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Abstract

Duration models for lifespan and smoking, that focus on the socio-economic
gradient in smoking durations and length of life, are estimated controlling
for individual-specific unobservable heterogeneity by means of a latent factor
model. The latent factor influences the risk of starting and quitting smoking
as well as the hazard of mortality. Frailty could influence smoking behaviour
through two mechanisms: the effect of life expectancy on initiation of smok-
ing and the impact of adverse health events on quitting. Our findings suggest
that individual-specific preference for experimentation, which leads those peo-
ple who start smoking soonest to quit early, is a potential source of spurious
correlation between smoking durations. They also suggest that frailty acts
according to both mechanisms, driving selection into early smoking initiation
as well as selection into early smoking cessation. Overall, determinants of
smoking durations and mortality hazard are largely unaffected by unobserv-
able heterogeneity. However, the latent factor model strengthens the results of
the univariate models suggesting that increasing the quitting rate and reduc-
ing the duration of smoking would decrease premature mortality. Whereas,
prompting people to delay starting would shorten the length of time spent
smoking.
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The epidemiological evidence from the 1950s to date suggests that tobacco smok-
ing is responsible for about 30 per cent of cancer deaths in developed countries and
it also causes deaths from vascular, respiratory and other diseases (see Vineis et al.,
2004). A host of studies show that patterns of mortality are likely to be affected by
the proportion of persons who give up smoking and tobacco-related diseases account
for a large proportion of all-cause mortality in Europeans countries (see e.g., Peto
et al., 2005). According to the World Health Organization about half of smokers
will die of a tobacco-related disease as morbidity caused by tobacco use is more and
more prevalent (WHO, 2005). Tobacco consumption is has been linked to increased
prevalence of illness and therefore is responsible of the resulting economic and social
burden. Nonetheless, the preventability of smoking gives scope for public health
interventions.

Smoking trends are often associated with socio-economic inequalities. Systematic
differences in tobacco consumption exist between individuals depending on their
socio-economic status. Statistics show that in the UK the highest prevalence of
smoking is among the lowest socio-economic group in the population. The general
evidence for the US and the EU is that the lowest groups have a higher risk of dying
from smoking-related diseases then men from upper groups (Kunst et al., 2004).
People who have experienced social and economic disadvantages during childhood,
adolescence and adult life may run the greatest risk of becoming addicted to nicotine
and smoking.

This paper investigates smoking behaviour and tries to identify the effect of both
smoking initiation and smoking cessation on the hazard of mortality. Data from the
British Health and Lifestyle Survey (HALS), which provide rich information about
individual smoking behaviour, socio-economic characteristics and mortality, are used
to study duration models for lifespan and smoking. The analysis focuses on the
socio-economic gradient in smoking durations and mortality hazard and estimates

the impact of smoking behaviour on mortality modelling unobservable heterogeneity.



An objective of this paper is to study the determinants of smoking cessation
for individuals who started smoking at some point in their life. In particular, we
look at the effect of age at starting on persistence of the smoking habit over time
and we consider that age at starting is potentially endogenous in the cessation
equation due to the presence of unobservable factors which influence both durations.
Ignoring unobservable heterogeneity among smokers could lead to inconsistent and
biased estimates of the causal effect of age at onset of smoking on the hazard of
quitting. Evidence of this can be found in van Ours (2006) who emphasizes a
spurious correlation between smoking initiation and cessation. He finds that, on
one side, higher ages at starting increase the hazard of quitting (the causal effect)
and, on the other side, the correlation between the unobserved components in the
two hazards is positive, which means that those who start smoking soon are also
more likely to quit soon (the selection effect). A plausible interpretation is that
the effect of age at starting on smoking duration captures the fact that for some
individuals starting smoking is an experiment and for them smoking is not likely to
be a long lasting habit.

Therefore, the estimated causal effect of age at starting on the hazard of quitting
may be spurious in the presence of unobservable or unmeasured factors that influence
both starting and quitting. Unobservable heterogeneity would be reflected in a non-
zero covariance between the error components in the smoking equations, therefore
the genuine causal relationship between age at starting and smoking duration can
be recovered only by an estimator that can isolate the effect of the unobservables.

