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Abstract

A copula is best described, as in Joe (1997), as a multivariate distribution

function that is used to bind each marginal distribution function to form the

joint. The copula parameterises the dependence between the margins, while the

parameters of each marginal distribution function can be estimated separately.

This is a brief introduction to copulas and multivariate dependence issues

within a health economics context. The research presented here will make its

own contributions to the development of copulas as a methodology, but more

importantly will make deliberate inroads into health economic applications of

copulas. To do this, common analytic problems faced by health economists

are considered. Some of the differences between the copula methodology and

existing alternatives are discussed, and a generalisable, systematic approach to

estimation is provided.

JEL classification: C1, C3, C5, I3, I10
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1 Introduction

This is an introduction to copulas from the perspective of the needs of health-economic

analysis. The presentation is intended to be non-technical, although copulas are, as

constructed multivariate distribution functions, intrinsically technical. Important but

non-necessary technical discussion is removed to footnotes, and can be overlooked.

Technical discussion included in the body of the paper can also be overlooked: refer-

encing is extensive, to enable more detailed research for a given item or characteristic

of interest.

Essential references are Joe (1997) and Nelsen (1999, 2006). Frees and Valdez

(1998) is particularly useful also, for its discussion and inclusion of an annotated

bibliography. Since this is an exercise in applying copulas in a health economic

context, only those characteristics most relevant to empirical applications will be

discussed. The presentation will be stylistic rather than statistical, as much as is

possible: the discussion of copulas is structured according to these characteristics,

with statistical properties of copulas explained as they become relevant. Much of

the statistical foundations of copulas will be overlooked, but can be found in the

comprehensive studies by Dall’Aglio (1991), Nelsen (2006) and Joe (1997).

1.1 The motivation for copulas

Consider that economic and econometric analyses are, generally, based in assump-

tions. These can be explicit assumptions generated by prior information about the

data being investigated, such as the use of models for discrete or continuous data, or

only strictly positively defined distribution functions, for example. Others however

are implicit assumptions of convenience. These can be assumptions made for analytic

convenience, such as the normalisation to 1 of a standard deviation in a theoreti-

cal optimisation problem, to enable identification of the solution. Alternatively, it
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could be for computational convenience, such as the normalisation to 1 of standard

deviation.

The primary motivation for introducing copulas is redressing the assumptions

made in a specific context: the analysis of jointly-determined, or jointly-dependent,

random variables. When analysing a single random variable there are many univari-

ate distributions that can be used. There are fewer bivariate distributions however,

for two correlated random variables, and fewer still in higher dimensions. When two

or more dependent variables are jointly determined, the set of available distributions

becomes even more restricted, leading to simplifying assumptions, such as the assump-

tion of bivariate normality. However the analytic sequelae of assuming bivariate or

multivariate normality can be extensive, though not usually acknowledged explicitly.

This includes, for example, whenmanipulation of data is consistent only with symmet-

ric distributions. This is not problematic if data is in fact joint normally distributed,

or at least symmetric, but can become a problem otherwise. The fact that univariate

normality may appear to be robust enough under reasonable mis-specification may

not be sufficient to overcome errors when using non-normally, asymmetrically distrib-

uted data in higher dimensions, the central limit theorem notwithstanding (Keselman,

et al. 2005).

A secondary motivation is mis-specification. Greene (2002) and Wooldrige (2002)

discuss the use of pseudo-maximum likelihood when the marginal distributions are

known but the joint is not. Pseudo-maximum likelihood techniques are a way of

overcoming the need to specify a distribution correctly for methods of maximum

likelihood, however in certain cases this will result in inconsistent estimates of some

or all parameters (Greene 2002: specifying a Poisson incorrectly, in place of a Negative

Binomial distribution, is one such case). Prokhorov and Schmidt (2006) discuss quasi-

maximum likelihood estimation, the method used when independence is assumed,

rather than some (potentially misspecified) joint distribution. They show that, when

independence has been assumed incorrectly, estimates may be inconsistent also. In
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both cases corrections exist, but not in all; nor are they commonly undertaken in

empirical analyses. The methods shown here obey rules in Prokhorov and Schmidt

(2006) that, in the absence of these problems, the added moment conditions they

include are only redundant, but in the presence of such problems provide consistent

estimates and more efficient estimation overall.

A final motivation is redressing the other common concession made to analysing

jointly-distributed random variables conveniently. That is, the association between

them. There are many measures of dependence in statistics, some more robust than

others. Usually, though, weaker measures of dependence are used in order to enable

more straightforward estimation of parameters belonging to the margins themselves.

This is related to the previous point: often these weaker measures of association

are enabled by prior simplifying assumptions about the joint distribution, such as

symmetry.

Simplifying assumptions generally are concessions to practicality, and they do not

occur any more frequently in health economics than in economics or econometrics

generally. Moreover other approaches exist, which either offset distributional asym-

metry/dissimilarity, or avoid it altogether. Conditional likelihood is an example of the

former, which is discussed here as it relates directly the motivation of this dissertation.

The latter includes methods such as empirical likelihood and bootstrap/jackknife

(Owen 2001; Shao and Tu 1995; Chernick 1999). These are not discussed because,

although they overcome the need to specify any distribution, they are not generally

practical for regression-based estimation, particularly in higher dimensions.1

1.2 Sklar’s theorem

For univariate marginal distribution functions F1 (x1) and F2 (x2), a copula is a func-

tion that binds those margins precisely, to form the multivariate distribution function

(Smith 2003). The copula parameterises the dependence between the margins, while
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the parameters of each marginal distribution function can be estimated separately.

For the purposes of empirical analysis a copula is best described, as in Joe (1997), as

a multivariate distribution function that separates each marginal distribution both

from every other marginal distribution, and from the dependence between their as-

sociated random variables. Thus the two most important features of copulas: they

exist as multivariate distribution functions which can feasibly contain any type and

combination of marginal distributions; and each uniquely represents dependence. De-

pending on the functional form used, association of quite different types can either be

assumed or tested, independently of the functional forms of the marginal distributions

used.

By a theorem due to Sklar (1959) one can say that all multivariate distributions

have a copula representation, in which each margin is invariant to transformations

in every other margin, or independent of the choice of every other marginal distri-

bution.2 Consider two random variables X1, X2 with bivariate distribution function

H (x1, x2) = Pr (X1 ≤ x1, X2 ≤ x2) and univariate marginal distributions F1 (x1) and

F2 (x2) respectively. Then there exists a copula C that represents the joint distribu-

tion function in terms of the margins, such that

H (x1, x2) = C (F1 (x1) , F2 (x2)) (1)

for all real values of x1, x2 (or (X1,X2) ∈ R2). If F1, F2 are continuous, C is

unique. Under discontinuity C is uniquely determined on its domain, the range of

the margins RanF1×RanF2.3 Moreover it can be seen using Sklar’s theorem that, if C

is a copula and F1 and F2 are distribution functions, then some function H as defined

in Equation (1) is a joint distribution function (see Nelsen 2006 for this proof, as

well as an explanation of quasi-inverses of non-strictly increasing margins, which can

also be used to construct a copula). By taking the marginal distribution functions

as explanators within which association is not contained, the copula separates the

5



explanation of X1 and X2 from their association.

1.3 Background

Although copulas have appeared in the mathematical and statistical literature for

several decades, in empirical studies they have only begun to be used relatively re-

cently (Dall’Aglio 1991 contains an excellent analect of many of the developments in

copulas). The earliest development of copulas empirically has been in finance. They

have proven useful in non-parametric analyses of risk and asset returns, where covari-

ate explanation is of little interest but precise estimation of the dependence is. Bouyé,

et al. (2000) provide a comprehensive review of copulas for use in several methods

of estimation beyond that of maximum-likelihood, exemplifying the approach with

analysis of credit scoring, risk measurement and asset returns.

Sample selection is one more broadly economic area in which the majority of

analyses begin with the normality assumption, even while acknowledging the limita-

tions it imposes (Vella 1998). Smith (2003) uses a specific class of copulas to estimate

self-selection, switching-regime and double-selection models, analysing labour supply

and hospital lengths of stay. This is done to show the different properties of data, of

which a copula approach can take advantage. Genius and Strazzera (2004) similarly

used copulas to examine contingent value data with selection bias comparatively with

standard Full Information Maximum Likelihood approaches, which assume bivariate

normality.

Statistically, copulas are stronger with continuous random variables, although sev-

eral studies now have applied them also to discrete data. Researchers at Université

Catholique de Louvain’s Institut de Statistique have successfully applied copulas to

the analysis of categorical data from clinical trials (Vandenhende and Lambert 2000;

Tajar, et al. 2001), as well as looking specifically at correlation, local and tail de-

pendence (Almeida and Mouchart 2003; Cebrián, et al. 2003; Demarta and McNeil
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2005; Vandenhende and Lambert 2004). Dardanoni and Lambert (2001) use copulas

to analyse stochastic ordering. Quinn (2007c) applies them similarly to the analysis

of income-related inequalities in health, where health is measured categorically. Ad-

vances also have been made in the analysis of measurement errors and mis-measured

counts with respect to self-reported and actual physician visits (Cameron, et al. 2004).

Joe (1997) showed several applications with a heavy focus on methodology: multi-

variate binary response, ordinal response and extreme value data, longitudinal binary

and count data and serially correlated data, comparing models using their predictive

power. Quinn (2005, 2007b) uses copulas to reinforce standard Bayesian economic

evaluation techniques for clinical trial data. Also in a health economic context, Zim-

mer and Trivedi (2006) use a copula for three simultaneously-determined outcomes:

health insurance status for couples and their individual health care demand.

The remainder of this paper discusses copulas in their own context as multivariate

distribution functions, and in the health economics context according to various ap-

plications. Methods of constructing copulas of various types that may be of interest

to health economics are presented, with copulas as multivariate distribution func-

tions and models of multivariate dependence discussed in following sections. Finally

estimation and goodness-of-fit is considered, before some concluding remarks.

2 Copulas

2.1 Symmetry and the bivariate normal distribution

Johnson and Kotz (1972) commented on the increasing recognition of the need for

usable alternatives to the multivariate normal distribution, in instances when the

marginal distributions were distinctly non-normal, or when the dependence between

them deviated from the linear correlation associated with the bivariate normal. Such

alternatives, while they exist, were not usually developed for data analysis per se,
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and so are not generalisable across marginal distributions or dependence (Cook and

Johnson 1981). The multivariate normal is commonly selected for the convenience

of its use and because the univariate normal distribution is robust under reasonable

levels of non-normality, and so explain the margins of the joint distribution fairly well

(Kowalski 1973).

