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Abstract:  

In the health economics literature there is an ongoing debate over approaches used to 

estimate the efficiency of health systems at various levels, from the level of the individual 

hospital- or nursing home –up to that of the health system as a whole.  The two most widely used 

approaches to evaluating the efficiency with which various units deliver care are non-parametric 

Data Envelopment Analysis (DEA) and parametric Stochastic Frontier Analysis (SFA). 

Productivity researchers tend to have very strong preferences over which methodology to use for 

efficiency estimation. In this paper, we use generated experimental datasets and Monte Carlo 

simulation to compare the performance of DEA and SFA in terms of their ability to accurately 

estimate efficiency. We also evaluate Quantile regression as a potential alternative approach.  A 

Cobb-Douglas production function, random error terms and a technical inefficiency term with 

different distributions are used to calculate the observed output.  The results, based on these 

experiments, suggest that neither DEA nor SFA can be regarded as clearly dominant, and that 

Quantile regression because it yields more reliable estimates, represents a useful alternative 

approach in efficiency studies. 

 

Keywords: Technical efficiency, data envelopment analysis, stochastic frontier estimation, 

quantile regression. 
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I.  Introduction: 

 Efficiency measurement, whether at the level of the individual physician, the hospital or 

the health care system as a whole, is a topic of continuing interest in the health economics 

literature with dispute ranging from the appropriate efficiency concept to use to the appropriate 

measure to use. In fact, the feasibility of efficiency estimation is itself the subject of debate – 

Newhouse (1994) argues that there are so many problems with any current attempts to accurately 

measure efficiency that efficiency scores are of virtually no practical policy value.  Nevertheless, 

the ability to measure efficiency continues to be of interest to analysts and to decision-makers at 

all levels of government who are charged with the responsibility of allocating scare health care 

resources across competing needs1. 

 In this paper we deal with what is termed technical efficiency.  A production unit 

(referred to as a Decision Making Unit or DMU), whether an individual producer or an industry, 

is said to be technically efficient if its output mix lies on the production possibility frontier 

defined for its particular input levels.  The question of interest is whether, given the set of inputs 

available and the vector of outputs the DMU has chosen to produce, its output point lies on or 

below its production possibility frontier.  In the case of a single output, of course, technical 

efficiency refers to whether the producer is operating on or below its production function. 

 Technical efficiency is not full economic efficiency: there is also the issue of allocative 

efficiency, which asks whether the producer is not only on the production possibility frontier but 

at the right point on it given the prices - monetary or shadow - which it faces for its output.  In 

this paper we do not deal with allocative questions, focusing solely on the measurement of 

technical inefficiency.  The aim here is to compare two approaches which have been used fairly 

widely in the health economics literature, along with a third approach which a few authors have 
                                                 
1 See Greene (2004) and Jacobs et al. (2006). 
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experimented with.  The two widely used methods, Data Envelopment Analysis (DEA) and 

Stochastic Frontier Analysis (SFA), have been polarizing elements in the efficiency literature, 

with each attracting fervent supporters and equally dedicated opponents, and with the advocates 

of one approach tending to be fierce critics of the other approach2.  The third approach, Quantile 

regression analysis, is a technique which has been familiar in the econometrics literature but 

which has come into wider use in recent years, although not in the context of efficiency 

measurement3. 

The purpose of this paper is twofold. First, to use a Monte Carlo approach to evaluate the 

performance of DEA and SFA in the estimation of technical efficiency.  Second, to determine 

whether Quantile regression represents an alternative estimator which avoids a number of the 

problems associated with these existing measures. 

 

II. Techniques of Efficiency Analysis: An Overview 

In our discussion of efficiency measures we follow Farrell(1957), Charnes et al. (1975, 

1977 and 1978), and Fare, Grosskopf and Lovell (1985, 1994) in presenting the concept of 

technical efficiency which deals with whether a Decision Making Unit (DMU) is producing 

maximal output using a given set of inputs.  