A second objective of this paper is to investigate the relationship between smok-
ing behaviour and the risk of mortality. Individual-specific unobservable hetero-
geneity is an issue in the estimation of the causal effect of health-related behaviours
on health outcomes, as unobservable factors are likely to drive selection into or out
of smoking as well as the hazard of dying early. The potential for selection bias to

influence estimates of the impact of smoking on health and mortality is well known



(see e.g., Adda and Lechene, 2001, 2004; Mark and Robins, 1993). Smoking is a
choice variable and potential endogeneity of smoking durations needs to be taken
into consideration when studying the relationship with the hazard of dying. Lahiri
and Song (2000) estimate a model of smoking behaviour and smoking-related mor-
bidity. They emphasise the fact that individuals may, rationally, self-select into or
out smoking behaviour on the basis of their perception, beliefs and knowledge of
the risk of damaging their own health and increasing the likelihood of contracting
smoking-related illnesses. Such beliefs can be based on information which evolves
over time and is hidden to the econometrician. Neglecting the existence of this
source of heterogeneity between smokers will bias the health and mortality effects of
smoking. Smokers who choose to continue smoking can have a lower predisposition
to develop a smoking-related illness and so incidence of that disease or the mortality
risk among this group of people would be lower than would be found if there were
random allocation to smoking.

Adda and Lechene (2001) find evidence of selection into smoking for individuals
with lower life expectancy and this results is confirmed in Adda and Lechene (2004)
where they show that smokers come from a population with poorer health. In par-
ticular, Adda and Lechene (2001) look at the effect of a measure of potential life
expectancy on quantities smoked for current smokers and on the hazard of quitting
for both current and ex-smokers: they find a negative correlation between smoking
and life expectancy which is a sign of selection into smoking. Adda and Lechene
(2004) investigate such selection effect using tobacco-free morbidity scores and es-
timate a logistic regression for the probability of starting and a Cox proportional
hazard model for the hazard of quitting. They show that there is selection into
smoking in both starting and quitting: less healthy individuals are more likely to
start smoking at an early age, and are also less likely to give up smoking.

We can detect at least two types of unobservable heterogeneity. The first type

occurs when the hazards of starting and quitting are driven by an individual-specific



preference for experimentation, as in van Ours (2006). Experimentation is hard to
capture through the set of exogenous regressors and this information is perhaps
unobservable to the researcher. If individuals in the population are heterogeneous
due to differences in their preference for experimenting with smoking, we expect that
unobservable heterogeneity accelerates time to starting as well as time to quitting.
Therefore we expect a positive correlation between the two durations.

The second type of unobservable heterogeneity is known, in particular in the
duration analysis literature, as unobservable frailty. The recent literature shows
mixed evidence regarding the role of unobservable heterogeneity in the relationship
between smoking and mortality. In work that investigates the role of lifestyles on
individual mortality risk, Balia and Jones (2007) find evidence to suggest that frailer
individuals tend to select into healthy behaviours such as non smoking. Here we can
expect that frailer individuals do the same. Frailer individuals may consider that
the loss of health due to tobacco consumption is higher because of their poor health
and illnesses: for these individuals time to starting is more likely to decelerate and
time to quitting to accelerate. In this case smoking behaviour can vary depending
on what extent a smoker internalises the negative effects of tobacco consumption
on health and correlation between smoking durations would be negative. We also
expect the correlation between smoking initiation and mortality to be positive, and
the correlation between smoking cessation and mortality to be negative. However,
it could be the case, as in Adda and Lechene (2001, 2004), that frailer individuals
tend to select into smoking. This might occurs when individuals’ beliefs about
their life expectancy influence the opportunity cost of smoking, the latter being
reduced by lower life expectancy. Therefore, frailty can accelerate time to starting
and decelerate time to quitting, meaning that individuals who expect to live shorter
lives smoke longer than less frail individuals. We expect to find again a negative
correlation between smoking durations, as well as between smoking initiation and

the risk of dying. On the other hand, the correlation between smoking cessation



and mortality is expected to be positive.

