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ABSTRACT 
Instrumental variables methods (IV) are widely used in the health economics literature to 

adjust for hidden selection biases in observational studies when estimating treatment effects. Less 
attention has been paid in the applied literature to the proper use of instrumental variables if 
treatment effects are heterogeneous across subjects and individuals select treatments based on 
expected idiosyncratic gains or losses from treatments. In this paper, we analyze the role of 
conventional instrumental variable analysis and alternative approaches using instrumental variables 
for estimating treatment effects for models with treatment heterogeneity and self-selection. Instead 
of interpreting IV estimates as the effect of treatment at an unknown margin of patients, we identify 
the marginal patients and we apply the method of local instrumental variables to estimate the 
Average Treatment Effect (ATE) and the Effect on the Treated (TT) on 5-year direct costs of breast 
conserving surgery and radiation therapy compared to mastectomy in breast cancer patients. We 
use a sample from the Outcomes and Preferences in Older Women, Nationwide Survey 
(OPTIONS) which is designed to be representative of all female Medicare beneficiaries (aged 67 or 
older) with newly diagnosed breast cancer between 1992 and 1994. Our results reveal some of the 
advantages and limitations of conventional and alternative IV methods in estimating mean 
treatment effect parameters. 
 
Keywords: Self-selection, essential heterogeneity, instrumental variables, breast cancer, local 
instrumental variable method. 
 
JEL Classification: C01, C21, C31 
 

We are grateful to Daniel Polsky at the University of Pennsylvania and the OPTIONS team 
for allowing us to use their breast cancer dataset. We thank Willard Manning, Partha Deb and the 
seminar participants at the University of Chicago, University of Illinois at Chicago and at the 
American Society for Health Economists Inaugural Meeting for their helpful comments. 
_______________________________________ 
* Corresponding author: 
Anirban Basu, PhD, Section of General Internal Medicine, Department of Medicine, University of Chicago 
5841 S. Maryland Ave, MC 2007,  Chicago IL 60637.  abasu@medicine.bsd.uchicago.edu, Tel:    +1 312-834-1796,  
Fax: +1 773-834-2238 

 



 1

1. Introduction 

In many situations, people respond differently to the same treatment.1 This is called 
response heterogeneity. In particular, when this differential response is based on characteristics not 
observed by the analyst, it is called unobserved heterogeneity. When individuals select into specific 
treatments based on characteristics that determine this heterogeneity self-selection arises.2 The 
concepts of heterogeneity and self-selection of agents have become fundamental for the 
development of modern microeconometric tools for the analysis of individual choices and their 
consequences (Heckman, 2001).  

Medical care is usually characterized by heterogeneity and self-selection and therefore, 
microeconometric methods that account for these are of great value for analyzing the effects of 
alternative medical technologies on costs, effectiveness and cost-effectiveness in health and 
medicine. This paper analyzes the role of instrumental variables in the construction of 
counterfactual outcomes related to health care policy making in the presence of both heterogeneity 
and self-selection. 

The classic framework for evaluation in clinical outcomes research is the randomized 
experiment.3 Randomization is the preferred methodology for the estimation of mean treatment 
effect in health economics and health services research too (Vanness and Mullahy, 2006). When 
randomization is not feasible or does not provide population coverage, researchers have relied on 
observational studies to estimate treatment effects. Instrumental variable (IV) analysis has been 
one of the cornerstone methods to address the issue of selection bias in observational studies. 
Recently, some researchers (Earle, 2001; Hadley, 2003; Brooks, 2003) have used IV analysis to 
evaluate alternative treatments in cancer for example – the types of evaluations that were by and 
large restricted to clinical trials.   

Traditional IV methods assume that the only form of heterogeneity is that observed by the 
analyst. More recent methods relax this assumption and allow for unobserved heterogeneity in 
outcomes when applying IV. These methods, however, implicitly assume that the self-selection 
behavior is not influenced by the unobserved determinants of heterogeneity in outcomes.4  In the 
medical care context, this assumption implies that either a) treatment effects are constant for every 

                                                 
1 Here the term treatment is used in the generic sense. It can stand for medical treatments, social interventions, public 
policies, etc. 
2 Accordingly we can have selection based on observables and selection based on unobservables. See Heckman and 
Vytlacil (1999) and Heckman and Navarro (2004). 
3 Ideas on randomized experiments dating back to Neyman (1923, 1935) and Fisher (1935) have been instrumental in 
controlling for self-selection. 
4 This is the traditional assumption of most random effects and random-coefficient models in statistics and economics.  
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one in the population with the same observed characteristics or b) even if treatment effects are 
heterogeneous, patients (or their physicians) cannot anticipate these effects and use this 
information to select into the treatment that would potentially give them the largest benefits. That is, 
they have no information beyond what the analyst of an observational data possesses (see 
Heckman and Robb, 1985, and Heckman, 1996, 1997).5 Either (a) or (b) represent a stretch for 
modeling treatment choices in health care, especially under the practical limitations of observational 
data to collect all relevant information pertaining to treatment choices.  

Imbens and Angrist (1994) show that when these idiosyncratic gains are correlated with 
treatment receipt, standard IV methods (under additional monotonicity assumptions6) can identify 
the mean response of outcomes for persons induced to participate in treatment by a change in the 
value of the instrument. This treatment effect parameter is called the Local Average Treatment 
Effect (LATE). However, Imbens and Angrist (1994) do not identify who these patients are. 
Specifically, they do not identify who would change their treatment status in response to changes in 
instrument values.  

In this context, the health economics literature correctly interprets LATE as the effect on 
some marginal population (McClellan, McNeil, and Newhouse, 1994; Brooks et al, 2003), admitting 
that the method does not identify the margin. This important limitation of LATE (and IV in general) is 
discussed in two health economics papers (Newhouse and McClellan, 1998; Harris and Remler, 
1998) both concentrating on one of the first applications of instrumental variables on clinical 
outcomes (McClellan et al., 1994). As Newhouse and McClellan (1998) point out  

“.. unlike the population in a clinical trial, this marginal population who changes treatment because 
of location (instrumental variable in this case) is not straightforwardly identifiable by the clinician, 
that is, whether the patient is part of that population is not immediately obvious to the physician.”  

This paper has two main goals. First, we review in detail the theory behind essential heterogeneity 
and marginal treatment effects as these ideas are most likely to be extremely relevant to health 
economics and applied health services research. Moreover, we illustrate, using a step-by-step 
guide, how the local instrumental variable (LIV) methods could be applied in practice to estimate the 
marginal treatment effects and other treatment effect parameters. 

Second, we make novel contributions to the LIV methods in developing methods to calculate 
LIV weights that simultaneously vary over both the unobserved characteristics and also the multiple 

                                                 
5 Or if they have it, they do not use it when selecting treatment. 
6 This assumption is explained in detail in section 5. In summary, it states that all patients who are induced to change their 
treatment status in response to changes in the value of an instrument do so in the same “direction”.  
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observed covariates in the outcome regression. These methods are fundamental to any practical 
application of LIV methods. Our empirical example is one of the first illustrations of how negative IV 
weights can occur when multiple instruments are used in the choice equation along with other 
covariates. 

We draw on Heckman and Vytlacil (1999, 2001a, 2007) to present new methods that extend 
the IV-LATE approach to estimate mean responses to treatment but identifying the exact population 
affected by the treatment. We follow the literature in health economics and focus on identifying the 
average treatment affect (ATE) of a treatment compared to no treatment (or any other standard 
treatment). This is a difficult parameter to identify. ATE estimates the average gain if everyone 
undergoes treatment as compared to an alternative treatment or no treatment at all. This has been 
one of the most popular parameters of interest for health economists and policy analysts when 
making inference about health care policies (Vanness and Mullahy, 2006). We also discuss other 
mean treatment parameters such as the Treatment Effect on the Treated (TT), which estimates the 
average gain to those who actually select into treatment. 

This paper proceeds as follows. In section 2, we set up a model for potential outcomes and 
formally define ATE and TT. We then illustrate how selection bias arises when traditional regression 
techniques are used to try and recover causal parameters (section 3). In section 4, we show how 
conventional linear instrumental variables econometric analysis, which has been widely used in 
health economics to make causal inferences, attempts to overcome these biases, and how it fails to 
identify ATE when selection of treatment depends on the heterogeneous outcome. In section 5, we 
introduce the concept of the Local Average Treatment Effect (LATE) and Marginal Treatment Effect 
(MTE) and its implementation via the local instrumental variable (LIV) method that can overcome 
the limitations of the traditional IV approach. In section 6, we illustrate these methods in an 
evaluation of the costs of localized breast cancer treatments in Medicare population. Discussion 
follows. 