In standard microeconomic theory the concept of technical efficiency raises no particular 

difficulties, especially in the case with which we shall deal here - that of a firm using several 

inputs to produce a single output.   Figure 1 shows the textbook illustration of single input-single 

output production function.  A firm is operating in a technically efficient manner when it is on 

the frontier (the production function) and it is being technically inefficient when it is operating 

                                                 
2 See Rowena Jacobs, Peter C. Smith and Andrew Street (2006): Measuring Efficiency in Health Care Cambridge 
University Press, for a discussion of some issues dividing the SFA and DEA camps. 
3 For one application of Quantile estimation in the efficiency literature, see Bernini et al. (2004). 
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below the frontier.  In terms of Figure 1, firms C, D, E and F are technically efficient since they 

are on the frontier and firms A and B are technically inefficient since they operate below the 

frontier. Because the production function of microeconomic theory is a maximum value function, 

showing the maximum level of output a firm can obtain for any given level of input, it is not 

possible for the firm to operate above its production function.  This point is at the core of the 

dispute between supporters of DEA and supporters of SFA, so we will return to it below. 

Technical inefficiency, then, is defined as the firm lying in the interior of its feasible 

production set, but while this can obviously be characterized as “lying below its production 

function”, there are a number of ways the degree of inefficiency could, in principle, be measured. 

The most obvious direction of measurement is what is referred to as output oriented 

inefficiency measurement, which measures the vertical distance from the firm’s actual 

production point to the frontier.  Basically this approach asks by how much the producer could 

increase its output with no change in its input use if it were to operate in a fully technical 

efficient manner - i.e., how far the producer’s current, actual production point lies below the 

production frontier.  Again, while the concept is straight forward there are several ways this 

distance could be measured.  The approach which is employed in the Monte Carlo experiments 

to follow, is to take the point on the production frontier as the basis for comparison and then to 

assess the firm’s actual output as a percentage of its potential output.  In this approach, 1 

represents full efficiency, and a firm that was operating at 10% below full technical efficiency 

would have a score of 0.90.4 

Since the production function is never known in practice, it must be estimated from 

                                                 
4 In addition to output oriented inefficiency measurement, the literature also defines input-oriented inefficiency 
measurement.  In other words, instead of asking how much more output a producer could get from its current input 
mix were it to operate in a fully technically efficient manner the question is by how much moving to a technically 
efficient point on the frontier would allow it to reduce its input use while continuing to produce the same level of 
output as before. For simplicity we focus on output oriented efficiency. 
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sample data.   Farrell (1957) suggested that it could be estimated using either a non-parametric 

technology or a parametric form, such as the Cobb-Douglas production function. Charnes, 

Cooper and others developed the non-parametric Data Envelopment Analysis (DEA) approach 

while Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977) proposed the 

parametric Stochastic Frontier Analysis (SFA) approach.  These are the two most commonly 

used approaches to estimating efficiency, differing in terms of the econometric approaches and 

the assumptions used to fit the efficiency frontier. The third approach we consider, Quantile 

regression, fits into the mix as a semi-parametric method. 

DEA is a non-parametric, linear-programming approach because it makes no assumptions 

about the form of the production frontier, or about the statistical distribution of the inefficiency 

scores, and does not attempt to estimate the parameters of the production function.  Essentially, 

to use the single input-single output case as an example, it uses linear segments to construct an 

envelope of all of the observed production points, so that each point in the data set is either on or 

below the convex hull made up of the linear segments.  A point which is on the convex hull is 

taken to be efficient, a point below it is defined as inefficient with the degree of inefficiency 

indicated by some measure of the distance to the hull, where the direction of motion towards the 

hull, as well as the measure to be used, must in general be specified. 

Perhaps the most common criticism of the DEA approach is that it takes the definition of 

the production frontier as a maximum value function too seriously, at least for empirical 

purposes.  This view argues that there will always be some noise in output data, perhaps because 

of measurement error, perhaps because of random factors which could affect the output of any 

given production unit at any given time.  This would seem particularly likely in health economics 

applications, where the output measure is often for example, based on mortality.  There could 
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also, presumably, be measurement errors in the input data, especially when, for example, 

measures of labour quantity or time at work is used to proxy labour effort.  Since DEA 

effectively acts by grouping together observations with the same input levels and selects the 

observation with the highest output level among them as the most efficient unit for that cluster, 

the hull which it maps out could be affected to a significant degree by the presence of random 

disturbances in the data.  How serious a problem this might be would, of course, depend on how 

large the error terms were relative to the output levels.   

