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Abstract

A copula is best described, as in Joe (1997), as a multivariate distribution

function that is used to bind each marginal distribution function to form the

joint. The copula parameterises the dependence between the margins, while the

parameters of each marginal distribution function can be estimated separately.

This is a brief introduction to copulas and multivariate dependence issues

within a health economics context. The research presented here will make its

own contributions to the development of copulas as a methodology, but more

importantly will make deliberate inroads into health economic applications of

copulas. To do this, common analytic problems faced by health economists

are considered. Some of the differences between the copula methodology and

existing alternatives are discussed, and a generalisable, systematic approach to

estimation is provided.

JEL classification: C1, C3, C5, I3, I10
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1 Introduction

Measuring cost-effectiveness typically involves relating the effectiveness of a treatment

(the outcome) to its cost, usually with common health or economic comparators,

such as comparing cost with some monetised value of a health gain from treatment.

The predominant focus in cost-effectiveness analysis has been the Incremental Cost-

Effectiveness Ratio (ICER), an average-in-differences approach to measuring costs

and outcomes associated with competing interventions. Concerns over the robustness

of ICERs under uncertainty however have led to more informative measures such as

Net Monetary Benefit (NMB), which re-scales treatment cost and outcome to the

same numeraire (Phelps and Mushlin 1991; Claxton and Posnett 1996; Stinnet and

Mullahy 1998).

The use of NMBs provides information about dispersion and includes willingness-

to-pay directly, whereas ICERs do not. It also allows regression-based estimation and

covariate explanation of individual and environmental effects not related directly to

the intervention of interest, but still determining individual-level costs and outcomes.

This relaxes the assumption that the only difference is due to the intervention it-

self: Liu and Zhao 1999; Willan, et al. 2004; Willan, et al. 2005; Vázquez-Polo, et

al. 2004). The ordinary simultaneous equations approach to regression-based NMBs

however must specify a bivariate distribution for both cost and health outcome that

does not contain the best-fitting distribution of each margin, because bivariate dis-

tributions are restricted in the marginal distributions available. An example of such

an approach is the bivariate Normal distribution.

The normality assumption is generally inherent in analyses of jointly-distributed

random variables, rather than for cost-effectiveness specifically, but robustness and

efficiency remain a concern. Overcoming this often means estimation of one depen-

dent variable conditional upon the other, or simulation methods when simultaneous

estimation is preferred (Lambert and Vandenhende 2002; Lin 2003, respectively). To
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the extent that conditional distributions are intractable, simulation will be required

using that method also. Attempts to enhance cost-effectiveness analysis through re-

gression can therefore be hampered by distributional mis-specification or functional

intractability (Vázquez-Polo and Negrín-Hernández 2004; Briggs 2005). This is com-

mon in multivariate data analysis, but the disparate nature of treatment cost and

outcome data specifically makes homogenising marginal distributions questionable.

This paper suggests an alternative approach: estimating costs and outcomes si-

multaneously using copulas. For univariate marginal distribution functions F1 (x1)

and F2 (x2), a copula is a function that parameterises the dependence between the

margins and binds those margins precisely, to form the multivariate distribution func-

tion (Smith 2003). The parameters of each marginal distribution function can be

estimated separately. Depending on the functional form used, association of quite

different types can either be assumed or tested, independently of the functional forms

of the marginal distributions used.

This paper demonstrates and discusses regression with copulas using data from a

clinical trial for hysterectomy. Procedures for testing goodness-of-fit and comparing

different copulas are also discussed.

2 Regression and covariate-adjustment

In practice the true effectiveness of a given treatment is not known, since comparative

treatments are submitted to separate samples, or at different times - the so-called

’evaluation problem’ (Mullahy and Manning 1995; Hoch, et al. 2002). For some new

treatment or technology to be compared to an existing one, differences in their mean

costs are compared to differences in their mean health outcomes (see for example

Phelps and Mushlin 1991; Claxton and Posnett 1996; Gold, et al. 1996; Stinnet and

Mullahy 1998; Drummond, et al. 2005). During trials to obtain cost and outcome data

however, imperfect randomisation, attrition and the limits that small samples impose
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on reliable inference are common issues.1 Treatment cost and outcome therefore

cannot be assumed to depend only upon the intervention (Vázquez-Polo, et al. 2004).