 

2. A Model of Heterogeneous Outcomes and the Average Treatment Effects 

We distinguish between the underlying model generating potential outcomes as a result of 
receipt of a particular treatment, and the limited information available to the analyst who, 
retrospectively, aims to identify ATE by modeling the observed outcomes as a function of treatment 
choices. To simplify, we restrict our discussion to the case of two states – the treated state denoted 
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by j = 1 and the untreated state denoted by j = 0, and their corresponding potential outcomes 
represented by 

1 1 1( )µ= +Y X U ,       ( 1a ) 

0 0 0( )µ= +Y X U ,       ( 1b ) 

where ( )µ j X  is a function of characteristics (X) that are observed by the analyst and the agent, and 

Uj represents characteristics unobserved to the analyst but potentially known by the agent. In what 
follows, we use the terms observed and unobserved in reference to the analyst’s perspective. If we 
assume that ( | ) 0= =jE U X x , j = 0, 1, then we can interpret ( )µ j X  as the conditional expectation 

of the outcome, that is ( )| ( )µ= =j jE Y X x x .  

The individual gain from treatment, 1 0∆ = −Y Y , contains two components: 1) the  Average 
Treatment Effect (ATE(X))= 1 0( ( ) ( ))µ µ−X X ,7 which is the gain of receiving treatment for the 
average person with characteristics X, and 2) 1 0( )−U U , which is the idiosyncratic gain for a 

particular person undergoing treatment (Heckman, 1997). The second component constitutes 
unobserved heterogeneity and signifies that the incremental effect of treatment over no treatment 
may vary across individuals even after controlling for observable heterogeneity using covariates X.  

The first component (ATE(X)) has received the most attention in many economic evaluations 
(Card, 2001; Imbens, 2004) and in the health economics literature (see Claxton, 1999; and 
Vanness and Mullahy, 2006 for an overview of its use in cost-effectiveness analysis). ATE 
conditional on X = x, 1 0( | ) ( ( ) ( ))E X x x xµ µ∆ = = −  estimates the average gain if someone selected 

randomly from the general population with characteristics X = x undergoes treatment as compared 
to remaining untreated. An ideal experiment administered to persons selected at random from the 
general population with no non-compliance or non-response issues would estimate ATE. 

 A parameter that has significant policy relevance in health care but has received less attention 
is the effect of Treatment on the Treated (TT). This parameter evaluates the average gain from 
treatment among those who select into receiving treatment. Despite the disproportionate emphasis 
on ATE for policy making in health care, one can easily appreciate the importance of the TT 
parameter for health policy.8 TT is one ingredient for determining whether a given treatment should 
be shut down or retained as a medical practice or in the formularies. It informs on whether the 
persons choosing the treatment benefit or not from it in gross terms. If we let D be an indicator that 

                                                 
7 All treatment effect parameters can be defined as conditional on X.  The unconditional version of a parameter can be 
obtained by integrating the corresponding conditional parameter using the observed distribution of X. 
8 See Auld (2005) for an application in health economics looking at TT. He looks at the causal effect of early initiation on 
adolescent smoking patterns among those initiating early smoking. 
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takes the value 1 if an individual selects into treatment and 0 if he does not, then TT conditional on 
X = x is formally defined as 

1 0 1 0( ) ( | , 1) ( ( ) ( )) ( | , 1)TT x E X x D x x E U U X x Dµ µ= ∆ = = = − + − = = .  ( 2 ) 

Notice that, conditional on X = x, TT is different from ATE only when the gains on unobservables 
are heterogeneous, i.e., when they are different for those who select into treatment. If the term 

− = =1 0( | , 1)E U U X x D  in (2) is constant in the population, then the treatment effect is the same for 

everyone, and TT and ATE are identical (conditional on X). Thus, only when unobserved gains vary 
with treatment selection is the distinction between ATE and TT relevant.  

3. OLS under Selection on Unobserved and Heterogeneous Gains 

Since each subject either receives treatment or not, the observed outcome, Y, becomes 

   Y=DY1 + (1-D)Y0.      ( 3 ) 

This representation for the observed outcome is widely used in the literature.9 The analyst does not 
observe both potential outcomes (treated and untreated state outcomes) for each subject. That is, 
he does not observe the pair (Y1, Y0) for anybody. If he did, he could simply form Y1-Y0 at the 
individual level and recover any treatment parameter.  

The model for potential outcomes in equation (1a) and (1b) can be substituted into equation 
(2) to obtain the following model for the observed outcome (Quandt, 1972): 

{ }0 1 0 1 0 0( ) ( ( ) ( )) ( )µ µ µ= + − + − +Y X D X X D U U U  

   { }0 1 0 0( ) ( | ) ( )X DE X D U U Uµ= + ∆ + − + .    ( 4 ) 

Equation (4) can be interpreted as a standard regression model where the observed 
outcome Y is regressed on the covariates X and on an indicator for treatment D (interacted with the 
covariates X). However, the fact that the error term (given in curly brackets) depends on the 
treatment variable makes the analysis of this model non-standard. In order to see this, notice that 
from (4), the OLS estimator of the “effect of the treatment” is simply the difference in adjusted mean 
outcomes for treated and untreated individuals: 

( | , 1) ( | , 0)= = − = =E Y X x D E Y X x D       

                                                 
9 See Neyman (1923), Fisher (1935), Roy (1951), Cox (1958), Quandt (1972, 1988), Rubin (1978). 
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1 1 0 0[ ( ) ( | , 1)] [ ( ) ( | , 0)]x E U X x D x E U X x Dµ µ= + = = − + = =     

= ( | )∆E X  + 1 0 0 0[ ( | , 1) { ( | , 1) ( | , 0)}]− = = + = = − = =E U U X x D E U X x D E U X x D .   

         ( 5 ) 

Equation (5) shows that the OLS treatment effect estimator is not necessarily an unbiased estimator 
for ATE, even asymptotically (Heckman, 1997). The term in square brackets in (5) represents the 
bias produced by the selection into treatment based on the potential outcomes. The bias consists of 
two parts – 1) the mean idiosyncratic gain from treatment for people who receive treatment (first 
term), and 2) the difference in the untreated outcomes between treated and untreated individuals 
(second term in curly brackets).  

4. Role of Standard Instrumental Variables and its Limitations 

Instrumental variable (IV) analysis is one of the most popular methods used to deal with 
selection biases. This method postulates the existence of a random variable (or variables) Z called 
instruments such that, conditional on the observable covariates X; these instruments are 
independent of potential outcomes but can predict treatment choice. Formally, an instrument Z must 
meet the following assumptions:   

Assumption 1. The probability of treatment choice is a non-trivial function of the instrument Z 
conditional on X. 

Assumption 2. The instrument Z is mean independent of the error terms in (1a) and (1b) 
conditional on X, i.e, 0( | , ) 0= = =E U X x Z z  and 1( | , ) 0= = =E U X x Z z .10 

Notice that no formal model for the choice process (D) is required when implementing the IV 
approach. This, in principle, represents an attractive feature. However, as we show below, absence 
of an explicit choice model is also a drawback of the IV approach. 

Under these assumptions, and considering the model of potential outcomes introduced in Section 2, 
we can consider three distinct scenarios. 

(a) Absence of unobserved heterogeneity: This implies that U1 = U0 and all individuals get 
the same benefit from treatment (conditional on X). This model is called the “Dummy endogenous 
regression” model or the common coefficient model (Heckman, 1978; Heckman and Robb, 1986; 
LaLonde, 1986). In this situation, individual level treatment effects are homogenous and equal to 

                                                 
10 Assumption 2 is usually stated as having a Z that is independent of the error term. The weaker version we state is 
enough to obtain identification of ATE in the absence of essential heterogeneity. 
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ATE for everyone. Consequently TT = ATE.  Furthermore, the error term in (4) reduces to U0. So 
selection bias occurs only through the dependence of D with U0 and an instrument satisfying 
Assumption 1 and the mean independence assumptions with respect to U0, (i.e., 

0( | , ) 0= = =E U X x Z z ) would identify this common treatment effect parameter.  

(b) Presence of unobserved heterogeneity but selection into treatment does not depend on 
unobserved gains (non-essential heterogeneity): This implies that 1 0≠U U , but D is independent of 

1 0( )−U U  given X. Individuals with the same X respond differently to treatment but do not select into 

treatments based on the idiosyncratic difference between treatment outcomes. For example, these 
conditions would arise when heterogeneity in health outcomes is entirely ex post and patients either 
cannot predict the differences in ex post outcomes or believe that these differences have mean 
zero and hence do not base their treatment decisions on them. This model is a version of the 
``uncorrelated’’ random coefficients model in traditional econometrics. Since the distribution of (U1 - 

U0) does not vary by treatment status of individuals, E(U1 - U0|X=x, D=1) = E(U1 - U0|X=x) =0; this 
implies TT = ATE.  As before, the selection bias in estimating ATE arises due to dependence of D 
with U0 only, and under the conventional IV assumptions, ATE is identified.  

