld, by using quantile

regressions to obtain a more complete picture (see, inter alia, Kan et Tsaï, 2004,

Lakdawalla and Philipson, 2006, and Auld and Powell, 2008).

Quantile e¤ects Assuming quantile independence between eEt and fP �lt; I�t ;Hg,
i.e. that the conditional quantile � of eEt, Q� � eEtjP �lt; I�t ;H�, is independent of
fP �lt; I�t ;Hg, the conditional quantile � of BMIt+1 is:

Q� (BMIt+1jP �lt; I�t ;H) =
LX
l=1

��l (�)P
�
lt + �

�
I(�)I

�
t + �

�
0(�)

1

H2
(12)

Not only do quantile regressions o¤er a number of statistical advantages over

OLS, but expression (12) for the conditional quantile is also a natural by-product

of the theoretical model, since it fully takes slope heterogeneity into account.

However, identi�cation of quantile treatment e¤ects requires quantile indepen-

dence between unobserved physical expenditures and income, which is stronger

than conditional mean independence.

Comment: stationarity and measurement errors The apparent stability

of BMI over time may partly result from measurement error. Rounding to the

nearest integer implies that changes in body weight must at least exceed 1

kg to be systematically measured. Beyond "conscious" reporting bias, most

individual yearly changes in W are likely to remain undetected, because the

disequilibrium between intake and expenditure has to be permanent and greater

than 30� 40 kCal/day in order to produce a weight gain of 1 kg over a year.17

Measurement errors are usually thought to be benign when they only concern

the dependent variable, but here the structural model is dynamic in essence.

As such, observed body weight may be stable while actual body weight is not,

and measurement errors are likely to produce the standard attenuation bias, i.e.

the true price elasticities are actually larger than those that will be estimated

below. In addition, rounding errors are not Gaussian, which is a problem for

OLS but not for quantile regressions.

To counterbalance this point, it is worth noting that empirical longitudinal

observations by physiologists have shown that individual body weight variance

17More precisely, using calibrated data for energy balance, it can be shown that a disequi-
librium of 50 kCal/day for a 30-year old male carpenter, and 39 kCal/day for an o¢ ce worker
of the same sex and age, is required to produce a weight gain of 1 kg over a year. Albeit
seemingly modest, this represents more than three times the average yearly increase in calorie
intake observed between 1961 and 2002 according to FAO statistics: the per capita calorie
intake computed by the FAO using food-supply data was 3654 kCal/day in 2002, as against
3194 in 1961. Although food spoilage has probably increased over the same period, these
�gures suggest that the average yearly increase in daily calorie intakes was about 11 kCal.
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is generally very small over periods of several weeks to several years. There are

strong biological and cognitive control mechanisms that prevent body weight

from moving away from its habitual (and de facto stationary) level (see Harris,

1990, Cabanac, 2001, and Herman and Polivy, 2003). In economic terms, it is

as if consumers face substantial marginal adjustment costs when they want to

change their eating habits. Hence, stability of body weight over several years

may simply mean that consumers are at an equilibrium that remains stable in

the absence of major shocks. In this context, self-reported body weight should

be interpreted as a habitual or reference body weight rather than an imperfect

measure of "true" body weight.

5.2 Estimation techniques

5.2.1 Conditional mean regressions

The general econometric speci�cation associated with (11) is:

BMIt+1 =
LX
l=1

��l P
�
lt + �II

�
t + �

�
0

1

H2
+ ��0ZZ +e��it (13)

This includes the set of control variables Z described in Section 2 above, and

an i.i.d. error term e��it.
This stationary equation will be estimated assuming away persistent idiosyn-

cratic heterogeneity.18The elasticities will be computed at the sample median of

the explanatory variables. Let �� = f��l , ��I , ��0, ��Zg and X = fP �lt; I�t ; 1=H2; Zg,
then the "stationary" elasticity can be computed as:

"̂�BMIpl
=

b��l
H2

50 � b��0X50

where X
50
is the sample median of vector Xi.

5.2.2 Conditional quantile regressions

The conditional quantile that will be estimated is:

Q� (BMIt+1jP �lt; I�t ;H; Z) =
LX
l=1

��l (�)P
�
lt + �

�
I(�)I

�
t + �

�
0(�)

1

H2
+ ��ZZ (14)

18Adding individual �xed e¤ects in the regressions would be a way to control for systematic
di¤erences in unobservables between clusters, which may bias the price measures (see Section
3.1.3). Attempts to estimate conditional mean models with �xed-e¤ects in Sample 2 failed
because inference relies essentially on the few individuals whose BMI moves between t�2 and
t, but not between t� 3 and t� 2, and between t� 1 and t. To circumvent this information
problem, one could assume that residuals in levels are orthogonal to price changes, as proposed
by Blundell and Bond (1998) in their system-GMM approach. Speci�cation tests rejected this
identi�ying assumption.
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where the parameters ��Z of Z are free to vary across quantiles. The parame-

ters ��(�) can be estimated for any � 2 [0; 1] by minimizing the following loss
function in the sample:

1

N

NX
i=1

�� (BMIit+1 � ��(�)0Xi)

where

�� (u) =

�
�u

(� � 1)u
if u � 0
if u < 0

The asymptotic inference procedure is described by Koenker and Basset (1978)

and has been implemented in standard statistical packages (see also the expos-

itory survey in Buschinsky, 1998).

The following quantile elasticity (QE) will be computed at the sample me-

dians of the control variables as:

"̂BMIpl(�) =
1

Q̂�

�
BMIjX50

� @Q̂�
�
BMIjX50

�
@ ln(pl)

=
b�l(�)

H2
50 � b�(�)0X50

Regressions were run separately for women and men for three reasons. First,

as shown in Figure B2, men have on average an higher BMI, although the preva-

lence of obesity in men and women is about the same. Second, the parameters

� and � in the weight production function (??) depend on sex. The assumption
of independence between PALs and the right hand side variables is also more

likely to hold in same-sex samples. Third, food habits di¤er. For instance, men

consume more alcohol and meat, and less fruits and vegetables.

Individuals are observed over a certain length of time. Con�dence intervals

are thus constructed by bootstraping the quantile estimates so that, at each

replication, individuals rather than individual-year observations are drawn with

replacement 19

6 Empirical results

6.1 Main results

Table C1 and C2 in Appendix C shows the results, for women and men respec-

tively. Each table has 8 columns. They display respectively the results from

OLS regressions, and quantile regressions for the median and deciles above it,

and the sample quantiles corresponding to overweight and obesity for the un-

conditional BMI distributions (see the second bold line). Each cell presents a

19 I use 1500 replications.
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point estimates of the elasticity with clustered standard errors. Food categories

for which elasticities are signi�cant at the 5% level in at least one of the regres-

sions are in bold; italics indicate that signi�cance is reached only at the 10%

level in at least one of the regressions. I focus here, for illustrative purpose, on

what happens at the overweight and obesity quantiles only.

Regarding the methodological issues, there are three important results. First,

a number of elasticities are not signi�cant, and signi�cant e¤ects for men are

not always the same as for women. Second, price elasticities for the conditional

mean and at the overweight and obesity quantiles distribution are often of same

sign, but not of same signi�cance. They also vary between means and quantiles,

and between quantiles, for a number of product categories, although the statisti-

cal di¤erences are generally not signi�cant. For instance, for women, elasticities

of the conditional mean are signi�cant for oils (around �0:25), while quantile
elasticities are of the same magnitude but not signi�cant. The price elasticity

is negative and signi�cant for cheese at the overweight quantile (�0:625), but
becomes insigni�cant at the obesity quantile albeit still large (�0:454). Elas-
ticities to the price of sugar and confectionery are positive at the overweight

quantile, and turn out to be negative at the obesity quantile. Nevertheless,

they are insigni�cant. Third, distinguishing between processed food and food

made at home from raw ingredients matters, as shown by the results for fruits

and vegetables.

For men, negative elasticities are found for soft drinks (�0:161 at the over-
weight quantile, �0:108 at the obesity quantile), breaded proteins (resp. �0:066
and �0:121), milk (resp. �0:220 and �0:156) and ready-meals (but only at the
overweight quantile: �0:113). For women, elasticities are negative for cheese,
oils, pastries and deserts (�0:209 at the overweight quantile and �0:309 at the
obesity quantile), and ready meals (but, once again, only at the overweight

quantile: �0:192).
To discuss these estimates, it is worth noting that there are no clear-cut pre-

dictions about the sign of the price e¤ects. When there are many food groups,

as shown by Schroeter et al. (2008), the e¤ect of a change in the price of one

food group depends on the own- and cross-price elasticities of consumption, and

on their relative share in total energy intakes. The results can then be inter-

preted in the light of this analysis and current knowledge about energy intake

by product category and elasticities of quantities for food-at-home purchases.