Here we try to separate the causal effect of smoking from any selection effect
into smoking, driven by unobservable characteristics, using a simultaneous model of
equations for lifespan and smoking. The model, which consists of structural form
equations for mortality and smoking cessation, and a reduced-form equation for
smoking initiation, has a triangular recursive structure and allows for correlation
between the error component of the three duration equations. However, correlation
between errors complicates the maximisation of the likelihood because the integral
has no closed-form solution. Parametric and semi-parametric methods based on
approximation or simulation can be used to evaluate the integral when closed-form
solutions do not exist.

We find evidence of both types of unobservable heterogeneity described above.
In particular, estimates suggest that due to individual-specific preference for experi-
mentation those people who start smoking soonest quit earliest, in line with van Ours
(2006). Furthermore, our results seem to confirm both Adda and Lechene (2001,
2004) and Balia and Jones (2007)’s arguments on the effect of individual-specific
unobservable frailty on smoking and mortality. We find that unobservable frailty
drives selection into early smoking initiation (Adda and Lechene’s argument) as well
as selection into early smoking cessation (Balia and Jones’s argument). Overall, the
estimated causal effect of smoking on mortality is largely unaffected by the presence

of unobservable heterogeneity.

1. Survival Data in HALS

The Health and Lifestyles Survey (HALS) data contain information about time to
death, time to starting tobacco consumption and time to quitting for a representative
sample of the British population. This information is exploited to construct duration

variables that indicate the time elapsed before each particular event occurs.



Table 1
Flagging status in April 2005

Flagging Status Frequency %

On file® 6248 69.40
Not NHS registered® 85 0.94
Deceased® 2431 27.00
Reported dead to HALS not on NHS Register? 1 0.01
Embarked - abroad® 42 0.47
Not yet flagged/ 196 2.18

Notes:

@ Currently alive and flagged on the NHS Register.

b But not known to be dead.

¢Known dead and death certificate information recorded on file.
4 May be alive.

¢Identified on NHS Register but currently out of country.

fNot currently flagged for various reasons (no name etc.).

The HALS was carried out between Autumn 1984 and Summer 1985, in two
home visits (the second one by a nurse). The questionnaire was designed and piloted
by a study team at the University of Cambridge School of Clinical Medicine and
funded by the Health Promotion Research Trust. The HALS was designed as a
representative survey of adults in Great Britain (see Cox et al., 1987, 1993). The
population surveyed was individuals aged 18 and over living in private households.
9,003 interviews were completed. This is a response rate of 73.5 per cent. HALS
respondents have been tracked on the NHS registers on a regular basis to provide
reliable information about individual mortality. The latest deaths data were released
in June 2005. This allows us to investigate survival up to April 2005. As shown in
Table 1, up to April 2005, 97.8 per cent of the original sample has been flagged and
27 per cent of the respondents had died.

The HALS questionnaire was designed to provide comprehensive information
about risky behaviours. In particular, the survey data contain retrospective in-
formation on smoking. Self-reported variables describing age at starting smoking,
current smoking status and how long ago the respondent stopped smoking are used

to derive two duration variables which can be used to study the hazard of starting



Figure 1
Study time and survival time for individuals type in HALS
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smoking and the hazard of quitting smoking.!

Figure 1 illustrates the study time and the survival times for the respondents of
the HALS. The study time is the calendar time period that each respondent spent
in the study since the time of entry, her birth, indicated by a full dot “e”. Dots that
are closer to the y-axis represent older individuals, dots closer to the vertical line
indicating the time of the interview represent younger individuals. For respondents
who died by April 2005 survival time is the period of time elapsed from the survey
time to death (D). Respondents who are still alive at the follow-up (A) have a
censored survival time. Respondents type ¢ and j never smoked, so they do not
have survival times for smoking. Respondents type k to n started smoking (S). In
particular, k and [ are current smokers at the time of the interview (they might have
stopped smoking at some point in the future), so they have a complete survival time
for starting using tobacco but a censored survival time for quitting smoking (C);

while m and n are ex-smokers (Q) and, in fact, have a complete survival time for

In particular, the variables in the dataset are agestrt, exfag, exfagan, regfag. They describe
respectively age at starting smoking, whether or not the individual is an ex-smoker, how long ago
they stopped smoking, and whether or not they smoke regularly at least one cigarette per day.



both starting and quitting smoking.