The multivariate normal is employed also a result of the common practice of

selecting a multivariate distribution according to identification of the margins; since

the normal distribution is among the most robust, it is preferred to others such as

the multivariate Pareto, Burr or Logistic, for example (Mardia 1962; Takahasi 1965,

Satterthwaite and Hutchinson 1978; Cook and Johnson 1981 present a generalised

model that nests each of these as special cases). Moreover, the normal distribution

tends to be more easily extended to higher dimensions: the density or characteristic

function of the normal distribution can be used, or a linear combination of normally-

distributed random variables (Fang, et al. 1989). The multivariate normal can be

preferred even when the joint density of the data being analysed appears not to be

elliptically symmetric.

Alternatives, such as those found in Johnson, et al. (1997) for example, are

typically less practicable than the multivariate normal under a given failure of the

assumptions about the distributional form. Like most multivariate distribution func-

tions they are extensions of the family of univariate distribution functions, based

upon including some measure of association in the margins, which are combined to

form the multivariate distribution. However this homogenisation of the margins in

the joint distribution is commonly the problem: a different class of distribution may

be needed for each margin, but different classes of univariate distributions generate

different classes of multivariate distributions.
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2.2 Conditional likelihood estimation

A related problem arises with the use of conditional distributions, which can allow

different marginal distributions.4 Conditional distributions are affected by the so-

called Borel paradox (Kolmogorov 1950; Newey and Steigerwald 1997; Verhoeven and

McAleer 2003). For practical purposes, this holds that the margins in a conditional

distribution function are not ’swappable’ - i.e. the conditional and conditioning dis-

tribution functions are not swappable, unless they are of the same, symmetric, family

of distribution functions. Otherwise estimates of the parameters of the conditioning

distribution function will not necessarily be consistent. Estimation of Conditional

distributions in fact relies upon symmetry more than do pseudo - or quasi-maximum

likelihood of bivariate distributions, which tend to overlook association implicitly

during analysis.

These problems arise due to the inclusion, usually, of association as a parameter

in the margins of the joint distribution function (consider Pearson’s coefficient of

correlation ρ in the bivariate normal as an example). Conditional distributions avoid

this, but only by conditioning the moments of one marginal distribution on another,

to the same effect: assumptions about the marginal distribution function direct the

association between the random variables.

In order to estimate known-asymmetric data in a manner that includes no dis-

tributional restrictions, but which also provides estimates of conditionally-dependent

parameters that are invariant to transformations or switching of margins, a measure

of association is needed that is not contained in the margin itself (Frees and Valdez

1998). Measures of dependence such as rank correlation do this: these are invariant

to non-linear increasing transformations of random variables.5 They are therefore

stable under switching, such that for a measure of dependence τ between random

variables (X1, X2), τX1,X2 = τX2,X1 regardless of the form (or skew, or kurtosis) of

each marginal distribution F1(X1) and F2(X2).
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2.3 Example 1: A bivariate Beta distribution with dissimilar

margins

This example is useful to demonstrate the key contribution of copulas to econometrics

and applied research: that assumptions about the joint and marginal distributions

can be relaxed, when needed, thereby improving the performance of an economic

model. The following examples do the same within the contexts of specific economic

problems. This example however is motivated by a desire to demonstrate this key

contribution.

Consider a joint (bivariate, for simplicity) distribution with non-normal, dissimilar

and asymmetric margins, with two jointly-distributed random variables (X,Y ), where

X ∼ Be(.5, .5), Y ∼ Be(6, 2) and correlation ρ = 0.6. Figure 2.1 shows the marginal

histograms of (X,Y ), as well as the dispersion of jointly-observed data points.6

Note that although the margins are distributed within the same family, they are

quite different. The distribution in Figure 2.1 is an example from a range of data-

generating processes, including individual stock prices (Panas 2005), liquid asset ra-

tios and education (Gordy 1998), income and the returns to research and development

(De Castro and Goncalves 2002), entry and exit times in recreation use (Zarnoch, et

al. 2004), dose response in toxicology studies and clinical trials (Calabrese and Bald-

win 1998) and political partisanship (Box-Steffensmeier and Smith 1997).

This is an extreme example, because the nature of the marginal distributions

make it clear that the bivariate normal distribution is not appropriate. Also, a

known bivariate distribution, the Dirichlet, already exists for two Beta-distributed

random variables. It is a useful example though, because the Beta itself is a flexibly-

generalisable distribution, accommodating symmetry or asymmetry, nesting the Uni-

form and related to the Gamma, Exponential (and subsequently the Laplace, Chi-

squared, Weibull and Raleigh), F and normal distributions (Aitchison 1986; Hutchin-

son and Lai 1990; Johnson, et al. 1997).
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Figure 1: MARGINAL HISTOGRAMS AND BIVARIATE SCATTERPLOTS

FOR JOINTLY-DEPENDENT BETA-DISTRIBUTED RANDOM VARIABLES

X BE(0.5,0.5), Y BE(6,2), rho = 0.6
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This does not however mean that the Dirichlet distribution will itself provide an

appropriate fit. The Dirichlet is constructed from a trivariate form of reduction (where

two dependent random variables are constructed from three independent random

variables).7 The parameters must conform across both distributions, and correlation

is negative also (althoughX 0 = (−X) can be used), and almost independent. Positive,

or significantly negative, correlation is not accommodated well by this class. This is

quite a strong property: generalisations that have attempted to find classes containing

both the Dirichlet class and more flexible classes of distributions have not been very

successful (many attempts involve lognormal classes of distributions: Aitchison 1986

contains the most comprehensive discussion of Dirichlet distributions). An important

problem in this example is the asymmetry: the Dirichlet reduces only to margins

where X ∼ Be(α1, α2 + α3) and Y ∼ Be(α2, α1 + α3), which cannot be reconciled

with F1(X) and F2(Y ) in this case (specifying α1, α2 accurately gives α3 = −5.5 for

X, α3 = 1.5 for Y , but the parameters of the univariate Beta are strictly positive).8

These restrictions are emblematic of the problems caused by the usual construc-

tions of multivariate distributions (Frees and Valdez 1998). This example is useful

because it confronts both its own multivariate distribution and the most obvious al-

ternative. Figure 2.2 contains the nearest approximation due to the bivariate normal,

where the bi-modality problem can be seen more clearly. No approximation due to

the Dirichlet can be found without altering one or both of the distributions of X and

Y still further.

Figure 2.3, on the other hand, shows several classes of copulas, constructed purely

from knowledge of the correlation and marginal distributions (such as, for example,

an expectation of higher or lower association in one or both tails of the bivariate

distribution). In each case the distribution has captured both the association between

X and Y and the appropriate marginal distribution of each.
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Figure 2: MARGINAL HISTOGRAMS AND BIVARIATE SCATTERPLOT FOR

THE BIVARIATE NORMAL APPROXIMATION TO THE DATA IN FIGURE 2.1
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Figure 3: MARGINAL HISTOGRAMS AND BIVARIATE SCATTERPLOTS FOR

X BE(0.5,0.5), Y BE(6,2), SIMULATED VIA INVERTING CONDITIONAL

COPULAS (rho = 0.6)
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MARGINALHISTOGRAMSANDBIVARIATE SCATTERPLOTS FORX BE(0.5,0.5),

Y BE(6,2), SIMULATED VIA INVERTING CONDITIONAL COPULAS (rho =

0.6)
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The notable exception is the so-called Product copula, which assumes X ⊥ Y .

Looking at the marginal distribution of X, only the Product replicates that seen in

purely simulated data, which is not surprising given that inversions from the Product

copula draw upon no inherent dependence structure. The marginal distributions for

Y show that the Farlie-Gumbel-Morgenstern (FGM), Gumbel and Plackett copulas

do not quite contain the correlation in the data they generate due to their specific

functional form. For the same reason the Gumbel and Clayton copulas show different

association in the tails. None of the dependent copulas replicate the simulated distri-

bution exactly: the marginal distribution of X shows this, and the scattered data in

the dependent copula has more points in the centres than the empirical distribution.

Comparison with Figure 2.2 though shows that they are more precise approximations

than bivariate normality.

2.4 Example 2: Health insurance and health care utilisation

Zimmer and Trivedi (2006) used a copula for three simultaneously determined out-

comes: health insurance status for couples and their individual health care demand.

This involved discrete outcomes using a dichotomous selection equation for insurance

coverage with negative binomial models for health care demand. The full model con-

sisted of Archimedean copulas in a mixture to determine the trivariate distribution

(an approach discussed later). Thus the dependence between insurance coverage and

health care demand was retained, but split to allow for the fact that insured spouses

will nevertheless demand health care in a trivariate framework: presumably based on

need, but also partly on the needs of each other. This was done by taking advan-

tage of the fact that the copula method offers closed-form multivariate distribution

functions.

They showed primarily that the positive correlation, separately considered, in-

dicates that policies to increase utilisation by women, for example, can ’spill over’,
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increasing utilisation by their spouse also. This is relevant in terms of policy and con-

cerns over excess utilisation. They also showed in their analysis the potential effect of

the ordering of margins on the outcomes of analysis: they use a so-called mixture of

powers, in which the placement of one margin in the distribution, relative to another,

affects the dependence between them.

Pitt et al. (2006) discuss a similar problem: multi-dimensional measures of health

care utilisation among the elderly. Their econometric problem is, as in Deb and

Trivedi (1997), a multivariate count-data model. They use a Gaussian copula to

model the dependence between these measures, and Markov simulation to establish

the posterior multivariate distribution, and compare their results to the separate

negative-binomial models fitted by Deb and Trivedi (1997).

2.5 Example 3: Cost-effectiveness analysis

Quinn (2005, 2007b) analyses the eVALuate hysterectomy trial. This was a multi-

centre randomised trial comparing new laparoscopic procedures for hysterectomy with

existing abdominal and vaginal procedures (Garry, et al. 2004). The trial collected

data on total costs and the gain in Quality-adjusted Life Years (QALYs) per patient.

Standard methods for estimating Incremental Net Benefit (INB) consist of com-

parison of the means of some treatment group with those of the non-treated group

(see for example Phelps and Mushlin 1991; Claxton and Posnett 1996; Gold, et al.

