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Abstract

This paper considers the simultaneous explanation of mortality risk, health and lifestyles, using

a reduced-form system of equations in which the multivariate distribution is defined by the copula.

By applying the theory of inference functions for margins the parameters of each lifestyle, health and

mortality risk equation can be estimated separately to the parameters of association found in their joint

distribution, simplifying analysis considerably. Copulas also enable estimation of skewed multivariate

distributions for the latent variables in a multivariate model of discrete response variables.

Mortality, Self-assessed Health and 6 lifestyles were taken from Health and Lifestyle Survey of Eng-

land. The results suggest that non-normal latent distributions are preferred for the margins of the

multivariate distribution, and that the multivariate distribution is skewed. The copula method should

therefore be considered over the multivariate probit.

JEL classification: C1, C3, C5, I3, I10

1 Introduction

In this paper, a reduced-form model of mortality risk, health and lifestyles (diet, exercise, smoking, sleep-

ing, alcohol consumption and obesity) is considered, using a system of equations in which the multivariate

distribution is defined by a copula. A copula approximation of the joint distribution can avoid the dis-

tributional assumptions implicit in other multivariate families such as the multivariate normal, Beta, etc.,

allowing potentially more robust estimation. Employing a method due to Lee (1983), McLeish and Small

(1988) and Joe and Xu (1996) that uses inferencing for margins, the parameters of each lifestyle, health

and mortality equation can be estimated separately to the parameters of association found in their joint

distribution, simplifying analysis considerably.

1



Analysing lifestyles and health jointly stems from research on the correlation between socioeconomic

status and health, as well as income inequalities and health inequalities (van Doorslaer et al. 1997; Wagstaff

and van Doorslaer 2000; van Doorslaer and Koolman 2004). Lifestyles need to be considered in this context

because they may contribute to both health status and mortality. Contoyannis and Jones (2004) and Balia

and Jones (2007), for example, both show that the introduction of lifestyles into a model for health (and in

the latter study, risk of mortality also) reduces the influence of socioeconomic characteristics, affecting their

contribution to socioeconomic inequalities in health and mortality.

Moreover, lifestyles can be assumed to be endogenous: as well as determining health and mortality,

lifestyles themselves can be determined by factors such as income and education. In the context of a

structural-equations model this creates a pathway through which strictly exogenous variables, including

income inequalities, may have both direct and indirect effects on health and mortality, so that some of the

variation in health and mortality can be explained in part by these endogenous factors.

This paper is an extension of Contoyannis and Jones (2004) and Balia and Jones (2007), using the same

data (the British Health and Lifestyle Survey, hereon HALS) and a similar underlying thesis: that individual

lifestyle choices determine health outcomes, including health and mortality. These choices are influenced by

socioeconomic characteristics. To some extent those socioeconomic characteristics have a direct effect on

health outcomes also, controlling for lifestyle choices.

This paper is also a methodological extension of previous work. Contoyannis and Jones (2004) considered

unobserved heterogeneity via a recursive system of equations for self-assessed health and some endogenous

lifestyles. Balia and Jones (2007) use the HALS data also, including follow-up data on mortality and

health-affecting lifestyles. They also use a recursive system, where endogenous lifestyles are used to explain

self-assessed health and mortality. In both studies the multivariate probit model is used for estimation. Here

I use copulas to define the joint distribution function, rather than a multivariate probit.

The results show that, at least in this instance, the assumptions underlying the multivariate probit

and multivariate normality are robust to the non-normality uncovered: covariate estimates and the variance-

covariance matrices are comparable across the multivariate probit and the copulas used. As well as providing

efficient estimates with less computation that the multivariate probit, the copula is used to highlight the

statistical significance of skewness in the multivariate distribution, and its relation to what could otherwise

be recognised as tail dependence in a copula, or potentially not measured at all in a multivariate normal

distribution. The copula provides more information during analysis than standard methods, which is useful

for model selection and testing goodness of fit.
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2 Mortality risk, health and lifestyles

The behavioural model is as in Balia and Jones (2007). Individuals are assumed to maximise all periods of

lifetime utility simultaneously, wherein utility for each period is a function of health, lifestyles, exogenous

covariates and some probability of survival. Three elements are to be estimated: health, lifestyles and

mortality, the risk of which influences the utility and optimal levels of the other two. The outcomes mortality

ym, health yh and lifestyles y1, .., y6 are indicated by dichotomous variables (including self-reported health).

Making the assumption that these follow a linearly-determined latent scale, following Balia and Jones (2007)

gives the reduced form

y∗im = β0mXim + εim (1)

y∗ih = β0hXih + εih (2)

y∗il = β0lXil + εil (3)

for each individual i, where l ∈ {obesity, diet, sleeping, exercise, smoking, alcohol
consumption} such that

yim = 1 (y∗im ≥ 0) (4)

yih = 1 (y∗ih ≥ 0) (5)

yil = 1 (y∗il ≥ 0) (6)

The vectorsXim,Xih andXil are individual-specific exogenous vectors explaining, respectively, mortality

risk, health and lifestyle choices. Under a structural specification these would be distinct due to exclusion

restrictions needed to satisfy simple rank and order conditions for identification, but in reduced-form this

can be relaxed. In Balia and Jones (2007), for example, Xim contains only some of the variables in Xih and

Xil. Here the vectors are the same.

Estimation in Balia and Jones (2007) is carried out using the method of Maximum Simulated Likelihood

(MSL), assuming the error terms are correlated and the random components εl, εH and εM are jointly nor-

mally distributed. They use MSL because the standard multivariate probit is underlied by an 8-dimensional

normal distribution, for which the standard method of Maximum Likelihood (ML) and (generalised) Method

of Moments would require substantially more computation. ML, for example, requires, in this case, integra-

tion over 7 cumulative normal probabilities in order to find solutions. MSL on the other hand simulates the
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likelihood so that approximations, rather than the likelihood itself, are maximised. Similarly the Method of

Simulated Moments (or Scores) can be used in place of the more intensive method of moments (Gouriéorux

and Monfort 1996).

The two issues taken with MSL and multivariate normality are, in the first place, the estimation itself,

which can be cumbersome and not necessarily efficient compared to standard ML (Hajivassiliou 1997).

Secondly, the (multivariate) normality assumption is not necessarily made according to the best description

of the data-generating process, and the results may not be robust under non-normality or asymmetry. The

method presented here will help identify if these are problems, while showing a more convenient procedure

for estimation.

2.1 Considering multivariate (non-)normality

The motivations for moving away from the normality assumption in a multivariate framework are two-

fold. The first is computation: although low orders of dimensionality rarely present problems for computing

multivariate probits, maximising likelihoods across 8 dimensions is time-consuming and computationally

intensive (Muthén 1979, 1984 discusses this in some detail). The second is robustness: although some authors

have shown that departures from normality are not necessarily of great concern, they too become more

problematic in higher dimensions (Keselman, et al. 2005; Prokhorov and Schmidt 2005). The robustness

issues with standard t and F -tests under non-normality are also known (Mardia 1971; Ali and Sharma

1996; Curran, et al. 1996). In a structure-of-equations model, multivariate non-normality can also lead to

erroneous rejection of some models or equations within the structure (see Klein 1998, for example).