(c) Presence of unobserved heterogeneity and selection into treatment is based on 
unobserved gains (essential heterogeneity): This implies that 1 0≠U U , and D and (U1 - U0) are not 

statistically independent even conditional on X. Not only do individuals with the same X respond 
differently to treatment, their treatment choices are influenced by their knowledge of their 
idiosyncratic gains: 1 0( )−U U . This situation, designated as essential heterogeneity (Heckman et 

al., 2006), is perhaps the most relevant case for analyzing treatment choices in health economics. 
In this more general model, the robustness features of standard IV methods disappear. Specifically, 
even if a proposed instrument Z satisfies the mean independence assumption (Assumption 2), the 
IV method does not, in general, estimate ATE (or TT). The assumption required for IV to estimate 
ATE in the context of (4) is  

0 1 0( ( ) | , ) 0+ − = = =E U D U U X x Z z . 

However, when D and 1 0( )−U U  are correlated, 0 1 0( ( ) | , ) 0+ − = = ≠E U D U U X x Z z  in general, even if 
Z is mean independent of the outcomes because 1 0( | , , 1) 0− = = = ≠E U U X x Z z D . That is, the 

instrumental variables may be independent of the idiosyncratic gains in the overall population, but 
conditional on those who select to receive treatment, they may no longer be independent of the 
idiosyncratic gains in this subgroup.11 

                                                 
11 In general, TT is not identified either, unless further assumptions are imposed. See Heckman (1997). 
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An additional consideration in models with essential heterogeneity is that different 
instruments identify different parameters. This is a direct consequence of the underlying 
dependency of the IV estimates on the model for treatment choice D (see Heckman et. al., 2006). In 
this context, an a priori specification of the choice model for D becomes necessary for the 
interpretation of IV estimators. We illustrate and develop this point below.   

Essential heterogeneity is likely to occur in the analysis of health care decisions since the 
choice of medical treatment is likely guided by individual idiosyncratic gains from alternative 
treatment. Unfortunately, this problem has received relatively little or no attention in the health 
economics and health services literature. In Section 6 we study the case of breast cancer 
treatment. Our results illustrate the problems associated with the IV approach and the advantages 
of using a more general framework allowing for essential heterogeneity when studying health care 
applications. 

5. Model for Treatment Choice, Local Average Treatment Effect (LATE) and the Marginal 
Treatment Effect (MTE) 

When responses to treatment are heterogeneous and individuals select into treatment 
anticipating these heterogeneous effects, a clear specification of the choice model for D becomes 
essential for interpreting what IV estimates. The model can be specified using standard 
(microeconomic) choice theory where a subject’s decision to receive treatment is the result of the 
maximization of his expected benefit (or utility). In such a model, if the expected benefit of being 
treated is larger than the benefit the individual expects to get if he remains untreated then the 
patient will choose to undergo treatment. Let V denote the difference in benefits of being treated 
versus remaining untreated net of costs. Then, the model of treatment choice can be denoted as 
follows: 

( , ) ( 1( 0),          )=0       V V VV Z X U E U D Vµ= + = > 12    ( 6 ) 

where 1(.) is an indicator function such that D = 1 if the patient chooses treatment (so his net benefit 
of treatment, V, is positive) and D = 0 if the patient chooses to remain untreated (so his net benefit 
of treatment V is negative). (Z, X) and UV are, respectively, observed and unobserved factors 

                                                 
12 The alternative formulation of the choice model is  

( , )           ( )=0       1( 0),µ ′ ′= − = >V V VV Z X U E U D V  

where the subtraction of the error term ′VU makes P(Z) enter as an upper limit of the CDF for UV in  (6) and (7). However, 
most traditional econometric software packages fit (6) and not the model with a negative error term. This leads to a 
disjoint between theory and the application we will pursue later. Therefore, we describe the theory in terms of the 
traditional choice model.  
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determining choice of treatment. We assume that VU is independent of Z and X, 
and ( | , ) ( , )VE V Z X Z Xµ= .13,14    

The propensity score is the probability of selecting treatment: 

( , ) Pr( 1| , ) Pr( ( , )) 1 ( ( , ))
VV V U VP z x D Z z X x U z x F z xµ µ= = = = = > − = − −   ( 7 ) 

where 
VUF is the cumulative distribution of VU . Therefore,  

1( 0) 1( ( , )) 1( ( ) ( ( , ))) 1( ( ) 1 ( , ))
V V VV V U V U V U VD V U z x F U F z x F U P z xµ µ= > = > − ⇔ > − ⇔ > −   

         ( 8 ) 

where ( ) ~ (0,1)
VU V DF U U Uniform=  by construction.15 From hereon, we denote S(z,x) = 1 – P(z,x).  

Consider for simplicity the single instrument case, i.e. Z is a scalar rather than a vector of 
instruments. Given model (6) and the assumed independence of Z and UV, changing Z externally 
from VU , shifts all people in the same direction (towards or against D =1).  This produces 

“monotonicity" in the sense of Imbens and Angrist (1994). 

Using this framework, we can define LATE as the average treatment effect for individuals 
who would change their treatment choice when Z moves from z to ′z . That is for two values of the 
instrument Z, z and z′ , LATE is defined as the difference in observed outcomes between those 
with  Z = z and Z = z′ , divided by the difference in the propensity to select treatment for Z = z and Z 
= z′ . Formally, assuming monotonicity, and defining Dz as the random variable corresponding to 
choices when Z is set to z, we have that 

( , , )LATE x z z′ ( | , ) ( | , )
Pr( 1| , ) Pr( 1| , )

′= = − = =
=

′= = = − = = =
E Y X x Z z E Y X x Z z
D Z z X x D Z z X x

 

=
( ) ( )

1 0 '( | , 1, 0)
Pr 1| , Pr 1| ,

− = = =
′= = = − = = =

z zE Y Y X x D D
D Z z X x D Z z X x

,  ( 9 ) 

and thus, LATE computes the mean gain to those induced to switch from no treatment to treatment 
by a change in Z form z to z′ . However, in (9), the subpopulation induced to change treatment is 

                                                 
13 Note that Z and X may share common covariates. We can relax this assumption to make UV independent of Z given X, 
but we can allow the dependence between UV  and X to be general. 
14 The additive and separable representation of V is a common assumption used in the literature. Heckman and Vytlacil 
(2007) and Heckman et al (2006) analyze the consequences of weakening it. 
15 Since ( | , ) ( , )E D X x Z z P x z− = =  
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not clearly identified since, in the absence on an underlying choice model, the relevant margin at 
which this change in behavior is taking place is not specified.16 

Progress on this problem was made by Heckman and Vytlacil (1999, 2001a, 2007) and 
Vytlacil (2002), who develop the interpretation of LATE in terms of the choice model in (6). Their 
interpretation is illustrated in Figure 1, which presents a stylized profile of mean conditional 
treatment effects over UD. Recall that UD represents the unobserved characteristics that determine 
treatment.  Once we condition on the observed factors X and the unobserved UD, the conditional 
mean treatment effects E(∆|X=x, UD =uD) are exactly the same for each individual with the same 
value of UD = uD, despite having different values of Z (or P(Z,X)).  For any value of the 
instrument Z z=  (and X = x), the patients for whom ( , )DU S z x> receive treatment while patients 
with ( , )DU S z x≤ remain untreated (see Figure 1a). In addition, notice that the expected value of the 

observed outcome for this group of patients can be written as the weighted average of those who 
receive treatment and those who do not: 

( | , )E Y Z z X x= =  =  

1 0Pr( 1| , ) ( | 1, , ) Pr( 0 | , ) ( | 0, , )= = = ⋅ = = = + = = = ⋅ = = =D Z z X x E Y D Z z X x D Z z X x E Y D Z z X x = 

1 0Pr( ( , )) ( | ( , ), ) Pr( ( , )) ( | ( , ), )D D D DU S z x E Y U S z x x U S z x E Y U S z x x> ⋅ > + ≤ ⋅ ≤   ( 10 ) 

By the definition of an instrument (Assumption 1), we can vary the value of Z = z (given 
X=x), and therefore  ( , ) ( , )= = =P Z z X x P z x  and hence, ( , ) ( , )= = =S Z z X x S z x ,  non-trivially with 

respect to the distribution of UD. Thus, consider two groups of patients, one with Z = z and the other 
with Z = z′  from the same distribution of DU . Let ( , ) ( , )S z x S z x′≥  for every patient. Using 

expression (10), we have that the difference in the observed outcomes between these two groups 
of patients is then, 

( | , )E Y z x - ( | , )E Y z x′  

= [ ]1 0Pr( ( , )) ( | ( , ), ) Pr( ( , )) ( | ( , ), )D D D DU S z x E Y U S z x x U S z x E Y U S z x x> ⋅ > + ≤ ⋅ ≤   

 [ ]1 0Pr( ( , )) ( | ( , ), ) Pr( ( , )) ( | ( , ), )D D D DU S z x E Y U S z x x U S z x E Y U S z x x′ ′ ′ ′− > ⋅ > + ≤ ⋅ ≤  