1996; Stinnet and Mullahy 1998; Drummond, et al. 2005), or Seemingly Unrelated

Regression (SUR) analysis of individual cost and outcome (Willan, et al. 2004; Briggs,

2005; Vanness and Mullahy, 2005). Both assume bivariate normality (log-normality

of cost can be accommodated).

The Frank and FGM copulas, seen in Figure 2.3, were used to estimate cost and

QALYs gained via regression. Figure 2.4 contains the distribution of log-normal costs

and Beta-distributed QALYs for the trial, overlaid with the density/spread of the
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models used.

Accommodating the Beta-distributed QALYs gained was most important in this

application. The scatter-plots in each graph are observed pairs of Cost and QALYs

gained for each individual; the histograms along the axes are empirical histograms

for Cost and QALYs gained; finally the contours match the bivariate copulas that

use those marginal distributions (log-normal and Beta for Cost and QALY gain,

respectively). These contours are taken from the copula functions with specified

margins, rather than the data itself.9

The graph labelled bivariate normal assumes log-normally-distributed Costs but

normally-distributed QALYs gained, unlike the copulas. The FGM and Product

copulas fit these data better than the Frank, and generated different cost-effectiveness

thresholds for laparoscopic hysterectomy than the original study.10

2.6 Example 4: Sample selection

Smith’s (2003) analysis of sample selection from the perspective of copulas was pri-

marily methodological, however he did provide examples. The first was labour supply

of females, using a study by Lee (1996), in which no association was found to exist

between female participation and female labour supply - i.e. no selection bias. By

employing copulas and comparing the results for the different dependence structures,

Smith (2003) found varying degrees of association, but statistically significant selec-

tion bias in the same data.

In the same paper, Smith (2003) used Prieger’s (2000) study of hospital length of

stay. Smith (2003) employed copulas explicitly, and used a different class of copula

(the Archimedean class, discussed later) and compared the results. Specifically, he

included copulas capable of measuring negative dependence between hospitalisation

(as the selecting event) and the length of stay. He determined that not only did the

different measurement of dependence improve fit, but the estimated means lengths of
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Figure 4: BIVARIATE COPULA DENSITIES, MARGINAL HISTOGRAMS AND

BIVARIATE SCATTERPLOTS FOR OBSERVED INDIVIDUAL COSTS AND

QALYS GAINED (QUINN 2007b).
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stay varied accordingly.

Other examples are Genius and Strazzera (2003), who use copulas to examine

the value of recreational forests, relaxing - like Smith (2003), the assumption of joint

and marginal normality between participation in and valuation of such recreation.

Trivedi and Zimmer (2005) also discuss sample selection in their general introduction

to copulas.

2.7 Example 5: Stochastic frontier modelling

Smith (2005) used copulas to estimate stochastic frontier models, using US electric

utilities and as a motivating example. In considering efficiency, which is typically a

composite measure, independence is commonly assumed between technical inefficiency

and (random) noise in the composite error of productivity modelling, although one

would expect dependence between the two.

Smith (2005) employed copulas to overcome the independence assumption. He

found in his results that, not only did the use of copulas re-rank companies within

the industry, relative to standard stochastic frontier models, but the electric industry

as a whole moved further below the production frontier when copulas were used. In

his example, accommodating dependence showed that the US electric industry itself

was less efficient than previously supposed, because the efficiency estimates of the

utilities was quite sensitive to the dependence between components of the errors of

the estimates.

In a health economics context, the analysis in Smith (2005) is directly comparable

to the analysis of hospital efficiency, where the productivity or technical efficiency

of hospitals is a function of several dimensions of hospital costs and outputs. The

nature of copulas suggest also that they can be used in multilevel models, to a similar

purpose.
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3 Some statistical properties of copulas

3.1 Statistical foundations and methods of construction

To understand copulas fully it is worth considering them in the context within which

they are generated, as different such methods create copulas with different character-

istics and purposes in estimation. There are three general methods of construction:

inversion, algebraic construction and geometric construction.

3.1.1 The inversion method

The most intuitive approach to constructing copulas is by using inverted distribution

functions as arguments in known multivariate distributions. Thus, using inverses of

the distributions in Equation (1) gives

C (G1 (x1) , G2 (x2)) = F(1,2)
¡
F−11 (G1 (x1)) , F

−1
2 (G2 (x2))

¢
(2)

for univariate CDFsG1 (.) andG2 (.) . Note that F(1,2) is any joint distribution; dif-

ferent formulations of F(1,2) will generate different forms of C, one of which will be the

either the closest approximation to, or the true, bivariate distributionH (the bivariate

normal distribution Φ(1,2) (x1, x2), for example, is another such approximation). Us-

ing the uniformly-distributed F−11 (G1 (x1)) , F
−1
2 (G2 (x2)) allows, via inversion, the

subsequent use of any type of distribution in the margin. Extending Equations (1)

and (2) to higher dimensions, for (X1, ..., Xn) ∈ Rn there exists the so-called n-copula

C (G1 (x1) , ..., Gn (xn)) = F(1,...,n)
¡
F−11 (G1 (x1)) , ..., F

−1
n (Gn (xn))

¢
(3)

which also depend upon unique formulations of F(1,...,n) and where, according to

Sklar’s theorem, there exists one n-copula such that
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Table 1: 2 x 2 CONTINGENCY TABLE

Low High
Low a b a+b
High c d c+d

a+c b+d

X1

X2

∑

∑

H (x1, ..., xn) = C (G1 (x1) , ..., Gn (xn)) (4)

The so-called Gaussian copula, given by

C (G1 (x1) , ..., Gn (xn)) = Φ(1,...,n)
¡
Φ−11 (G1 (x1)) , ...,Φ

−1
n (Gn (xn))

¢
(5)

is a well-known example of the inversion method, as is the t copula, which uses the

multivariate student’s t distribution. Nelsen (2006) discusses some more examples.

3.1.2 The algebraic method

The Plackett copula, seen in Figure 2.3, is the most well-known example of an

algebraically-constructed copula. It provides the best example of a copula as a func-

tion of its univariate margins. Consider, in the bivariate case, two random variables

(X1,X2), which can be represented by a 2× 2 contingency table, as in Table 2.1.

Then the association betweenX1 andX2 in Equation (6)is given by the odds-ratio
ad
bc
rather than by correlation: the Plackett measures the dominance of high-high and

low-low values for (X1,X2) of- or by- high-low and low-high values.11 In probabilistic

terms this is given by (Nelsen 2006)

θ =
H (x1, x2) [1− F1 (x1)− F2 (x2) +H (x1, x2)]

[F1 (x1)−H (x1, x2)] [F2 (x2)−H (x1, x2)]
(6)
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since, from Table 2.1, a = H (x1, x2), d = 1− F1 (x1) − F2 (x2) +H (x1, x2), b =

F1 (x1)−H (x1, x2) and c = F2 (x2)−H (x1, x2). From Sklar’s theorem H (x1, x2) =

C (u, v) |u=F1(x1),v=F2(x2), thus

θ =
C (u, v) [1− u− v + C (u, v)]

[u− C (u, v)] [v − C (u, v)]
(7)

With some manipulation this gives

C (u, v; θ) =
[1 + (θ − 1) (u+ v)]−

q
[1 + (θ − 1) (u+ v)]2 − 4uvθ (θ − 1)
2 (θ − 1) (8)

Nelsen (2006) contains the proof that only the negative root of the term in Equa-

tion (8) is a copula (Mardia 1970). As well as an example of construction, Equations

(6)-(8) illustrate how a copula becomes a function of only uniform univariate margins

and some measure of association. Joe (1997) illustrates other examples of construc-

tion, as does Smith (2005) in an early section of his discussion of estimating efficiency

with copulas compared to stochastic frontier models.

3.1.3 The geometric method

The limits, for minimum and maximum dependence accommodated by copulas (or

their minimum and maximum values as joint CDFs), are defined by the so-called

Fréchet-Hoeffding bounds W and M , where

W (u, v) = max {u+ v − 1, 0} (9a)

≤ C (u, v) (9b)

≤ min {u, v} =M (u, v) (9c)
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considering copulas within a bivariate framework only (Lindskog 2000; this can be

extended to higher dimensionality). The simplifying notation u = F1 (x1), v = F2 (x2)

will be used hereon. Fréchet-Hoeffding bounds exist as universal bounds on any copula

C, for all u, v ∈ [0, 1] as well as similarly grounding distribution functions generally.

Consider u, v in the unit interval I ∈ [0, 1]. Then a bivariate copula C(u, v) is a

function C : I2 → I such that

C(u, 0) = C(0, v) = 0 (10)

C(u, 1) = u and C(1, v) = v (11)

C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) ≥ 0 (12)

where u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]. These establish that the copula is grounded,

bound by the unit square and 2-increasing (C(u, v) is increasing for increases in u, v).

This is the same for any bivariate distribution. W (u, v) and M (u, v) in Equation

(9a)-(9c) are so-called extreme-value copulas. A point not explored here explicitly

is that for n > 2 only M would be a copula, not W : a 3-copula, for example, will

not reach its lower bound. More accurately, its lower bound will be the best possible

bound on the n-copula Cn but will not equal the lower bound W . For more on this,

see Nelsen, et al. (2004) and Nelsen and Úbeda-Flores (2004). These are fundamental

to the definition of a copula, and it is from this point that copulas can be constructed

geometrically.

Since the process of geometric construction is decidedly more statistical in nature,

it is not important to include it here. Suffice to say, this approach enables construction

of copulas that accord with specific desired properties: linear, quadratic or cubic

sections, for example, are copulas with prescribed horizontal or vertical supports. The

FGM copula in Figure 2.3 is an example of such. Copulas of geometric construction

can also be given specific diagonal sections (such as for random variables with a

common marginal distribution function). Again, Nelsen’s (2006) book provides a
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more technical explanation of geometric construction. The method is of interest here

because of the importance of the Fréchet-Hoeffding bounds in copulas, particularly

in higher dimensions.

3.2 Some classes and families of copulas

In keeping with the discussion so far, the families and classes of copulas discussed

here will correspond to those most often seen in the literature, particularly single-

parameter families of copulas, rather than higher-order families. The categories are

stylistic, not statistical: a single copula could be characterised across several of the

following sub-sectioned properties.