The multivariate normal distribution is commonly selected for the convenience of its use; because the

univariate normal distribution is robust under reasonable levels of non-normality, it also explains the margins

of the joint distribution fairly well (Kowalski 1973). The normal distribution also tends to be more easily

extended to higher dimensions: the density or characteristic function of the normal distribution can be used,

or a linear combination of normally-distributed random variables (Fang, Kotz and Ng,1989). The preference

for the multivariate normal then can exist even when the data appears not to be elliptically symmetric.

While a multivariate distribution with one or more non-normally distributed margins is always non-normal

however, a multivariate distribution with normally-distributed margins but a skewed or kurtotic correlation

will be non-normal also.

Abandoning the multivariate probit/normality assumption has direct implications in terms of the econo-

metric problem. The recursive model is one of conditionally-dependent random variables such that, in this

case, endogenous health status is a function within a function: it is an explanatory variable for mortality
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risk, while also being explained by endogenous lifestyle choices. At each level these are also explained by ex-

ogenous explanatory variables. This structure can only be maintained by assuming a symmetric distribution,

such as the normal, and is subject to Borel’s paradox otherwise (Kolmogorov 1950). In order to consider

non-normal and/or skewed latent variables, the reduced-form must be used, rather than the structural, so

that the health and mortality equations are not conditionally distributed according to the lifestyle variables.

One significant advantage offered by the multivariate normal distribution is its correlation: few families of

distributions, including copulas, are so easily extended to multivariate distributions with generalisable corre-

lation/dependence structures. The best approach among those discussed here is based upon the multivariate

normal and t distributions. As copulas they allow a broad range of marginal distributions to be specified,

while retaining the flexible multivariate dependence structure these distributions offer. Multivariate skewed

elliptical distributions, which are presented later and used in the analysis, represent a very useful approach

to combining the dual needs for reliable measures of multivariate dependence, as well as flexibility in the

face of multivariate asymmetry.

3 The copula method

For univariate marginal distribution functions F1 (x1) and F2 (x2), a copula is a function that binds those

margins precisely, to form the multivariate distribution function (Smith 2003). The copula parameterises

the dependence between the margins, while the parameters of each marginal distribution function can be

estimated separately. For the purposes of empirical analysis a copula is best described, as in Joe (1997), as a

multivariate distribution function that separates each marginal distribution both from every other marginal

distribution, and from the dependence between their associated random variables. Thus the two most

important features of copulas: they exist as multivariate distribution functions which can feasibly contain

any type and combination of marginal distributions; and each uniquely represents dependence. Depending on

the functional form used, association of quite different types can either be assumed or tested, independently

of the functional forms of the marginal distributions used.

By a theorem due to Sklar (1959) one can say that all multivariate distributions have a copula represen-

tation, in which each margin is invariant to transformations in every other margin, or independent of the

choice of every other marginal distribution.1 Consider two random variables X1,X2 with bivariate distribu-

tion function H (x1, x2) = Pr (X1 ≤ x1,X2 ≤ x2) and univariate marginal distributions F1 (x1) and F2 (x2)

respectively. Then there exists a copula C that represents the joint distribution function in terms of the

margins, such that

5



H (x1, x2) = C (F1 (x1) , F2 (x2)) (7)

for all real values of x1, x2 (or (X1,X2) ∈ R2). If F1, F2 are continuous, C is unique. Under discontinuity

C is uniquely determined on its domain, the range of the margins RanF1×RanF2.2 Moreover it can be seen
using Sklar’s theorem that, if C is a copula and F1 and F2 are distribution functions, then some function

H as defined in Equation (7) is a joint distribution function (see Nelsen 2006 for this proof, as well as an

explanation of quasi-inverses of non-strictly increasing margins, which can also be used to construct a copula).

By taking the marginal distribution functions as explanators within which association is not contained, the

copula separates the explanation of X1 and X2 from their association.

The most intuitive approach to constructing copulas is by using inverted distribution functions as argu-

ments in known multivariate distribution functions - the so-called Inversion method of construction (Nelsen

2006). Thus, using inverses of the marginal distribution functions gives

C (F1 (x1) , F2 (x2)) = H(1,2)

¡
H−11 (F1 (x1)) ,H

−1
2 (F2 (x2))

¢
(8)

Note that H(1,2) can feasibly be any joint distribution; different formulations of H(1,2) will generate

different forms of C, one of which will be the closest approximation to the true bivariate distribution H (the

familiar bivariate normal distribution Φ(1,2) (x1, x2), for example, is merely another such approximation).

Using the uniformly-distributed H−11 (F1 (x1)) ,H
−1
2 (F2 (x2)) allows, via inversion, the subsequent use of any

type of distribution in the margin. Extending Equations (??) and (8) to higher dimensions, for (X1, ...,Xn) ∈
Rn there exists the so-called n-copula

C (F1 (x1) , .., Fn (xn)) = H(n)

¡
H−11 (F1 (x1)) , ..,H

−1
n (Fn (xn))

¢
(9)

and where, according to Sklar’s theorem, there exists one n-copula such that

H (x1, ..., xn) = C (F1 (x1) , .., Fn (xn)) (10)

The so-called Gaussian copula, given by

C (F1 (x1) , F2 (x2)) = Φ(1,2)
¡
Φ−11 (F1 (x1)) ,Φ

−1
2 (F2 (x2))

¢
(11)

is a well-known example of the inversion method, as is the t copula, which uses the multivariate student’s

t distribution. Nelsen (2006) discusses some more examples that use asymmetric distributions.
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4 Inference functions and the Gaussian and t copulas

A two-step method due to Lee (1983), McLeish and Small (1988), Joe and Xu (1996), Xu (1996) and Joe

(1997) is inferencing (IFM).3 For some multivariate distribution function H (X1, ..,Xn;β1, .., βn, θ), consider

the corresponding copula C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ). The marginal parameter vectors β1, .., βn can

contain coefficients due to regression, and/or simple parameters for each distribution. The vector θ contains

measures of assocation for the copula as a whole. The IFM method is a two-step procedure is as follows.

Step 1 : Each marginal vector of coefficients βi∈n from marginal univariate distribution functions

F1 (X1;β1) , ..., Fn (Xn;βn) is estimated first, and separately, to determine
n
β̂1, .., β̂n

o
such that

β̂i = argmax
βi

nP
i=1
ln fi (xi;βi) (12)

Step 2: The estimates β̂i can be used to calculate the evaluated marginal distribution functions F̂i (Xi;βi)

= Fi

³
Xi; β̂i

´
. It is these, rather than Fi (Xi;βi), that are passed into the copula likelihood for estimation

of θ.

Step 3 : Using F̂i (Xi;βi), the copula likelihood L
³
β̂1, .., β̂n, θ

´
is maximised to find only θ̂ such that

θ̂ = argmax
θ

nP
i=1
ln c

³
F̂1 (x1;β1) , .., F̂n (xn;βn) ; θ

´
(13)

for some copula C with density c
³
F̂1 (x1;β1) , .., F̂n (xn;βn) ; θ

´
.

Ordinarily, ML solves (∂L/∂β1, .., ∂L/∂βn, ∂L/∂θ) = 0. Estimates from the method of IFM are such that

(∂L1/∂β1, .., ∂Ln/∂βn, ∂L/∂θ) = 0 for univariate log-likelihoods L1, .., Ln as well as the joint likelihood L.

This holds under regularity conditions, and Joe (1997, 2005) shows that the IFM method is efficient relative

to the method of maximum likelihood, particularly for discrete marginal distributions with few categories.

It is less so for more categories, and for continuous marginal distributions with strong dependence, although

standard errors for the parameters in this approach can corrected post-estimation using jackknife methods.