Critics of the non-parametric DEA methodology generally prefer some version of 

Stochastic Frontier Analysis (SFA)- an econometric approach which requires one to specify the 

functional form of the production function.  It differs from OLS estimation of a production 

frontier in that it assumes the presence of two random elements.  One is the usual random 

disturbance term, while the other is an efficiency scaling term, representing the degree of 

technical inefficiency in the production units in the data set.  This methodology assumes that 

inefficiency, meaning the tendency of some observations to lie below the frontier, can be 

characterized by a one-sided probability distribution.  This does not mean that inefficiency is 

regarded as a purely random shock - were that the case it could simply be subsumed into the 

disturbance term, and there would be no reason to assume that any individual unit might be 

chronically inefficient.  The assumption that inefficiency fits a probability distribution is really a 

way of recognizing the fact that, because economic analysis deals with the behaviour of 

optimizing agents, we have no good models of pure inefficiency.  SFA uses maximum likelihood 

simultaneously to estimate the production frontier and to allocate deviations between individual 

observations and the estimated frontier to the two random terms - the one sided density function 

which represents inefficiency and the standard normal term which represents random 
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disturbances to output.  The main concern with the SFA approach lies in the fact that because it 

uses maximum likelihood it requires that we make an assumption about functional form for the 

inefficiency distribution, in practice usually either a half-normal or an exponential distribution, 

which raises the possibility that misspecification of the inefficiency distribution could bias all of 

the results of the estimation exercise, including the estimates of the coefficients of the production 

function.  This concern is one on which we shall focus in the Monte Carlo experiments. 

The third alternative to be considered in the simulation exercise is Quantile regression, an 

estimation technique which has come into wider use in empirical work as large micro data sets 

have become available.  Ordinary Least Squares regression yields a conditional expected value 

function for the dependent variable - a function which allows for the calculation of the expected 

value of the dependent variable given values of the explanatory variables.  In working with large 

micro data sets it is likely that even well-behaved equations (ones with large t- and F-statistics, 

for example) have low R2 values, simply because the data are so widely scattered around the 

OLS line.  Traditionally, in looking at the properties of the scatter of observations around their 

estimated conditional mean the focus has been simply to check for heteroscedasticity.  Quantile 

regression extends the analysis of the distribution of the observed value of the dependent variable 

around its expected value by fitting equations characterizing the expected conditional quantiles 

of that distribution.  Thus, just as OLS yields an equation characterizing the way the mean of the 

observations on the dependent variable is expected to change as the values of the explanatory 

variables change, so quantile regression produces equations which can be used to observe how 

the spread of the distribution around the mean changes.  Quantile regression is an extension of 

Least Absolute Deviation (LAD) estimation, which yields an equation for the conditional median 

of the dependent variable.  LAD estimation is sometimes used as a way of reducing the impact of 
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large outliers on the estimated conditional function for a measure of central tendency, and 

quantile regression can be used the same way.  In our case, quantile regression offers an 

alternative to OLS as a method of estimating the production frontier.  Since inefficient firms will 

lie below the true frontier, the presence of a handful of highly inefficient producers might bias 

the OLS-estimated location of the production function downward i.e. may pull the estimated 

curve below the true frontier.  By choosing one of the upper quantiles to estimate - here we have 

arbitrarily chosen to estimate an equation for the 80th percentile - the effect is to down-weight 

any unusually low values of the observed dependent variable, on the assumption that they are 

likely to represent inefficient firms and, presumably, this will yield an estimate of the production 

frontier which is closer to the true than would obtain using OLS.  SFA also attempts to remove 

the effect of particularly inefficient observations on the estimate of the production frontier, but 

does it, as noted above, by making assumptions about the parametric form of the distribution of 

the inefficiency terms.   