= [ ]1 0Pr( ( , ) ( , )) ( | ( , ) ( , ), ) ( | ( , ) ( , ), )D D DS z x U S z x E Y S z x U S z x x E Y S z x U S z x x′ ′ ′< < ⋅ < < − < <  

                                                 
16 The interpretation of LATE is even more limited in the case of multiple instruments. When Z is a vector of instruments, 
the “monotonicity” assumption does not necessarily hold and the second equality in (9) can break down (Heckman et al. 
2006).  
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= [ ]1 0Pr( ( , ) ( , )) ( | ( , ) ( , ), ) ( | ( , ) ( , ), )D D DP z x U P z x E Y S z x U S z x x E Y S z x U S z x x′ ′ ′< < ⋅ < < − < < ,  

         ( 11 ) 

where the last two equalities follow from the fact that UD ~Uniform(0,1). This is illustrated in Figure 
1b, where the mean potential outcomes outside the limits of the margin cancel out. Thus, combining 
(9) and (11), we can conclude that LATE identifies the average effect for a group of patients who 
are within the margin defined by ( , )S z x and ( , )S z x′  (Heckman and Vytlacil, 1999, 2007): 

LATE(x,z,z’) 1 0( | , ( , ) ( , ))′= − = < <DE Y Y X x S z x U S z x .   ( 12 )  

LATE is often referred in the health literature as the treatment effect for the marginal patients 
(McClellan et al, 1994, Brooks et al, 2003). The marginal patients are defined as the subset of 
patients whose treatment choices varies with the instrument. Imbens and Angrist (1994) define the 
LATE parameter from hypothetical manipulation of the choice probability or values for the 
instrument. Heckman and Vytlacil (1999, 2007) draw on choice theory and derive LATE (and also 
other treatment effect parameters, as explained below) in the context of the generalized Roy Model 
(Roy, 1951; Heckman and Sedlacek, 1985).  Relating IV to choice models helps to identify the 
margin of UD selected by instruments. IV, working through S(Z,X), selects different slices of UD and 
defines mean treatment effects for those slices.  

In a model with a scalar and binary instrument with only two points in the support of P(Z,X), 
the IV estimate and the overall LATE estimate are the same. When there are more than two distinct 
values of Z, an overall LATE (the standard IV estimator) can be estimated by a weighted average of 
the pairwise LATE parameters based on ordered values of the scalar instrument Z (Yitzhaki, 1989, 
Imbens and Angrist, 1994). However, Heckman et al. (2006) showed that when vector instruments 
enter the choice model, the traditional IV method may produce misleading inferences since the IV 
estimate can be negative even if all the pairwise LATE estimates are positive. This is because the 
weights used to compute the overall LATE can be negative if the choice model is determined by a 
vector of instruments and the analyst uses only some of those instruments in the calculations. This 
point is illustrated in our empirical example. 

LATE is an interpretable parameter when the observed variation in the instrument defines 
the question for which the analyst seeks an answer, e.g., if the analyst has access to an instrument, 
Z, that takes two values (z1 and z2) and the question he seeks to answer is precisely what happens 
when the instrument is changed from z1 to z2.  However, when the policy being analyzed does not 
conform closely to the instrument used, it is not always clear who the marginal patients associated 
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with the policy are, and consequently, whether or not the marginal patients defined by LATE are 
those on which the clinical decision making should rely.  

In order to address some of these limitations and to better understand the distribution of 
treatment effects in the population, we can use the Marginal Treatment Effect (MTE) first introduced 
by Björklund and Moffitt, 1987 (see also Heckman, 1997; Heckman and Smith, 1998; Heckman and 
Vytlacil, 1999, 2000, 2001a). The MTE is the average gain to patients who are indifferent between 
receiving treatment 1 versus treatment 0 given X and Z. These are the patients at the margin as 
defined by X and Z. Formally, MTE can be defined as: 

 ( , )MTE x z ( | , , 0) ( | , ( , ))V VE X x Z z V E X x U z xµ= ∆ = = = = ∆ = = −   

      1 0 1 0( ) ( ) ( | ( , ))V Vx x E U U U z xµ µ µ= − + − = −  

    1 0 1 0( ) ( ) ( | ( , ))Dx x E U U U S z xµ µ= − + − = ,    ( 13 ) 

where the last equality follows from the fact that S(Z,X) is a monotonic transformation of the mean 
utility ( , )V Z Xµ  while UD is a monotonic function of UV. In Figure 1, the mean conditional treatment 

effect at each level of UD is the value of the MTE at that level of UD. Evaluation of the MTE 
parameter at low values of UD averages the outcome gain for those individuals whose unobservable 
characteristics make them less likely to undergo treatment, while evaluation of MTE parameter at 
high values of UD gives the gain for those patients with unobservable characteristics which make 
them more likely to undergo treatment. For example, LATE is a weighted sum of all MTE within the 
margin at which LATE is identified (Figure 1 (b)). In the limit, as ( , ) ( , )V Vz x z xµ µ′ → , LATE 

converges to MTE under standard regularity conditions.  

Treatment Parameters and IV Effects as Weighted Averages of MTE 

An additional feature of MTE is that all mean treatment effects parameters, including the 
ATE, TT, OLS, and the IV effect, can be calculated from weighted averages of MTE. These weights 
can be obtained from the data (Heckman and Vytlacil, 2007; and Heckman et al., 2006).17 For 
example, the ATE is the sum of all MTE across all distinct values of UD, weighted equally 
(conditional on X). A more formal description of these weights is given below. 

 Equation (13) shows that the MTE is identified on the support of S(Z,X). For notational 
convenience, from hereon we define uD≡ S(z,x), i.e., uD is the value of S(Z,X) used to define the 

                                                 
17 A software designed to calculate these weights can be found at http://jenni.uchicago.edu/underiv 
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margin of indifference in (13). Using this notation, an average value for the MTE at each level of UD 
can be obtained by integrating over the distribution of X conditional on UD=uD  That is,  

 
{ }

|

| 1 0 1 0

( ) ( ( , ))

( ( ) ( )) ( | ) .µ µ
=

=

=

= − + − =
D D

D D

D X U u D

X U u D D

MTE u E MTE x u

E x x E U U U u
   ( 14 )  

Additionally, by integrating these average MTEs over the distribution of UD (which by construction is 
Uniform(0,1)) we can obtain the (unconditional) Average Treatment Effect: 

   
| 1 0 1 0

( ( ))

( ( ) ( ) ( | ).µ µ=

=

= − + − =
D

D D D

U D

U X U u D D

ATE E MTE u

E E x x E U U U u
   ( 15 ) 

Here, the last term in (15) drops out because ( )1 0 1 0( | ) 0− = = − =
DU D DE E U U U u E U U . Equation (15) 

suggests that the weights for the MTE(x, uD) that yield the ATE can be constructed from the 
empirical joint distribution of (X, S(Z,X)) directly. Alternatively, since UD is distributed as 
Uniform(0,1), simply integrating MTE(uD) over the full support of UD yields ATE. 

  Obtaining the weights to estimate TT and the IV estimator is a bit more complicated than 
determining the weights for ATE, but they can be computed readily using the data at hand. 
Intuitively, for TT, the weights for MTE evaluated at high values of UD are relatively larger than 
those evaluated at low values of UD. This is because, by definition, larger values of UD represent 
greater propensity to select treatment based on unobserved characteristics. The TT weights can be 
written as (Heckman et al., 2006):  

Pr( ( ) | , )( , )
Pr( 1| , ) ( )

D D D
TT D

D D D

S Z u X x U ux u
D X x U u du dF X

ϖ ≤ = =
=

= = =∫ ∫
.    ( 16 ) 

The weights for an IV estimator relate the IV estimate to the distribution of MTE. Consider 
the case of a general scalar function of instrumental variables, J(Z), that is used to identify the IV 
effect.18 The IV estimator, conditional on X, is given by: 

  ( ( ), | )
( ( ), | )

Cov J Z Y X x
Cov J Z D X x

=
=

.       ( 17 ) 

Without loss of generality, we center J around its mean so that ( ( ) | ) 0E J Z X x= = , where 
( ) ( ) ( ( ) | )J Z J Z E J Z X= − . Substituting the model for Y from (3) we have, 

                                                 
18 That is Cov(J(Z), D | X = x) ≠ 0. The propensity score, P(Z) is one such function, but not necessarily the only one 
available. In fact if J(Z) is monotonically related to P(Z), then the joint distribution of (J(Z), P(Z)) collapses to a single 
distribution: that of P(Z) (See Heckman et al, 2006). 
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    [ ]0 1 0( ( ), | ) ( ( ) ( ) | )Cov J Z Y X x E J Z Y D Y Y X x= = ⋅ + ⋅ − =  