The method of IFM can be used to estimate the so-called Gaussian copula with a multivariate normal

distribution, in this case given by

C (u1, .., u8) = Φ8
¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) ,Φ

−1
11

¡
Fl1
¡
y∗il1
¢¢
, (14)

..,Φ−116
¡
Fl6
¡
y∗il6
¢¢¢

In this approach the random variable has a different transformation. Where previously the copula used

Fm (y
∗
im) instead of xim, for example, these use - in the Gaussian case - Φ

−1
m (Fm (y

∗
im)). The original
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combination x0imβ̂m is used to estimate Fm (ŷ∗im), which in turn is transformed to Φ
−1
m (Fm (ŷ

∗
im)), which is

entered into the copula as a random variable. In fact it can be considered as a vector of pseudo-observations:

Φ−1m (Fm (ŷ
∗
im)) is a prediction of the erstwhile unobserved latent variable y

∗
m from Equation (1).

Although the model in Equation (14) is a normal distribution function, the function of inverses results in

tractability of the marginal distributions. It is subsequently much more straightforward than the multivariate

probit, because exact Maximum Likelihood is available for the problem

θ̂ = argmax
θ

nP
i=1
lnφ8

¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) ,Φ

−1
11

¡
Fl1
¡
y∗il1
¢¢
, (15)

..,Φ−116
¡
Fl6
¡
y∗il6
¢¢
; θ
¢

which is more easily implemented. For this reason the method of IFM is used: it is permitted with

separated marginal distributions, and it is necessary due to the inversion, in order to get parameters with

interpretable estimates. It is also a nice alternative to the multivariate probit irrespective of the issues

discussed here, being much simpler to specify and estimate.

An alternative is the multivariate t-copula, which is narrower than the Gaussian and can capture tail

dependence of extreme events (Embrechts, et al.. 2003; Demarta and McNeil 2004). In the Gaussian copula,

as in the multivariate normal, such events become asymptotically independent. Moreover, uncorrelated

events are not considered independent in the t-copula.

The composite, or pairwise, likelihood approach is another example of inference at higher orders than

the univariate margins, wherein the joint likelihood is composed of valid bivariate likelihoods (Lindsay 1988;

Kuk and Nott 2000; Andersen 2004; Bellio and Varin 2005; Liu and Zhao 1999 and Joe 2005 are examples),

although with less efficiency than has been shown for the IFM. Hüsler and Reiss (1989) provide a similar

approach: the dependence parameter for each margin can be estimated in each bivariate margin of the

multivariate distribution. The process identified here as the IFM is also seen elsewhere, for instance in work

by Arellano and Honoré (2000) and Arellano and Carrasco (2002) on panel data models with predetermined

variables.

4.1 Considering skewness

This IFM approach does not restrict the margins of the multivariate distribution: any general form can be

used (Nelsen 2006. Joe 2005 considers Pareto, Weibull and Gamma margins also). In this instance, for

example, non-normal link functions can be considered alongside univariate probits for each margin.
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Multivariate skewness can be also accommodated in the erstwhile symmetric normal and t distributions,

via the multivariate skewed normal and/or multivariate skewed t distributions (Azzalini and Dalla Valle

1996, Azzalini and Capitanio 1999, 2003). The skewed normal distribution is generated by some random

variable X whose PDF is of the form

f(x;α) = 2φ(x)Φ(αx) (16)

where φ(.), Φ(.) are the familiar standard normal density and distribution functions, respectively, and α

is some scalar measuring skewness, such that the distribution of X is symmetric about the origin if α = 0

(i.e. X ∼ N(0, 1)) and increasing in skewness with increases in |α|. Then according to Azzalini and Dalla
Valle (1996), X is skewed normal X ∼ SN(α).4 The multivariate skewed normal is given for some random

vector X[k×1] where

fk(x;α) = 2φk(x;Ω)Φ(α
0x) (17)

for x ∈ Rk, where α[k×1] is a vector of skewness components and where X has correlation matrix Ω, and

still assuming symmetry about 0. Then as above X ∼ SNk(Ω, α), following the notation in Azzalini and

Capitanio (1996). In general form, Azzalini and Capitanio (1996) show that, for the random vector X with

distributional symmetry about 0, and some transformation W (x) that is symmetric about 0 also (although

μX could be used it is less simple), there exists some density function fk(x) such that

fk(x) = 2f(x)F (W (x)) (18)

where f(.), F (.) are some k-dimensional density and distribution function, respectively. Any elliptical dis-

tribution can be accommodated in this manner, as can non-elliptical distributions.5 Azzalini and Capitanio

(2003) consider the multivariate skewed t distribution, using this generalisation, such that X ∼ Stk,v(Ω, α, v)

with v degrees of freedom.

Although non-trivial, the multivariate skewed t distributional is implemented in the statistical package R,

making estimation relatively straightforward: the R package, for example, provides estimates of the skewness

for testing its statistical significance. . Vinod (2005) discusses the application of the skew densities and infer-

ence in Mathematica, also. Marrying the notation of Azzalini and Capitanio (2003) to the copula approach,

consider Equation (14). The random vector X =
¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) ,Φ

−1
11

¡
Fl1
¡
y∗il1
¢¢
, ..,

Φ−116
¡
Fl6
¡
y∗il6
¢¢¢0

, for example, is estimated as X ∼ SNk(Ω, α).
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5 The HALS data

The Health and Lifestyle Survey of England (HALS) was a national survey of adults in private households,

carried out (in the first wave) in 1984-5, during two home visits. The first of these was the survey interview;

the second a visit by a nurse for physiological measurements and to test cognition. The survey has been

followed up by 4 subsequent waves of information collection on the original interviewees: the principle

follow-up in 1991-2 was used to capture change in characteristics, behaviours and beliefs over the 7 years,

and included 5,352 interviewees. Subsequent follow-ups, the most recent of which took place in 2005, provided

updated mortality data. Of the original 9,003 respondents 2,491 had died.6

This analysis follows Balia and Jones (2007), using information at the time of the first survey, coupled with

the most recent follow-up data on mortality. The second survey is overlooked due in part to attrition, which

can be problematic. In order to avoid confounding mortality with accident, injury or a genetic predisposition

towards early death not related to lifestyle, only individuals 40 years of age and over at the time of the first

survey are retained for analysis. At this age and over, initial states of health, education, income and so forth

are considered to be stable, such that subsequent information is not required to explain mortality and health

later in life.

5.1 Indicators of a healthy lifestyle

The lifestyle variables employed here are the same as those used in Balia and Jones (2007) and Contoyannis

and Jones (2004), drawing on the analysis of Belloc and Breslow (1972) and Kenkel (1995). These are

indicators for diet, weight, smoking and sleeping behaviour, alcohol consumption and exercise. All are

dichotomous in this study. Diet is measured with an indicator for whether or not breakfast is eaten within

one hour of waking (Kenkel 1995). Smoking is an indicator of whether or not the individual is currently

smoking (any number of cigarettes per day). Exercise is measured by participation in one of 14 exercise

categories in the fortnight preceding the survey. Alcohol consumption is a gender-specific measure of prudent

alcohol consumption.7 Sleep is measured as either optimal or not; optimal sleep shown by Belloc and Breslow

(1972) to be between 7 and 9 hours per night. More or less is not considered separately, but together are

suboptimal. Healthy weight is anything below obesity, as measured by a Body Mass Index (BMI) below 30

for males and 28.5 for females.8

5.2 Explanatory variables

Exogenous variables in the models are predominately dichotomous. They are given and described in Table

1.
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Table 1: VARIABLE DEFINITIONS AND DESCRIPTIVE STATISTICS FOR THE HEALTH AND

LIFESTYLE SURVEY OF ENGLAND

Variable Definition Mean/   
Proportion = 1 Std.Dev. 