Regression analysis of treatment cost and outcome has been suggested and demon-

strated in, for example, Liu and Zhao (1999), Hoch, et al. (2002) and Willan, et al.

(2004). Regression responds to the idea that there is no such thing as an ’average’

patient, such that individual covariates are useful in generating cost and outcome

estimates that are transferable as well as generalisable (Lessard 2007). Nixon and

Thomas (2005) also do this using baseline covariates to identify subgroups in sam-

ples, as well as for multi-centre clinical trial data.

2.1 Simultaneous estimation of costs and outcomes

Within the NMB framework, treatment is usually indicated in a single regression

model, averaging the effect of the covariates across trial arms, as well as collapsing

cost and outcome into one distribution. A more flexible regression method is useful to

capture more distributional information, as well as the association between jointly-

dependent cost and outcome. Willan, et al. (2004) propose Seemingly Unrelated

Regression (SUR) techniques for simultaneous estimation of cost and health outcomes,

pointing out that this enables more rigorous analysis not only of covariates but also of

differences between treatment arms or multiple trial centres using sub-groups. This is

an approach favourably reviewed elsewhere (Briggs 2005; Vanness and Mullahy 2005).

Estimation using systems of equations for cost (C) and outcome (or effect, E)

relies upon some association between the errors such that, in expectational terms,

⎛⎝ ∆C

∆E

⎞⎠ ∼ N

⎛⎝⎛⎝ μ∆C

μ∆E

⎞⎠ ,

⎛⎝ σ2
∆C

σ∆C,∆E

σ∆C,∆E σ2
∆E

⎞⎠⎞⎠ (1)

unless independence is assumed for convenience, in which case σ∆C,∆E = 0. These

five parameters μ∆C, μ∆E, σ
2
∆C
, σ2

∆E
and σ∆C,∆E correspond also to average-effects
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approaches to cost-effectiveness analysis, including the ICER. This specification is

typically in the interests of practicable estimation. The implication though is that
√
N
¡¡
∆C − μ∆C

¢
,
¡
∆E − μ∆E

¢¢0 d→ N (0,Σ) for some asymptotic covariance matrix

Σ, however this is often not supported even by descriptive information.

A related problem arises with the use instead of conditional distributions to avoid

imposing estimates of average effect on two distributions, such as different trial arms

or different centres in a multi-centre trial. Nixon and Thomas (2005), for example,

introduce correlation by parameterising variation in cost within the equation for the

outcome. Conditional distributions are affected by the so-called Borel paradox (Kol-

mogorov 1950; Newey and Steigerwald 1997; Verhoeven and McAleer 2003). For

practical purposes, this holds that the margins in a conditional distribution function

are not ’swappable’ - i.e. the conditional and conditioning distribution functions are

not swappable, unless they are of the same, symmetric, family of distribution func-

tions. Otherwise estimates of the parameters of the conditioning distribution function

will not necessarily be consistent.

A simultaneous-equations approach that imposes no distributional restrictions is

preferred, but which also measures dependence θ such that, between random vari-

ables (X1,X2), θX1,X2 = θX2,X1 regardless of the form (or skew, or kurtosis) of the

distributions F1(X1) and F2(X2).

2.2 Copulas

Copulas are functions that parameterise the dependence between univariate marginal

distribution functions to form a joint distribution function. They represent an im-

provement in modelling costs and outcomes simultaneously in two ways: first, by en-

abling a range of distributions — almost any appropriate parametric or non-parametric

distribution — to be given to each margin in a multivariate distribution; and secondly

by allowing the association between the random variables in a multivariate distribu-
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tion to be specified separately for each bivariate pair of marginal distributions. Thus

each margin is precisely defined according to the nearest approximation to the data,

as well as invariant to transformations in every other margin, or independent of the

choice of every other marginal distribution.2 Following this, the resulting multivariate

distribution may be used to derive densities for estimation via Maximum Likelihood,

for example.