3.2.1 Linear

The FGM copula is the most commonly seen copula in exposition, since lower poly-

nomials are more convenient for discussion (Genius and Strazzera 2003; Smith 2003;

Zimmer and Trivedi 2006). It is also the first-order Taylor approximation of another

single-parameter family of copulas, the Frank.12 ,13 The FGM copula is C such that

C (u, v; θ) = uv (1 + θ (1− u) (1− v)) (13)

where θ ∈ [−1, 1], and recalling that F1 (x1), F2 (x2) are (at least) monotonic.

This contains positive and negative dependence for ±θ respectively, and multivariate

extensions. Symmetry of this type is not exclusive to simple linear forms for C,

though, and can exist in higher polynomials. In practical applications this copula

has been shown to be somewhat limited: for copula dependence parameter θFGM ∈

[−1, 1], Spearman’s correlation ρ ∈
£
−1
3
, 1
3

¤
and Kendall’s τ ∈

£
−2
9
, 2
9

¤
(Trivedi and

Zimmer 2006). Mari and Kotz (2001) provide several extensions of the FGM copula,
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which expand this range to different degrees. Prieger (2000) also shows this limitation.

The FGM density is given by

C12 (u, v; θ) =
∂2C (u, v; θ)

∂u∂v
(14a)

= (1 + θ (1− 2u) (1− 2v)) (14b)

which again is straightforward. For estimation the joint probability density func-

tion h of distribution H is given by,

h (x1, x2) = f1 (x1) f2 (x2)C12 (F1 (x1) , F2 (x2) ; θ) (15)

Thus the FGM lends itself well to methods of maximum likelihood. Being linear,

the FGM is also extended into higher dimension with less difficulty than other families.

3.2.2 Elliptical copulas

The Gaussian copula defined in Equation (5) is an example of an elliptical copula.

Despite its similarity to the bivariate normal distribution, notably to the extent that

association is measured by Pearson’s correlation ρ, the Gaussian copula is convenient

in particular for simulation, which is not usually straight-forward in the case of jointly

dependent data (see Perkins and Lane 2003 for more examples).

Another common elliptical copula is the student’s t copula. This is, as discussed

in the section on the inversion method, different from the Gaussian copula only in

the use of the multivariate student’s t, rather than the normal, distribution. With v

degrees of freedom, the t copula is given by (Bouyé, et al. 2000)

C (G1 (x1) , G2 (x2)) = T(1,2),v
¡
t−1v G1 (x1) , t

−1
v G2 (x2)

¢
(16)
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Although suited to simulation exercises, in practice these can be difficult to im-

plement due to the form of the distribution. Copula density functions, as in Equation

(15), use both the marginal density and distribution, which in the Gaussian case uses

the bivariate distribution

C (F1 (x1) , F2 (x2) ; ρ) =

Z Φ−11 (F1(x1))

−∞

Z Φ−12 (F2(x2))

−∞

1

2π
p
(1− ρ2)

(17)

× exp
½
− (s2 − 2ρst+ t2)

2 (1− ρ2)

¾
dsdt

Elliptical copulas can be found in other general classifications of copulas also. The

FGM copula, above, and the Frank copula given by

C (u, v; θ) = −1
θ
ln

Ã
1 +

¡
e−θu − 1

¢ ¡
e−θv − 1

¢
e−θ − 1

!
(18)

where θ ∈ (−∞,∞) \ {0} are also examples of copulas with ellipsoid margins.

More importantly for analysis, these also have closed-form CDFs.

3.2.3 Extreme Value copulas

Seger (2004) motivates his exposition of extreme value copulas with a discussion of

the probability of flooding, given the height of two dykes and that of a river. In health

economics a more appropriate hypothetical situation would be the carrying capacity

of two hospitals and the occurrence of injuries, and the associated probability that

hospitals would be overtaxed during peak periods (such as specific holidays when

alcohol consumption is high or a lot of motorists are on the road simultaneously). In

finance the returns of two or more correlated stocks during a given trading period is a

common concern. In each instance the area of interest is the tails of the distribution,

where little information can usually be found. The multivariate normal distribution,

for example, treats extrema as independent events.
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Galambos (1987), Resnick (1987), Joe (1997) and Abdous, et al. (1999) are good

sources for more discussion of extreme value distributions and copulas from a statis-

tical perspective. The focus here is primarily upon the families themselves. Extreme

value distributions are due to the so-called three-types theorem: if there exists a non-

degenerate limit distribution G for the random variable X, G is one of the following

(Bouyé, et al. 2000)

Fréchet G(x) =

⎧⎨⎩ 0

exp
©
−x−θ

ª x ≤ 0

x > 0
(19a)

Weibull G(x) =

⎧⎨⎩ exp
n
− (−x)θ

o
1

x ≤ 0

x > 0
(19b)

Gumbel G(x) =
n
exp {− exp {−x}} x ∈ R (19c)

By symmetry the possible limits for minima of X are the reflections of G(x). If

one of these is the extreme of a given distribution function F , then F is said to be

in the domain of attraction, thus Fm (amx+ bm)→ G(x) for some constants am and

bm (Joe 1997; Galambos 1987; Resnick 1987).14 Extreme value copulas can also be

found for multivariate copulas.15

Some popular single-parameter families of extreme value copulas are

C (u, v) = uv C⊥ (20a)

C (u, v; θ) = exp

½
−
³
− ln (u)θ − ln (v)θ

´ 1
θ

¾
Gumbel(I) (20b)

C (u, v; θ) = uv exp
n
θ (− ln(u))(− ln(v))− ln(u)−ln(v)

o
Gumbel(II) (20c)

C (u, v; θ) = uv exp

½³
− ln (u)−θ − ln (v)−θ

´−1
θ

¾
Galambos (20d)

C (u, v; θ) = min {u, v} C+ (20e)
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3.2.4 Archimedean copulas

Archimedean copulas are a particular class of copula that includes several popular

families. These are copulas whose form, in n dimensions, is reduced to a single

function, called a generator. This is a strictly decreasing, convex and continuous

function ϕ : [0, 1] → [0,∞] in a set Ω of the same, where ϕ (0) = ∞, ϕ (1) = 0 and

with inverse ϕ−1 : [0,∞]→ [0, 1], ϕ−1 (0) = 1 and ϕ−1 (∞) = 0. Archimedean copulas

are symmetric, associative such that C (C (u, v) , w) = C (u,C (v, w)) ∀ u, v, w in I

and linearly transformable such that for some constant c > 0, cϕ is also a generator

of C.

For some u, v in I ∈ [0, 1] an Archimedean copula is C such that

C (u, v) = ϕ−1 (ϕ (u) + ϕ (v)) (21)

This satisfies Equations (10)-(11) since

C (u, 0) = ϕ−1 (ϕ (u) + ϕ (0)) (22)

= 0

and

C (u, 1) = ϕ−1 (ϕ (u) + ϕ (1)) (23)

= ϕ−1 (ϕ (u))

= u

Satisfaction of symmetry means C (0, v) = 0 and C (1, v) = v also. Equation (21)

provides the basic foundation for conceptualising Archimedean copulas. By way of
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exemplification, consider the Ali-Mikhail-Haq (AMH) copula of the odds in favor of

failure against survival, also seen in Figure 2.3 (Ali, et al. 1978). This is the copula

C such that

C(u, v; θ) =
uv

1− θ (1− u) (1− v)
(24)

where θ ∈ [−1, 1). This also is an algebraically-constructed copula such as the

Plackett, using the odds in favour of failure against survival. Using a proof from

Nelsen (2006) that, for almost all u, v in I,

ϕ0θ (u)

ϕ0θ (v)
=

∂Cθ (u, v) /∂u

∂Cθ (u, v) /∂v
(25)

a generator for C can be found, using partial derivatives. For the AMH copula

this provides, for some t in I,

ϕθ (t) = ln

µ
1− θ (1− t)

t

¶
(26)

The Frank copula from Equation (18) is also a popular Archimedean class copula

(Zimmer and Trivedi 2006; Smith 2003; Genius and Strazzera 2004; Smith 2005).

Here the generator is given by

ϕθ (t) = − ln
µ
e−θt − 1
e−θ − 1

¶
(27)

This is a comprehensive family, such that association θ ∈ [−∞,∞] \ {0} corre-

sponds to τ ∈ [−1, 1] \ {0}.16

A third popular example is the Clayton copula, given by (Clayton 1978)

C(u, v; θ) = max
h¡
u−θ + v−θ − 1

¢−1
θ , 0

i
(28)
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where θ ∈ [−1,∞) \ {0}. The Clayton copula is constructed using the following

generator

ϕθ (t) =
1

θ

¡
t−θ − 1

¢
(29)

This also corresponds to association θ → τ ∈ [−1, 1] \ {0}. This is one of several

families of Archimedean copulas whose distributions are based on maximands (see

Nelsen 2006).17

As an argument in only one margin, the generator ϕ can be used to extend

Archimedean copulas into higher dimensions easily. For example, for u, v, w, z in

I,

C (u, v, w, z) = ϕ−1 (ϕ (u) + ϕ (v) + ϕ (w) + ϕ (z)) (30)

All that is required to extend C is the addition of the generator function for a

new margin. Note that ϕθ belongs to a single-parameter family of generators. Two-

parameter generators also exist. These are ϕθ1θ2 such that ϕθ1θ2 also belongs to the

set Ω of continuous decreasing convex functions as above. These generate so-called

Rational Archimedean copulas C(u, v) = P (u, v)/Q(u, v) where P,Q are polynomials,

such as the AMH family. An example is a parametric extension of the AMH family

of copulas, thus

C(u, v; θ1, θ2) =
uv − θ2 (1− u) (1− v)

1− θ1 (1− u) (1− v)
(31)

subject to appropriate values for θ1, θ2 (Nelsen 2006). Like ϕθ, ϕθ1θ2 can be used

for straightforward additive extensions to generate Archimedean n-copulas, according

to Equation (30). This will be discussed more explicitly in the following section.
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4 The tractability of copulas as multivariate dis-

tribution functions

Equation (30) shows one of the useful properties of copulas. The copula can be made

tractable in its margins, making estimation of dependent multivariate data much

more practicable. Smith’s (2005) examination of Fisher Information for copulas is

particularly useful. He shows that the vector of parameters βi in each margin of a

closed-form copula are invariant to every other margin in the distribution.18 Estimates

of β̂i are dependent only upon association parameter θ and the functional form of ui.