    
Health status    
  deceased 1 if deceased at June 2005 0.41 0.4911 

  sah 1 if self-assessed health is excellent or good (0 if fair or 
poor) 0.70 0.4572 

    
Lifestyle    
  non-smoker 1 if not currently smoking 0.70 0.4585 
  breakfast 1 if regularly eating a 'healthy' breakfast 0.71 0.4552 
  sleeping well 1 if  sleeping between 7 and 9 hours 0.58 0.4932 
  prudent drinker 1 if consuming alcohol prudently 0.88 0.3251 
  non-obese 1 if under 'obese' 0.85 0.3538 
  exercising 1 if engaged in physical exercise 0.32 0.4677 
    
Social Class    
  sc1 1 if "professional/student", "managerial/intermediate" 0.32 0.4648 
  sc2 1 if "skilled", "armed service" 0.47 0.4990 
  sc3 1 if "partly skilled", "unskilled", "unclassif ied" 0.22 0.4128 
    
Education    
  degree 1 if University 0.13 0.3308 

  HVQ/A level 1 if Higher Vocational Qualif ications or A level (or 
equivalent) 0.12 0.3305 

  CSE/O level 1 if CSE or O level (or equivalent) 0.09 0.2924 
  none 1 if no qualif ication 0.61 0.4882 
  other 1 if any other vocational or professional qualif ication 0.05 0.2130 
    
Marital status    
  married 1 if married 0.76 0.4268 
  w idowed 1 if widowed 0.13 0.3339 
  divorced/separated 1 if divorced or separated 0.05 0.2280 
  single 1 if single 0.06 0.2312 
    
Occupation    
  full time 1 if employed full-time 0.36 0.4813 
  part time 1 if employed part-time 0.13 0.3384 
  shif t/casual worker 1 if shift/casual worker 0.06 0.2327 
  unemployed 1 if unemployed 0.03 0.1716 
  absent (illness) 1 if absent from work due to illness/injury 0.03 0.1789 
  retired 1 if retired 0.34 0.4733 
  housekeeper 1 if housekeeper 0.10 0.3024 
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Variable Definition Mean/   
Proportion = 1 Std.Dev. 

Geography    
  Scotland 1 if in Scotland 0.10 0.2954 
  Wales 1 if in Wales 0.06 0.2333 
  Northern England 1 if in the North of England 0.07 0.2468 
  North-western England 1 if in the North-west of England 0.13 0.3339 
  Yorkshire 1 if in Yorkshire 0.09 0.2807 
  West midlands 1 if in the West-midlands of England 0.08 0.2716 
  East midlands 1 if in the East-midlands of England 0.08 0.2660 
  Anglia 1 if in Anglia 0.04 0.1959 
  South-western England 1 if in the South-west of England 0.09 0.2839 
  South-eastern England 1 if in the South-east of England 0.19 0.3901 
  London 1 if in London 0.09 0.2924 
    
Area    
  Rural 1 if  in Rural area 0.22 0.4132 
  Suburban 1 if in Suburban area  0.47 0.4993 
  Urban 1 if in Urban area 0.31 0.4627 
    
Ethnicity    
  European caucasian  1 if  European caucasian 0.98 0.1436 
    
Physical Characteristics    
  gender (male) 1 if Male 0.46 0.4981 
  height Height in inches 65.95 3.7032 
  age Age in years 57.47 11.6733 
  age2 Age2/100 34.39 14.0761 
    
Residential 
Characteristics    

  ow ner 1 if owning own home 0.66 0.4746 
  household size Number of people in the household 1.65 1.2723 
  smoking household 1 if anyone smokes in the household 0.35 0.4773 
    
Parental Characteristics    
  mother smoked 1 if only mother smoked/s 0.03 0.1731 
  father smoked 1 if only father smoked/s 0.60 0.4909 
  both smoked 1 if both smoked/s 0.25 0.4306 
  mother's drinking Mother's drinking (0-4, non-to-heavy drinker) 0.91 0.9812 
  father's drinking Father's drinking (0-4, non-to-heavy drinker) 1.89 1.2005 
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They are familiar considerations for explanators for health: variables representing social class, education,

marital status, employment status, cultural background, geographical region and area type, residential tenure

and physical, household and parental characteristics.

5.3 Some descriptive results

Some descriptive statistics for variables of interest are given in Table 1 also. After cleaning the data of

missing values for variables of interest (including those lost to the official registry), and restricting analysis

to people aged 40 years and over at the time of the first survey, 3,655 remain from the original 9,003.

The majority of respondents correspond to at least one healthy lifestyle, apart from exercising, of which

only 32% partake. Around 41% now are deceased, while in the original HALS 70% considered themselves

to be in good health. With an average age of 57, after censoring at 40, this is not necessarily surprising,

particularly when considering the lifestyles.

For education the generation(s) under consideration become apparent, with around 61% of respondents

offering no educational qualification. The proportions of full-time employed and retired, after dropping the

younger-than-40, are also quite significant. As mentioned previously European Caucasians make up 98% of

the sample. Also high is married respondents, 76%. Home ownership, another indicator of social class, is

around 66%.9

Nine of the 28 pairwise correlations (not shown) are negative, effectively proscribing the use of the

mixture copulas. Urban living has a negative correlation lifestyles and a (subsequent) positive correlation

with mortality. A social gradient appears to exist across health, mortality and lifestyles. These however are

the only two variable with relatively consistent correlation.

6 Estimation

Estimation of the multivariate model for mortality risk, health and lifestyles is undertaken with the infer-

encing approach of the Gaussian and t copulas.

The log-likelihood for the problem is as in Equation (15). Unlike the multivariate probit, this considers

the summed logs of multivariate normal densities, rather than distributions. Three functional forms for F.

can be considered, or three link functions for Equations (1)-(6). These are the probit,

Pr (Y = 1|x;β) = Φ (x0β) (19)
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the fatter-tailed logit,

Pr (Y = 1|x;β) = exp (− exp (x0β)) (20)

and the complementary log-log

Pr (Y = 1|x;β) = 1− exp (exp (−x0β)) (21)

which is an asymmetric extension of the logit, useful in particular for fairly heavily right-skewed distrib-

utions of x0β, or in this case the inverted probabilities of mortality and exercising.

7 Results

Employing the method of IFM has specific implications in terms of the results. Being able to choose

freely both the marginal distributions and the joint distributions, separately from one another, means more

information must be considered overall, and considered separately. Some of this is information gained over

and above standard methods of estimation; most of it will relate to goodness of fit and model selection.

7.1 Specifying and selecting marginal distributions

Following Joe (1997), the appropiate link function can be found useing information criteria such as the

Akaike Information Criterion (AIC), given by AIC = 2k− 2 ln(L) for log-likelihood L and k parameters, or

Bayesian Information Criterion (BIC), given by k ln(n)− 2 ln(L) and where n is the sample size.