Here, information is drawn from Allais et al. (2008).20

20 I am indebted to Olivier Allais, who provided me with estimates of Marshallian elasticities
of household purchases for food-at-home and proportion of calorie intakes. The estimates in
Allais et al. (2008) were computed using the same data set and a pseudo-panel approach that
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The results for soft drinks (respectively dairy products and fats) may be

explained by strong own-price elasticities, and negative cross-price elasticity of

alcohol purchases.(resp. cereals and meat) to the price of soft drinks (resp.

dairy products and fats).

Allais et al. �nd that increasing the price of mixed dishes is associated with

lower expenditure on meat, and usually leaves expenditures on dairy products,

cereals and fats una¤ected. Hence, the BMI elasticity to the price of ready-

meals and snacks should rather be negative. This is the case only for ready-

meals, and elasticities are positive for snacks. However, Bellisle (2004) recalls

that, in France, snacking is associated to an increase in total energy intakes only

for obese individuals. Non obese individuals tend to consume snacks that have

better nutritional properties than standard meals. If snacking and going to a

full-meal restaurant are substitutes, then raising the price of the former may

increase total energy intakes in non obese individuals. The lack of information

about substitution between food-at-home and food-away weakens any prediction

that could have been made on the sole basis of expenditure on food-at-home

exploited in Allais et al.

For both men and women, positive elasticities are found for (bottled) wa-

ter. While water brings no calories, increasing its price increases strongly the

consumptions of energy-dense food such as starches and dairy products, which

explain the result. Positive elasticities are also found for fruits in brine, but for

women only, although they should rather be negative according to Allais et al.�s

estimates.

Income elasticities are shown at the bottom of Tables C1 and C2. These

are small, negative and signi�cant only for obese women (�0:055 at the obe-
sity quantile). Results for the control variables Z are available upon request.

These show that self-producing fruit and vegetables is negatively correlated

with women�s BMI, whilst the correlation is positive for men. Being responsible

for food expenditure is positively related to BMI for women, and the converse

for men. Otherwise, there is a positive and concave age e¤ect (with a peak

around 60/70 years old), and a negative education-BMI gradient, which may

re�ect information and e¢ ciency e¤ects. Some dummies for regional e¤ects are

signi�cant.

helps overcome the problem of unobservability outlined in the Data section. In comparison
to the work here, Allais et al. work with a slightly di¤erent nomenclature, and predictions
about the price e¤ects have to be made in terms of individual consumption elasticities, not
household purchase elasticities.
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6.2 Statistical robustness

The conditional quantile function (12) is well-identi�ed if it is monotonic in �

(Koenker, 2005, section 2.6.). In the theoretical model, the sign of @��X( eEt)=@ eEt
and @��0( eEt)=@ eEt does not change with eEt.21 However, the statistical inference
may not be robust, especially when there are a lot of RHS variables. Fol-

lowing Machado and Mata (2005), problems with monotonicity can be evalu-

ated by estimating conditional quantiles at a number of equally-spaced points

� 2 [0:05; 0:95], and by seeing whether, for particular values of the covari-

ates X0, there are frequent monotonicity violations. There is crossing when

Q̂�
�
BMIt+1jX0

�
< max

n
Q̂t
�
BMIt+1jX0

�
; t < �

o
; e.g. the predicted median

is smaller than the predicted �rst quartile. When the design point X0 sets

all log prices to their mean+one standard deviation, and other variables to

their median (as in Machado and Mata), there are violations for 36:5% and

34:5% of the quantiles for women and men respectively. The results are il-

lustrated in Figures C1 and C2 in Appendix C, which represents the value of

�(�) = max
n
Q̂t
�
BMIt+1jX0

�
; t < �

o
�Q̂�

�
BMIt+1jX0

�
for women and men

respectively, as a function of � 2 [0; 1]: when �(�) is negative, there is a vio-
lation. These violations are frequent but generally small: less than 0:131 and

0:080 points of BMI for women and men respectively, in 90% of the cases. Their

magnitude is more important in the extreme quantiles (above 0.95)

6.3 Aggregating product categories for greater robustness

Although the above robustness checks rarely appear in empirical papers, they

are useful because they indicate the reliability of the empirical inference. Here,

they somewhat weaken the main �ndings. However, this may re�ect the large

number of covariates in the model. To illustrate, I now present complementary

results obtained by aggregating food categories into nine broad food groups:

water, beverages other than water, fruit and vegetables, meat and seafood,

dairy products, fats, sugar and confectionery, snacks and ready-meals. For each

group k, a price index is constructed as follows:

P ck =

LkX
lk=1

wclkP
lk
wclk

pclk

where lk is an index for the Lk food categories making up the functional group

k (e.g. for dairy products: cheese, yoghurt and milk); pclk =
\ln(�clk) is the

cluster-speci�c index computed in Section (2); and wclk is the cluster-average

21As � > 0 and � > 0, it can be shown that sign
h
@��X(

eEt)=@ eEti = sign [�X ] (with

X = l; I) and sign
h
@��0(

eEt)=@ eEti = �sign
h

(�KW+�WW 
)

�KK

i
where (�KW+�WW 
)

�KK
is a

taste factor de�ned in Appendix A which equals @K�=@W� at the optimum.
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share of household expenditures on lk. The stationary price-BMI equation was

re-estimated via quantile regressions Tables C3 and C4 in Appendix C shows

the results for women and men respectively.

Prices are less signi�cant than in Tables C1 and C2. One reason is that some

groups (e.g. alcohol and soft drinks) aggregate food categories for which price

elasticities had opposite signs in the previous regressions.For women, dairies and

fats attract negative coe¢ cients, and the price elasticity of water is positive. For

the last category - pastries, deserts , sancks and ready-meals - the positive e¤ect

that was found for snacks is clearly dominated by the negative price e¤ects for

pastries, deserts and ready-meals. This is not surprising as expenditures on

ready-meals, pastries and deserts are higher than expenditures on snacks and,

as a consequence, the price of the food group gives less importance to the latter.

For man, the elasticities for water and fruits and vegetables are positive and

sometimes signi�cant. It is interesting to note that fats and sugar products

attract negative coe¢ cients, which are signi�cant only for the highest quantiles.

last, negative elasticities are associated to dairies and cereals around the median.

These results thus con�rm and strengthen the �ndings in Section 6.

Since there are fewer variables, statistical inference is also more robust, .

The rate of violations (at the design point X0) falls to 23% and 18:5%, for men

and women respectively. Figures C3 and C4 shows that violations are rather

small. However, they occur more frequently in the quantiles of the conditional

distribution above the median. This calls for caution in the use of the results.

7 Food price policies and the distribution of BMI

A number of elasticities were found to be signi�cant in the regression. These

seem to be of small size, which is in line with previous empirical �ndings. Chou

et al. (2004) �nd that the elasticity of BMI to food-at-home price is �0:039.
In Powell et al. (2008), the OLS price elasticity of fruit and vegetables is small

and insigni�cant (0:012). In quantile regressions, values are between 0:001 at

the median and 0:015 at the 90th quantile. A larger and signi�cant elasticity

is found at the 95th quantile (+0:049), with a potential "extremal quantile"

bias (see Chernozhukov, 2005). To our knowledge, only Asfaw (2006) has found

strong empirical evidence of price e¤ects, but for a developing country - Egypt -

with perhaps greater spatial price variation: the BMI elasticities of energy-dense

products (bread, sugar, oil and rice) range between �0:1 .and �0:2, while the
BMI elasticity of fruits was signi�cantly positive (+0:09), as was that on milk

and eggs (+0:141).

I will now show that small price elasticities may produce large price e¤ects

on the BMI distribution, when the prices of several product categories vary
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simultaneously.

7.1 Simulation method

Table C5 translates naively the estimated elasticities in weight changes for a

1:70 meter tall woman, and 1:80 meter tall man. For instance, a 10% decrease

in the price of fruit and vegetables in brine would reduce a man�s weight by

1:2 kg, if his initial weight was about 81 kg (at the overweight quantile), and

by 1:5 kg if his initial weight was 97:2 kg (at the obesity quantile). A policy

that would increase the prices of soft drinks, pastries and deserts, snacks and

ready-meals by 10%, and would reduce the price of fruit and vegetables in brine

by 10% produces weight losses of 2:6 kg at the overweight quantile and 3:6 kg

at the obesity quantile for men. These numbers are respectively �3:2 kg and
�2:9 kg for women.

However, these simulations are naive, because price elasticities at conditional

quantiles are not price e¤ects on unconditional quantiles. Moreover, they do not

fully pro�t from the advantage of quantile regression over OLS, as the former also

provide information on how the unconditional distribution of BMI is a¤ected

by price changes, which is more interesting for the simulation of price policies.