A copula is principally a dependence function — each one represents a unique

description of the relationship between its margins, while the distribution functions of

its margins are assigned separately. Specifically, the distribution functionH(x1, ..., xn)

of some set of random variables {X1, ...Xn} with univariate distribution functions

F1 (x1) , ..., Fn (xn) is given by

H (x1, ..., xn) = C (F1 (x1) , ..., Fn (xn) ; θ) (2)

where C (.; θ) is the copula, a function of n uniform margins whose association is

represented by the parameter of association, θ. Returning to the strictly bivariate

framework, Sklar’s (1959) theorem holds that, for any bivariate distribution with given

margins, there exists a copula that binds these margins to form the joint distribution

precisely (Smith 2003). Further, the copula C (F1 (x1) , F2 (x2) ; θ) = H (x1, x2) is

unique when F1 (x1) and F2 (x2) are continuous.3

For estimation, the joint probability density function h of distribution H is given

by

h (x1, x2) =
∂2C (F1 (x1) , F2 (x2) ; θ)

∂x1∂x2
(3)

= f1 (x1) f2 (x2)C12 (F1 (x1) , F2 (x2) ; θ)

and C12 (F1 (x1) , F2 (x2) ; θ) is given by
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C12 (u, v, θ) =
∂2C

∂u∂v
(4)

I.e. the twice-differentiated copula with respective to its marginal CDFs, rather

than the random variables as in Equation (3). Simplifying notation F1 (x1) → u,

F2 (x2)→ v is used hereon.

In this manner, copulas separate the joint association of two or more random vari-

ables from their marginal distributions, since all the information on the dependence

structure should be contained within the copula itself, through θ.

For this analysis, estimation is based on the linear-form Farlie-Gumbel-Morgenstern

(FGM) copula, as well as the Frank family from the Archimedean class of copulas

(Joe 1997; Nelsen 2006).

2.2.1 The Farlie-Gumbel-Morgenstern copula

The FGM is a relatively straightforward copula, easily implemented and suitable for

comparison with the bivariate Normal. It is C such that

C (u, v; θ) = uv (1 + θ (1− u) (1− v)) (5)

where −1 ≤ θ ≤ 1, with positive and negative dependence for ±θ respectively, and

recalling that F1 (x1), F2 (x2) are (at least) monotonic.4 In practical applications this

copula has been shown to be a somewhat limited measure of dependence (Prieger

2000). Dependence θ ∈ [−1, 1] corresponds approximately to Spearman’s correlation

ρ ∈
£
−1
3
, 1
3

¤
, where ρ = θ

π
, and Kendall’s τ ∈

£
−2
9
, 2
9

¤
where that τ = 2θ

9
(Nelsen

2006). Mari and Kotz (2001) provide several extensions of the FGM copula, which

expand this range. The FGM density is given by

C12 (u, v, θ) =
∂2C

∂u∂v
(6)

= (1 + θ (1− 2u) (1− 2v))
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For estimation, the joint probability density function h of distributionH is derived

according to Equations (3) and (4).

The resulting likelihood function for the FGM copula is simply

L (β1, β2, σ1, σ2, θ) =
nY
i=1

f1 (xi1;β1, σ1) f2 (xi2;β2, σ2) (7)

× (1 + θ (1− 2F1 (xi1; β1, σ1)) (1− 2F2 (xi2;β2, σ2)))

for margins characterised in regression by F1 (xi1;β1, σ1) and F2 (xi2; β2, σ2), with

regression parameters β1, σ1 and β2, σ2.

2.2.2 The Frank copula

The Frank copula is an Archimedean-class copula. Archimedean copulas are a particu-

lar class of copula that includes several popular families, and which are fundamentally

different to other families, including the FGM, by virtue of their construction (see

Nelsen 2006). The Frank copula is is given by (Frank 1979),

C (u, v; θ) = −1
θ
ln

Ã
1 +

¡
e−θu − 1

¢ ¡
e−θv − 1

¢
e−θ − 1

!
(8)

where θ ∈ [−∞,∞] \ {0}. This is a comprehensive family, such that association θ

corresponds to τ ∈ [−1, 1] \ {0}.5

2.2.3 Estimation

FIML estimation follows the same procedure for copulas as for ordinary FIML esti-

mation. Location and scale parameters are estimated in each marginal distribution

function (the functional form of each of which is selected separately from the others)
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simultaneously with the copula parameters for dependence. Specifically, for some mul-

tivariate distribution function H (X1, ..,Xn; β1, .., βn, θ), consider the corresponding

copula C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ).