Survival time data give additional information relative to binary variables de-
scribing the occurrence of an event (e.g., death) or the choice of participation (e.g.,
starting or quitting). Here we use continuous time data assuming that the transi-
tion event may occur at any instant in time. We define the length of a spell for an
individual in the sample as the realisation of a continuous random variable, T, that

has the following cumulative distribution function (cdf) or failure function:

The complement function is the survivor function, which indicates the probability
of surviving up a specific point in time t. The probability of survival is equal to 1

at entry in the state of interest and can be defined as:
St)=1—-F(t)=P(T >1t) where 0<S() <1

The slope of the failure function, the density function, indicates the concentration

of failure times along the time axis, and is expressed by:

L OF(t)  9S(1)
ot ot

f(t)

In particular, we are interested in the hazard function which represents the instan-
taneous rate of failing per unit of time, conditional on individual survival up to that

mstant:

OF(t+A)—F(t) 1 f(t) _ f()

h(t) = lim At 1-F(t) 1-F(@) S

Survival analysis uses variables indicating the length of time a person stays in

the state of interest. Usually respondents in population samples are asked about



the date of entry and exit from the state, as in the case of our data. Individuals
are assumed to enter the state at time 0 and leave it at some time ¢, when the
event of failure occurs. If entry and failure are observed, it will be possible to
measure a complete spell. While, if only entry is observed and exit will eventually
occur at some time T in the future, the spell will be incomplete. Such incomplete
durations are known as right-censored spells, where censoring is at the time of the
last observation, and we only know that the complete duration will be T > t, as
in the case of respondents type ¢, k and m for time to death, and k£ and [ for time
to quitting.? Depending on the state of interest, only those individuals who have
survived for a minimum amount of time in the state are included in the sample or,
putting the problem another way, individuals who fail before the time of observation
will not be included. Hence, the remaining observed survival times are said to be
left-truncated.?

In order to analyse smoking initiation we define a time variable starting which
represents the number of years elapsed before someone starts smoking. For con-
sistency reason, individuals who claimed to be current smokers but whose age at
starting was zero are eliminated. The variable starting measures a complete dura-
tion if an individual had started smoking and an incomplete, or censored, duration
if they had not. For those who started smoking, starting is equal to the age at
starting, and it is right-censored at the age at the time of the interview for those
who had not started by then. A binary indicator, start, indicates whether or not an
individual started smoking.

Smoking cessation is described by the time variable sm_years which indicates
the number of years a person smoked. To construct this variable we use information

about the date at onset of smoking, how long ago an individual became an ex-

2When the date of entry is unknown, the exact length of the spell cannot be measured and the
survival time is said to be left-censored but this is never the case with the data we use.

3An option that we do not pursue is to impose right-truncation to the data, this would restrict
the population sample just to individuals who failed by the observation time, thus eliminating all
longer survival times.
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smoker and the date of the interview. For current smokers smoking duration is right-
censored at the time of the interview, for quitters the true duration is recovered from
a direct question on the questionnaire. A binary indicator, quit, indicates whether
or not a smoker had stopped smoking completely.

As shown by Figure 1, the HALS data give us the scope to investigate the hazard
of death. A complete duration is observed for those who died before the follow-up
period, while an incomplete duration is associated with individuals who were still
alive in April 2005. We construct a time variable lifespan which is simply equal to
the age at death for those who died by April 2005, and to the age at the time of
the follow-up, for those who were still alive. The variable lifespan assumes that the
measure of duration begins at birth and measures the full lifespan. As an alternative
one could assume that individuals enter the initial state only when they participate
in the survey process, so that the entry date would be the seen date at HALS (see
Cheung, 2000). The advantage of defining lifespan in the way that we do is that we
are able to measure length of survival from birth, conditional on survival up to the
time of the survey, in which case the distribution of the survival time is said to be

left-truncated.

2. Methods

A duration model with unobservable heterogeneity can be written as a mixture
model, which specifies the distribution of survival time, ¢;, as conditional on a vector
of observed individual characteristics, x;, and an individual-specific random effect
which represents individual unobservable heterogeneity, v;. The hazard and survival

functions conditional on the unobserved v; can be written as:
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h(ti|Xi,l/i) = Vlh(tl|Xl> (].)