The method proposed by Machado and Mata (2005) is applied to simulate the

marginal densities implied by the conditional quantile model under a given price

regime. The procedure consists of �ve steps:

1. Draw a random sample of B numbers from a uniform distribution on [0; 1]:

�1, �2; ::; �B . Each number represents a quantile of the distribution. Here,

B = 1500.

2. For each quantile � b, estimate using the actual data the quantile regression

model (14). This generates B quantile regression parameters b�(� b), that
can be used to simulate the predicted conditional distribution

3. Generate a random sample of size B by drawing with replacement obser-

vations in the actual data set (i.e. from the rows of X): this generates a

sample of size B with typical observation Xi:

4. Then fBMI�i = b�(� b)0Xig is a random sample of the BMI distribution

integrated over the covariates X, i.e. the unconditional distribution of

BMI that is consistent with the conditional quantile regressions results.

5. Construct a hypothetical data set from the actual data set, by replacing

actual prices by their desired levels (for instance increase by 1% the price of

vegetables). And repeat step 3 to obtain a new sample of size B, and step
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4 to obtain the marginal distribution that would prevail under the new

price regime. Comparing the latter to the actual (predicted) distribution

draws a precise picture of the e¤ect of price policies on the prevalence of

overweight and obesity.22

Con�dence intervals can in theory be constructed by repeating these �ve

steps. However, given that the procedure is time-consuming, we here focus on

point estimates of the e¤ect of hypothetical policy reforms.

7.2 Results

I now compare the simulated distribution of BMI in the current price regime,

and the distribution that would prevail under �ve di¤erent price scenarios. In

scenario 1, the price of soft drinks and snacks increases by 10%,while the price

of fruits and vegetables in brine decrease by 10%, as suggested by a recent

o¢ cial report (IGF-IGAS, 2008). Scenario 2 adds a 10% increase in the price of

soft drinks, breaded proteins, pastries and deserts, and ready-meals, but do not

decrease the price of fruits and vegetables. In scenario 3, the latter fall again

by 10%. Scenario 4 imagines that the prices of fats and sugar and confectionery

also increase by 10%. In scenario 5, dairies, especially cheese, which is at the

heart of the French gastronomy, also enter in the tax base.

Table C6 reports for each scenario the prevalence of overweight and obesity in

the simulated sample before and after the implementation of the policy. Emery

et al. (2000) estimate that the extra medical costs associated with obesity vary

between 506 Euros and 648 Euros. The lower bound considers only a limited set

of medical conditions and individuals with BMI over 30, while the upper bound

extends the set of medical conditions and takes into account all individuals

with BMI over 27. Hence, by extrapolating the percentages to the entire adult

population (about 48:5 million adults in 2004), we have a point estimate of

the expected reduction in health-care expenditure. This evaluation does not

take into consideration the statistical uncertainty in the estimated conditional

quantiles.

The minimum reduction in health care expenditure varies between 534 mil-

lion Euros (Scenario 1 - lower bound) and 2498 million Euros (Scenario 5 -

upper bound). Given the regression results, it is not surprising that the larger

the tax base, the higher the expected e¤ects. Scenario 3 seems to have a good

design, since the tax base does not include symbolic products such as cheese

or olive oil, and has sizeable e¤ects. The prevalence of adult obesity would fall

by 33%. Figures C5 and C6 in Appendix C present the results for men and

22The results are robust to the choice of di¤erent seeds.
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women separately. Figure C5 shows the non-parametric estimates of the BMI

distribution before and after the price changes. The distribution of BMI in the

population is clearly more favourable in a public-health sense. Figure C6 plots

the expected change in BMI against pre-policy BMI. It is negative for most

individuals, whatever their initial BMI. As a result, the prevalence of "risky

overweight" (BMI>27) in the simulated sample drops respectively from 28:6%

to 21:8%. The maximum fall in health care expenditure would represent 1:39%

of total health-care spendings in 2004.

8 Conclusion

Would appropriate taxes and subsidies help to reduce the prevalence of obesity?

To answer this question, we have estimated whether and how the distribution of

BMI in the French adult population is a¤ected by the prices of 23 food products.

A model combining standard assumptions from rational-choice theory and

Physiology was proposed. Its main empirical implication is that unobserved

heterogeneity in physical expenditure creates slope heterogeneity in the food

price-BMI relationship. Data drawn from an exhaustive household survey on

food-at-home purchases, the French TNS-World Panel Survey, were used to

investigate this relationship. Two technical points were emphasised. First,

identi�cation relies on the presence of spatial price variation. It is shown that

measuring local prices by Paasche indices limits the necessary assumptions re-

quired to construct exogenous prices from the endogenous unit values that can

be computed for each household. Second, slope heterogeneity requires quantile

independence between unobserved physical expenditure and observed covariates

of BMI in order to identify the price elasticities of BMI at various quantiles of

its distribution.

There are modest correlations between individual BMI and the prices of a

number of food products. The elasticities are negative for oils and, probably,

for dairy products, animal fats, cereals, meat in brine, breaded/fried meat and

�sh, processed fruit and vegetables, and sugar and sweets. They are positive for

fruit and vegetables in brine, and, perhaps surprisingly, for ready-meals, snacks

and desserts.

Based on the regression results, and using a Monte-Carlo simulation tech-

nique, several policy scenarios were analysed. A 10% fall in the price of fruit

and vegetables in brine, together with a similar increase in the prices of alcohols,

soft drinks, breaded proteins, pastries and deserts, snacks and ready-meals may

reduce the prevalence of obesity by about 33%, with a corresponding reduction

in health-care costs of 960 to 2133 million Euros. However, given the width

of estimated con�dence intervals and the lack of monotonicity in the estimated
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quantile functions, the results should be taken with caution. This is all the more

true that micro- and macro-nutrient needs di¤er according to job requirements,

age, gender and health status. Hence, optimal obesity taxes may not be so

if we consider other health/nutritional outcomes, or speci�c socio-demographic

groups.

There are a number of useful avenues for future research. First, we have made

rough assumptions about the nutritional quality of food products, by grouping

them together in categories that are supposed to be homogenous. More precise

studies of price e¤ects within food categories are required, following the example

of Chouinard et al. (2005) on dairy products or Kuchler et al. (2004) on snacks.

Second, the simulation uses very imprecise data on the medical overcost of

obesity. The actual cost is a continuous function of BMI, and better knowledge of

this relationship in overweight individuals is required for more precise forecasts.

Third, how can price policies be implemented e¢ ciently? Producer price

interventions targeting food products are commonly used in the framework of

the EU Common Agricultural Policy. A key question for their impact on obe-

sity, is whether prices are transmitted along the food chain to consumers, since

reactions on the supply-side are to be expected. For instance, producers may

seek to lower production costs, by changing their recipes and using cheaper but

unhealthy additives. Price interventions at the consumer level, via extra VAT

(Value Added Tax) on unhealthy products and VAT exemptions on healthy food

seem more interesting.23 However, it may also impact the average quality of

food supply.

Fourth, �scal policies are likely to be regressive. Poor consumers may not

have healthier alternative choices to cover their basic caloric needs. Richer

consumers purchase more fruit and vegetables, and their demand for healthy

foodstu¤s is more elastic (Caillavet and Darmon, 2005). Hence, political support

for nutritional taxation is not guaranteed.

To conclude, our results suggest that a well-designed price policy may have

sizeable e¤ects on the distribution of body weight. However, its implementation

may be problematic, for a number of practical reasons, and may encounter a

coalition of opponents, bringing together part of the agro-industrial sector as

well as some segments of the population.

23Di¤erentiated VAT taxes on food products (including food-away-from home items) are
found in the UK, France, Canada and the U.S., and some of them explicitly target foods
that are considered unhealthy, such as snacks, soft drinks, and sweets. In France, there is
for instance a higher VAT rate (20.6%) on sweets (but 5.5% on some chocolate products),
margarine and vegetable fat (but 5.5% on butter). Obviously, current variations in VAT are
not motivated by public health concerns.
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A Model

Using the modelling framework proposed by Arnade and Gopinath (2006), I here

propose a dynamic model that simultaneously captures the health and hedonic

aspects of the consumer�s weight-control problem.

A.1 Set-up

Time The consumer is time-consistent and forward-looking. Time is con-

tinuous and divided up into periods (e.g. years). Each period is indexed by

t 2 f0; 1; 2; :::g and, for the empirical analysis, we are mainly interested in any
changes that may occur between t and t+ 1.