Quantile regression is a semi-parametric approach, which requires an assumption about 

the functional form of the frontier (unlike DEA, which does not give estimates of the curvature 

of the frontier, nor of the marginal productivity of the inputs) but unlike SFA, does not require  

the imposition of a particular form on the distribution of the inefficiency terms. The true 

distribution of the inefficiency term is never known in practice, so quantile regression avoids 

imposing strict assumptions on the inefficiency terms. Quantile regression also avoids the 

criticism aimed at DEA of not allowing for random error in the observed values of the dependent 

variable.  If we assume that there is a random disturbance term in the observed value of the 

dependent variable, there is always a concern that the DEA fitted frontier will be dominated by 

the observations which just happen to have experienced the largest positive shocks.  Quantile 
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regression allows observations to lie above the fitted curve as a result of pure chance.  The fitted 

equation for the chosen quantile can then be used as the estimate of the production frontier where 

we assume that observations on or above it are efficient and that ones lying below it are likely to 

be inefficient, and use some measure of the distance from observations below the frontier to the 

frontier itself as the measure of their inefficiency.  Clearly, as in the case of DEA in the presence 

of a random disturbance term, this process runs the risk of classifying some efficient but slightly 

unlucky producers (i.e. ones which happen to have had a negative output shock in the period 

from which the data are drawn) as inefficient, so the best bet is probably (as would also be the 

case with DEA) to treat small inefficiencies as measurement error and focus on large ones.  Our 

expectation is that the consequences for the estimation of the frontier of mislabelling 

observations this way will be less for Quantile regression than for DEA. 

The literature on efficiency measurement contains a number of papers which compare 

DEA and SFA results (see Jacobs, Smith and Street (2006) for a discussion and an example) but 

most of these papers apply the two approaches to real-world data, and compare the efficiency 

rankings of individual DMUs generated by the two approaches.  The concern about this approach 

is that the true efficiency scores of the individual DMUs are unknown, so we cannot in general 

say with confidence which approach does better.  That issue could be dealt with by applying the 

two approaches to artificial data sets, in which the efficiency properties of the DMUs are known 

in advance.  This approach is usually done in the context of a Monte Carlo analysis, and while 

there have been a few Monte Carlo studies (see Gong and Sickels (1992), Bojanic et al.(1998), 

Yu(1998), Resti(2000) and Banker et al. (2004)), in this paper we add the Quantile regression 

approach and look at a slightly different set of questions about the results of the three 

approaches. 
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III. Methods 

In this paper we consider the application of all three methods of estimating the degree of 

output inefficiency in a Monte Carlo framework.  We generate values of the dependent variable, 

output, from a production function whose parameters we have specified, then add a disturbance 

series generated from a standard normal distribution and add inefficiency terms generated from 

both half-normal and exponential distributions.  (The parameters used are reported in detail 

below.).  These efficiency terms, which indicate how far below the frontier the actual output 

level for each firm will lie, basically scale down the frontier output value for each firm to yield 

what we refer to as the actual non-stochastic output level.  If a firm has a technical efficiency 

term of 0.8, its actual non-stochastic output level will be equal to 80% of the frontier output level 

associated with its input mix.  A firm with a technical efficiency score of 1 has its non-stochastic 

output level on the frontier (its actual, stochastic output level might lie above or below the 

frontier because of the random disturbance term). 

      In particular, we use a Cobb-Douglas production function with multiple inputs because it 

is commonly used, simple and a well-accepted production function form. The Cobb-Douglas 

production function we use is: 

      4321
43210
ααααα iiiii xxxxy =                                                                                           (7) 

      Where i=1,…,n, n is the sample size,  

           mα  is a positive number, m=0,1,…,4 inputs 

     We also generate random error term, ),0(..~ 2
vi diiv σ , and technical efficiency term, iu . 

The technical efficiency term iu  generated for the first runs satisfies the half normal distribution, 

that used for the second set of runs satisfies the exponential distribution.  After including the two 

random terms, iv  and iu , the Cobb-Douglas production function becomes: 
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      ii uv
iiiii eexxxxy −= 4321

43210
ααααα                                                                           (8) 

            Where i=1,…,n   and n=100. 

 

 All input variables are generated uniformly within a certain range. The values of the 

coefficients on the inputs are chosen so that the production function exhibits decreasing returns 

to scale, which seems realistic for a production process.  Thus in the exercise reported here we 

set the sum of the coefficients to 0.53.  The data description for the four input variables, random 

error term iv ~ i.i.d(0,0.01) , inefficiency terms iu1  and iu2 , true value of the intercept and true 

values of the coefficients on the inputs  are presented in Table 1 below.   