4.1 Multivariate copula families

4.1.1 Example 6: Mortality, health and lifestyles

Consider the representative example of Balia and Jones (2007). They analyse the

relationship between mortality, lifestyle and socioeconomic status, using longitudinal

data from the British Health and Lifestyle Survey (HALS). Their model is a structure

of 8 equations: mortality, self-assessed health and 6 health behaviours: smoking,

alcohol consumption, exercise, sleep, consumption of breakfast and obesity. These are

all binary, and with a reduced form of endogenous regressors. Assuming correlated

errors to be normally distributed, this problem requires the method of simulated

maximum likelihood to overcome an 8-dimensional probit, or 8 simultaneous integrals

over the normal density with 28 pairwise correlations, with a mixture of signs.

Maximising likelihoods across 8 dimensions is time-consuming and computation-

ally intensive, however a closed form solution can be found using the copula method

(Muthén 1979, 1984 discusses the former issue in some detail). Quinn (2006, 2007c)

used multivariate Gaussian and t copulas to analyse the same data, demonstrating

the efficiency gains. While Balia and Jones (2007) analysed a recursive model in

structural form, Quinn (2006, 2007c) used the system in reduced form.19
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Although multivariate copulas must be constructed with significantly more care,

they can provide advantages: as well as closed-form multivariate CDFs, they offer

flexible multivariate dependence structures and autonomy over the functional form

of each marginal CDF. Multivariate copulas also offer disadvantages compared to

a multivariate normal framework, which is computationally more intensive but can

require less interactive construction by the analyst. These disadvantages will also be

discussed.

4.1.2 Multivariate FGM copulas

The FGM is an example of a simple closed-formCDF, where Equation (13) is extended

into n dimensions. Using the notation of Joe (1997), the multivariate FGM copula

for the problem in Balia and Jones (2007) can be given as

C(F1 (x1) , ..., F8 (x8) ; θ) =
8Q

i=1

ui

Ã
1 +

k=8P
1≤i<j

θij [1− ui] [1− uj]

!
(32)

giving, like the 8-dimensional normal distribution, 8C2 = 28 bivariate association

parameters (since θij = θji ∀ i 6= j).20 Here θij ∈ [−1, 1] as before, however more

restrictions are introduced: θij faces a limit also in sum, so that more margins means

a narrower range of dependence for each non-zero θij. Specifically

1 +

¯̄̄̄
¯ n−1P
1≤i<j<n

θij

¯̄̄̄
¯ ≤ θ1n ≤ 1 +

¯̄̄̄
¯θ12 nP

2≤i<j≤n
θij

¯̄̄̄
¯ (33)

so that lim
n→∞

θij = 0. In fact this limit is much narrower: in practice much fewer

than 28 unique values for θij would be preferred. Although the multivariate FGM

offers a parameter for association in each bivariate margin, this is not usually feasible

in practice.
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4.1.3 Multivariate Archimedean copulas

Multivariate Archimedean class copulas are a popular alternative, as exemplified in

Equations (21)-(30). Estimation in n dimensions however can be limited: for any

n > 2-distributions to be a copula, the generator ϕ−1θ [0,∞) must be completely

monotonic. In Archimedean copulas that extend to negative dependence, ϕ−1θ [0,∞)

when n > 2 fails to be monotonic when θ ∈ τ < 0. In capturing positive multivariate

dependence, Archimedean copulas are bound also by their parameterisation. Unlike

the multivariate FGM, where θjk exists for each bivariate pair (uj, uk), ϕ−1θ is usually

a function of a single parameter. Equations (26), (27) and (29) for example show that

any bivariate pair will share a common association parameter. Consider for example

C (u, v, w) where C is the Frank copula. The generator in Equation (27) gives

C (u, v, w; θ) = −1
θ
ln

Ã
1 +

¡
e−θu − 1

¢ ¡
e−θv − 1

¢ ¡
e−θw − 1

¢
(e−θ − 1)n−1

!
(34)

where θ > 0.

An alternative for multivariate Archimedean class copulas is generation according

to inverse Laplace transforms and mixtures of powers (Joe 1997; Zimmer and Trivedi

2006). This is a transform φ (s) of some univariate CDF M (α) such that

φ (s) =

∞Z
0

e−sαM (α) (35)

for s > 0. Joe (1993, 1997) calls the function M the mixing function. In the

univariate case he shows that any arbitrary distribution function F will have a unique

Laplace transform G, where

F (x) =

∞Z
0

GαdM (α) (36)

≡ φ (− logG (x))
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Zimmer and Trivedi (2006) present the parameter α > 0 as a form of heterogeneity

affecting the random variable X. Since copulas are distribution functions, like F , the

bivariate case can be considered as

C (u, v; θ) =

∞Z
0

Gα
uG

α
vdM (α) (37)

≡ φ (− logGu − logGv)

≡ φ
¡
φ−1 (u) + φ−1 (v)

¢
where Gu = exp

©
φ−1 (u)

ª
, Gv = exp

©
φ−1 (v)

ª
. This can continue into any num-

ber of dimensions, using different Laplace transforms to overcome the singularity of

the dependence structure. Only n−1 distinct transforms exist across n(n−1)
2

bivariate

margins in an n-copula, though, so that distinct bivariate margins nevertheless share a

common association. A trivariate mixture using two distinct transforms φ (s) 6= ψ (s)

will give

C (u, v, w; θ) ≡ ψ
¡
ψ−1 ◦ φ

¡
φ−1 (u) + φ−1 (v)

¢
+ ψ−1(w)

¢
(38)

where ψ−1 ◦ φ belongs to a class of infinitely differentiable increasing functions

(Joe 1997).21 Importantly, dependence is symmetric with respect to u and v, but not

w now: this is an improvement upon, for example, Equation (34).

In terms of the motivating example in this section, this will produce 7 distinct

measures of dependence for the 28 bivariate pairs of 8 distributions, but all positive.

This is the Jouini and Clemen (1996) condition that θ > 0 under Laplace transforms

and multivariate Archimedean copulas. Correlations from the HALS data used by

Balia and Jones (2007) show 9 of these 28 pairs are negatively associated, contra-

indicating the use of Archimedean copulas.

Finally, consider mixtures of max-infinitely divisible distributions (Joe and Hu

1996; Joe 1997). A multivariate distribution H is called max-id if Hγ is a CDF for
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all γ > 0 and for all n dimensions.22 In fact the mixture-of-powers approach just dis-

cussed is a mixture of powers of a max -or min-id multivariate distribution function.

This approach can be extended to negative dependence for some bivariate margins, al-

though such extensions are less common or straightforward.23 If a copula is of the form

in Equation (37), C can take the general form C(u1, ..., un) = φ (− lnH(u1, ..., un)),

and C is a multivariate CDF if H is max-id and − lnφ belongs to a class of infinitely

differentiable increasing functions. This general form contains copulas of the form

in Equation (38), however extensions to negative dependence (a sufficient condition

for which is when − lnφ is convex) do not have mixture representations. Moreover,

such extensions tend to generate multivariate copulas whose margins are all RR2,

or negatively dependent: this is because the n-copula would be a mixture of min-id

distributions, such that each bivariate margin is RR2. This is the case even with

general dependence such as the FGM in Equation (32) that allow unique bivariate

association. Consider the copula C such that

C (u1, ..., un) = ψ

Ã
−
P
i<j

lnKij

³
e−piψ

−1(ui), e−pjψ
−1(uj)

´
+

nP
i=1

(qi + n− 2) piψ−1 (ui)
!

(39)

where qi is another max-id mixing parameter specific to each marginal CDF.

Each Kij in this expression is a bivariate margin; specifically a bivariate copula.

Each Kij then is max-id, giving C (u1, ..., un) positive orthant dependence.24 Using

the survival function in each case will instead give negative orthant dependence (Joe

1997; Belzunce and Semeraro 2004).

One solution is to use the Laplace transform φ (s) = max
n
(1 + θs)

−1
θ , 0

o
, which

does permit negative association.25 Using this, and another Laplace transform ψ, a

multivariate copula can be constructed from Equation (38), such that each bivariate

margin has the appropriate association (in terms of sign: the limit to the number

of unique Laplace transforms that can be used still exists). Estimation of Balia and
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Jones’ (2007) lifestyle and mortality model would require this approach, and/or that

of Equation (32) to a closed-form multivariate distribution function. Applications

not facing negative correlation are much more straightforward: any or all of the

multivariate copulas in Equations (32), (38) or (39) would be appropriate. A recent

paper by Savu and Trede (2006) discuss this, considering hierarchical Archimedean

copulas - the same as this mixing of multivariate Archimedean copulas - using 12

Euro-Stoxx-50 stocks in 3 sectors, all positively correlated. The explicit hierarchy

means they are never modelling more than 4 stocks at any one level, and the absence

of negatively-correlated returns allows them to bypass the critical flaw preventing the

use of this procedure in the Balia and Jones (2007) case.

One remaining method appropriate to parametric estimation of dependent mul-

tivariate distribution functions is the method of Inference Functions for Models, dis-

cussed in a later section.

4.1.4 Multivariate elliptical copulas

The Gaussian copula in Equation (5), and the t copula in Equation (16) can be

extended to higher dimensions simply by adding in more margins to the multivariate

normal or multivariate t distributions, thus:

C (G1 (x1) , ..., Gn (xn)) = T(1,..,n),v
¡
t−1v G1 (x1) , .., t

−1
v Gn (xn)

¢
(40)

Quinn (2006, 2007c) employed these, and variations due to Azzalini and Dalla

Valle (1996) and Azzalini and Capitanio (2003) to consider skewness, in his analysis

of the HALS data. Savu and Trede (2006), in their paper, criticise the unimodality

of the multivariate Gaussian and t copulas, however they have the only robust and

generalisable dependence structure. In terms of notation, derivation and computation,

they are also significantly more straightforward to manage than the mixture-of-Max-

ID approach in the preceding section.
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5 Copulas as functions of dependence

The central properties of copulas established thus far are that copulas are functions

of two essential elements: dependence (bivariate or multivariate) and the distribution

functions of each random variable. The selection of the univariate CDF F however

is done independently of the selection of the functional form of the copula, which

includes only the final uniformly-distributed F as its argument. Thus, copulas are

functions of dependence only. This was seen to some extent in Figure 2.3. It is more

obvious in Figure 2.5.
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Figure 5: MARGINAL HISTOGRAMS AND BIVARIATE SCATTERPLOTS FOR

X N(0,1), Y N(0,1), SIMULATED BY INVERTING CONDITIONAL COPULAS

(tau = 0.6)
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MARGINALHISTOGRAMSANDBIVARIATE SCATTERPLOTS FORX N(0,1),

Y N(0,1), SIMULATED BY INVERTING CONDITIONAL COPULAS (tau = 0.6)
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Smith (2003) and Trivedi and Zimmer (2005) also provide an illustration of cop-

ulas from this perspective, though slightly differently. Figure 2.5 contains simulated

bivariate normal data, with correlation ρ = 0.8. Each contains its own representation

of the dependence structure. The differences are more marked than in Figure 2.3

because the tails of the distribution can be seen more easily. The limited dependence

of the FGM copula in particular stands out in this comparison. So too does that

of the AMH copula, for which θ ∈ [−1, 1) → τ ∈
£
−0.1817, 1

3

¤
(Nelsen 2006). In

this case the upper limit is reached (for standard bivariate normality with ρ = 0.8,

τ ≈ 0.6).