A second approach recommended by Joe (1997) is analysis of the predictive ability of the models esti-

mated. That is, some comparison of the predicted summaries from the models with the observed summaries

of the data itself. Results from cell prediction and information criteria are contained in Table 2.
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Table 2: PERCENTAGES OF CORRECTLY-PREDICTED OUTCOMES AND INFORMATION CRITE-

RIA FROM PROBIT, LOGIT AND COMPLEMENTARY LOG-LOG MODELS (SHADED CELLS ARE

THE OPTIMUM MODEL FOR EACH MARGIN ACCORDING TO EACH CRITERION)

Multivariate Probit Probit Logit CLog-Log Probit Logit CLog-Log Probit Logit CLog-Log
Mortality 0.7839 0.7852 0.7874 0.7899 3304.612 3299.585 3314.392 3558.97 3553.943 3568.75
SAH 0.6416 0.6421 0.6430 0.6364 4126.101 4125.847 4125.206 4380.459 4380.205 4379.564
Breakfast 0.6492 0.6487 0.6506 0.6410 4106.177 4108.384 4101.67 4360.535 4362.742 4356.028
Not obese 0.6150 0.6164 0.6249 0.6049 2933.099 2930.946 2936.521 3187.457 3185.304 3190.879
Non-smoker 0.6722 0.6725 0.6780 0.6651 3993.578 3993.232 3998.705 4247.936 4247.59 4253.063
Sleeping well 0.5789 0.5765 0.5759 0.5735 4911.126 4911.547 4909.652 5165.484 5165.905 5164.009
Prudent drinker 0.6810 0.6802 0.6925 0.6635 2385.302 2382.104 2392.089 2639.659 2636.462 2646.447
Exerciser 0.6287 0.6276 0.6301 0.6328 4301.734 4301.714 4300.307 4556.092 4556.072 4554.665

% Correct AIC BIC

.



The probit, logit and complementary log-log functions are equally complex, so the results are the same

across the BIC and AIC tests, although the results from both are included.

The predictive accuracy of each function has also been included in Table 2, and offers different optimal

specifications. Only the overall accuracy of predictions have been included: the predictions of 0 and 1

separately is not useful. Due to its structure, the complementary log-log consistently predicts more 0s

accurately by virtue of predicting more of them. Moreover there is no preference prima facie for accuracy in

one or the other outcome, so neither can be justified as a criterion for model selection (although this need

not always be the case). The combination used here is according to the overall accuracy in cell predictions

- a mixture of probit, logit and complementary log-log link functions for the margins.

There is no particular econometric justification for either of the probit or logit over the other. The

complementary log-log is preferred for mortality and exercising, due to their much higher rates of failure

(such that the probability that the indicator will be 0 is substantially higher), and due to the dichotomising

of SAH one would reasonably expect a latent distribution of health with fatter tails, for which the logit

is better-suited, but for the remaining lifestyles no similar information is available. Kolmogorov-Smirnoff

tests can be used to compare the distributions of the predicted probabilities to determine whether there

is any statistical relevance to the choice made.10 Considering the dimensions in toto, Table 3 from the

corresponding analysis of the joint distribution shows that, for each of the candidate copulas, the mixture of

probit, logit and complementary log-log models is optimal.11

7.2 Comparing the t and Gaussian copulas, skewness and symmetry

7.2.1 Skewness

Degrees of freedom in the multivariate t copula (or distribution) can be fixed or estimated freely, as in this

case. Maximum-Likelihood estimates of the degrees of freedom from the skewed t are around df = 27.5

whereas, for the symmetric t, df = 12.9. This follows on from the previous section: because the skewness

affects the distribution principally around the mean, central tendency is estimated more precisely, so that

less tail dependence is observed. The means of the inverse probabilities from each model (including the

’observed’ data) are in Table 4.12 They are generally similar; the results from the skewed and symmetric t

models are slightly different.

In this instance the skewed t is tending fairly Gaussian, based on the degrees of freedom, which raises

the question of whether skewness or tail dependence is more important. Considering extreme events, for

example, would favour tail dependence over skewness. From a purely statistical standpoint, the choice is

dependent upon the skewness estimates for the multivariate normal and t models. These are in Table 5.
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Table 3: INFORMATION CRITERIA FROM THE JOINT (COPULA) DISTRIBUTIONS (SHADED

ROWS CONTAIN THE PREFERRED MODEL, ACCORDING TO MINIMUM INFORMATION CRI-

TERIA).

    Log-likelihood AIC BIC ECVI 
 MV Probit -14548.75 29809.50 32018.07 8.16 

Sk
ew

ed
 

Gaussian copulas (IC)          
     Probit margins -10204.68 21137.36 23395.56 5.78 
     Probit/Clog-Log margins -10387.55 21503.10 23761.30 5.88 
     Logit/Clog-Log margins -10137.91 21003.82 23262.02 5.75 
Gaussian copulas (% Correct)     
     Probit/Clog-Log margins -10484.83 21697.66 23955.86 5.94 
     Mixed margins -9836.056 20400.11 22658.31 5.58 
t copulas (IC)     
     Probit margins -10148.79 21027.58 23291.99 5.75 
     Probit/Clog-Log margins -10349.44 21428.88 23693.29 5.86 
     Logit/Clog-Log margins -10110.19 20950.38 23214.79 5.73 
t copulas (% Correct)     
     Probit/Clog-Log margins -10215.59 21161.18 23425.59 5.79 
     Mixed margins -9836.055 20402.11 22666.52 5.58 

Sy
m

m
et

ric
 

Gaussian copulas (IC)      
     Probit margins -10993.64 22699.28 24907.85 6.21 
     Probit/Clog-Log margins -11111.91 22935.82 25144.39 6.28 
     Logit/Clog-Log margins -10865.48 22442.96 24651.53 6.14 
Gaussian copulas (% Correct)     
     Probit/Clog-Log margins -11005.55 22723.10 24931.67 6.22 
     Mixed margins -10721.94 22155.88 24364.45 6.06 
t copulas (IC)     
     Probit margins -10706.44 22126.88 24341.65 6.05 
     Probit/Clog-Log margins -10881.76 22477.52 24692.29 6.15 
     Logit/Clog-Log margins -10657.82 22029.64 24244.41 6.03 
t copulas (% Correct)     
     Probit/Clog-Log margins -10695.08 22104.16 24318.93 6.05 
     Mixed margins -10394.53 21503.06 23717.83 5.88 

 

17



Table 4: PREDICTEDMEAN (STANDARDDEVIATION) IN EACHDIMENSIONOF THEMORTALITY

RISK, HEALTH AND LIFESTYLE MODELS

 Skewed 
Normal 

Symmetric 
Normal Symmetric t Skewed t Observed 

Mortality -0.2739 -0.2731 -0.3453 -0.3051 -0.2850 

 (1.0816) (1.1263) (1.0840) (1.0100) (1.0957) 

SAH 0.5729 0.5666 0.6060 0.5868 0.5686 

 (0.4650) (0.4580) (0.3833) (0.4000) (0.4653) 

Breakfast 0.6094 0.5908 0.6282 0.5984 0.5959 

 (0.4376) (0.4687) (0.4348) (0.4217) (0.4547) 

Not obese 1.1389 1.1117 1.1117 1.1298 1.1227 

 (0.3726) (0.3621) (0.3542) (0.3658) (0.3731) 

Non-smoker 0.5914 0.5865 0.6223 0.6143 0.5960 

 (0.5424) (0.5528) (0.5190) (0.5240) (0.5518) 

Sleeping well 0.2171 0.2060 0.2266 0.2210 0.2148 

 (0.2417) (0.2510) (0.2308) (0.2344) (0.2493) 