  We run 100 replications for each experiment, so for each particular vector of input 

values there are 100 output values, all distributed around the same efficiency-scaled value of the 

non-stochastic output level, so that each firm has exactly the same input values and exactly the 

same degree of inefficiency in all of the 100 replications in a particular experiment.  We conduct 

this exercise three times, once using SFA, once using DEA and once using Quantile regression.  

Under each method, for each replication we estimate each firm’s technical efficiency (TE) score.  

For each firm, we are then able to compare the mean of the 100 TE estimates generated by each 

of the three methods with the true TE score which we had built into the data generating process 

(and which are held constant across replications within an experiment).  Since each firm has the 

same efficiency score across experiments this provides an indication of how well each estimation 

method does at matching each firm’s TE score. 

All of the experiments below use the same values of the explanatory variables but we 

vary the values of the inefficiency term, starting with the half normal distribution and gradually 

moving away from that particular distribution, to investigate the effect of changes in the 
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distribution of the actual inefficiency terms on the values yielded by the three different 

approaches.  We do this by increasing the number of efficient units, so that whereas in the first 

runs virtually all firms have some degree (typically small) of inefficiency, in later runs only a 

few firms are inefficient, but those relatively highly so.  Since the parametric form of the 

technical inefficiency distribution is specified in the likelihood function for the SFA approach, 

we are particularly interested in the performance of this approach as the true specification of the 

inefficiency terms moves further and further away from the parametric form assumed in the 

estimation. 

We expect this gradual shift of firms from less than full efficiency to full efficiency to 

have some effect on the SFA estimates of the TE scores.   The initial experiments, where the true 

TE scores are drawn from the half normal distribution and the likelihood function for  SFA is 

written assuming a half normal distribution of the TE terms is clearly weighted heavily in favour 

of SFA.  As we increase the proportion of efficient firms, the shape of the probability density 

function is changing for the empirical TE values, and the more the shape of that distribution 

changes, the less well specified is the likelihood function of the SFA procedure.  We also expect 

the changes to the distribution of the TE scores to have some effect on the DEA estimates, since 

increasing the number of efficient firms should improve the fit of the DEA production frontier, 

although since the firms’ output levels still have noise terms attached to them, we have no real 

sense a priori as to how the DEA results will be affected. 

Having undertaken the experiments described above for TE terms generated (initially) 

with a half normal distribution, we then repeat the exercise for TE terms generated using the 

other common SFA distribution, the exponential.  Apart from the switch in initial distribution, all 

parameters are as in the first set of exercises, and the likelihood function of the SFA estimator is 
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written using an exponential distribution for the TE terms, so SFA is initially fully correctly 

specified.  As in the first case we conduct successive runs, gradually moving more and more of 

the observations up to full efficiency, causing SFA to be increasingly mis-specified. 

Next, we investigate the effect on SFA of mis-specification of the likelihood function, by 

using TE terms drawn from the half normal distribution but running SFA on the assumption that 

they are drawn from the exponential (we also run DEA and Quantile regression for this case, but 

since neither of those methods requires that we make assumptions about the shape of the 

distribution of the TE terms, our interest is in the effect on SFA.)  Again, we compound the mis-

specification by shifting more and more observations up to full efficiency, and repeating the 100 

Monte Carlo replications.  Finally, this exercise is repeated for the case where the true TE 

distribution is exponential but SFA assumes it to be half normal. 

 
 
VI.  Monte Carlo Results 
 
 Of particular interest is how misspecification of the true distribution of the TE terms 

affects the performance of the three estimators.  To investigate this, we begin by generating a 

series of TE scores from a known distribution - in this case we use the two commonly used 

distributions, the half normal and the exponential.  Thus, in the first runs based on the half 

normal, we begin by assigning each observation a TE value drawn from a half normal 

distribution, and scaling the efficient output level down by that amount, then factoring in the 

random disturbance term and using each of the three estimation methods to estimate the true TE 

term.   

 In Figure A1 we have performed a Monte Carlo experiment involving 100 replications on 

100 data points, for the special case where all of the non-stochastic observations are efficient, so 
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that the only reason an observation lies off the production function is random noise.  In Figure 

A1, the ‘True’ line represents the true TE scores.  In this figure, the True line is horizontal at 1 

because none of the observations have been scaled down.   