Budget constraint and choice set At each moment � 2 [t; t + 1[, the

consumer has to allocate her consumption budget between a numeraire good,

y� , and a diet made up of L food items, which is represented by a vector of

consumptions c� . Let It be the consumption budget at � . This is considered to

be exogenously predetermined. The vector of food prices pt is also constant over

period t. Further, expectations are static, i.e. prices and income are expected

to remain constant over all future periods. The budget constraint is:

8� 2 [t; t+ 1[; p0tc� + y� = It (15)

Physiology of weight production Food consumption at � is converted into

calorie intake K� by a simple linear operation:

K� = Ac� (16)
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where A is a vector of energy densities. Information about the latter is assumed

perfect. Using equation (8) for the basal metabolic rate, equation (7) becomes:

8� 2 [t; t+ 1[; _W� = 
K� � Et�
W� � Et�
 (17)

Physical activity level Only calorie intake is endogeneised, and the index

E� for PAL is treated as pre-determined (constant over t):

8� 2 [t; t+ 1[; E� = Et: (18)

Preferences Instantaneous preferences are represented by the following util-

ity function:

U� = u(c� ; y� ;W� ; Et)

The utility function has the usual properties.

A.2 The consumer-decision problem

In order to derive the Bellman equation associated with the decision problem of a

rational consumer, it is worth expressing the latter in a discrete time framework,

with arbitrary small time periods of length �� . Let V (W� ;pt; It; Et) be the

value function of the consumer at time � 2 [t; t+1[. Between any date � 2 [t; t+1[
and � + �� , the consumer�s utility �ow is U(c� ; y� ;W� ; Et)�� . The expected

value function for the consumer at �+�� is V (W�+�� ; pt; It; Et). Consequently,

if � is the subjective discount rate, the following Bellman equation holds:

V (W� ;pt; It; Et) =Maxc� ;y�u(c� ; y� ;W� ; Et)��+
1

1 + ���
V (W�+�� ;pt; It; Et)

under the budget constraint (15).

Let F (�) = V (W� ;pt; It; Et), then, assuming that V (:) is C1, we have by a

Taylor expansion:

V (W�+�� ;pt; It; Et) = F (� +��) (19)

= F (�) +
dF (�)

d�
�� + o(��)

= V (W� ;pt; It; Et) + VW (W� ;pt; It; Et) _W��� + o(��)

Since V (W� ;pt; It; Et) does not depend on the control variables fc� ; y�g,
the above approximations can be used to rewrite the Bellman equation as:
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�V (W� ;pt; It; Et)�� =Maxc� ;y�
fu(c� ; y� ;W� ; Et)��

+VW (W� ;pt; It; Et) _W��� + o (��)
o
(20)

Divide each side by �� and let �� ! 0. Since lim��!0

�
o(��)
��

�
= 0, this yields

the following Bellman equation:

�V (W� ;pt; It; Et) = Maxc� ;y�

n
u(c� ; y� ;W� ; Et) + VW (W� ;pt; It; Et) _W�

o
(21)���� p0tc� + y� = It

_W� = 
K� � Et�
W� � Et�

(22)

where � is the discount rate. The left-hand term represents the "annuity" from

optimal investment decisions, and can be decomposed into the instantaneous

stream of utility plus the marginal change in well-being produced by a small

change in W .

A.3 Propositions

To solve the decision problem, a two-step approach is used (see Epstein, 1981).

Note that, at time � , given an optimal path for W , or equivalently K, the

consumer would like to choose fc� ; y�g in order to maximise u(c� ; y� ;W� ; Et).

Hence, the �rst-step of the maximisation procedure consists in �nding	(K� ;W� ;pt; It; Et)

such that:

	(K� ;W� ;pt; It; Et) = Maxc� fu(c� ; I� � p0tc� ;W� ; Et)g (23)

such that K� = Ac�

This decision program yields demand functions c� that are conditional on a

�xed level of calory intake K� .

Then, in a second step, the consumer maximises a Bellman equation, in

which the control variable is calorie intake K� . Replacing _W� from equation

(17) of Section 2.2. yields:

�V (W� ;pt; It; Et) =MaxK�

f	(K� ;W� ;pt; It; Et)
+VW (W� ;pt; It; Et) (
K� � Et�
W� � Et�
)g

(24)

The �rst-order condition for the above maximisation problem is:

	K + 
VW = 0 (25)

Consider the following quadratic local approximations for the indirect utility

functions,
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V (Wt;pt; It; Et) =
1
2�WWW

2
t +

PL
l=1 �plW ln(plt)Wt

+�IW ln(It)Wt + �EWEtWt + h
V (pt; It; Et)

	(Kt;Wt;pt; It; Et) =
1
2�KKK

2
t + �KWKtWt +

PL
l=1 �plW ln(plt)Kt

+�IK ln(It)Kt + �EKEtKt + h
	(Wt; pt; It; Et)

then equation (25) implies:

K� = � 1

�KK
[(�KW + �WW 
)W�+

LX
l=1

(�plK + �plW 
) ln(plt) + (�IW + 
�IW ) ln(It) + (�EK + 
�EW )Et

#

and replacing K� in equation (17) of Section 2.2. yields:

_W� = �
�
Et�
 +


 (�KW + �WW 
)

�KK

�
W�+

�
Et�
 +


 (�KW + �WW 
)

�KK

�
�(pt; It; Et)

where:

�(pt; It; Et) =
� 

�KK

hPL
l=1 (�plK + �plW 
) ln(plt) + (�IW + 
�IW ) ln(It)

i
� 
Et

�
�+ (�EK+
�EW )

�KK

�
h
Et�
 +


(�KW+�WW 
)
�KK

i
The dynamics of W� is given by a �rst-order linear di¤erential equation, whose

solution is:

W� = [Wt � �(pt; It; Et)] exp
�
�
�
Et�
 +


 (�KW + �WW 
)

�KK

�
(� � t)

�
+�(pt; It; Et)

From which we have an explicit speci�cation for Wt+1:

Wt+1 = [Wt � �(pt; It; Et)] exp
�
�
�
Et�
 +


 (�KW + �WW 
)

�KK

��
+�(pt; It; Et)

A stable stationary equilibrium exists i¤:

�
�
Et�
 +


 (�KW + �WW 
)

�KK

�
< 0

To interpret this condition, consider the e¤ect of a small change inWt on the op-

timal choice of K� , when the environmental variables and Et are held constant.

Implicitly di¤erentiating equation (25) yields:

dK�

dWt
= � (�KW + �WW 
)

�KK

36



Hence, stability requires that:

dK�

dWt
<
d (BMR�E� )

dWt

which leads to the following proposition:

Proposition 2 A unique stable equilibirum exists if and only if the marginal

e¤ect of body weight on calorie intake is lower than the marginal e¤ect on calorie

expenditures

Clearly, were this condition not to hold, individuals would continue to eat

more without an adequate counterbalance in terms of energy expenditure, and

body weight would grow inde�nitely. Stationary weight is:

W �
t = �(pt; It; Et)

The weight-production equation then becomes:

Wt+1 =Wt�(Et) + [1� �(Et)] �(pt; It; Et)

where �(Et) = exp (�
�Et)| {z }
�0(Et)

�
�


h
(�KW+�WW 
)

�KK

i�
= �0(Et) � exp

�

 dK�

dWt

�
is a

conservation factor.

Regarding the latter, I have a third proposition:

Proposition 3 Depreciation of body weight increases when the individual is
more physically active, and when the marginal e¤ect of body weight on calorie

intake decreases

Depreciation of body weight is greater when the individual is more active

(since then �0(Et) decreases), and when the marginal impact of body weight on

optimal intake decreases. � and � were estimated by Scho�eld et al. (1985) using

biological data collected in a sample of more than 7000 individuals (although

questions have been raised about the generality of these equations: climate and

lifestyle behaviours such as smoking have some e¤ect on the BMR). We can set 


to 365 days�1=c, where c is close to 9000 kcal=kg. This comes from the fact that
(i) excess calories are stocked into fat cells, (ii) a kg of dietary fat contains about

9000 kcal: It then appears that �0(Et) varies between 0:65 for sedentary old

women and 0:25 for highly-active young men. Estimation of the dynamic model,

the results of which are available upon request, shows that, if the identifying

restriction of Section 5 is credible, E
n
�0( eEt)o = 0:86. The marginal e¤ect of

body weight on optimal intake - dK�=dWt -, is a constant of the model. Then,

assuming that tastes are homogenous, we have E
n
�0( eEt)o < En�( eEt)o = �̂,
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and dK�=dWt is positive. For average values of �0( eEt), between 0:4 and 0:5,
the marginal e¤ect of body weight on intake lies in the interval [13:4 kCal=kg,

18:9 kCal=kg].

A.4 Price e¤ects

As daily calorie expenditures are constant over the period [t; t + 1[, a general

solution to (7) is:

Wt+1 = exp (��
Et)Wt+

Z t+1

t

[
K� exp (�Et�
((t+ 1)� �))] d��
�

�
[1� exp (��
Et)]

(26)

This equation expresses body weight at the beginning of period t + 1 as a

function of body weight at the beginning of period t and the stream of calorie

intake (represented by the integral). Prices act implicitly in this equation by

determining eating behaviour, and therefore the path followed by Ku. The

conservation factor exp (�Et�
((t+ 1)� �))moderates the way in which calorie
intake is transformed into body weight.