The Gumbel and Clayton copulas are also noticeable in their different and opposite

capture of association in the tails of the bivariate distribution. The Gumbel copula

exhibits a narrower spread in particular at the right-hand corner (X → 1, Y → 1),

reflecting its better capture of tail dependence. The Clayton on the other hand is

known as a limiting lower tail copula, which can be seen in its particular drift at the

left of the bivariate distribution (X → 0, Y → 0).

The Plackett exhibits a similar trend in Figure 2.3, though not Figure 2.5, but

without maintaining the correlation structure as strictly. This is a result the limits

some copulas can place upon simulation: the Plackett copula is constructed according

to an odds-ratio, such that it does not then naturally invert back into data: re-ranking

is based on this odds-ratio, rather than re-ranking according to correlation.

5.1 Modelling tail dependence

A given distribution function can display stronger (positive or negative) dependence

in its upper or lower quadrants, as was seen with the copulas illustrated in Figure 2.5.

Positive dependence, for example, indicates that high-high and low-low combinations

of two random variables are more likely than cross-combinations. Positive upper

quadrant dependence indicates that high-high combinations are more likely than any
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other combination, including low-low combinations. The prices of tech stocks during

the late 1990s would be a good example. Conversely many tech stocks in the early

part of this decade would therefore be a good example of lower quadrant dependence.

This non-linearly structured dependence is the most useful property of copulas

when estimating dependence. In the finance, insurance and risk fields this is the

case: regression, covariates and similar methods are not of intrinsic interest. Only

the structure of the dependence between two or more random variables is. Each

univariate CDF F from the preceding discussion can be fitted non-parametrically

and forgotten. Copulas with more parameters of association are important in this

regard, such as the two-parameter AMH copula in Equation (31). To create these,

the Laplace transformations considered in multivariate Archimedean copulas are again

employed. A more general bivariate mixture of max-id distribution functions is given

by (Joe 1997)

C (u, v) = ψ
³
− lnK

³
e−ψ

−1(u), e−ψ
−1(v)

´´
(41a)

= ψδ

³
− lnKθ

³
K−1

θ

³
e−ψ

−1
δ (u)

´
, K−1

θ

³
e−ψ

−1
δ (v)

´´´
(41b)

where again K is a bivariate copula: C becomes a two-parameter copula when

Laplace transformation ψδ and the copula Kθ are parameterised separately.26 Thus if

Kθ is taken to be, for example, the Galambos copula from Equation (20d) and ψδ is

the Gamma-form Laplace transformation used above, where ψ (s) = (1 + δs)
−1
δ , then

C is given by

C (u, v; δ, θ) =

µ
u−δ + v−δ − 1−

h¡
u−θ − 1

¢−θ
+
¡
v−θ − 1

¢−θi 1θ¶−1
δ

(42)

This is positive such that δ ≥ 0, θ > 0, and can generalise into other families.

Although it is not shown here, these methods generate representative parameters
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quantifying tail dependence: for this mixture of Galambos upper and lower tail de-

pendence are given by
µ³
2− 2 1θ

´−1
δ

¶
and

³
2
1
θ

´
respectively. Joe (1997) discusses

some of this family’s other properties, including extreme value limits and concordance

increases. In particular the lower extreme value of this extension is itself an extreme

value copula at the lower Fréchet-Hoeffding bound.

Cebrián, et al. (2003) and Demarta and McNeil (2004) are two recent applications

considering tail dependence. de Matteis (2001) also considers elements of tail depen-

dence, generally as well as specific to Archimedean-class copulas. In practice it is not

necessary to understand the construction of tail-dependent copulas: Joe (1997) has

pointed out that there is no theoretical model underlying selection of, for example, a

given Laplace transform. The example above used one that resulted in a relatively

straightforward two-parameter family of Galambos copula. Prepared forms can be

found (most extensively in Joe 1997), and/or used according to upper and/or lower

tail dependence parameters. Simulations such as those in Figures 2.3 and 2.5 can also

be used to select the most likely best-fitting copula.

5.2 Simulating dependent multivariate data

Simulation is a very useful application of the unique dependence due to each copula.

It is relatively straightforward, making use of known programmes or generalisable

procedures (Nelsen 2006. Some applications can be found in, for example, Romano

2002). Dynamic simulation with Markov processes (or Joe’s (1997) serial dependence)

contain some of the most extensive use of copulas and simulation in this regard

(Darsow, et al. 1992; Kulpa 1997; Bouyé, et al. 2000; Roncalli 2001).

Correlation is not invariant to non-linear transformations: generating multivariate

normal data and manipulating each margin via inversion will result in a given desired

marginal distribution function, but the correlation given to the generated data will

not be upheld in the resulting non-normal data. Due to the transform invariance of
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measures of dependence, and hence copulas, this will be the case when copulas are

used to simulate multivariate dependent data. Thus generating data is straightfor-

ward, and inverting margins via copulas will not only retain the desired dependence

but include a dependence structure unique to each copula used. The inverted mar-

ginal distribution can be of any form, ergo any dependent data should feasibly be able

to be generated. As well as simulation in a dynamic or Markov context, simulation of

specific cross-sectional dependence structure can be used when necessary for purely

theoretic or methodological work.

6 Estimation procedures for copulas

Copulas can be estimated both parametrically and non-parametrically, using either a

single-step or two-step approach. Using one approach or the other typically involves a

trade-off of potential misspecification for computational convenience, either of which

might be more important. Although these approaches are presented in general terms,

the full set of alternatives is appropriate only to Archimedean copulas, which should

be identified first. It is assumed however that the procedure can be undertaken for

more than one copula in estimation, and information on goodness-of-fit can be used

subsequently, to select the most appropriate copula.

Bouyé, et al. (2000) provide discussion on estimating copulas for financial analyses

with a focus upon likelihood estimation, which is assumed to be generally understood.

The procedure outlined in de Matteis (2001) is more accessible in general estimation,

as is the discussion in Trivedi and Zimmer (2006).

6.1 Non-parametric estimation

Two procedures for non-parametric identification of copulas exist that are free of any

specification of the functional form of the margins. The first of these is the so-called
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empirical copula, which is loosely equivalent to the method of empirical likelihood.

The second is the Genest and Rivest (1993) identification for Archimedean copulas.

6.1.1 Non-parametric estimation of empirical copulas

Step 1 : According to Deheuvels (1979), for some sample X ∈ {(xt1, ..., xtN)}
T
t=1 the

empirical copula is given by (Bouyé, et al. 2000)

Ĉ

µ
t1
T
, ...,

tN
T

¶
=

PT
t=1 1

³
xt1 ≤ x

ht1i
1 , ..., xtN ≤ x

htN i
N

´
T

(43)

where xht1in are the order statistics of Xi ∀ 1 ≤ t1, ...tN ≤ T .27

Step 2 : From this specification, measures of rank correlation can be found so that

empirical copulas can function as measures of dependence. Empirical copulas however

are of limited practical use for applied research, in much the same way as the method

of empirical likelihood.

6.1.2 Non-parametric estimation of Archimedean copulas

Non-parametric identification of Archimedean copulas is a more useful consideration.

Rather than the methods of construction discussed above, or a more systematic selec-

tion based on goodness-of-fit, Genest and Rivest (1993) provide an empirical method

of identification. Consider that copulas can be represented in terms of the measures

of rank correlation, such that

Kendalls’s τC = 4
Z Z

I2
C (u, v) dC (u, v)− 1 (44)

and

Spearman’s ρC = 12
Z Z

I2
C (u, v) dudv − 3 (45)
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for continuous margins u, v. For any Archimedean copula C from Equation (21),

C is uniquely determined by the function

K (t) = t− ϕ (t)

ϕ0 (t)
(46)

where K (t) ∈ [0, 1]. Nelsen (2006) also shows that K (t) is a distribution function

on (0, 1). The differences between Spearman’s ρ and Kendall’s τ are discussed in

Nelsen (2006) and Fredericks and Nelsen (2007). For absolutely continuous distribu-

tions u and v the use of either is equivalent. No general guideline exists, suggesting

which circumstances are preferred for one method or another.28 For applied research

purposes, the use of Kendall’s τ can be more convenient as the functional form of the

relationship with the copula parameter θ is available (Genest and Rivest 1993; Nelsen

2006).

Using the relationship seen in Equations (44), (25) where the sample is further

assumed to be generated from an Archimedean copula C (x1, x2), Genest and Rivest

(1993) show that Kendall’s τ is such that

τ = 4

Z Z
I2
C(u, v)dC(u, v)− 1 (47)

= 1 + 4

Z 1

0

ϕ (t)

ϕ0 (t)
dt

Then for X1,X2

τ̂ =
³n
2

´−1X
i<j

sign [(X1i −X1j) (X2i −X2j)] (48)

Estimation proceeds as follows.

Step 1 : Estimate rank correlation (Kendall’s τ or Spearman’s ρ). This can depend

upon the data - in Quinn (2007a), for example, Kendall’s τ b is used specifically
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for a joint distribution with one ordinal, and one continuous, marginal distribution

function.

Step 2 : Select the functional form of the generator function ϕ(t) (i.e. select the

copula to be estimated). The copula generated by ϕ(t) can be selected according to

known information, or characteristics desired in the joint distribution function.