 Of the three estimation techniques, SFA does best when there is no inefficiency - the SFA 

values are virtually horizontal at 97% efficient.  Interestingly, even though there is no actual 

technical inefficiency,  SFA did not identify any of the observations as being fully efficient. The 

DEA TE scores show the greatest variability, as we would expect, given DEA’s sensitivity to the 

random disturbance term.   

 Quantile regression did reasonably well, placing most of the observations at between 91-

92% efficient.  Since we are fitting an equation for the 80th percentile here, in any single run 

roughly 20% of the observations in the data set should show up as efficient. The reason none of 

the units are identified as efficient in the quantile regression output in Figure A1 is that each 

point plotted there is an average efficiency score from 100 replications.  Because the 80th 

percentile curve lies above the true production function, in the absence of any true technical 

inefficiency the Quantile approach as we use it will tend to underestimate the efficiency of 

individual units.  Our interest in the Quantile approach is in its robustness in the presence of true 

technical inefficiency.   

 In our first set of replications, the true TE scores are generated using a half normal 

distribution, and the likelihood function for the SFA estimation assumes a half normal, so the 

SFA estimates are based, at least initially, on equations which are correctly specified both in 

terms of functional form and in terms of the assumed distribution of the inefficiency scores.  We 

say initially, because we will gradually move the actual distribution of the TE scores away from 
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the half normal distribution from which they were generated, as our test for sensitivity of the 

estimation techniques to misspecification of the efficiency term. 

 Figure A2 shows the results from the first, fully correctly specified run when there is one 

fully efficient unit.  The observations are ordered in terms of true technical efficiency, from the 

most to the least efficient, as shown by the downward slope of the true TE values on the graph.  

Again, the true TE score is the parameter to be estimated.  Interestingly, given that the 

inefficiency terms are generated using the half normal and that the SFA is run assuming a half 

normal, SFA cannot be said to clearly dominate the other approaches.  SFA underestimates the 

efficiency of the most efficient units (the ones on the left of the graph, whose TE scores are 

closest to 1). Furthermore, while SFA does do better than the other methods, in the sense that the 

SFA series lies closer to the true series than do either the DEA or the Quantile series up to about 

the 45th observation, from the midpoint on SFA does not do better than Quantile regression, 

which up until that point had tended to overestimate the TE terms to a greater degree than did 

SFA.  DEA also tracks the trend in the true value well, but the DEA series show some quite 

noticeable overestimates of the true TE scores, even for some of the least efficient observations. 

 From this point we begin to introduce the first misspecification, moving the true 

distribution of TE scores away from the half normal.  This is done by moving the units which 

have the least inefficiency into the fully efficient class, by raising their TE scores to 1.  Thus in 

Figure A3 we have raised the first 15 of 100 TE scores to one, leaving the remainder unchanged.  

It becomes apparent  that SFA underestimates the efficiency of those efficient units to a greater 

degree than either DEA or Quantile regression do, and while SFA still dominates the other two 

approaches between about observations 15 and 45, for the second half of our data set, where true 

technical efficiency is least, the SFA line does quite noticeably worse than the Quantile 
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regression series in tracking the true TE line. DEA also tends to do better than SFA, although 

again with a few noticeable overestimates of true efficiency. 

 In Figure A4, 34 units have been moved up to TE values of 1, and the poor performance 

of SFA relative, in particular, to Quantile regression is quite marked.  SFA tends, systematically, 

to overestimate the efficiency of the inefficient units and to underestimate the efficiency of the 

efficient ones.  It is worth emphasizing at this point that since these are Monte Carlo results, the 

SFA line represents the average of 100 runs in which the true TE scores (and the values of the X 

variables) were held constant and only the values of the random disturbance terms changed 

across the 100 replications.  This suggests that the poor performance of SFA is a general trend. 