Step 1 : Specify the functional forms of each marginal distribution F1 (X1; β1) , ...,

Fn (Xn; βn), each with some vector of parameters βi. This can be done parametri-

cally (by prior FIML estimation of each margin, for example), or non-parametrically

(Matlab, for example, has some distribution-fitting tools). Selection can also be made

visually, or according to any other prior information.

Step 2 : Specify the functional form of the copula, C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ).

This can be done according to some knowledge of the dependence structure (such as

with examination of the variance-covariance matrix) or any characteristics desired of

the joint distribution.

Step 3 : Construct the copula density c (F1 (X1;β1) , .., Fn (Xn;βn) ; θ) according

to Equations (??)-(??), as well as the likelihood and log-likelihood functions.

Step 4 : The copula log-likelihood can be estimated according to any maximum-

likelihood procedure. If point-estimates are available, for the parameters in either the

copula or in the univariate marginal distribution functions, they should be given as

precise starting values.6

3 Application: the eVALuate hysterectomy trial

The eVALuate hysterectomy trial was a multi-centre randomised trial comparing new

laparoscopic procedures for hysterectomy with existing abdominal and vaginal pro-

cedures (Garry, et al. 2004).7 The abdominal hysterectomy requires incision, and

involves scarring, and more pain, morbidity and likely complications. It is however

less technically demanding, and much more commonly undertaken, than the vaginal

approach. The laparoscopic procedure uses keyhole surgical techniques, which can ei-
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ther replace the abdominal incision or complement the otherwise non-surgical vaginal

procedure. In terms of scarring and recovery it is an improvement over the abdominal

approach, however it is more costly and time-consuming, as well as requiring technical

training.

The eVALuate trial sought to determine the role for laparoscopic techniques be-

fore their wide introduction to clinical practice. It was conducted with twin arms:

two parallel randomised trials in which patients were first allocated abdominal or

vaginal procedures by their surgeon, and then randomly allocated either to that or

to the Laparoscopic arm. The result is a trial comparing laparoscopic to abdominal

procedures, and laparoscopic to vaginal. For this analysis only the Abdominal arm

of the eVALuate trial was used.

3.1 Descriptive analysis

Some description and discussion of the trial data follows. Comprehensive description

of the eVALuate trials can be found in the original Health Technology Assessment by

Garry et al. (2004). The data and results presented here are only those of specific

relevance to this analysis.8

3.1.1 Patient characteristics

Descriptive statistics concerning patient characteristics and general explanatory vari-

ables are contained in Table 3.1.

At the means, patients were sufficiently randomised according to Age and Body

Mass Index. Smoking and having had pelvic surgery previously show some differences.

These typically occurred because of movement during the trial, or initial allocation,

both of which were subject to clinical indicators as well as the need for randomisation.

The length of stay results reflect the theory behind the use of laparoscopic techniques,

showing lower average length of stay and lower post-operative length of stay.
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Table 1: SUMMARY STATISTICS (MEANS AND STANDARD DEVIATIONS, OR

PERCENTAGES) OF EVALUATE PATIENT CHARACTERISTICS

  Abdominal  Laparoscopic 
Mean (standard deviation) 

Age (years) 41.17 41.68 
(7.58) (7.15) 

Body Mass Index 25.93 26.58 
(5.42) (5.06) 

Length of Stay (days) 5.11 3.95 
(2.72) (2.38) 

Post-operative LOS (days) 4.43 3.4 
(2.49) (2.57) 

Percentage 

Whether current smoker 48.63 41.44 
Whether had previous pelvic 
surgery 0.73 0.54 

Sample size 320 573 
Proportion of total (i.e. 
treatment dummy) 35.83 64.17 
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Table 2: TOTAL COSTS AND QALY GAIN PER PATIENT

  Abdominal  Laparoscopic 

QALYs gained over year 0.8616 0.8703 
(0.1356) (0.1312) 

Cost (£) 
1518.992 1675.741 

(1329.699) (1220.504) 

Whether or not the individual was a smoker at the time of the trial exhibits some

interesting effects in the analysis. Having to stop smoking for the trial confounds,

somewhat, the marginal effect of smoking on treatment outcome (for both procedures:

the negative effect of being smoker is not distinguishable from the positive effect of

having quit smoking, or at least stopped temporarily).