Step 3 : Solve Equations (47) and (48) for τ̂ = τ according to the generator

function ϕ(t; θ), selected in Step 2. Since, following Equation (47), one can say that

τ is a strictly increasing function of θ, the estimate θ̂ can be found for τ̂ .29

For example, using Equation (26) and some observed τ̂ one would solve for θ in

τ̂ = 1 + 4

Z 1

0

ln
³
1−θ̂(1−t)

t

´
³

θ̂−1
t−θ̂t+t2

´ dt (49)

= 1−
θ̂ + 6 ln

³
1− θ̂

´³
1− θ̂

´2
9θ̂
2

This has no analytical solution, however substitution of the limits shows that

τ ∈
£
−0.181726, 1

3

¤
for θ ∈ [−1, 1). This is not necessarily a procedure that needs

to be undertaken every time: descriptions of the range of copulas (in terms of de-

pendence) can be found in de Matteis (2001), Melchiori (2003) and Patton (2003).

Quinn (2007a) uses procedures given in Perkins and Lane (2003) to apply this ap-

proach to his analysis of income-related inequalities in health, which he characterised

using the dependence between Self-Assessed Health and income. Following work by

Dardanoni and Lambert (2001), Genest and Rivest (1993) and Vandenhende and

Lambert (2000, 2003), copulas were constructed for some countries in the European

Community Household Panel, and used to rank-order them according to their asso-

ciation.

Although parametric estimation for covariates is required for regression analysis,

non-parametric estimation of dependence and the parameters of each marginal dis-
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tribution is sufficient for testing goodness-of-fit. If available, they can also be used as

precise starting values in parametric estimation.

6.2 Parametric estimation

Parametric estimation of copulas (in a regression model, for example) can be under-

taken in either a single-step, via Full-Information Maximum Likelihood (FIML), or

over two steps, using a procedure known as Inference Functions for Margins (IFM).

The latter is typically preferred when a copula cannot be constructed to match the

desired joint distribution function (such as when dealing with a high order of di-

mensions, and/or negative dependence), or when the copula likelihood will be overly

complex (such as when multiple dependence parameters are used in the copula).

6.2.1 Estimation via Full-Information Maximum Likelihood

FIML estimation follows the same procedure for copulas as for ordinary FIML esti-

mation. Location and scale parameters are estimated in each marginal distribution

function (the functional form of each of which is selected separately from the others)

simultaneously with the copula parameters for dependence. Specifically, for some mul-

tivariate distribution function H (X1, ..,Xn;β1, .., βn, θ), consider the corresponding

copula C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ).

Step 1 : Specify the functional forms of each marginal distribution F1 (X1;β1) , ...,

Fn (Xn;βn). This can be done parametrically (by prior FIML estimation of each mar-

gin, for example), or non-parametrically (Matlab, for example, has some distribution-

fitting tools). Selection can also be made visually, or according to any other prior

information.

Step 2 : Specify the functional form of the copula, C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ).

This can be done according to some knowledge of the dependence structure (such as
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with examination of the variance-covariance matrix) or any characteristics desired of

the joint distribution.

Step 3 : Construct the copula density c (F1 (X1;β1) , .., Fn (Xn;βn) ; θ) according

to Equations (14a)-(15), as well as the likelihood and log-likelihood functions.

Step 4 : The copula log-likelihood can be estimated according to any maximum-

likelihood procedure. If point-estimates are available, for the parameters in either the

copula or in the univariate marginal distribution functions, they should be given as

precise starting values.

6.2.2 Estimation via Inference Functions for Margins

A two-step method due to Lee (1983), McLeish and Small (1988), Joe and Xu

(1996), Xu (1996) and Joe (1997) is inferencing (IFM).30 For some multivariate

distribution function H (X1, ..,Xn;β1, .., βn, θ), consider the corresponding copula

C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ). The marginal parameter vectors β1, .., βn can con-

tain coefficients due to regression, and/or simple parameters for each distribution.

The vector θ contains measures of assocation for the copula as a whole. The IFM

method is a two-step procedure is as follows.

Step 1 : Each marginal vector of coefficients βi∈n from marginal univariate dis-

tribution functions F1 (X1;β1) , ..., Fn (Xn;βn) is estimated first, and separately, to

determine
n
β̂1, .., β̂n

o
such that

β̂i = argmax
βi

nP
i=1

ln fi (xi;βi) (50)

Step 2: The estimates β̂i can be used to calculate the evaluated marginal distrib-

ution functions F̂i (Xi;βi) = Fi

³
Xi; β̂i

´
. It is these, rather than Fi (Xi;βi), that are

passed into the copula likelihood for estimation of θ.

Step 3 : Using F̂i (Xi;βi), the copula likelihood L
³
β̂1, .., β̂n, θ

´
is maximised to
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find only θ̂ such that

θ̂ = argmax
θ

nP
i=1

ln c
³
F̂1 (x1;β1) , .., F̂n (xn;βn) ; θ

´
(51)

for some copula C with density c
³
F̂1 (x1;β1) , .., F̂n (xn;βn) ; θ

´
.

Ordinarily, ML solves (∂L/∂β1, .., ∂L/∂βn, ∂L/∂θ) = 0. Estimates from the

method of IFM are such that (∂L1/∂β1, .., ∂Ln/∂βn, ∂L/∂θ) = 0 for univariate log-

likelihoods L1, .., Ln as well as the joint likelihood L. This holds under regularity

conditions, and Joe (1997, 2005) shows that the IFM method is efficient relative to

the method of maximum likelihood, particularly for discrete marginal distributions

with few categories. It is less so for more categories, and for continuous marginal

distributions with strong dependence, although standard errors for the parameters in

this approach can corrected post-estimation using jackknife methods.

6.3 Testing goodness of fit

Goodness-of-fit is a still-developing area of research related to copulas (see Fermanian

2005). They can be graphical or algebraic, representing in both cases a measure of

distance between distributions (the copula C and the true - or empirical - distribution

H).

6.3.1 Analytical goodness-of-fit

There are several approaches to testing goodness-of-fit analytically. Following de

Matteis (2001), one can employ the Kolmogorov-Smirnoff test-statistic

T = max
x

n¯̄̄
F̂ (x)− F (x)

¯̄̄o
(52)

where F̂ (x) and F (x) are the empirical and theoretical CDFs, respectively. Al-

though it has the advantage of being distribution-free, it suffers from a sensitivity of
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power to significant departures from the null (Janssen 2000). An alternative to this

is the χ2 statistic (Fermanian 2005)

T =
kP
i=1

(fi − np (xi))
2

np (xi)
(53)

where for a given class i, np (xi) is the supposed frequency and fi the observed.

Genest and Rivest (1993) and Frees and Valdez (1998) present a method for Archimedean-

class copulas using the generator of the distribution function. Using Equation (46),

the distance

Z
(Kθ (t)−Kn (t))

2 dKn (t) (54)

can be used analytically to measure goodness-of-fit, whereKθ (t) andKn (t) are the

copula and empirical measures of Pr
¡
C (u, v) |H(x1,x2) ≤ t

¢
respectively. Fermanian

(2005) also discusses multidimensional Chi-squared measures, which employ compar-

isons of the fit of copulas according to the dimensions in the multivariate distribution,

rather than the value of the multivariate distribution function alone.

Following Joe (1997), two other approaches can be taken. The first is to use either

the log-Likelihood directly, or information criteria such as the Akaike Information

Criterion (AIC), given by AIC = 2k− 2 ln(L) for log-likelihood L and k parameters,

or Bayesian Information Criterion (BIC), given by k ln(n) − 2 ln(L) and where n is

the sample size. Models do not need to be nested for comparison, and information

criteria are particularly useful for copulas estimated via IFM, when the multivariate

log-Likelihood is immediately available to be used. Empirical applications of copulas

employ this method.

A second approach recommended by Joe (1997) is analysis of the predictive ability

of the models estimated. That is, some comparison of the predicted summaries from

the models with the observed summaries of the data itself. This is useful for IFM
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also, in particular for models whose purpose is predictive, rather than explanatory, as

a check on the stability of the predictions under different approaches to inferencing.

6.3.2 Graphical goodness-of-fit

Goodness-of-fit can be tested graphically also: since both the copula C and empirical

or true distribution function H are uniform, comparison can be made visually. The

Genest and Rivest (1993) Kθ (t), for example, can be used in both analytical and

graphical methods, since KθC (u, v) has a Uniform distribution. Therefore any eval-

uation of this distribution plotted against the standard uniform will qualify, giving

so-called QQ-plots, or quantile-quantile plots, a graphical measure of the distance

between a copula and some ’true’ distribution. This method also allows in turn more

straightforward numerical measures of dominance, where necessary for comparison.

Rather than the multivariate copula function, the conditional copula can be used.

This is Cu (u, v), where

Cu (u, v) =
∂

∂u
C(u, v; θ) (55)

∼ U (0, 1)

This holds when the arguments are uniformly-distributed random variables: i.e.,

after the transformation x1 → u, x2 → v.31 This measures the fit of a distribution

function, also compared to the standard uniform. Since any distribution function is a

function mapping data from n-dimensions of Uniform distributions to the [0, 1] plane,

or [0, 1]n → [0, 1], the proximity of evaluations based upon each conditional distri-

bution to the standard uniform will be an indicator of goodness-of-fit. Conditional

copulas adequately accommodate the effect the dependence structure of each copula

will have on the distribution, and is a fairly easily-implemented test (Durrleman, et

al. 2000; Fermanian 2005). Applying the conditional copulas to the data simulated

in Figure 2.4, for example, can be seen in Figure 2.6.
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Figure 6: QUANTILE-QUANTILE PLOTS FOR COMPARISON OF CONDI-

TIONAL COPULAS (APPLIED TO COPULAS FROM FIGURE 2.3)
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FGM U (0,1) Clayton Product Frank Gumbel Plackett AMH

Notice that the QQ-plots for each copula are indistinguishable, visually. As in this

example, this approach to comparing models can be constrained by close proximity

of all models, to themselves and to the diagonal. Moreover, the approach is not

appropriate for the Product copula.32

Numerically, following Fermanian (2005), a fairly straightforward Chi-squared

test-statistic comparing each copula (as a bivariate distribution function) to the bi-

variate standard uniform distribution can be calculated. The bivariate approach

suggested by Fermanian (2005) partitions the bivariate distribution into a contin-

gency table, and compares it to a similar partioning of a bivariate standard Uniform

U(0,1)2 distribution. A Chi-squared statistic will measure the absolute relative differ-
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ence between the bivariate distributions and standard Uniform, but within a bivariate

framework.

One benefit to this approach is that the Product copula can be tested along

with the other distributions, since the products of the empirical margins will not be

exactly Uniform. The method will still be biased in favour of the Product copula,

though, forcing some trade-off between this test and any statistical significance of

the dependence parameter. The approach also does not work for higher dimensions,

although the test can be replicated across all bivariate pairs of margins within the

copula.