Equation (16) implies that Ku =
P

l alc�l, where cul is the consumption of

food product l at time � and al is its per-unit caloric content. Denote its price

by plt, and consider the e¤ect of a change in the price p1t of c1t by di¤erentiating

(26). Under the usual regularity conditions regarding the function Ku, we have:

@Wt+1

@p1t
=

Z t+1

t



@K�

@p1t
�0(Et; �)d�

=

Z t+1

t




(
LX
l=1

al
@c�l
@p1t

)
�0(Et; �)d� (27)

The sign of the price e¤ect cannot be predicted without further assumptions

regarding the own- and cross-price elasticities of consumption and the relative

densities of each food item. This is positive if 8� 2 [t; t+ 1[;
PL

l=1 al
@c�l
@p1t

> 0.

When there are only two product categories, this condition may hold when

category 1 and category 2 have the same densities (a1=a2 � 1), and when

the own-price elasticity of category 1 is small while the cross-price elasticity is

positive and fairly high (categories 1 and 2 are strong substitutes).
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Appendix B. Descriptive statistics. 
 
Figure B1. BMI distributions – Sample 1 and Sample 2. 
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Figure B 2. BMI distributions by gender – Sample 2 
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Table B1. Changes in BMI 
Transition 2002-2003 2003-2004 2004-2005 Total 
Number of observed 
transitions 

5527 4605 4444 14576 

% with stable body 
weight 

86.65 83.41 89.51 86.65% 
(N=12608) 

Note. This table should be read as follows: 4999 individuals were observed in 2001 and 2002, of whom 86.58% 
declared the same body weight in 2001 and in 2002. 
 
Table B2. Classification of Food Products 
Product category Food products (examples) Comments 
Water Fizzy or still, mineral or not.  
Alcohol All kind of wines, cocktails, beers, 

ciders, liquors etc. 
Products are aggregated according 
to their average alcohol content. 

Soft drinks Fruit juice, soda and other 
carbohydrated drinks (lemonade, 
syrups etc.). Flavoured waters were 
dropped. 

Products are distinguished 
according to their sugar or fat 
content when available. 

Fruit in brine All fresh fruit and fruit 
canned/frozen in brine 

 

Processed Fruit Fruits canned in syrup etc. Products light in sugar are 
distinguished.  

Vegetables in brine All fresh vegetables plus vegetables 
canned/frozen in brine 

 

Processed vegetables Cooked frozen vegetables, 
vegetables and soups canned/frozen 
with additives. 

 

Cereals Dried vegetables, potatoes, beans 
except fresh green or yellow beans, 
pasta, rice, bread, flour, chestnuts, 
oat flakes, couscous. 

 

Meat in brine and eggs Fresh/raw meat: beef, veal, snails, 
chicken, eggs… 

 

Seafood in brine All fish, shellfish, frogs etc. in brine  
Processed sea products Fish canned in oil, smoked salmon, 

marinated haddock, rollmops  
Canned 

Cooked meat Sausages, ham, pâté, foie gras, 
bacon, smoked pork 

 

Breaded proteins Breaded/fried fish or meat  
Yoghurt and fresh uncured cheese Natural yoghurt, milk, fresh uncured 

cheese (fromage blanc ou frais) 
Cheese All cheese except fromage blanc and 

fromage frais.  
Milk All milk (soja milk was dropped). 
Animal fat and margarine Butter, fresh cream. 

Products are distinguished 
according to their fat content when 
available. Products without explicit 
fat content were dropped. 
 

Oils Oils. Sauces were dropped.  
Sugar and confectionery Lump/caster sugar, honey, jam 

marmalades. 
 

Pastries and desserts Milk desserts, croissants, cakes, 
fresh or frozen pastries 

 

Sweet and fatty snacks  Breakfast cereals, cereal bars, 
chocolate bars, most chocolate 
products, biscuits, ice creams 

“sweet” here means either simple or 
complex carbohydrates. 

Salty and fatty snacks Crackers, pop-corn, peanuts, most 
appetisers, olives 

 

Ready-meals All ready meals including 
sandwiches, and canned/frozen 
recipes of vegetables and cereals 
(ratatouille, etc.). 
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Table B3. Variable definition and descriptive statistics 
Variable Name Variable definition Sample 1 

(N=21407) 
Sample 2 

(N=12608) 
BMI Body Mass Index (Weight in Kg divided by height in 

squared meters) 
24.91 (3.86) 24.92 (3.86) 

CONTHEIGHT* [Height (in meters)]-2 0.359 (0.039) 0.359 (0.038) 
INCOME Logarithm of real household income per unit of 

consumption (Oxford scale, 2004 Euros) 
1137.1 (613.3) 1142.2 (617.1) 

DEG1 No qualification or primary school 15.5% 16.2% 
DEG2 Short vocational or technical qualification 6.8% 6.8% 
DEG3 First cycle of secondary school (BEPC) 30.5% 30.7% 
DEG4 Baccalaureat (general, vocational or technical) 19.0% 18.7% 
DEG5 Baccalaureat + 2 years 10.6% 10.4% 
DEG6 (reference) Baccalaureat + 3 years or more 17.6% 17.2% 
SEX* =1 for male, 0 otherwise 47.1% 47.2% 
AGE Age 50.40 (15.73) 51.65 (15.67) 
BABYWOMAN =1 for women with a baby aged under one year. 1.3% 1.2% 
BABYMAN =1 for men with a baby aged under one year. 1.4% 1.3% 
COUPLE (reference) Couples (reference) 66.6% 65.9% 
SINGLE Single without children 17.9% 18.0% 
OTHHHOLD Other household structure 15.6% 16.1% 
NBIND Number of person in the household 2.63 (1.27) 2.61 (1.27) 
FRUITSORVEG Household produces fruit or vegetables 19.0% 18.8% 
MEALPLANNER =1 if the individual is responsible for food-at-home 

expenditures 
30.6% 30.5% 

UNIT1 Lives in a rural residential area 30.3% 30.3% 
UNIT2 Lives in an urban unit of between 2000 and 4999 residents 6.4% 6.7% 
UNIT3 Lives in an urban unit of between 5000 and 9999 residents 2.7% 2.9% 
UNIT4 Lives in an urban unit of between 10000 and 19999 

residents 
2.6% 2.4% 

UNIT5 Lives in an urban unit of between 20000 and 49999 
residents 

3.7% 3.3% 

UNIT6 Lives in an urban unit of between 50000 and 99999 
residents 

5.6% 5.6% 

UNIT7 Lives in an urban unit of between 100000 and 199999 
residents 

4.2% 3.6% 

UNIT8  Lives in an urban unit of 200000 residents or more, or in 
Ile-de-France outside Paris 

22.8% 23.6% 

REGION1 (reference) Ile-de-France  23.5% 23.2% 
REGION2 Picardie, Normandie 15.0% 14.9% 
REGION3 Nord 8.6% 8.7% 
REGION4 Champagne-Ardennes, Alsace, Lorraine 8.9% 9.1% 
REGION5 Bretagne, Pays de Loire, Centre 15.8% 16.4% 
REGION6 Limousin, Aquitaine, Poitou-Charente 6.1% 5.4% 
REGION7 Bourgogne, Franche-Comté, Rhône-Alpes, Auvergne, 

Midi-Pyrénées, Languedoc 
12.6% 12.9% 

REGION8 Provence – Alpes - Côte d’Azur 9.4% 9.5% 
YR2002  Calendar year = 2002 (for the dependent variable) 26.9% _ 
YR2003 Calendar year = 2003 (for the dependent variable) 27.8% 38.0% 
YR2004 (reference) Calendar year = 2004 (for the dependent variable) 23.5% 30.5% 
YR2005 Calendar year = 2005 (for the dependent variable) 21.8% 31.6% 
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 Table B4. Descriptive statistics for prices (Sample 2) 
 