The difference in sample size between the Abdominal and Treatment groups was

intentional: the trial was design to over-sample Laparoscopic patients to gather more

information, as well as to expose surgeons to the new technology as much as possible.

3.1.2 Cost and Outcomes

Table 3.2 describes cost and outcomes data from the trial. In previous analyses of

the eVALuate trial, both QALYs gained and major complications have been used as

the health outcome (Garry, et al. 2004; Garry, et al. 2004b; Sculpher, et al. 2004).

The outcomes of interest here are the total cost and the QALYs gained per patient.

Results from Kolmogorov-Smirnoff tests reject the hypothesis that Costs are dis-

tributed differently in each arm of the trial, but do not reject the same for QALYs

gained.9 This does not imply that Abdominal QALYs gained follow one family of

distributions while Laparoscopic QALYs gained follow another; rather that they may

both be Beta-distributed according to different parameters. That the result is mixed

is not necessarily of concern: while Costs are given one distribution and QALYs gained
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another - i.e. one copula, using a treatment indicator, or dummy variable - the trial

arms could also be separated into an Abdominal Cost/QALY copula and a Laparo-

scopic Cost/QALY copula, but with a loss of power due to the sample sizes. Given

the size and closeness of the means for QALYs gained in Table 3.2, separating the

trial arms is not considered necessary.

Kernel densities and Quantile plots comparing the distributions of Treatment Cost

and QALYs gained with the normal distribution are in Figures 3.1 and 3.2.
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Table 3: ESTIMATES (STANDARD ERRORS) FROMREGRESSION OF TREAT-

MENT COST AND QALYS GAINED, WITH TWO-SIDED SIGNIFICANCE INDI-

CATED

  Cost (log-
Normal)  

QALYs 
gained 
(Beta) 

QALYs 
gained 

(Normal) 

Treatment 0.0868** 0.1585** 0.0081 
(0.0332) (0.0748) (0.0105) 

Age at randomisation 0.0040* 0.0037 0.0006 
(0.0022) (0.0050) (0.0007) 

BMI at randomisation 0.0062** -0.0116* -0.0010 
(0.0031) (0.0069) (0.0010) 

Previous pelvic surgery 0.5753** -1.0488** -0.1456** 
(0.2097) (0.4154) (0.0666) 

Previous smoker 0.0626* 0.3566** 0.0375** 
(0.0326) (0.0738) (0.0103) 

Constant 7.4256** 0.6805 0.6967** 
(0.2328) (0.4734) (0.0739) 

Std. Dev 0.3922 0.1376 0.1364 
p-value  0.0918 0.2507 0.4739 
 * Significant at 10% 
** Signif icant at 5% 

 

3.2 Estimation of the margins

Table 3.3 contains results from regression of the Abdominal and Laparoscopic mar-

gins.

Tables 3.3 and 3.4 contain bootstrapped standard errors. Cost is Lognormally-

distributed; QALYs gained is estimated twice, once according to assumed normality,

and assuming Beta-distributed QALYs gained, to account directly for the skewness

and bounded responses.10 Estimates for QALYs gained, assuming normality, have

been included with this comparison in mind.

The Beta distribution is, like the Normal, a versatile one, convenient for failures
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Figure 1: KERNEL DENSITIES AND QUANTILE PLOTS FOR TREATMENT

COST
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Figure 2: KERNEL DENSITIES AND QUANTILE PLOTS FOR QALYS GAINED
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in the normality assumption such as skewness and multimodality. Beta regression

however is rare, typically because interpretation is not as straightforward. In Tables

3.3 and 3.4, for example, the coefficients in the Beta regression refer not to the direct

effect on QALYs gained, but to a log-odds ratio of the probability Pr(Y < y) with

that covariate rather than without. This is due to the use of a logit link function to

transform the mean μ, such that

μ =
exp (x0iβ)