      1 0( ( ) | , ) ( | , )
D

D D D
U

E J Z D X x u E Y Y u X x du= ⋅ = ⋅ − =∫  

 { }( ( ) | , ( , ) ) Pr( ( , ) ) | ( , )= = ≤ ⋅ ≤ = ⋅∫
D

D D D D
U

E J Z X x S Z X u S Z x u X x MTE x u du ,  ( 18 ) 

where we use the fact that, conditional on X=x and UD= uD, ( )J Z D⋅  is independent of 0Y  and 

1 0( )D Y Y⋅ −  (second equality), and the definition of MTE(x, uD) in (13)  (third equality). Therefore, the 

weights that relate the MTE(x, uD)  to the IV estimate are:19 

{ }( ( ) | , ( , ) ) Pr( ( , ) | )
( , )

( ( ), | )
ϖ

= ≤ ⋅ ≤ =
=

=
D D

IV D

E J Z X x S Z x u S Z x u X x
x u

Cov J Z D X x
.  ( 19 ) 

Like the TT weights, these weights also integrate to 1 over the support of {X, UD}. Note however, 
that ( ( ) | , ( , ) )= ≤ DE J Z X x S Z x u  can be negative even if the weights add up to 1 over the support of 
{X, UD}. Generally, if ( ( ) | , ( , ) )= ≤ DE J Z X x S Z x u  is weakly monotonic in uD, then the weights are 

always positive.20  

Method of Local Instrumental Variables 

The method of local instrumental variables (LIV) can be used to estimate the MTE 
(Heckman, 1997; Heckman and Vytlacil, 1999, 2000; Heckman, 2001, Vytlacil, 2002; Heckman et 
al., 2006). LIV identifies the MTE over the support of the propensity score. To see why, consider 
that 

1 0( | , ) ( (1 ) | , )E Y Z z X x E DY D Y Z z X x= = = + − = =  

  0 1 0( | ) ( ( ) | , )E Y X x E D Y Y Z z X x= = + − = =  

  0 1 0( | ) (( ) | 1, )Pr( 1| , )= = + − = = = = =E Y X x E Y Y D X x D Z z X x  

1

0 1 0
( , ) 1 ( , )

( | ) (( ) | , )
= −

= = + − = =∫ D
S z x P z x

E Y X x E Y Y U u X x du . 

Now, if we take the rate of change of the mean outcome with respect to the probability of receiving 
treatment evaluated at a particular value of S(z,x) =1 -P(z,x): 

                                                 
19 See Heckman et al (2006) for a detailed derivation of these weights. 
20 This is violated when J(Z) and P(Z) are not perfectly dependent so that increase in J(Z) may lead to decrease in P(Z) 
over some values of Z while the opposite is true over other values of Z.  
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 1 0
1 ( , )

( | , ) (( ) | , 1 ( , )) )
( , ) − =

∂
= = = − = = − =

∂ DMTE(x,u
D

D
P z x u

E Y Z z X x E Y Y X x u P z x
P z x

.  

          ( 20 ) 

Expression (20) shows that the LIV estimand, (the derivative of ( | , )E Y Z z X x= = ), identifies the 

marginal treatment effect given UD=uD  (≡ 1 - P(z,x)) (Heckman and Vytlacil, 1999). Once MTE is 
estimated via LIV, the other mean treatment effect parameters can also be estimated using different 
weighted averages of the estimated MTE.  

Estimation of MTE and ATE using the method of LIV 

In practice, there are different strategies for estimating the MTE using the logic developed in 
the previous section. In this paper, we consider the following simple and intuitive strategy. Since, 
Y=DY1 + (1-D)Y0, we have 

1 0( | , ( , ) ( , )) ( (1 ) | , ( , ) ( , ))E Y X x P Z X P z x E DY D Y X x P Z X P z x= = = + − = =

0 1 0 0( ) ( , ) ( ( ) ( )) ( | ( , ) ( , ))µ µ µ= + ⋅ − + =x P z x x x E U P Z X P z x  
  1 0( , ) ( | ( , ) ( , ), 1)+ ⋅ − = =P z x E U U P Z X P z x D  

0 1 0( ) ( , ) ( ( ) ( )) ( ( , ))x P z x x x K P z xµ µ µ= + ⋅ − + ,     ( 21 ) 

where K(P(z,x)) is a general function of the propensity score P(z,x). Then, following (20), the LIV 
estimator is given by 

    
( )1 ,

( | , ( , ))
( , ) − =

∂ =
∂

DP z x u

E Y X x P z x
P z x

 = 1 0
( ( , ))( ( ) ( ))

( , )
K P z xx x

P z x
µ µ ∂

− +
∂

= MTE(x,uD). ( 22 )  

From this last expression we observe that the key element for the estimation of MTE is the function 
K(P(z,x)). This function can be estimated using different econometric techniques. In our empirical 
analysis we use a flexible approximation to K(P(z,x)) based on a polynomial on the propensity 
score. 21 Specifically, equation (21) is implemented by regressing the outcome Y on all covariates, 
the propensity score, the interaction of the propensity score with all covariates, and a polynomial on 
the propensity score. The MTE is then directly computed following equation (22). 

Notice also that equation (22) provides the intuition for the simple test that Heckman et al 
(2006) propose to determine whether an analyst can safely ignore the complications induced by 
heterogeneity and self-selection. Specifically, if ( ( , )) / ( , )K P z x P z x∂ ∂  does not vary with ( , )P z x (i.e. if 

                                                 
21 The polynomial in the propensity score can be interpreted as a semi-parametric method for approximating the K(P(z,x)) 
function (see, e.g., Powell, 1994). Alternatively, this regression, and in particular K(P(z,x)) can be estimated non-
parametrically using, for example, local linear regression or splines. 
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linearity of outcomes in the probability of selection is accepted) the MTE is constant across all 
margins of selection and the constant treatment effect model suffices to explain the data. 

If the test of linearity fails, then one needs to account for the fact that the MTE is not 
constant in the population. One can then weight the MTE differentially to obtain various treatment 
effect parameters as explained in the previous section and by Heckman and Vytlacil (2005, 2007b).  

6. A Health-Care Application 

We demonstrate the importance of essential heterogeneity in a health-care application. 
Specifically, we analyze the effect on 5-year medical costs of breast-conserving surgery with 
radiation (BCSRT) compared to mastectomy (MST) in patients with breast cancer.  In this sample, 
all patients undergo either BCSRT or MST. Throughout this section, we refer to BCSRT as the 
treated state (corresponding to Y1) and MST as the untreated state (corresponding to Y0) and all 
treatment effect parameters are defined as the differences in outcomes between BCSRT and MST 
(Y1 -Y0).  

Our data come from the OPTIONS (Outcomes and Preferences in Older Women, 
Nationwide Survey) project (Hadley et al, 1992). The OPTIONS sample was designed to be 
representative of all female elderly Medicare beneficiaries (aged 67 or older) with newly diagnosed, 
early-stage breast cancer in Medicare’s-fee-for service program between 1992 and 1994. The 
dataset was constructed in four steps: 1) Medicare claims for persons with a breast cancer 
diagnosis or relevant surgery procedure codes for calendar years 1992 to 1994 were obtained. 2) 
Additional exclusions were applied so that the sample was limited to women for whom BCSRT and 
MST would be considered equivalent from the clinical point of view. Cases for which breast cancer 
was not the primary diagnosis were deleted. 3) Surgeons identified in the dataset were surveyed to 
verify study eligibility of the patients based on the presence of primary stage I and II invasive 
disease and the absence of the preceding exclusion criteria (as in (2)). 4) Additional conditions 
were applied to exclude patients who were in a Medicare health maintenance organization in the 
month of the survey because their cost data were not available in the claims file. Finally, patients 
who had breast-conservation surgery but did not receive radiation due to unidentified reasons were 
excluded (17%).  Further details of the specific exclusion criteria used can be found elsewhere 
(Hadley et al., 2003; Polsky et al., 2003).  This data provides a unique opportunity to analyze a 
large national sample of Medicare beneficiaries with confirmed local stage of breast cancer. 
Moreover, we choose this data for comparability to results published in the literature based on this 
dataset (Hadley et al., 2003; Polsky et al., 2003).  
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All 5-year Medicare payments from inpatient, outpatient, and physician Part-B claims were 
used to estimate direct medical costs, including costs related to breast cancer treatment and all 
other medial costs covered by Medicare. Total costs were calculated using an annual 3% discount 
rate. The final sample consists of 2,517 patients of whom 1,813 patients had a MST and the 
remaining had BCSRT. The distribution of patient characteristics by treatment type is published 
elsewhere (Polsky et al., 2003).  

The covariates that we control for are variables that are both measurable and theoretically 
predictive of costs. In addition to the treatment indicator, we include age at the time of surgery, 
cancer stage, Charlson co-morbidity index, patient-specific Medicare payments in the year before 
surgery categorized into 5 groups, and race. Because claims do not contain socioeconomic data, 
we used percentage of college graduates, median household income and percentage below 
poverty level by 5-digit zip-code level of the women’s residence as proxies for socioeconomic 
status.  Additionally, we adjusted for county-level data on health system characteristics, such as 
hospital admissions, number of nursing homes and an indicator for urban area.  