Product 
category 

Mean 
price 

Overall 
standard 
deviation 

Between 
standard 
deviation 

Within 
standard 
deviation 

Min Max 

Water -1.410 0.230 0.195 0.144 -1.834 -0.785 
Alcohol -0.801 0.110 0.093 0.067 -1.081 -0.387 
Soft drinks -1.156 0.091 0.077 0.055 -1.471 -0.963 
Fruit in brine -0.603 0.193 0.153 0.147 -0.932 -0.126 
Processed Fruit -1.194 0.130 0.116 0.069 -1.566 -0.722 
Vegetables in 
brine -0.471 0.086 0.078 0.048 -0.686 -0.120 
Processed 
vegetables -0.972 0.147 0.120 0.098 -1.372 -0.544 
Cereals -0.743 0.126 0.106 0.082 -1.036 -0.459 
Meat in brine 
and eggs -0.876 0.128 0.101 0.095 -1.170 -0.525 
Seafood in brine -1.507 0.170 0.129 0.128 -2.097 -0.906 
Processed sea 
products -1.006 0.206 0.159 0.158 -1.456 -0.490 
Cooked meat -1.314 0.125 0.086 0.102 -1.650 -1.046 
Breaded proteins -1.226 0.144 0.117 0.104 -1.704 -0.763 
Yoghurt and 
fresh uncured 
cheese -0.639 0.081 0.059 0.064 -0.842 -0.432 
Cheese -0.696 0.056 0.047 0.038 -0.846 -0.555 
Milk -0.573 0.053 0.046 0.033 -0.743 -0.457 
Animal fat and 
margarine -1.591 0.098 0.085 0.060 -1.901 -1.337 
Oils -0.715 0.065 0.058 0.032 -0.880 -0.544 
Sugar and 
confectionery -0.531 0.118 0.099 0.076 -0.786 -0.263 
Pastries and 
desserts -0.880 0.063 0.049 0.046 -1.045 -0.718 
Sweet and fatty 
snacks  -0.888 0.092 0.068 0.069 -1.205 -0.673 
Salty and fatty 
snacks -0.959 0.117 0.091 0.088 -1.197 -0.619 
Ready-meals -0.914 0.186 0.145 0.137 -1.291 -0.483 
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Appendix C. Results 
 
Table C1. Conditional mean and quantile regression results - 23 food categories – Elasticities - Sample 2 - Women  – N=6633 
Estimator OLS Quantile Regressions 
Conditional moment Mean τ=0.5 

median 
τ=0.6 

6th decile 
τ=0. 7 

7th decile 
τ=0.8 

8th decile 
τ=0.9 

9th decile 
τ=0.637 

“overweight 
quantile” 

τ=0.898 
“obesity 

quantile” 
Price Elasticities 

Water 0.065* 
(0.038) 

0.075 
(0.052) 

0.075 
(0.053) 

0.093 
(0.060) 

0.152*** 
(0.059) 

0.099 
(0.065) 

0.062 
(0.056) 

0.098 
(0.061) 

Alcohol 0.058 
(0.047) 

0.058 
(0.060) 

0.058 
(0.063) 

0.069 
(0.074) 

0.040 
(0.079) 

0.036 
(0.081) 

0.059 
(0.066) 

0.035 
(0.078) 

Soft drinks -0.055 
(0.068) 

-0.055 
(0.088) 

-0.080 
(0.097) 

-0.023 
(0.113) 

-0.104 
(0.123) 

-0.137 
(0.133) 

-0.030 
(0.100) 

-0.141 
(0.129) 

Fruit in brine 0.134* 
(0.060) 

0.155** 
(0.077) 

0.184** 
(0.081) 

0.140 
(0.097) 

0.209* 
(0.110) 

0.091 
(0.113) 

0.166* 
(0.087) 

0.093 
(0.111) 

Processed Fruit 0.018 
(0.053) 

0.098 
(0.067) 

0.081 
(0.070) 

0.016 
(0.087) 

-0.050 
(0.089) 

-0.006 
(0.108) 

0.040 
(0.077) 

-0.008 
(0.109) 

Vegetables in brine -0.025 
(0.080) 

-0.050 
(0.107) 

0.013 
(0.117) 

0.100 
(0.132) 

-0.030 
(0.130) 

-0.010 
(0.152) 

0.049 
(0.121) 

-0.002 
(0.150) 

Processed vegetables -0.002 
(0.060) 

0.045 
(0.071) 

0.027 
(0.080) 

-0.041 
(0.097) 

-0.079 
(0.106) 

-0.001 
(0.123) 

0.017 
(0.086) 

0.009 
(0.120) 

Cereals 0.045 
(0.073) 

-0.009 
(0.097) 

-0.061 
(0.096) 

-0.084 
(0.107) 

-0.020 
(0.124) 

0.065 
(0.131) 

-0.064 
(0.102) 

0.061 
(0.133) 

Meat in brine and eggs -0.006 
(0.088) 

-0.016 
(0.108) 

0.013 
(0.128) 

0.023 
(0.135) 

0.109 
(0.145) 

0.082 
(0.172) 

0.009 
(0.131) 

0.085 
(0.166) 

Seafood in brine -0.007 
(0.035) 

-0.027 
(0.044) 

-0.021 
(0.047) 

-0.024 
(0.058) 

-0.016 
(0.061) 

0.055 
(0.065) 

-0.050 
(0.049) 

0.049 
(0.065) 

Processed sea products -0.019 
(0.050) 

-0.031 
(0.067) 

-0.033 
(0.071) 

-0.065 
(0.080) 

-0.098 
(0.087) 

-0.087 
(0.096) 

-0.067 
(0.072) 

-0.081 
(0.092) 

Cooked meat 0.135* 
(0.079) 

0.098 
(0.099) 

0.110 
(0.109) 

0.102 
(0.121) 

0.172 
(0.137) 

0.185 
(0.147) 

0.182 
(0.114) 

0.185 
(0.145) 

Breaded proteins 0.005 
(0.032) 

0.030 
(0.045) 

0.007 
(0.045) 

0.016 
(0.051) 

0.027 
(0.048) 

-0.021 
(0.053) 

0.011 
(0.048) 

-0.018 
(0.053) 

Yoghurt and fresh uncured 
cheese 

0.134 
(0.112) 

0.050 
(0.151) 

0.089 
(0.163) 

0.139 
(0.177) 

0.298 
(0.189) 

0.190 
(0.193) 

0.150 
(0.164) 

0.194 
(0.193) 

Cheese -0.386** -0.585** -0.784*** -0.464 -0.591* -0.455 -0.625** -0.454 
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(0.193) (0.251) (0.270) (0.321) (0.356) (0.330) (0.276) (0.329) 
Milk -0.020 

(0.100) 
-0.049 
(0.132) 

0.032 
(0.136) 

0.043 
(0.157) 

-0.001 
(0.165) 

0.013 
(0.179) 

-0.043 
(0.141) 

0.001 
(0.180) 

Animal fat and margarine -0.021 
(0.055) 

-0.009 
(0.073) 

-0.031 
(0.076) 

-0.120 
(0.085) 

-0.062 
(0.092) 

-0.040 
(0.104) 

-0.102 
(0.075) 

-0.041 
(0.101) 

Oils -0.304** 
(0.154) 

-0.206 
(0.203) 

-0.338 
(0.221) 

-0.287 
(0.255) 

-0.226 
(0.266) 

-0.258 
(0.276) 

-0.284 
(0.227) 

-0.258 
(0.276) 

Sugar and confectionery 0.046 
(0.093) 

0.220* 
(0.123) 

0.204 
(0.133) 

0.101 
(0.149) 

0.107 
(0.148) 

-0.213 
(0.171) 

0.183 
(0.143) 

-0.207 
(0.167) 

Pastries and desserts -0.182** 
(0.078) 

-0.220** 
(0.103) 

-0.251** 
(0.105) 

-0.128 
(0.132) 

-0.223* 
(0.135) 

-0.317** 
(0.142) 

-0.219** 
(0.106) 

-0.309** 
(0.140) 

Sweet and fatty snacks  0.136 
(0.100) 

0.119 
(0.126) 

0.178 
(0.125) 

0.226 
(0.146) 

0.122 
(0.166) 

0.201 
(0.205) 

0.176 
(0.133) 

0.190 
(0.208) 

Salty and fatty snacks -0.042 
(0.088) 

-0.034 
(0.115) 

0.023 
(0.113) 

-0.074 
(0.132) 

0.002 
(0.135) 

0.054 
(0.154) 

0.034 
(0.117) 

0.051 
(0.150) 

Ready-meals -0.058 
(0.068) 

-0.114 
(0.093) 

-0.162* 
(0.092) 

-0.160* 
(0.094) 

-0.089 
(0.117) 

-0.031 
(0.139) 

-0.192** 
(0.092) 

-0.038 
(0.137) 

Income Elasticities 
Income -0.030*** 

(0.009) 
-0.018 
(0.011) 

-0.013 
(0.013) 

-0.031** 
(0.015) 

-0.040*** 
(0.015) 

-0.055*** 
(0.016) 

-0.019 
(0.014) 

-0.055*** 
(0.015) 

Other control variables CONTHEIGHT, DEG1-DEG6, SEX, (AGE/10), (AGE/10)2, BABYWOMAN or BABYMAN, COUPLE, SINGLE, OTHHHOLD, NBIND, 
FRUITSORVEG, MEALPLANNER, UNIT1-UNIT8, REGION1-REGION8, YR2003-YR2005 

Note: For each regression and each variable, the point estimates of elasticities at median values of the control variables are shown, with their standard deviations in 
parenthesis; * = significant at the 10% level. ** = at the 5% level. *** = at the 1% level.
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Table C2. Conditional mean and quantile regression results - 23 food categories – Elasticities - Sample 2 - Men  – N=5975 
Estimator OLS Quantile Regressions 
Conditional moment Mean τ=0.5 

median 
τ=0.6 

6th decile 
τ=0. 7 

7th decile 
τ=0.8 

8th decile 
τ=0.9 

9th decile 
τ=0.484 

“overweight 
quantile” 