1 + exp (x0iβ)
(9)

which re-scales the mean to the unit plane. Moreover the parameters ω and κ in

Y ∼ Beta (ω, κ) do not refer to the data directly: ω is not the mean and κ is not

variance. The regression here follows the procedure of Smithson and Verkuilen (2006)

quite closely, using the transformations

E(Y ) =
ω

ω + κ
(10)

and

V ar(Y ) =
ωκ

(ω + κ)2 (ω + κ+ 1)
(11)

=
μ(1− μ)

(ω + κ+ 1)

where μ = E(Y ). This allows variance and standard deviation to be determined

for comparison. Standard deviation of the QALYs gained margin in Table 3.3, for

example, has been calculated according to Equation (11).11

The independent marginal models suggest the Beta distribution provides a better

fit of QALYs gained, compared to the Normal distribution. Covariate explanation of

QALYs gained, in particular, is poor across both specifications with the information

available. The treatment dummy, representing an incremental increase in QALYs
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gained due to treatment, is not statistically significant for the normally-distributed

QALYs model.

3.3 Estimation of the joint distribution

Results from regression of the joint distribution are in Table 3.4.
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Table 4: ESTIMATES (STANDARD ERRORS) FROM COPULA AND SUR REGRESSION OF

TREATMENT COST AND QALYS GAINED, WITH TWO-SIDED SIGNIFICANCE INDICATED

  FGM Frank Product BVN 

 Cost QALYs 
gained Cost QALYs 

gained Cost QALYs 
gained Cost QALYs 

gained 

Treatment 
0.0825** 0.1561** 0.0789** 0.1195 0.0868** 0.1585** 0.0868** 0.0081 
(0.0333) (0.0748) (0.0347) (0.0767) (0.0332) (0.0748) (0.0332) (0.0105) 

Age at randomisation 
0.0038* 0.0035 0.0024 0.0043 0.0040* 0.0037 0.0040* 0.0006 
(0.0022) (0.0050) (0.0023) (0.0051) (0.0022) (0.0050) (0.0022) (0.0007) 

BMI at randomisation 
0.0064** -0.0114* 0.0070** -0.0071 0.0062** -0.0116* 0.0062** -0.0010 
(0.0031) (0.0069) (0.0033) (0.0072) (0.0031) (0.0069) (0.0031) (0.0010) 

Previous pelvic surgery 
0.6161** -1.1094** 0.5813** -0.9183** 0.5753** -1.0488** 0.5753** -0.1456**
(0.2026) (0.3800) (0.2150) (0.3537) (0.2097) (0.4154) (0.2097) (0.0666) 

Previous smoker 
0.0555* 0.3764** 0.0559 0.3421** 0.0626* 0.3566** 0.0626* 0.0375**
(0.0326) (0.0734) (0.0344) (0.0751) (0.0326) (0.0738) (0.0326) (0.0103) 

Constant 
7.4708** 0.5815 7.4427** 0.4990** 7.4256** 0.6805 7.4256** 0.6967**
(0.2270) (0.4416) (0.2440) (0.4198) (0.2328) (0.4734) (0.2328) (0.0739) 

Association parameter -0.7488** -6.0078** n/a -0.2551** 
(0.1164) (0.1995) (0.0348) 

Log-likelihood 401.648 183.727 384.411 64.958 
 * Signif icant at 10% 
** Signif icant at 5% 
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The FGM, Frank and Product copulas contain Lognormally-distributed treat-

ment cost and Beta-distributed QALYs gained. The bivariate Normal model (BVN:

SUR with Maximum Likelihood) contains Lognormally-distributed treatment cost

and normally-distributed QALYs gained. The Product copula is merely a joint dis-

tribution assuming independence: the product of each marginal distribution.

Neither the Frank copula nor the bivariate Normal SUR model return a statis-

tically significant effect of treatment on QALYs gained, although all models do for

Costs. These are the mean effects of treatment on Costs and QALYs gained, con-

trolling for available individual characteristics. In the BVN model in particular the

point-estimate of treatment effect is poor, statistically. Subject to evaluation of the

relative performance of the copula models, the evidence of the efficacy of the laparo-

scopic procedure is mixed, under regression.

An interesting result not presented here is that the standard errors in the copula

models tended to shrink asymptotically, while the opposite occurred with those of

the SUR model, suggesting greater relative asymptotic efficiency due to the copula

method (Joe 2005).