The primary goal of the analysis is to estimate the average treatment effect parameter (ATE) 
and the treatment effect on the treated (TT) parameter on total costs associated with BCSRT as 
compared to MST. Additionally, we compare these parameters with what IV estimates.22 The 
variables used as valid instruments include a regional dummy variable (NORTH) to represent 
regional variations in practice patterns, and a continuous variable that represents the Medicare 
physician fee differential (FEEDIF) between mastectomy and breast conserving surgery calculated 
at the 3-digit zip-code level of the treating physician. NORTH represented a geographical area 
plausibly independent of underlying health but appeared to influence treatment, perhaps through a 
historical practice style effect. In particular, women residing in the Northeast, Midwest and Pacific 
census divisions (represented by indicator NORTH) were more likely to receive BCSRT compared 
to MST.   Medicare fees are assumed to be exogenous and independent of unobservable health of 
patients and preferences of patients and physicians because they were determined by a 
combination of the resource-based fee specified by the Medicare Fee Schedule, which is 
independent of any particular physician’s or patient’s characteristics, and the average historical 
Medicare payment in the geographic area. Further details and justification for these instruments are 
available in Hadley et al. (2002).  

                                                 
22 In this empirical application, we use a linear and additive separable specification to model cost which is highly skewed. 
This is a limitation of the present analysis and we discuss this issue further below. The primary reason for using this 
specification is the comparability of our results to previously published work with this data (Hadley et al, 2003; Polsky and 
Basu, 2006).  Moreover, this functional form passes all the goodness of fit tests that are used to identify systematic biases 
in modeling the mean function of costs data (Basu et al., 2004; Manning et al., 2006).   
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We first present empirical evidence on the presence of essential heterogeneity in our 
application using the test proposed by Heckman et al. (2006). We then use the local instrumental 
variable estimator to compute the marginal treatment effect (MTE) as well as ATE and TT. Finally, 
we compare these treatment parameters with the IV effects estimated using NORTH and FEEDIF 
as instruments.23  

 

Testing for Essential Heterogeneity and the Local Instrumental Variable Estimator  

First, we estimate the propensity score of choosing treatment as a function of all covariates 
and also the instruments NORTH and FEEDIF. Both instrumental variables are significant 
predictors of treatment choice (p < 0.0001 for each).24  

Figure 2(a) illustrates the distribution of the predicted propensity score for choosing BCSRT 
separately for patients who chose BCSRT and those who chose MST. It also depicts the identified 
support where we find positive density of the propensity score for both treatment sub-samples. We 
cannot identify MTE over the entire (0,1) support.25 Although we do find people near 0, there is 
essentially no mass close to 1. This means (unconditional) ATE is not identified in the sample 
without further assumptions (Heckman and Vytlacil, 1999, 2007).  

Using the test of linearity proposed by Heckman et al. (2006), we explore the assumption of 
a constant treatment effect (i.e. the absence of essential heterogeneity). In this test (following 
equation (22)), we regress 5-year costs on all covariates, the propensity score, the interaction of 
propensity score with all covariates, and a polynomial on the propensity score. The joint test of 
significance for the polynomial coefficients reveals whether there is essential heterogeneity in 
treatment effects. Table 1 presents these results and shows that we find that the cubic terms of the 
polynomial are jointly significant.26 This indicates that there is strong evidence of self-selection 
based on heterogeneous and unobserved gains in the population and, consequently, that standard 
IV estimates are not necessarily informative on ATE or TT. 

                                                 
23 All analyses are done in Stata® 9.0 and Gauss®. Estimates of MTE and weights are validated against the MTE-software 
developed in Heckman et al. (2006). 

24 From our choice model we obtain ˆNORTHα =0.279 (0.065) with associated p-value< 0.001 and ˆFEEDIFα = 0.002 
(0.0005) with associated p-value < 0.001. 
25 Note that although one of the instruments employed is a binary indicator (NORTH), we are able to estimate a (almost) 
continuous support of the propensity score using the other X’s in the choice equation. 
26 The statistical test on essential heterogeneity is carried out using bootstrapping techniques. 
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In light of the evidence on essential heterogeneity, we apply the LIV estimator to recover the 
MTE over the distribution of UD. We use the derivative of the cubic formulation as our LIV estimand. 
27 The predicted values of the propensity score allow us to define the values of uD over which MTE 
can be identified (Heckman and Vytlacil, 2001a). The larger the support of the propensity score, the 
bigger the set over which MTE can be recovered. 28  

First we obtain estimates of MTE(x,uD). Since X represents a vector of covariates in this 
application, we reduce its dimensionality by using demi-deciles (or twentiles) of the linear predictor 

β′X  in the equation (22). 29 We denote these demi-deciles as qη  hereon, where q = 1,2,…,20. 

Thus, using our coefficient estimates from the above regression (equation (22) under a cubic 
polynomial formulation for K(P(z,x)))  we estimate MTE( qη ,uD) by using average ˆx β′  for each qη  

and varying uD between 0 and 1. Note that MTE estimates using a value of P(Z,X) = p are 
associated with uD = (1 – p). The MTE( qη ,uD) is shown in Figure 2 (b). The empirical joint density of 
( qη ,uD) is shown in Figure 2 (c) and it also represents the weights for MTE( qη ,uD) required to 

calculate the empirical ATE (estimated over the observed common support).  

To obtain the unconditional MTE(uD), we integrate MTE( qη ,uD) over the empirical distribution 
of qη  at each value of uD. The MTE(uD) of BCSRT over MST is displayed in Figure 2(d). Standard 

errors for MTE(uD) at each of these points are estimated via 500 bootstrap replicates. Figure 2(d) 
shows that for high values of uD (representing patients with latent characteristics that make then 
most likely to choose BCSRT compared to MST), the MTE is significantly positive. Patients most 
likely to choose BCSRT incur significantly higher costs if they are given BCSRT rather than MST. 
We discuss the implication of this result later in this section.  This effect disappears for the middle 
values of uD, where MTE is not significantly different from zero and then becomes significant again 
at lower values of uD.  Since we could not identify the higher end of the support for P(Z,X), we could 
not estimate MTE for the patients least likely to choose BCSRT (i.e. low values of uD) based on their 
unobserved characteristics. 30 

The Treatment Parameters  

                                                 
27 We also considered a quartic specification for our LIV estimand. Although the quartic specification was significant with 
the F-test (p=0.018), it did not pass the likelihood-ratio test (p=0.095).  
28 With parametric approaches, assumptions about functional form can estimate MTE over ranges of uD that are not 
identified with our choice model and sample. This is not the case when non-parametric techniques are used instead. 
29 Note that β corresponds to the coefficients on the interaction term of X and P(Z,X) in the LIV estimand.  
30 The results are similar when only NORTH is included in the choice model. On the contrary, when only FEEDIF is used 
as an instrument we do not find evidence of essential heterogeneity. However, it is misleading to infer from this result that 
essential heterogeneity is absent based on this result. This is because Heckman et al.’s test relies on the correct 
specification of the choice model; that is it relies on the analyst incorporating all factors that necessarily affect choice of 
treatment. Thus, by omitting the IV NORTH, we are eliminating a major source of variation in choice. Consequently, it may 
be always appropriate to use the LIV methods with multiple instruments unless there is a strong theoretical evidence for 
one factor affecting choice. 
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 Next, following equations (15) and (16), we calculate the weights associated with ATE and TT. 
These are shown in Figure 2 (c) and 2 (e). As is intuitively reasonable, the TT weights are larger for 
higher values of uD than for lower values. The ATE weights are simply the empirical joint density of 
( qη ,uD). 

Estimates of the mean treatment effects parameters, ATE and TT, are reported in Table 2. 
Even though we do not recover the whole support of propensity score, the TT parameter is still 
interpretable as an empirical TT estimate that is conditional on those individuals we observe 
selecting treatment. The TT (standard error in parenthesis) is estimated to be $52,329 (15,496).  

Likewise, the empirical ATE parameter is $41,493 (14,594). However, in order to interpret 
the ATE parameter as the average effect of BCSRT compared to MST we require the full support of 
the propensity score. Therefore, in the absence of full support, estimation entails some form of 
extrapolation. We extrapolate MTE(uD) over the missing range of uD, to obtain an ATE estimate of  
$88,975 (35,221), that is statistically significant.31 Note that ATE is estimated to be larger than TT 
primarily due to the extrapolated portion of the MTE at low values of uD, and therefore should be 
interpreted cautiously. In fact, for this application it is important to consider whether the ATE 
provides any policy relevant estimate. Notice that the ATE estimate is significantly different from the 
TT estimate at the 5% level. 