τ=0.888 
“obesity 

quantile” 
Price Elasticities 

Water 0.092*** 
(0.031) 

0.095*** 
(0.037) 

0.094** 
(0.037) 

0.112*** 
(0.042) 

0.118** 
(0.055) 

0.125** 
(0.062) 

0.092*** 
(0.036) 

0.127** 
(0.064) 

Alcohol -0.013 
(0.044) 

-0.027 
(0.047) 

-0.034 
(0.051) 

0.021 
(0.067) 

0.071 
(0.083) 

0.115 
(0.084) 

-0.026 
(0.046) 

0.132 
(0.089) 

Soft drinks -0.113* 
(0.059) 

-0.162** 
(0.077) 

-0.161** 
(0.076) 

-0.100 
(0.086) 

-0.093 
(0.109) 

-0.115 
(0.123) 

-0.160** 
(0.076) 

-0.108 
(0.122) 

Fruit in brine 0.045 
(0.050) 

0.055 
(0.064) 

0.042 
(0.066) 

0.099 
(0.078) 

0.138* 
(0.083) 

0.121 
(0.096) 

0.044 
(0.064) 

0.142 
(0.096) 

Processed Fruit 0.022 
(0.047) 

0.000 
(0.056) 

0.034 
(0.059) 

0.044 
(0.070) 

0.094 
(0.078) 

0.164* 
(0.093) 

-0.007 
(0.057) 

0.175* 
(0.090) 

Vegetables in brine 0.027 
(0.073) 

0.102 
(0.085) 

0.000 
(0.085) 

0.086 
(0.107) 

0.043 
(0.135) 

-0.038 
(0.150) 

0.105 
(0.091) 

0.011 
(0.154) 

Processed vegetables 0.016 
(0.054) 

0.041 
(0.064) 

0.059 
(0.065) 

0.029 
(0.080) 

-0.065 
(0.095) 

-0.125 
(0.096) 

0.036 
(0.061) 

-0.111 
(0.097) 

Cereals 0.009 
(0.059) 

-0.042 
(0.076) 

-0.064 
(0.074) 

-0.141 
(0.094) 

-0.031 
(0.116) 

0.151 
(0.114) 

-0.036 
(0.076) 

0.111 
(0.121) 

Meat in brine and eggs 0.078 
(0.079) 

0.035 
(0.092) 

0.000 
(0.097) 

0.018 
(0.122) 

0.066 
(0.151) 

0.033 
(0.155) 

0.049 
(0.087) 

0.036 
(0.156) 

Seafood in brine -0.022 
(0.030) 

-0.053 
(0.040) 

-0.032 
(0.040) 

-0.062 
(0.047) 

-0.039 
(0.055) 

0.013 
(0.057) 

-0.043 
(0.038) 

0.021 
(0.057) 

Processed sea products 0.068 
(0.044) 

0.059 
(0.052) 

0.074 
(0.055) 

0.031 
(0.066) 

0.053 
(0.077) 

0.045 
(0.078) 

0.049 
(0.051) 

0.029 
(0.081) 

Cooked meat -0.042 
(0.067) 

0.013 
(0.083) 

-0.010 
(0.090) 

0.011 
(0.102) 

0.021 
(0.114) 

-0.039 
(0.122) 

0.006 
(0.078) 

-0.043 
(0.121) 

Breaded proteins -0.047 
(0.029) 

-0.073** 
(0.033) 

-0.041 
(0.034) 

-0.055 
(0.044) 

-0.090 
(0.057) 

-0.120* 
(0.062) 

-0.066** 
(0.033) 

-0.121* 
(0.063) 

Yoghurt and fresh uncured 
cheese 

0.057 
(0.094) 

0.033 
(0.115) 

0.068 
(0.117) 

0.086 
(0.139) 

0.263 
(0.170) 

0.177 
(0.167) 

0.053 
(0.109) 

0.231 
(0.164) 

Cheese -0.135 
(0.166) 

-0.268 
(0.206) 

-0.130 
(0.187) 

-0.234 
(0.226) 

-0.303 
(0.301) 

-0.135 
(0.321) 

-0.283 
(0.198) 

-0.140 
(0.314) 
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Milk -0.185** 
(0.085) 

-0.229** 
(0.102) 

-0.252** 
(0.107) 

-0.185 
(0.133) 

-0.333** 
(0.161) 

-0.185 
(0.160) 

-0.220** 
(0.101) 

-0.156 
(0.167) 

Animal fat and margarine 0.032 
(0.047) 

0.057 
(0.061) 

0.060 
(0.059) 

0.025 
(0.068) 

0.034 
(0.081) 

-0.051 
(0.086) 

0.051 
(0.058) 

-0.063 
(0.084) 

Oils -0.060 
(0.127) 

0.008 
(0.152) 

-0.018 
(0.171) 

-0.085 
(0.206) 

-0.133 
(0.221) 

-0.183 
(0.225) 

-0.017 
(0.153) 

-0.195 
(0.224) 

Sugar and confectionery 0.018 
(0.078) 

0.044 
(0.096) 

0.035 
(0.101) 

-0.034 
(0.121) 

-0.001 
(0.136) 

-0.068 
(0.140) 

0.035 
(0.091) 

-0.110 
(0.146) 

Pastries and desserts -0.041 
(0.071) 

-0.030 
(0.084) 

-0.049 
(0.086) 

0.045 
(0.102) 

-0.064 
(0.124) 

-0.155 
(0.133) 

-0.035 
(0.084) 

-0.211 
(0.138) 

Sweet and fatty snacks  -0.018 
(0.083) 

0.036 
(0.094) 

-0.031 
(0.103) 

-0.025 
(0.122) 

-0.025 
(0.165) 

0.273 
(0.182) 

0.031 
(0.091) 

0.234 
(0.187) 

Salty and fatty snacks 0.033 
(0.074) 

0.116 
(0.086) 

0.158* 
(0.090) 

0.122 
(0.104) 

0.073 
(0.135) 

-0.210 
(0.142) 

0.104 
(0.088) 

-0.148 
(0.145) 

Ready-meals -0.033 
(0.063) 

-0.121* 
(0.072) 

-0.130* 
(0.077) 

-0.075 
(0.097) 

-0.091 
(0.117) 

0.037 
(0.126) 

-0.113* 
(0.068) 

0.015 
(0.127) 

Income Elasticities 
Income -0.008 

(0.008) 
-0.009 
(0.010) 

-0.014 
(0.010) 

-0.013 
(0.012) 

-0.007 
(0.014) 

-0.013 
(0.014) 

-0.005 
(0.010) 

-0.019 
(0.014) 

Other control variables CONTHEIGHT, DEG1-DEG6, SEX, (AGE/10), (AGE/10)2, BABYWOMAN or BABYMAN, COUPLE, SINGLE, OTHHHOLD, NBIND, 
FRUITSORVEG, MEALPLANNER, UNIT1-UNIT8, REGION1-REGION8, YR2003-YR2005 

Note: For each regression and each variable, the point estimates of elasticities at median values of the control variables are shown, with their standard deviations in 
parenthesis; * = significant at the 10% level. ** = at the 5% level. *** = at the 1% level.
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Figure C1. Δ(τ )- Women – 23 food categories. 
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Figure C2. Δ(τ ) – Men – 23 food categories. 
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Table C3. Conditional mean and quantile regression results - 9 food groups – Elasticities - Sample 2 - Women  – N=6633 
Estimator OLS Quantile Regressions 
Conditional moment Mean τ=0.5 

median 
τ=0.6 

6th decile 
τ=0. 7 

7th decile 
τ=0.8 

8th decile 
τ=0.9 

9th decile 
τ=0.637 

“overweight 
quantile” 

τ=0.898 
“obesity 

quantile” 
Price Elasticities 

Water 0.050* 
(0.029) 

0.049 
(0.035) 

0.066* 
(0.039) 

0.092** 
(0.045) 

0.124*** 
(0.045) 

0.074 
(0.049) 

0.073* 
(0.041) 

0.077 
(0.049) 

Alcohol & Soft drinks 0.042 
(0.050) 

0.025 
(0.066) 

0.023 
(0.066) 

-0.001 
(0.078) 

0.004 
(0.079) 

-0.016 
(0.076) 

-0.029 
(0.069) 

-0.029 
(0.075) 

Fruits & Vegetables 0.037 
(0.082) 

-0.019 
(0.100) 

0.062 
(0.110) 

0.012 
(0.126) 

-0.001 
(0.142) 

0.066 
(0.147) 

0.113 
(0.118) 

0.071 
(0.142) 

Cereals -0.004 
(0.058) 