3.4 Copula selection and goodness-of-fit

Following Joe (1997), two other approaches can be taken. The first is to use either

the log-Likelihood directly, or information criteria such as the Akaike Information

Criterion (AIC), given by AIC = 2k − 2 ln(L) for log-likelihood L and k free pa-

rameters, or Bayesian Information Criterion (BIC), given by k ln(n) − 2 ln(L) and

where n is the sample size. Models do not need to be nested for this comparison;

with each copula model, as well as the bivariate normal, containing an equal number

of free parameters, the punitive approach taken towards parameterisation is also not

necessary. The convience of having immediate access to the log of the Likelihood

function, post-estimation, is an advantage over other methods.
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Table 5: LOG-LIKELIHOODS AND INFORMATION CRITERIA FROMCOPULA

AND SUR REGRESSION

FGM Frank Product BVN
Log-Likelihood 401.648 183.727 384.41 64.958
Akaike IC -779.296 -343.454 -744.820 -105.916
Bayes IC -724.295 -288.453 -689.819 -50.915

Results from comparing information criteria are in Table 3.5.

Figure 3.3 illustrates this. It shows the bivariate density of each model, super-

imposed over the observed spread of Costs and QALYs gained.
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As Figure 3.2 illustrates, it is the FGM and Product copulas that best approx-

imate the Beta-distributed QALYs gained within the joint distribution, supporting

the results from comparison of the log-likelihoods and information criteria. The Frank

copula would perform better in cases where there were more extreme values in the

distribution of Costs, as its bivariate distribution can be seen to be pulled away by

the longer tail in the log-normally distributed Costs.

Finally, the regression-based estimates of treatment effects, along with the coef-

ficients, can be used to estimate cost thresholds for cost-effectiveness (Hoch, et al.

2002). This is done by constructing point-estimates of both treatment and non-

treatment Costs and QALYs gained, as well as Incremental Cost-Effectiveness Ratios

(ICERs), for each individual. The ICER is given by

\ICERi =
d∆Cid∆Ei

(12)

where ∆Ei and ∆Ci represent the individual-level incremental changes in QALYs

gained and Costs, respectively. The average of these

ICER =
∆C

∆E
(13)

provides the willingness-to-pay (for a QALY gain) threshold at which, according

to a given regression model, a treatment will be cost-effectiveness. Results from this

comparison, for all models, are in Table 3.6.

The estimated cost per QALY from the original Health Technology Assessment

of Garry, et al. (2004) was £26,571, to which the estimate from the bivariate normal

SUR model is statistically near.12 The estimated cost per QALY from the preferred

FGM copula is only £6,981, while that of the Frank and Product copulas are nearly as

low. The suggestion from these is that, if the assumption that QALYs gained are in

fact Beta-distributed, rather than normally distributed, cost-effectiveness is actually

achieved at a much lower willingness to pay.
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Figure 3: BIVARIATE COPULA DENSITIES, MARGINAL HISTOGRAMS AND

BIVARIATE SCATTERPLOTS FOR OBSERVED INDIVIDUAL COSTS AND

QALYS GAINED
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Table 6: ESTIMATED MEAN WILLINGNESS-TO-PAY THRESHOLDS (STAN-

DARD DEVIATIONS) FOR COST-EFFECTIVENESS OF LAPAROSCOPIC HYS-

TERECTOMY

  
Average Cost-Effectiveness 

Threshold (£) 

FGM 6981.2810 
 (812.0554) 
Frank 8485.4860 
 (937.0617) 
Product 8120.5680 
 (1131.9380) 
BVN 29822.9100 
  (2507.4270) 

The difference between the cost-effectiveness thresholds, while substantial, are ex-

plained by the estimated treatment effect on QALYs gained and, to some extent, are

an artefact of the trial itself. Because the trial followed patients for only a single

year, QALYs gained cannot exceed 1, and the incremental difference due to treat-

ment is very small (only 0.0087, from Table 3.2; the estimated effect in the SUR

model also was only 0.0081). As a result the ICER is very sensitive to differences

in these predicted treatment effects. On average the copula models predict an in-

cremental difference in QALYs gained of 0.03 - significantly higher than that of the

SUR, although their estimates of Cost are not significantly different. The suggestion

in this paper, though, is that the copula estimates are more accurate.