Prudent drinker 1.3511 1.3491 1.3739 1.3566 1.3459 

 (0.5641) (0.5455) (0.5266) (0.5521) (0.5502) 

Exerciser -0.4934 -0.5146 -0.4918 -0.4826 -0.5028 

 (0.4554) (0.4508) (0.4020) (0.4418) (0.4461) 
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Table 5: ESTIMATED SHAPE PARAMETERS (STANDARD ERRORS) FROM R, FOR EACH DIMEN-

SION OF THE MORTALITY RISK, HEALTH AND LIFESTYLE MODELS

  Skewed Normal Skewed t 

  Shape/Skewness Covariate/Shift Shape/Skewness Covariate/Shift 

Mortality 13.8945 -1.6646 -2.7993 -0.3779 

 (1.3244) (0.0190) (0.1755) (0.0328) 

SAH 1.0472 0.7137 -5.2300 0.9210 

 (0.1696) (0.0150) (0.2363) (0.0110) 

Breakfast -1.9399 0.3277 0.1935 0.7475 

 (0.2085) (0.0130) (0.1094) (0.0140) 

Not obese 0.4219 1.0612 2.3438 1.1213 

 (0.1300) (0.0118) (0.1265) (0.0117) 

Non-smoker 1.5039 0.3519 0.7909 0.7329 

 (0.1889) (0.0161) (0.1076) (0.0164) 

Sleeping well 0.1234 0.3635 -0.4122 0.2965 

 (0.0990) (0.0071) (0.0766) (0.0071) 

Prudent drinker 0.7700 1.1837 0.3279 1.3383 

 (0.1286) (0.0165) (0.0922) (0.0168) 

Exerciser 0.9167 -0.0791 -0.9720 -0.3588 

  (0.2489) (0.0109) (0.1429) (0.0129) 
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Skewness parameters, as provided by R, suggest skewness with statistical significance according to the

statistical significance of the paramaters. In this case only Sleeping Well in the Skewed Normal model is

not statistically significant, suggesting robust evidence of skewness. Covariates, or shift parameters, are

the degree to which each dimension in each model was shifted for the analysis of the multivariate skew

distributions, according to Equations (16)-(18)

The parameter corresponding to mortality risk in the skewed normal distribution is quite large, relative

to the t distribution, as well as having a different sign. Sign differences occur in other margins as well. For

the multivariate Gaussian copula, the skewed normal distribution is preferred to the symmetric normal by

virtue of the statistical significance of the skewness vector: the trade-off from the t-copula does not exist for

the Gaussian, which ignores tail dependence.

For mortality risk, SAH, eating breakfast and exercising, skewness is counter-directional in the normal and

t distributions. In all cases, except eating breakfast in the skewed t and sleeping well in the skewed normal,

skewness is statistically significant at 5% (and at 10% for eating breakfast in the skewed t). Accordingly the

distribution is considered to be a skewed t, although with reasonably high degrees of freedom.

Correlation matrices for the Normal and t models, as well as the set of marginal inverses passed into

R for analysis via IFM, are provided in Tables 6 to 8. Emboldened values represent economic significance

(correlation greater than 5%, in either direction).
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Table 6: CORRELATIONS BETWEEN MORTALITY RISK, HEALTH AND LIFESTYLES FOR SYM-

METRIC AND SKEWED NORMAL DISTRIBUTIONS

Mortality SAH Breakfast Not obese Non-smoker Sleeping well Prudent drinker Exerciser
Mortality 1
SAH -0.4076 1
Breakfast 0.4567 0.2373 1
Not obese 0.0039 0.5376 0.1522 1
Non-smoker 0.1667 0.4443 0.7358 0.2385 1
Sleeping well -0.4915 0.4533 0.0365 0.2467 0.0715 1
Prudent drinker 0.1898 -0.1877 0.4238 -0.4921 0.4579 -0.0693 1
Exerciser -0.8066 0.5941 -0.1535 0.2966 -0.0125 0.5127 -0.3186 1

Mortality SAH Breakfast Not obese Non-smoker Sleeping well Prudent drinker Exerciser
Mortality 1
SAH -0.4511 1
Breakfast 0.3890 0.2308 1
Not obese -0.0220 0.4138 0.1149 1
Non-smoker 0.1648 0.3879 0.7429 0.1698 1
Sleeping well -0.5404 0.4806 0.0782 0.2123 0.0988 1
Prudent drinker 0.1822 -0.1180 0.4288 -0.5201 0.5056 -0.0353 1
Exerciser -0.8117 0.6221 -0.1452 0.3045 -0.0538 0.5348 -0.3314 1

Symmetric Normal distribution

Skewed Normal distribution

Differences in the matrices in Tables 6 to 8 can be observed, although the values for each pair are

reasonably close, across the distributions. Overall the correlations are significant.

7.2.2 Fitting a model vs. replicating data

Goodness of fit was considered previously with respect to the margins, using information criteria. Looking

again at Table 5, the skewed joint distributions are an improvement upon the symmetric distributions.

Between symmetric distributions, the multivariate t copula is noticeably better than the Gaussian moreso

than between the skewed distribution, in which there is not much improvement due to the use of the t. This

reflects previous comments concerning the Gaussian-tending degrees of freedom observed in the multivariate

skewed t, relative to the symmetric. At df = 27.5, the t and Gaussian copulas are not as distinct, compared

to their symmetric counterparts. Overall the skewed multivariate t-copula is still preferred, according to

information criteria.

Goodness of fit can be considered also within the context of replication. The central question asked is, how

close is the copula’s approximation of the data-generating process to the process itself? This is a different

question to the one answered with information criteria and the log-likelihood. By simulating dependent

multivariate data using estimated means, covariances and skew (and degrees of freedom for the multivariate

t) an appreciation is gained of the difference between the observed data and its behaviour according to each

copula. This has been measured using relative distances between the distributions and Kolmogorov-Smirnoff

21



Table 7: CORRELATIONS BETWEEN MORTALITY RISK, HEALTH AND LIFESTYLES FOR SYM-

METRIC AND SKEWED t DISTRIBUTIONS

Mortality SAH Breakfast Not obese Non-smoker Sleeping well Prudent drinker Exerciser
Mortality 1
SAH -0.4099 1
Breakfast 0.4506 0.2726 1
Not obese 0.0137 0.3997 0.1461 1
Non-smoker 0.2360 0.4120 0.7695 0.2018 1
Sleeping well -0.5503 0.4833 -0.0110 0.1848 0.0284 1
Prudent drinker 0.1930 -0.0945 0.4329 -0.4870 0.4901 -0.0571 1
Exerciser -0.8139 0.6060 -0.1820 0.2563 -0.0987 0.5562 -0.3217 1

Mortality SAH Breakfast Not obese Non-smoker Sleeping well Prudent drinker Exerciser
Mortality 1
SAH -0.4247 1
Breakfast 0.4281 0.2801 1
Not obese 0.0004 0.4973 0.1840 1
Non-smoker 0.1683 0.4287 0.7431 0.2248 1
Sleeping well -0.5201 0.4595 0.0193 0.2149 0.0533 1
Prudent drinker 0.2180 -0.2013 0.3989 -0.4901 0.4495 -0.0968 1
Exerciser -0.8145 0.6204 -0.1685 0.3158 -0.0404 0.5279 -0.3686 1