Interpreting the IV Estimator under Heterogeneous Treatment Effects 

As shown above, the IV estimator can be represented as a weighted average of the 
marginal treatment effect where the weighting scheme depends on the instrument considered in the 
analysis as well as on the specification of the choice model. In particular, depending on the 
relationship between the instrument and the rest of the variables included in the choice model, the 
IV weights can be positive, negative or zero (regardless of the shape of the MTE). This affects the 
way the IV estimate is interpreted.  

Our analysis considers only two potential instruments: NORTH and FEEDIF. In our sample, 
these two variables are negatively correlated (correlation coefficient = -0.120; p < 0.001). This 
means that if we compare patients with NORTH = 0 to NORTH =1, average FEEDIF will be lower 
for the later group. Consequently, moving from NORTH = 0 to NORTH =1 may increase the 
average propensity to choose BCSRT for some patients while it may decrease it for others if the 
decrease in FEEDIF more than compensates for the effect of NORTH.32 Thus, if we are looking at 

                                                 
31 Since uD is uniformly distributed the computation of ATE from the extrapolated MTE(uD) is valid. The same logic cannot 
be applied to the case of TT.   
32 This is because the coefficients on both NORTH and FEEDIF are positive in the choice model. See footnote 24. 
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the IV estimate of NORTH or FEEDIF separately, where the correct choice model contains both, the 
IV weights (following (19)) may be negative over some ranges of ( , )ηq Du .  

This is illustrated in Figures 3, where MTE(uD) along with the IV weights corresponding to 
different specifications of J(Z) are presented for two selected demi-deciles of ˆX β′ .  Figure 3 reveals 

the negative IV weights over some ranges of uD where either NORTH or FEEDIF is used as the 
instrumental variable but both enter the choice model. This exercise shows that the individual IV 
estimates arising from such an analysis should be cautiously interpreted, since they put negative 
weight over some ranges of ( , )ηq Du  where MTE ( , )q Duη is positive. On the contrary, and as 

predicted, the overall IV weights, calculated using the entire linear index of the choice model, are 
always non-negative (see Figure 3). In fact, these weights were non-negative for every combination 
of ( , )ηq Du .  

The weighted averages of MTE, weighted by the corresponding IV weights are shown in 
Table 2. In order to illustrate our main points, we focus on the NORTH variable. The IV effect of 
NORTH, using the MTE approach, is estimated to be $29,580 (15,997) when the choice model 
contains both NORTH and FEEDIF. Notice that this IV estimate of NORTH is a Local Average 
Treatment effect (LATE) since the regional variation is an indicator variable. In comparison, the 
traditional linear IV estimator using NORTH estimates the effect of BCSRT compared to MST at 
$44,941 (21,790). 33 These estimates do not tally with each other because our MTE based estimate 
depends on the specification of the choice model which contains both NORTH and FEEDIF as 
instruments, and due to the covariance between these two instruments, the MTE-based IV estimate 
is calculated using negative weights over some regions.  Our analysis illustrates that caution should 
be exercised when interpreting LATE estimates of individual IV variables when the underlying 
choice model contains multiple instruments. 

In contrast, when we use the entire linear index of the choice model as the instrument, the 
overall IV effect is estimated to be $33,708 (13,213), which lies close to the corresponding linear IV 
estimate using both NORTH and FEEDIF. 34 Had we specified our choice model using only NORTH 
as the instrument, IV weights would have been non-negative across all ranges of ( , )ηq Du , and the 

MTE approach estimate of the IV effect of NORTH would be $43,997 (22,437), an estimate that is 

                                                 
33 The linear IV estimates tally with those reported by Hadley et al. (2003) and by Polsky and Basu (2006). 
34 Notice that the IV estimator computed using the weighted average of the MTE differs slightly from the linear IV 
estimand. This is due to the parametric approximation used in the estimation of the MTE and the associated IV weights. 
Since the main point of our analysis is to illustrate the importance of accounting for the presence of essential 
heterogeneity, we consider these differences negligible. Furthermore, given our sample size, the implementation of non-
parametric techniques appears as an extremely costly alternative from an efficiency point of view. Another source of 
difference is that we have used a probit model to generate the propensity score, whereas the linear IV method follows a 
two-stage least squares (TSLS) approach and uses a linear probability model in the first stage. 
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again very similar to the linear IV estimate of $44,941 (21,790) based on NORTH only (Table 2). 35  
Table 2 also describes the identifying formula for each estimate in order to clarify the differences 
between the estimates. 

Margin of choice affected by an instrument 

Following the discussion in Section 5, we interpret the IV estimand for NORTH as the 
average treatment effect for individuals who would change their treatment choice when moving from 
a non-North region to the North region. To further understand the margin at which this effect is 
estimated, we use our estimated choice model on treatment choices as a function of all observed 
covariates in the outcomes equation and the NORTH and FEEDIF variable. First we compute the 
propensity score when we “turn” the NORTH variable off and on for each individual, say, ˆ(0)p and 
ˆ(1)p , respectively. Next, within each demi-decile, qη , and at a specific value of UD = uD  we find 

whether any subject would change their treatment status as a response to a change in the value of 
the instrument (NORTH). That is, we check whether there are subjects for whom ˆ(0) 1 Dp u≤ − , but 
ˆ(1) 1 Dp u> − . If there are such subjects, then the IV NORTH is able to identify a treatment effect 

defined by that ( , )q Duη margin. Figure 4 illustrates that margins identified by the IV NORTH and 

these are the same margins over which we estimate non-zero IV weights (Figure 3(a)) for 
NORTH.36 

Discussion of results 

Applying the method of LIV to estimate the causal treatment effect on 5-year medical costs 
for breast-conserving surgery versus mastectomy, we find significant evidence of essential 
heterogeneity in the data. The main empirical finding of our analysis is that the treatment effect on 
5-year medical costs for patients whose unobserved characteristics make them most likely to 
receive BCSRT is significantly positive. The MTE evaluated at large values of uD rises to about 
$200,000, and it represents the marginal effect for the group of patients whose unobserved 
characteristics make them most likely to select BCSRT. One could imagine that these are patients 
who may have strong preference for the aesthetics of surgery outcomes (Nold et al., 2000). 
However, the MTE estimated is for the marginal patients who share similarly strong preferences for 
the aesthetics but are still indifferent to selecting between BCSRT and MST given UD = uD (=1 – 

                                                 
35 Similarly, the estimated IV effect of FEEDIF when both NORTH and FEEDIF enter the choice model is $25,381 (14,653) 
(see Table 2). This is very different from the linear IV estimate of $12,884 (32,081) using only FEEDIF.  When we specify 
our choice model to depend on FEEDIF only, then the MTE based approach produces an IV estimate of $13,170 
(26,495), again very close to the linear IV estimate.  

36 The margin identified by FEEDIF can be constructed using the same logic. However, this entails a cumbersome 
analysis since FEEDIF is a continuous variable. 
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p(z)) and qη . This indicates that the observed characteristics for these patients, such as clinical 

stage of cancer for example, may be such that they would discourage them to choosing BCSRT. 
This is further supported in Figure 5 where we plot the proportion of patients with advanced (stages 
B and C) cancer. We find that for large values of uD almost all marginal patients have advanced 
cancer, where BCSRT is clinically less attractive (Veronesi et al. 2002). Therefore, our results 
indicates that treating these patients with BCSRT would lead to much higher costs than using MST, 
possibly due to complication and recurrent cancer. In fact, we confirm that this large treatment 
effect is driven mostly by costs incurred beyond the first year of receiving BCSRT or MST. 

Similarly, patients who react with great concern to the presence of cancer might wish to 
undergo MST even when their clinical conditions make them candidates for BCSRT. For such 
patients, whose unobserved preferences make them more likely to select MST, getting BCSRT 
treatment may lead to additional healthcare utilization generated by their anxiousness. This may be 
one of the reasons we see that the MTE is also increasing for lower values of uD. In fact, we do not 
observe anyone getting BCSRT if their unobserved characteristic make them strongly likely to get 
MST. This conforms to the observation by Nold et al. (2000) that, “if a women wants to have MRM-
NR (a form of MST) even when she is a candidate for BCS (same as BCSRT), a surgeon’s input is 
overshadowed by the fear of cancer.” 

Our results have strong implications for the use of the appropriate mean treatment effect 
parameter for policy decisions. Even though ATE, estimated over the whole support of UD, would 
traditionally be used to evaluate MST versus BCSRT in cost-effectiveness analysis, the fact that no 
patients choose BCSRT if they have strong preference for MST implies that efficient policy 
decisions regarding coverage on BCSRT  should focus on TT instead of ATE. In our example, the 
TT is lower than the ATE, thereby relatively favoring the use of BCSRT compared to MST.  

 

7. Conclusion 

Instrumental variables (IV) analysis is the most commonly used econometric method for 
addressing selection biases. However, the recent econometric literature has demonstrated several 
limitations of the traditional IV approach. For one, an IV estimate of ATE can be interpreted as the 
parameter that would be produced from a well-designed randomized clinical trial only under the 
assumption that treatment effects are the same for every one in the population or that, even if 
treatment effects are heterogeneous, patients or their physicians do not have (or use) any 
additional information to select into treatment beyond what the analyst of an observational data 
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possesses. Such assumptions are clearly a stretch for modeling treatment choices in health care, 
especially under the practical limitations of observational data to collect all relevant information 
pertaining to treatment choices.  