4 Discussion

The results from this analysis suggest that laparoscopic hysterectomy is cost-effective

at a significantly lower willingness-to-pay per QALY gain than has been found in
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previous research. Some caution should be attached to this conclusion, however, as

the value of the information gained from the eVALuate trial has not been demon-

strated. As well as power issues, the treatment effect on the health outcome was not

statistically significant in the bivariate normal SURmodel. The explanatory variables

included in this model also were not generally statistically significant, and were few

in number.

In terms of demonstrating the contribution of the copula method to cost-effectiveness

analysis, the illustrating example of the eVALuate trial was sufficient. In terms of

demonstrating cost-effectiveness of the laparoscopic procedure itself, however, these

results should be considered, at best, incomplete.

5 Conclusion

This paper compares two regression methods for cost-effectiveness analysis with clini-

cal trial data, where individual covariates are used to adjust for differences at baseline.

The two methods were Seemingly Unrelated Regression and the copula. The results

suggest that the copula can improve estimation of the treatment effect, relative to

the Seemingly Unrelated Regression method. The improvement due to the copula

stems from the ability to assign any marginal distribution within its bivariate joint

distribution, so that the non-normally distributed health outcome in the clinical trial

is more accurately estimated. As a result, estimates of the treatment effect are more

precise, as well as more reliable.

Like the Seemingly Unrelated Regression method, copulas allow feasible estima-

tion of either Incremental Cost Effectiveness Ratios or Incremental Net Benefit at

an individual level, using both the effect of treatment and covariates. A future ex-

tension of this paper is to compare regression methods according to estimation of

counter-factual trial outcomes, which may provide more reliable estimates of individ-

ual Incremental Net Benefit than, for example, subgroup analysis.
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Finally, some consideration must be given in future work to the uncertainty of

regression estimates. The use of the Cost-Effectiveness Acceptability Curve allows re-

searchers to assign a probability of making the correct decision, at a given willingness-

to-pay, when comparing only the means of cost and outcome in a clinical trial. Re-

gression allows estimates of the means to be adjusted for baseline differences, but no

natural method for considering the value of the information used to construct those

estimates.
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Notes

1Meaning statistical inference for a population, using results from the analysis of

sample data.

2I.e if some copula is defined C (u, v), then C (u, v) = C (u, F (v)) =

C (u,G(v)) where F (v) and G(v) could be two different distribution functions of

v.

3Under discontinuities in F (x1) , F (x2), the copula C is otherwise determined on

RanF1×RanF2, a combination of the range of the margins. Smith (2003) points out

that the region outside this is usually not of interest: a multivariate distribution is

typically defined within the supports of each margin.

4This is trivial: since u = F1(x1), v = F2(x2) are univariate distribution functions

they must be monotonic, at least (Nelsen 2006 contains an explanation of quasi-

inverses of non-strictly increasing margins, which can also be used to construct a

copula). This property is also necessary to ensure the measure of association, θ,

’obeys’ the rules for measures of dependence.

5Algebraically, the Frank copula does not nest independence because of the term
1
θ
. Nelsen (1998), however, demonstrates that lim

θ→0
CFrank = uv, i.e. the Product

Copula.

6FIML procedures written for STATA are available online at

http://www.york.ac.uk/res/herc/hedg_stata.html. They should be informative, but

are specific to this particular analysis.

7My use of the eVALuate trial data was done with the kind permission of the team

involved with the original Health Technology Assessment, for which I am grateful.
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8Data were further cleaned using the Grubbs procedure for detecting outliers in

Stata.

9Tests for QALYs gained did not reject the null of equality with p-values of 0.119

for the Abdominal trial arm. Tests for costs rejected the null with p-values <0.0001,

as did all tests for equality between cost and QALYs gained.

10Treatment Cost is defined from zero: it is not censored. The Cost data have not

been shifted or otherwise adjusted, besides the log-scale transformation.

11Code for estimation of the Beta regression model using Stata’s ml package is

available from the author.

12The Garry, et al. (2004) estimate of £26,571 is within the 95% confidence interval

around the bivariate normal SUR estimate of £29,822.
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