Symmetric t  distribution

Skewed t distribution

Table 8: CORRELATIONS BETWEEN MORTALITY RISK, HEALTH AND LIFESTYLES FOR THE

JOINT DISTRIBUTION OF INVERTED MARGINAL CDFS

Mortality SAH Breakfast Not obese Non-smoker Sleeping well Prudent drinker Exerciser
Mortality 1
SAH -0.3998 1
Breakfast 0.4034 0.3042 1
Not obese 0.0250 0.4407 0.1760 1
Non-smoker 0.1859 0.4328 0.7514 0.2379 1
Sleeping well -0.5175 0.4960 0.0754 0.2065 0.0868 1
Prudent drinker 0.1828 -0.1405 0.4127 -0.4740 0.4787 -0.0668 1
Exerciser -0.8008 0.6135 -0.1200 0.2832 -0.0425 0.5432 -0.3273 1

Observed data
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Table 9: P-VALUES FROM KOLMOGOROV-SMIRNOFF TESTS FOR DIFFERENCES BETWEEN DIS-

TRIBUTIONS (p < 0.05 REPRESENTS A STATISTICALLY SIGNIFICANT DIFFERENCE AT 5 PER-

CENT LEVEL OF SIGNIFICANCE)

  Symmetric Normal Skew ed Normal Symmetric t Skew ed t 
Mortality 0.001 0.094 0.002 0 
Sah 0.003 0.01 0.089 0.682 
Breakfast 0.291 0.125 0.005 0.039 
Not obese 0.024 0.201 0.004 0.263 
Non-smoker 0.002 0.017 0 0.037 
Sleeping w ell 0.205 0.307 0.037 0.065 
Prudent drinker 0.124 0.121 0.021 0.277 
Exerciser 0.26 0.002 0.001 0.065 

 

tests.13 The results are in Table 6.

Table 6 illustrates goodness of replication, not of fit. It also raises another potential trade-off between

poorer fit and better approximation of the data-generating process. In part this is because, certainly in

this instance, the results are equivocal, relative to the information criteria. More importantly though it

will depend upon the analysis. For an explanatory model, more precise estimates of coefficients would be

preferable. For a predictive model the information on replication would be more useful.

7.2.3 Inference and the variance-covariance of the estimates

There is an efficiency loss from using inference functions for the margins of a multivariate distribution.

This is due to the partitioning of the variance-covariance matrix since, under inference, ∂2l
∂βu∂βv

= 0 for the

parameters (or vector of parameters, but vector notation is suppressed here for convenience) βu and βv from

two separated margins u 6= v. Similarly for dependence θuv between any two margins u and v, the cross-

partial derivatives ∂2l
∂θ∂βu

and ∂2l
∂θ∂βv

are practically inaccessible when using elliptical copulas based upon

inversion. If functions of these estimates are required (one may wish, for example, to gauge the association

between one or more regressors in two margins and the dependence between their linear predictions), or

Fisher Information on marginal parameters within the joint distribution, a jackknifing procedure would be

used.14 For other copulas such as the Archimedean class, jackknifing may be preferable anyway, relative to

finding a matrix of analytical solutions.

The particular advantage of the jackknife approach is that far less needs to be coded for analysis - only
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the marginal likelihoods in the first step of the IFM and the joint in the second. Asymptotically consistent

estimates will then, under jackknifing, provide asymptotically efficient estimates for the variance-covariance

matrix of the regressors (Joe 2005).

7.3 Comparing size and significance

Figures 1-8 show the marginal effects and t-statistics for the covariates in the margins, for all of the models

estimated, separated by equation. The marginal distribution preferred, according to information criteria, is

indicated. The reference individual is female, single, not European Caucasian, living in London (Urban),

degree-qualified and in the first social class, and employed full-time.

One noticeable result is the positive, statistically significant impact of being European caucasian on

both the risk of mortality and being in good health. The impact is more significant on health, but is

significant in both equations nonetheless. Being male generates an increased risk of mortality but has a

small and insignificant - though also positive - effect on health. Being married and owning a house has a

marked effect on reducing mortality risk. Controlling for social class (though not income directly), home

ownership improves health, also. Marriage does not have an effect. Balia and Jones (2007) in fact excluded

marital status from the mortality equation in their reduced form model, however it does appear to be highly

significant in the lifestyles they retained. Being married may therefore be having a substantial indirect effect

on mortality risk. Household size was also supposed to affect lifestyles, rather than health or mortality risk

directly, and this appears to be the case. Household size has an important positive and negative affect only

on prudent drinking and exercise respectively. Since the sample is restricted to individuals aged 40 years

and over it is reasonable to take this as representative of behaviour with large families, particularly children.

With specific regard to model selection, the marginal effects and t-statistics due to age and its quadratic

in the equation for mortality risk are particularly interesting. Selection criteria favoured the use of the

complementary log-log model for mortality risk, in which age and age2 show different results to the other

models. Mortality risk is increasing with age but at a decreasing rate, only for the complementary log-log

model. This would show up as a difference between a copula and the multivariate probit. The effect of age on

health is consistent across all models as are the estimates for the remaining explanatory variables. Moreover,

in the mortality equation alone it also appears the complementary log-log returns estimates nearest to the

multivariate probit. This is a pattern occasionally repeated in other equations, but not as consistently across

all parameters as in this equation.

Balia and Jones (2007) excluded parental smoking from the health equation in their structural form,

however it has a consistently significant negative effect in the reduced form, particularly in the case of both

parents smoking. Their economic significance is, apart from illness-related absence from work and not being
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Figure 1: PARAMETER ESTIMATES AND t-STATISTICS FROMTHEMORTALITY RISK EQUATION,

ALL MODELS
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Figure 2: PARAMETER ESTIMATES AND t-STATISTICS FROM THE SELF-ASSESSED HEALTH

EQUATION, ALL MODELS
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Figure 3: PARAMETER ESTIMATES AND t-STATISTICS FROM THE BREAKFAST EQUATION, ALL

MODELS
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Figure 4: PARAMETER ESTIMATES AND t-STATISTICS FROM THE NOT OBESE EQUATION, ALL

MODELS
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Figure 5: PARAMETER ESTIMATES AND t-STATISTICS FROM THE NOT SMOKING EQUATION,

ALL MODELS
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Figure 6: PARAMETER ESTIMATES AND t-STATISTICS FROM THE SLEEPING WELL EQUATION,

ALL MODELS
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Figure 7: PARAMETER ESTIMATES AND t-STATISTICS FROM THE PRUDENT DRINKING EQUA-

TION, ALL MODELS
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Figure 8: PARAMETER ESTIMATES AND t-STATISTICS FROM THE EXERCISING EQUATION, ALL

MODELS

PARAMETER ESTIMATE VARIABLE NAME t-STATISTIC 
 

-6 -4 -2 0 2 4

AGE

AGE2

HEIGHT

SOCIAL CLASS 2

SOCIAL CLASS 3

SUBURBAN

RURAL

OWNER

HOUSE SIZE

MALE

EDUC: NONE

EDUC: O-LEVEL

EDUC: A-LEVEL

EDUC: OTHER

MARRIED

WIDOW

DIVORCED/SEPARATED

PART-TIME

SICK

RETIRED

HOUSEKEEPER

UNEMPLOYED

SHIFT WORKER

SMOKING HOUSEHOLD

MOTHER SMOKES

FATHER SMOKES

BOTH SMOKE

FATHER DRINKS

MOTHER DRINKS

SCOTLAND

SE ENGLAND

SW ENGLAND

E ANGLIA

E MIDLANDS

W MIDLANDS

YORKSHIRE

NW ENGLAND

N ENGLAND

WALES

WHITE EUROPEAN

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

Clog-Log

Logit

Probit

MV Probit

32



European caucasian, comparable to the other explanators of good or poor health, and only in the smoking

equation is parental smoking elsewhere significant. This doesn’t suggest Balia and Jones (2007) restricted

parental smoking erroneously, though. The two effects could be reconciled by testing for a direct effect on

health as well as the indirect effect via the propensity to smoke.