While the performance of SFA had been tending to worsen as we increased the number 

of efficient units until we reached the case shown in Figure A4, after this point, interestingly 

enough, the performance of SFA starts to improve.  By the time the first 49 values of TE have 

been raised up to 1 the SFA line actually lies below not just the Quantile line but below the true 

line for the entire range of inefficient units (Figure A5).  This pattern continues in Figure A6 

where there are 60 fully efficient units, and remains consistent through the rest of the runs.  By 

this stage, DEA and Quantile regression are also tending to underestimate the true TE values 

although not by as much, on average, as does SFA. 

 Overall, then, it seems that SFA is very sensitive to the particular form of 

misspecification which we have imposed in the experiments, in which we allow more units to be 

fully efficient than the half normal assumption which was built into the likelihood function for 

the SFA estimation was expecting. 

 In the next set of exercises we generate the true TE scores using the other distribution 

commonly assumed in the literature, the exponential.  We follow the same procedure as above, 
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starting with true TE scores which are in fact drawn from an exponential distribution and 

gradually move away from that distribution by moving the least inefficient units up to TE values 

of 1.  In this set of experiments, the likelihood function for the SFA estimator is specified using 

the exponential distribution for the technical efficiency term, so SFA is, at least initially, 

correctly specified.  As in the previous case, the more relatively efficient observations we move 

up to full efficiency, the further from the exponential distribution the true TE distribution lies, 

and the greater the misspecification the SFA procedure must overcome. 

 Figure A7 shows the result of the Monte Carlo runs when the actual TE scores follow the 

exponential form which the SFA assumes.  As expected, SFA does well, but the series of TE 

scores generated by the Quantile regression actually lie closer to the true than do the SFA values, 

and DEA also does quite well, again with the exception of a few cases where it notably 

overestimates the efficiency of some rather inefficient units.  In this case no systematic pattern of 

bias emerges in the estimated TE scores, even as we move inefficient units onto the efficient 

frontier.  In Figure A8 we show the case where there are 34 fully efficient units - the point at 

which the problem with SFA had become very clear in the half normal experiments and in Figure 

A9 the case of 60 efficient units.  In general, when the TE scores are generated using an 

exponential distribution and the SFA likelihood function is written on the assumption that the TE 

scores come from an exponential distribution, SFA does not display the odd behaviour it did in 

the half normal case, even when the true distribution of the TE scores moves away from the 

distribution assumed in the half normal case.  In general, though, the graphs for this series of 

experiments also show that the Quantile regression approach performs at least as well as the SFA 

approach.  DEA demonstrates the same type of behaviour in this case as in the previous one, 

generally tracking well, but missing quite notably in a few particular cases. 
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 While this latter result sounds encouraging for SFA, it does require that we have correctly 

specified the likelihood function for the SFA runs.  In the next two series of Monte Carlo 

experiments we consider what happens when that assumption fails. 

 In the first of these two sets of experiments, we generated the data using a half normal 

distribution but wrote the likelihood function for SFA assuming an exponential distribution.  

Figure A10 depicts the case where we have not yet started to deviate from the half normal by 

moving units up to full efficiency, but it is evident that the effect of the misspecification is very 

serious for SFA.  This pattern remains consistent for the case of 34 fully efficient units (not 

shown).  Notably, the problem with SFA does in a sense correct itself.  Figure A11 shows the 

case of 55 fully units, and SFA is tracking as well as Quantile and DEA estimation.  Apparently 

by this stage so many observations have been moved out of the half normal (remembering that 

observations which were close to 1 in TE were gradually moved up to 1) that what remains 

resembles an exponential distribution since the tail of the half normal will be the last part of the 

distribution to be affected by the migrating values.  Even at this point, though, SFA cannot be 

said to dominate the other two approaches. 

 For the last set of experiments we turn things around, generating the TE scores using an 

exponential distribution but assuming a half normal in the likelihood function for the SFA. 

Figure A12 is the usual starting point, and we see that, while the SFA tracks much better than in 

the previous case, it consistently underestimates the efficiency of the units, and is dominated 

throughout by Quantile regression.  Because this same pattern continues through the remainder 

of the experiments, we do not report any more graphs here.   
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VI. Conclusions:    
 

 The results suggest that SFA may be very sensitive to misspecification of the assumed 

distribution of the technical inefficiency term, especially when the half-normal distribution is 

involved.  SFA works well when the true distribution of the inefficiency scores is exponential, 

but for that to be useful information, we must know in advance that the inefficiency scores are 

indeed distributed as exponential.  Absent that, the Monte Carlo exercise suggests that SFA can 

give very misleading results, especially as far as the least efficient firms (the ones in which we 

are, presumably, most interested) are concerned. 