When these assumptions are relaxed and subjects are allowed to self-select into treatment 
based on their idiosyncratic gains, the standard IV methods identify parameters that only reflect the 
treatment effects for a group of patients who would change their treatment status in responses to 
changes in the levels of the instrumental variable (Imbens and Angrist, 1994; and Heckman et al, 
2006). This also implies that different instruments identify different treatment effects simply because 
they represent the effect of the treatment over different groups of patients. Thus it is really difficult to 
interpret IV results in general, and for clinical practices in particular, where patients are often 
believed to select treatment based on their idiosyncratic (unobserved) gains.   

In this paper we implement the method of local instrumental variable (LIV) to address the 
limitations of the IV approach in the context of a health care application in which agents decide 
treatment status based on their unobserved gains (essential heterogeneity). Specifically, we 
analyze the treatment effects (measure as a 5-year medical cost) associated with a breast-
conserving surgery (BCSRT) versus an alternative (mastectomy or MST). We analyze not only the 
effect of the treatment as measured by the IV estimates, but also by the marginal treatment effects 
(MTE), the average treatment effect (ATE), and the effect of treatment on those treated (TT). Unlike 
the IV estimates, each of these parameters answers a well-defined economic question under 
essential heterogeneity. 

We first test for the presence of essential heterogeneity in our sample using a version of the 
test proposed by Heckman et al, 2006. Our results indicate strong evidence for the presence of 
essential heterogeneity. We then use the LIV estimates to recover MTE, ATE, and TT. We estimate 
an average cost (effect) associated with BCSRT versus MST (ATE) of $41,493, whereas the 
estimated average cost (effect) on those treated (TT) is $52,329. Our estimated IV effects on the 
other hand, are found in the range $12,884 – $44,941. This confirms that the IV approach, in 
general, does not identify ATE or TT.  

Finally, we illustrate the problems of interpretation associated with IV by empirically 
analyzing its decomposition as a weighted average of the MTE. We present evidence of the 
presence of negative IV weights in regions of the support of uD in which the marginal effects (MTE) 
are positive. This means that estimated positive marginal effects enters with negative signs in the IV 
calculation. Thus, in principle, IV estimates can be negative even though the marginal effects are 
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positive, simply because of the IV weighting scheme. This demonstrates the limitations of the IV 
approach. 

Although the conventional IV method may seem more robust and less demanding, it does 
not properly account for the presence of essential heterogeneity and is difficult to interpret in terms 
of a particular treatment question. LIV on the other hand does not suffer from these problems, but 
imposes stronger requirements on the data37 and requires specification of a choice model. 
Alternative methods (see for example the factor based approach of Carneiro, Hansen and Heckman 
2003; and Heckman, Stixrud and Urzua, 2006) that allow for essential heterogeneity can also be 
implemented, albeit under stronger assumptions. 

On a final note, we would like to point out that there is a large literature on non-linear models 
that are more robust for modeling cost data due to the various characteristics of such data (see 
Manning (2006) for a review). Although, in our application, we use a linear-in-parameter and 
additive separable specification to model potential outcomes (costs) and apply the LIV method, this 
choice is primarily driven by the need for clarity of explaining the methods and for comparability of 
IV results with previously published work analyzing our application (Hadley et al., 2003; Polsky and 
Basu , 2006).  More flexible specifications for the outcome equations are technically allowed when 
implementing the LIV method (Heckman et al. 2006). Extending this method to non-linear models, 
such as log-link generalized linear models, is likely to be an interesting area of future work.   

 

 

                                                 
37 This is particularly important in the semi-parametric versions of the LIV estimator.  
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Figure 1: Stylized mean conditional treatment effects at each level of UD. (a) Treatment 
choice based on S(z); (b) Margin identified by LATE with two distinct values of an 
instrumental variable. Here dependence on X is suppressed for clarity.
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Figure 2: Propensity scores, treatment effects and IV weights using both instruments, 
NORTH and FEEDIF, as choice predictors. (a) Estimated propensity score for BCSRT 
among BCSRT and MST users; (b) ( , )q DMTE uη  of BCSRT over MST; (c) ( , )ATE q Duϖ η ; 
(d) ( )DMTE u  of BCSRT over MST and 95% CI; and (e) ( , )TT q Duϖ η ;  
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Figure 3: Based on a choice model that contains both NORTH and FEEDIF, IV weights, ( , )IV q Duϖ η , for NORTH  or FEEDIF 
as the sole instrument and for the entire linear index from choice model as the instrument along with MTE(UD) at the 6th and 
13th  demi-decile of ˆXβ .  
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Figure 5: The proportion of marginal patients with advanced (stages B and C) cancer at 
each value of UD. 
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Table 1: Tests of Linearity of conditional expectation of E(Y|P(Z,X), X), where P(Z,X) is a 
function of both NORTH and FEEDIF. 
IV = NORTH, FEEDIF Linear Quadratic  Cubic Quartic 

p 24106   
(30956) 

22953   
(56085) 

235459+   
(98431) 

391171+   
(136049) 

p2  1623   
(65857) 

-527099+   
(211843) 

-1314492+   
(520164) 

p3   401761+   
(153017) 

1973011+   
(960337) 

p4    -1072507   
(647140) 

F-statistic* (p-value) - 0.00 (0.976) 4.35 (0.013) 3.35 (0.018) 
L-R Chi-Square Statistic** 

(p-value) 
- 0.00 (0.980) 6.99 (0.008) 2.79 (0.095) 

+ p-value < 0.05. * Joint test of higher-order polynomials of propensity score p.  
** Test for adding subsequent higher order polynomial of propensity score p. 
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Table 2: Treatment Effects under different estimators 
Model MTE approach 

 
Linear IV 

 Treatment effects 
Mean (sd) 

Identifying formula for IV 
effects† 

Treatment effects 
Mean (sd) 

Identifying formula 
for IV effects 

Using IV=NORTH, FEEDIF in choice model 
    32,136 (15,005)+ 1 2

1 2

ˆ( , ( , ))
ˆ( ( , ))

= TSLS

TSLS

Cov Y D Z Z
Var D Z Z

 

    IV effect (for linear index from choice model)  
  33,708 (13,213) + 1 2

1 2 1 2

ˆ( , ( , ))
ˆˆ( ( , ), ( , ))µ

= LIV

V LIV

Cov Y D Z Z
Cov Z Z D Z Z

- 
 

    IV effect (for NORTH only)  
29,580 (15,997)  1

1 1 2

( , )
ˆ( , ( , ))

=
LIV

Cov Y Z
Cov Z D Z Z

 - 
 

    IV effect (for FEEDIF only)  
25,381 (14,653)   2

2 1 2

( , )
ˆ( , ( , ))

=
LIV

Cov Y Z
Cov Z D Z Z

 - 
 

    ATE (Empirical) *   41,493 (14,594) +   -  

    ATE**   88,975 (35,221) +   -  

    TT   52,329 (15,496) +  -  

Using IV=NORTH in choice model 
  44,941 (21,790)+ 1

1

ˆ( , ( ))
ˆ( ( ))

= TSLS

TSLS

Cov Y D Z
Var D Z

†† 

    IV effect (for linear index from choice model) 
  43,997 (22,437)+ 1

1 1

( , )
ˆˆ( ( ), ( ))µ

=
V LIV

Cov Y Z
Cov Z D Z

 - 
 

Using IV=FEEDIF in choice model 
    12,884 (32,081) 2

2

ˆ( , ( ))
ˆ( ( ))

= TSLS

TSLS

Cov Y D Z
Var D Z

†† 

    IV effect (for linear index from choice model) 
13,170 (26,495) 2

2 2

( , )
ˆˆ( ( ), ( ))µ

=
V LIV

Cov Y Z
Cov Z D Z

 - 
 

+ p < 0.05; * estimated based on identified support for UD; ** estimated after extrapolating MTE(uD) over the missing support of UD. 
† Dependence on X suppressed for clarity. Z1 = NORTH; Z2 = FEEDIF; D̂  = Pr(BCSRT) 
††Since in linear IV, ˆ

TSLSD  is estimated via a linear probability model, 1

1

ˆ( , ( ))
ˆ( ( ))

=TSLS

TSLS

Cov Y D Z
Var D Z

1

1 1

( , )
ˆ( , ( ))TSLS

Cov Y Z
Cov Z D Z

. Same applies for Z2. ˆ
LIVD is estimated using a probit 

model. 1ˆ ( )µV Z is the estimated linear predictor of the probit regression conditioned Z1. 2ˆ ( )µV Z and 1 2ˆ ( , )µV Z Z are defined analogously. 