As stated above, home ownership has a significant role in determining eating breakfast, not smoking and

sleeping well, with a reasonably-sized effect. Among the other statistically significant results are the large

effect of being male on the likelihood of not being obese, the large effect of not being European caucasian on

drinking imprudently (here being male has a larger effect still), and the non-smoking equation, in which the

reference female seems the least likely of all to smoke. The strength of the effect of unemployment on the

propensity to smoke stands out, also. Suburban living seems to provide lower chances of being obese, yet

living almost anywhere else in the UK besides London increases those chances, which corresponds reasonably

well with exercise, also.

Balia and Jones (2007) considered only not smoking, eating breakfast and sleeping well as endogenous,

and non-obesity, prudent drinking and exercising as exogenous. The covariate explanation in these equations

is significant overall though, as are the effects of covariates in each. This suggests some explanatory power

may still be contained in these equations, for health and the risk of mortality. Exercise due to non-urban

living and not being single might reflect the time of the survey and the age of the individuals (recall that

the sample is restricted to individuals 40 years of age and over). Non-urban areas may also offer more space

for outdoor sports and other activities, relative to cities.

In a few instances the non-normal marginal distribution has altered the significance of covariates, across

the models. These are not considered to be drastic, however: something that was barely statistically signifi-

cant may now barely be insignificant at a 5 or 10% level, not including age in the equation for mortality risk.

The differences between the t-statistics are not large enough that a given covariate would have been either

excluded from or included in the analysis. The differences that do exist however do suggest that copulas are

a worthwhile comparator to an ordinary multivariate probit.

8 Discussion

The methods and results presented here lead to two conclusions: first, that more flexible approaches to

estimating multivariate data, even multivariate dichotomous data, can provide more information on a given

data-generating process.

Specific to the elliptical copulas, the results show an improvement in estimation due to approximating

a joint distributions using the multivariate t distribution rather than the multivariate normal. There is
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also an improvement above that when considering multivariate skewed distributions, rather than the more

commonly-considered symmetric ones. The difference between skewness and symmetry alone is enough to

alter what would otherwise have been thought about tail dependence in the joint distribution, which has

significant implications for analysis concerning itself with extreme events.

9 Conclusion

This paper used a copula to represent a reduced-form system-of-equations model of mortality risk, health

and lifestyles (diet, exercise, smoking, sleeping, alcohol consumption and obesity) is considered. Employing

a method due to Lee (1983), McLeish and Small (1988) and Joe and Xu (1996) that uses inferencing for

margins, the parameters of each lifestyle, health and mortality equation were estimated separately to the

parameters of association that defined the joint distribution function.

The results showed that the assumptions underlying the multivariate probit are robust to the non-

normality uncovered: covariate estimates and the variance-covariance matrices were comparable across the

multivariate probit and the copulas used. As well as providing efficient estimates with less computation that

the multivariate probit however, the copula enables estimation of multivariate skewed distributon functions

for the system. In this instance, such skewness was found to be statistically significant, suggesting improved

fit from the use of copulas.

The copula approach allows such flexibility where traditional models do not, particularly when analysing

jointly-distributed discrete random variables, which is more cumbersome than with continuous random vari-

ables. The copula model for mortality risk, health and lifestyle was both able to capture idiosyncrasies of

the data such as skewness and tail dependence, while also being simpler to implement and estimate.
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Notes

1As with the discussion of conditional distributions, transform invariance in this case is, for two random

variables (X1,X2), invariance of F1(X1) to the use of F2(X2) or F3(X2), if F2(.) and F3(.) are both almost

surely increasing functions. Consequently, if the dependence between jointly uniformly-distributed (X1,X2)

is defined by some copula C (X1,X2), then C (X1,X2) = C (X1, F2(X2)) = C (X1, F3(X2)) .

2This is not usually considered problematic since the region outside this is not usually of interest (Smith

2003).

3Lee (1983) does not refer to the method as IFM, though.

4Note that X2 ∼ χ2, irrespective of the value of α.

5Non-elliptical distributions will be valid for some α, conditional upon setting an appropriate transfor-

mation W (.). Elliptical distributions will be valid for all α.

6That is to say, 2,433 of the original interviewees still in the system are deceased. The original HALS was

not intended for follow-up, so that not all interviewees were collected in for the second HALS. Only around

2% from the original HALS are lost from the most recent mortality update, due either to leaving the country

or having otherwise been dropped from the official National Health Service registry. See Cox (1988, 1995)

and Contoyannis and Jones (2004) for more information and discussion of the surveys.

7 ’Prudent’ alcohol consumption is given as less than 21 units of alcohol per week for males and less than

14 units per week for females (Contoyannis and Jones 2004). This does not distinguish between moderate

drinking and abstinence, despite evidence that moderate alcohol consumption can be beneficial, as both

Contoyannis and Jones (2004), and Balia and Jones (2007) discuss.

8Evidence has shown some more dexterity is required when using BMI. Deurenberg, Yap and van Staveren

(1998), for example, find that the obesity-rated BMI should be lower for some cultural backgrounds, such

as South-East Asian. In our 1984-5 sample anglo Europeans constitute around 98% of the available cultural

backgrounds, so any such differential is unlikely to be problematic. No indications were found of systematic

variations in obesity according to other backgrounds.

9This differs from the earlier study by Contoyannis and Jones (2004) due to a previous coding error,

corrected in this paper (in Contoyannis and Jones 2004, home ownership for the entire population was about

87% - in fact it is about 63%). It now, due largely to greater variation, has much stronger correlation

with the dependent variables. Comparison however gives no indication that previous results were affected
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significantly by the higher value.

10Results from these tests, not presented, indicate significant differences when the Complementary Log-Log

function was used, but no difference between the Probit and Logit.

11This step assumes that each combination of margins (or inverse probabilites) is accurate, leaving only

dependence to be captured by the joint distribution. Thus the ’best’ copula is taken to be representing the

correlation structure of the latent variables in each margins most accurately.

Although the Multivariate Probit is included, its likelihood is not directly comparable due to func-

tional form: unlike it, the copula distributions are 8 dimensions of inverse probabilities estimated non-

parametrically, although for the information criteria the full k = 356 was used. Thus the information criteria

should be used to compare the copulas, but not to infer that they are better than the standard Multivariate

Probit. The argument is that the information and efficiency gains in the joint distribution, and the fit in the

margins, are the advantages due to the use of copulas.

12Some explanation of the ’observed’ data is required. These are the inverse predicted probabilities used

by the copula for the joint distribution, as shown in Figure 4.1. So the ’observed’ mean is the mean of the

inverted predicted probabilites of y = 1 in each dimension, which was passed into each copula according to

Equation (14).

13A chi-squared test, using quintiles, is equally feasible in this instance.

14Still suppressing vector notation, the converse cross-partial derivative ∂2l
∂β∂θv

= 0 (from a proof in the

appendix of Joe 2005, not reproduced here).
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