7 Discussion

The discussion here has covered several potential health-economic applications of cop-

ulas, according to various of their properties that make them most useful. The most

practical and versatile families of copulas have been shown, as well as their particular

characteristics and various methods for estimation. In particular multivariate copu-

las have been described in a manner that should make them more easily understood

by applied researchers seeking more flexible multivariate distributions while retaining

general dependence.

Health-economic analyses using the copula method are, so far, relatively uncom-

mon, as befitting a method only slowly expanding in general econometric analysis.

The advantages to the method however are wide-ranging, as are the potential ap-

plications. These include not only applications comparing the results of copulas to

standard methods, taking advantage of the freedom to construct any bivariate dis-

tribution according to the distributional behaviour of each random variable, but also

new applications not heretofore considered feasible without very strong distributional

and dependence assumptions.
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Notes

1Although empirical likelihood methods can be used to obtain parameter esti-

mates, they are mostly useful when estimating the parameters of a distribution, not

covariates. Moreover, in higher dimensions the empirical likelihood assumes indepen-

dent random variables: dependence is accomodated though blockwise observation of

the data, and/or reductions to independence (Kitamura 1997, Owen 2001; El Ghouch,

et al. 2005).

Non-likelihood methods such as kernel density are less informative still. The con-

cern here is with simultaneous estimation of dependent random variables, explained

by covariates, and able to be specifically or approximately parameterised according to

some known class of distribution(s). To this end, empirical likelihood is not considered

to be a useful alternative to approximating joint or conditional likelihoods.

2As with the discussion of conditional distributions, transform invariance in this

case is, for two random variables (X1,X2), invariance of F1(X1) to the use of F2(X2) or

F3(X2), if F2(.) and F3(.) are both almost surely increasing functions. Consequently,

if the dependence between joint-uniformly distributed (X1,X2) is defined by some

copula C (X1, X2), then C (X1,X2) = C (X1, F2(X2)) = C (X1, F3(X2)) .

3This is not usually considered problematic since the region outside this is not

usually of interest (Smith 2003).

4This discussion is not restricted to the use of conditional distributions for con-

venience: they can be necessary also because conditioning a distribution on past

observations is more informative (analysis with Markov processes is an example; Fer-

manian and Wegkamp 2004). Statistically there is no difference.

5According to invariance to transformations, if F2(.) and F3(.) are both almost
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surely increasing functions then the dependence between (X1,X2) , as defined by

θ (X1, X2), is such that θ (X1, X2) = θ (X1, F2(X2)) = θ (X1, F3(X2)) .

6Data were generated using Matlab, following the procedures in Perkins and Lane

(2003). First, a bivariate CDF with correlation coefficient of 0.6 was generated, then

each margin was inverted to create a joint distribution, still with correlation coefficent

0.6, but with Beta-distributed random variables in the margins.

7Trivariate reduction is such that X ⊥ Y
1−X and, by symmetry, Y ⊥ X

1−Y .

8This is because correlation between X and Y is given by ρ = −
q

α1α2
(α1+α3)(α2+α3)

∈

[−1, 0]. This triangularity shows, as above, that X and Y must be similarly distrib-

uted for the joint Dirichlet H(X,Y ) to exist.

Devroye (1986) similarly criticises trivariate reduction. He uses a bivariate Gamma

to show that, where marginal parameters are specified prior to reduction, there will

be either precisely one solution for α1, α2, α3, or no solution.

9I.e. theoretical contours for the specifited copulas. They do not follow the ob-

served data. Procedures for generating these contours in Maple or Mathematica are

available from the author.

10The effect of laparoscopic surgery on QALYs gained (relative to standard treat-

ments) was not statistically significant, though, in the regression models employed by

Quinn (2005, 2007b).

It should be noted that the study by Quinn (2005, 2007b) was not intended to

direct policy on hysterectomies; the illustrating example was used merely demonstrate

the copula method.

11By comparison, Kendall’s τ = (a+d)−(b+c)
(a+d)+(b+c)

12The FGM copula is a first-order Taylor approximation of the more flexible Frank
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copula. Its subsequent linearity in the margins has made it a popular exemplar (Smith

2003, Zimmer and Trivedi 2006).

13’Single-parameter’ refers to the parameterisation of association: single-parameter

families use only one parameter of association. Joe’s (1997) presentation of single-and

multiple-parameter copulas is particularly useful.

14This example would be the maximum domain of attraction, G− F ∈MDA. By

symmetry, the reflection of F would be the minimum domain of attraction if the lower

extreme were a reflection of G (Joe 1997).

15In the multivariate case, from a proposition due to Resnick (1987), proven in Joe

(1997) and Bouyé, Durrleman and Nikeghbali, et al (2000), it is known that multivari-

ate extreme value copulas are copulas such that, for random variables (X1, ...,Xn),

each with univariate extreme value distribution
¡
F k
1 (x1) , ..., F

k
n (xn)

¢
the extreme

value copula C(F1 (x1) , ..., Fn (xn)) is an extreme value distribution if Ck (F1 (x1) , ...,

Fn (xn)) and C(F k
1 (x1) , ..., F

k
n (xn)) have the same limit distribution for any value of

k. That is, C is in the domain of attraction if C(Fm (a1mx1 + b1m) , ...,

Fm (anmxn + bnm))→ G(x1, ..., xn).

16Algebraically, the Frank copula does not nest independence because of the term
1
θ
. Nelsen (2006), however, demonstrates that lim

θ→0
CFrank = uv, i.e. the Product

Copula.

17The Clayton copula originally was given by Kimeldorf and Sampson (1975), and

in Clayton 1978) as

C(u, v; θ) =
¡
u−θ + v−θ − 1

¢−1
θ

where θ ∈ (0,∞). This is also known as the Kimeldorf and Sampson (or, in Joe

1997, the B4 family) copula, as well as the Cook and Johnson or Pareto (Genest and
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Mackay 1986 and Hutchison and Lai 1990, respectively). As a result of the extension

to negative dependence, the Clayton copula no longer obeys Total Positivity of Order

2 (Nelsen 1998, Mari and Kotz 2001): it has a non-zero Lebesgue measure even with

absolutely continuous u and v such that, in extended form, the Clayton copula must

defined as the maximum of itself or zero.

18This will not necessarily mean that every copula has a closed form. Equation (17)

illustrates this point: although tractable in terms of X1 and X2, the copula itself still

requires integration, just like a standard multivariate normal distribution. In fact,

this is the reason the Gaussian and t-copulas can be problematic in practice.

19The recursive model is essentially one of conditional distributions. This is not

problematic when they are all normal, however a structural equation model does not

permit the use of copulas, non-normal univariate distributions or flexible dependence

structures, as discussed previously.

20Nelsen (2006) and Mari and Kotz (2001), whose presentation draws on that of

Nelsen (2006), provide a different form for the multivariate FGM, giving

C(x1, ..., x8; θ) =
8Q

i=1

Fi(xi)

Ã
1 +

8P
k=2

P
1<j1<...<jk<n

θj1,...jk [1− Fj1(x1j)] ... [1− Fjk(xjk)]

!

which contains not nC2 but 2n−n−1, or
8P

i=2

8Ci. In the current problem this would

mean 247 different θj1,...jkterms, which is not considered practicable. Estimation issues

aside, the limits on θ in multivariate FGM copulas would render them all null.

21This is a condition assuring monotonicity of ψ−1 ◦ φ mixtures, and hence the

mixture-of-powers copula itself. Since known transforms are readily available in Joe’s

(1997) appendix, the requirement of infinite differentiability is not one the typical

analyst will face.
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22A univariate CDF F is such that F γ is a CDF for all γ > 0, but this is not

the case for multivariate distribution functions. In general the n-dimensional CDF

H is such that Hγ is a CDF for all γ > n − 1 (Joe 1997). Max-id is therefore a

stronger dependence condition - it is equivalent to Total Positivity of Order 2 where,

for x1 < x2 and y1 < y2, F is TP2 if F (x1, y1)F (x2, y2) > F (x1, y2)F (x2, y1).

23This is the reverse of TP2, or what is called Reverse Rule of Order 2, or RR2.

24Bivariate distributions are Positive Quadrant Dependent if higher values of one

variable are correlated with higher values of the other, and vice versa (essentially

τ > 0). Positive Orthant Dependence is the multivariate equivalent. Note that these

are weaker than (Multivariate) Total Positivity of Order 2, which implies positive

(orthant) quadrant dependence (Mari and Kotz 2001 is a good reference for these

dependence concepts).

25This is Joe’s (1997) Laplace transform B, or Gamma-form LT, given by φ (s) =

(1 + θs)
−1
θ , where θ > 0. The extension to negativity is, statistically, similar to that

of the Clayton copula. That is, after extension the negative LTB is no longer strictly

monotonic. This is also why Laplace-transformed multivariate copulas do not have

mixture representations when extended to negative dependence.

26The previous discussion concerning min-id mixtures and RR2 applies in this case

also, with the exception that negative quadrant dependence is not a problem in the

bivariate case, simplifying extensions to two-parameter families capturing negative

association. However, co-movement is usually of more concern where tail dependence

is of interest.
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27Order statistics are X(i) such that, for some distribution of variables {x1,..., xn}

X(1) = min {x1,..., xn}

X(2) = min
©
(x1,..., xn)−X(1)

ª
...

X(n) = max {x1,..., xn}

28For some families of copulas, closed-form solutions for either Spearman’s ρ or

Kendall’s τ may - or may not - be available. Packages such as Mathematica or

Maple, however, can be employed to find numerical solutions.

29This is true for continuous margins. If the margins are discrete, τ̂ will not neces-

sarily equal τ exactly. Quinn (2007c), following work by Vandenhende and Lambert

(2000), examines this more closely.

30Lee (1983) does not refer to the method as IFM, though.

31This is because differentiation of the bivariate distribution function H (x1, x2) =

C (F1 (x1) , F2 (x2)) will, via the chain rule, leave a marginal density function in the

conditional distribution function. In which case the conditional distribution function

will uniformly distributed only if the random variables are uniformly distributed.

By transforming the random variables first, only uniformly-distributed univariate

distribution function are left as arguments in the copula.

32This is because, if the transformations x1 → u, x2 → v are made empirically

(such as with empirical CDFs or kernel distributions), the conditional Product cop-

ula will be an empircal marginal distribution function, which is standard Uniformly

distributed.
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