 While DEA outperforms SFA in many ways in the experiments, it does have an odd 

tendency to persistently identify certain very inefficient DMUs as fully efficient. These DMUs 

can be identified as spikes in the DEA efficiency scores, occurring at the same points along the 

horizontal axis in each of the graphs of our experiments.  Since the effect of the random 

disturbance term should have been averaged out in the Monte Carlo procedure  this is not likely 

to be a consequence of DEA’s sensitivity to disturbances5.  It can be shown that each of the units 

whose efficiency was persistently overestimated was a low non-stochastic output unit, and 

preliminary investigations suggest that these spikes  appear to reflect DEA’s sensitivity to points 

at the extremes of the isoquant on which the firm would lie (corner solutions), were it operating 

in a fully efficient manner.   It is important to note that the Monte Carlo approach may be 

weighted in favour of DEA, since the effects of the random disturbance term should average out 

in the production of the DEA average TE scores.  In a single run, as would be the case when 

working with real world data drawn from a single year, DEA’s fit of the production function is 

still expected to be sensitive to extreme values of the disturbance term. 

                                                 
5 The graphs depict the average of 100 estimates of the TE scores, where the only thing which varied across the 100 
runs was the random disturbance term, and that was drawn from a mean-zero distribution. 
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 The results seem very strongly to favour the Quantile approach to fitting the frontier and 

deriving TE scores.  Quantile regression performed more reliably than either DEA or SFA in the 

Monte Carlo runs, and we would expect its favourable performance to apply in a single run on 

real world data.  Quantile regression combines elements of both DEA and SFA:  for example, 

DEA can, in a sense, be regarded as fitting a series of linear splines to the 100th percentile.  

Quantile regression has the advantage that, as with SFA, we can test for functional form on the 

production function, and test for the marginal productivity of the different inputs, but it is more 

robust than SFA to odd distributions of the TE term.  While our choice of the 80th percentile as 

the quantile function to be estimated was arbitrary, it is quite easy to vary the choice of quantile 

and test for sensitivity of the estimates of the TE scores.  Overall, the Quantile regression 

approach seems to address many of the weaknesses associated with the DEA and SFA 

approaches and therefore appears to be a more robust approach for the estimation of technical 

efficiency. 
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Figure 1 

 

 

 

 

Table 1: DGP Data Description 
Variable Mean Std. Dev. Min Max 

x1 2.853314 1.191248 1.00782 4.896069 
x2 8.579312 3.847942 2.154894 14.89015 
x3 8.36448 4.026787 1.105346 14.99141 
x4 442.871 180.6849 144.8173 745.4782 

Technical efficiency, iu1 (half-normal) 0.3185883 0.2076957 0 0.882275 

Technical efficiency, iu2 (exponential) 0.18432 0.19769 0 0.98666 

True value 15.0,08.0,1.0,2.0,912.3ln,50 432100 ====== ββββββ  

*These are the starting values for the Monte Carlo runs.  The actual technical efficiency values are modified 
across runs as discussed in the text. 
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Figure A1 
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Figure A2 

Monte Carlo Simulation_1 efficient unit_hn
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Figure A3 
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Figure A4 

Monte Carlo Simulation_34 efficient units_hn
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Figure A5 

Monte Carlo Simulation_49 efficient units_hn
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Figure A6 

Monte Carlo Simulation_60 efficient units_hn
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Figure A7 

Monte Carlo Simulation_1 efficient unit_exp
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Figure A8 

Monte Carlo Simulation_34 efficient units_exp

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Te
ch

ni
ca

l E
ffi

ci
en

cy

TRUE SFA Quantile DEA

 
 



 29

Figure A9 

Monte Carlo Simulation_60 efficient units_exp
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Figure A10 

Monte Carlo Simulation_1 efficient unit_hn mis as exp
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Figure A11 

Monte Carlo Simulation_55 efficient units_hn mis as exp
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Figure A12 

Monte Carlo Simulation_1 efficient unit_exp mis as hn
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