0.016 
(0.074) 

-0.065 
(0.081) 

-0.037 
(0.088) 

-0.097 
(0.091) 

0.031 
(0.101) 

-0.078 
(0.086) 

0.027 
(0.102) 

Meats & Seafood products 0.004 
(0.064) 

-0.036 
(0.080) 

-0.042 
(0.090) 

0.030 
(0.102) 

0.058 
(0.108) 

0.137 
(0.103) 

-0.031 
(0.094) 

0.149 
(0.105) 

Dairies -0.065 
(0.173) 

-0.315 
(0.228) 

-0.207 
(0.217) 

-0.050 
(0.256) 

-0.142 
(0.313) 

-0.258 
(0.346) 

-0.194 
(0.234) 

-0.176 
(0.343) 

Fats -0.135 
(0.084) 

-0.040 
(0.116) 

-0.155 
(0.117) 

-0.152 
(0.118) 

-0.032 
(0.138) 

-0.079 
(0.164) 

-0.117 
(0.115) 

-0.091 
(0.164) 

Sugar products -0.017 
(0.069) 

0.103 
(0.079) 

0.092 
(0.092) 

0.024 
(0.107) 

0.050 
(0.113) 

-0.107 
(0.116) 

0.105 
(0.095) 

-0.125 
(0.118) 

Pastries, Deserts, Snacks, 
Ready-meals 

-0.073 
(0.091) 

-0.064 
(0.113) 

-0.150 
(0.124) 

-0.255** 
(0.126) 

-0.161 
(0.148) 

-0.113 
(0.178) 

-0.213* 
(0.124) 

-0.117 
(0.185) 

Income Elasticities 
Income -0.027*** 

(0.008) 
-0.014 
(0.011) 

-0.016 
(0.012) 

-0.029** 
(0.014) 

-0.034** 
(0.014) 

-0.044*** 
(0.015) 

-0.015 
(0.013) 

-0.044*** 
(0.015) 

Other control variables CONTHEIGHT, DEG1-DEG6, SEX, (AGE/10), (AGE/10)2, BABYWOMAN or BABYMAN, COUPLE, SINGLE, OTHHHOLD, NBIND, 
FRUITSORVEG, MEALPLANNER, UNIT1-UNIT8, REGION1-REGION8, YR2003-YR2005 

Note: For each regression and each variable, the point estimates of elasticities at median values of the control variables are shown, with their standard deviations in 
parenthesis; * = significant at the 10% level. ** = at the 5% level. *** = at the 1% level.
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Table C4. Conditional mean and quantile regression results - 9 food groups – Elasticities - Sample 2 - N=5975 
Estimator OLS Quantile Regressions 
Conditional moment Mean τ=0.5 

median 
τ=0.6 

6th decile 
τ=0. 7 

7th decile 
τ=0.8 

8th decile 
τ=0.9 

9th decile 
τ=0.484 

“overweight 
quantile” 

τ=0.888 
“obesity 

quantile” 
Price Elasticities 

Water 0.053** 
(0.025) 

0.048 
(0.029) 

0.049 
(0.032) 

0.064* 
(0.034) 

0.072* 
(0.043) 

0.050 
(0.045) 

0.057** 
(0.028) 

0.074 
(0.046) 

Alcohol & Soft drinks -0.022 
(0.046) 

-0.018 
(0.048) 

-0.037 
(0.057) 

0.030 
(0.065) 

0.022 
(0.080) 

0.066 
(0.087) 

-0.027 
(0.050) 

0.072 
(0.084) 

Fruits & Vegetables 0.097 
(0.071) 

0.170 
(0.088) 

0.140 
(0.097) 

0.219** 
(0.111) 

0.189 
(0.127) 

0.033 
(0.133) 

0.198 
(0.085) 

0.057 
(0.126) 

Cereals -0.020 
(0.050) 

-0.056 
(0.062) 

-0.109 
(0.067) 

-0.187** 
(0.076) 

-0.086 
(0.096) 

0.074 
(0.094) 

-0.062 
(0.060) 

0.110 
(0.093) 

Meats & Seafood products -0.004 
(0.058) 

-0.021 
(0.062) 

-0.010 
(0.071) 

-0.055 
(0.083) 

-0.038 
(0.102) 

-0.113 
(0.107) 

-0.009 
(0.062) 

-0.123 
(0.104) 

Dairies -0.185 
(0.161) 

-0.321* 
(0.189) 

-0.219 
(0.205) 

-0.184 
(0.236) 

0.010 
(0.265) 

0.181 
(0.275) 

-0.357* 
(0.195) 

0.092 
(0.280) 

Fats -0.095 
(0.073) 

-0.019 
(0.093) 

-0.055 
(0.103) 

-0.149 
(0.118) 

-0.197 
(0.134) 

-0.234* 
(0.130) 

-0.026 
(0.089) 

-0.197 
(0.129) 

Sugar products -0.031 
(0.061) 

-0.040 
(0.070) 

-0.021 
(0.083) 

-0.025 
(0.090) 

-0.073 
(0.103) 

-0.184 
(0.114) 

-0.039 
(0.069) 

-0.238** 
(0.109) 

Pastries, Deserts, Snacks, 
Ready-meals 

-0.014 
(0.080) 

0.025 
(0.084) 

-0.001 
(0.098) 

0.058 
(0.108) 

0.035 
(0.132) 

0.067 
(0.147) 

-0.031 
(0.083) 

0.116 
(0.145) 

Income Elasticities 
Income -0.008 

(0.008) 
-0.009 
(0.010) 

-0.017* 
(0.010) 

-0.014 
(0.012) 

-0.005 
(0.014) 

-0.017 
(0.014) 

-0.009 
(0.010) 

-0.014 
(0.014) 

Other control variables CONTHEIGHT, DEG1-DEG6, SEX, (AGE/10), (AGE/10)2, BABYWOMAN or BABYMAN, COUPLE, SINGLE, OTHHHOLD, NBIND, 
FRUITSORVEG, MEALPLANNER, UNIT1-UNIT8, REGION1-REGION8, YR2003-YR2005 

Note: For each regression and each variable, the point estimates of elasticities at median values of the control variables are shown, with their standard deviations in 
parenthesis; * = significant at the 10% level. ** = at the 5% level. *** = at the 1% level. 
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Figure C3. Δ(τ )- Women – 9 food groups. 
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Figure C4. Δ(τ )- Men – 9 food groups. 
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Table C5. Illustrations of the  price effects for typical individuals. 
 Women Men 
BMI 25 30 25 30 
Height 1.70 1.70 1.80 1.80 
Weight 72.25 86.70 81.00 97.20 

Effect (in kg) of a 10 % price decrease 
Fruits and vegetables in brine -1.55 -0.79 -1.21 -1.49 

Effect (in kg) of a 10 % price increase 
Soft drinks -0.22 -1.22 -1.31 -1.05 
Pastries, deserts, snacks and ready-meals  -1.45 -0.92 -0.11 -1.07 
Total Effect -3.22 -2.93 -2.62 -3.61 
Note: approximate effects using Tables C2 and C3’ results. 
 
Table C6. Five simulated policy scenarios  
Scenario 1 2 3 4 5 
Price increase: 10% Softs, Snacks Softs, Snacks, Alc, Br. 

P., Past. & D., R-
Meals 

Alc., Softs, Br. P., 
Past. & D., Snacks, R-

Meals 

Alc., Softs, Br. P., 
Past. & D., Snacks, R-

Meals, Fats, S&C 

Alc., Softs, Br. P., 
Past. & D., Snacks, R-

Meals, Fats, S&C, 
Dairies 

Price decrease: 10% F & V in B _ F & V in B F & V in B F & V in B. 
Pre-policy 11.7% Prevalence of obesity 

(simulated) Post-policy 9.5% 9.3% 7.8% 7.1% 7.6% 
Pre-policy 28.6% % BMI>27 

(simulated) Post-policy 24.6% 24.5% 21.8% 23.0% 20.7% 
Pre-policy 34.3% Prevalence of overweight 

(simulated) Post-policy 32.7% 31.4% 30.4% 34.3% 27.3% 
Min 534 603 960 1131 1004 Reduction in health care 

expenditure (million Euros) Max 1257 1302 2133 1781 2498 
Note: Alc = alcohol; Softs = soft drinks;  Br. P. = breaded proteins; Past. & D. = pastries and deserts; Snacks = either sweet and fatty or salty & fatty R-meals = ready-meals; 
F& V in B = Fruit and Vegetables in brine; Fats = animal fats + oils; S & C = sugar and confectionery; Proc F & V = processed fruit and vegetables; Dairies = yogurt, cheese 
& milk. 
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Figure C5. Scenario 3 – pre/post BMI distributions – Sample 2 
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Figure C6. Scenario 3 – Change in BMI vs pre-policy BMI – Sample 2 
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