S(tilx, vi) = S(tilx;)" (2)

where h(t;|x;) and S(t;|x;) can be the hazard and survival functions from either a
proportional hazard or an accelerated failure time regression model.

The population (or unconditional) hazard and survival function are obtained by
integrating out the unobservable heterogeneity term. This implies calculating either

an integral when v; has a continuous mixing distribution with density g(v):

W) = / " h(thx, ) g(v) d(v) 3)
S(t) = / " S(tx, ) g(v) d(v) (4)

or a sum when v; is discrete and each realisation v, is observed with unknown

probability my:

Z h(t|x, vi) T. (5)

k=1

h(t)

™)~

S(t) =S S(t)x, vp) . (6)

=
Il

1

Equations (3) and (4) imply that a parametric distribution for the random effect
needs to be specified. The variance of v; is the additional parameter that needs to
be estimated in a frailty model.*

Parameters estimates rely not only on the correct specification of the baseline

hazard but also of the random effect. However, often, parametric distributions for

4A convenient normalisation used to allow identification of the parameters of the heterogeneity
distribution is to impose the restriction E(v;) = 1.
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the heterogeneity term are not correctly specified and this may affect inference on
the hazard function and the efficiency of the estimator. Heckman and Singer (1984)
suggest a non-parametric specification of heterogeneity where a discrete distribution
7, () approximates the continuous distribution ¢g(v) and the population survival
and hazard take the form of equations (5) and (6). The mass points of the discrete
distribution are realisations of v; and there is a finite number K of them with as-
sociated probability 7. The semi-parametric approach is more flexible and avoids
inference problems arising from the wrong choice of functional form for the distri-

bution of the heterogeneity.

2.1. A latent factor model for smoking and mortality

In this paper mortality risk and smoking are modelled taking into account unob-
servable heterogeneity and potential selection effects in the data. To measure the
causal effect of smoking on mortality we need to consider that a spurious correlation
between smoking behaviour and mortality hazard can be induced by the endogene-
ity bias of the smoking duration variables in the mortality equation and that age
at starting can be endogenous in the hazard of quitting as well. Endogeneity arises
because of the presence of unmeasured or unobservable factors that influence time
to starting, time to quitting and time to death. These factors, which are specific to
each individual and are not captured by the observed covariates in the model, make
the population heterogenous in the hazard of dying as well as in the smoking hazard
rates.

In a similar framework, Lillard and Panis (1996) estimate a joint duration model
for the hazard of dying, health status, marriage formation and dissolution, to iden-
tify the protective effect of marriage and disentangle adverse selection from positive
selection into marriage. Marriage durations and individual health are potentially en-
dogenous in the mortality equation and unobservable heterogeneity is controlled by

assuming that the heterogeneity terms reflecting unobserved factors are distributed
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as a multivariate normal. Gauss-Hermite quadrature is used to approximate the
likelihood function and get full-information maximum likelihood (FIML) estimates,
and correlation coefficients are estimated as additional parameters.

We propose a trivariate duration model with unobservable heterogeneity where
the hazard of mortality depends on observed variables, such as individual socio-
economic characteristics and demographics, smoking initiation and cessation; in
turn, the hazard of quitting smoking depends on observed characteristics and age at
starting, and ultimately the hazard of starting smoking is explained only by exoge-
nous variables. Therefore, the model that we estimate is a system of simultaneous
hazard regressions with triangular form, where a reduced-form hazard for smoking
initiation is defined first. This reflects the chronology of events, as starting smoking
precedes quitting and quitting smoking precedes death but not viceversa.

The hazard and survival functions in equations (1) and (2) vary between indi-
viduals depending on their observed and unobservable characteristics. If the hazard
regression is expressed in accelerated failure time (AFT) metric, and this is will be
shown to be the case for smoking durations in HALS, a linear relationship between
the logarithm of survival time 7; and individual characteristics is assumed.® In the
AFT models covariates act addictively on the log of survival time and the accelera-
tion factor can be written as a generic A = exp(—/'x), while in proportional hazard
(PH) model covariates act multiplicatively on the hazard function and A\ = exp(3'x).

In our model:

Al = eatp( — W, — 01Zy; — Vli)? 0
N = eap(— ablnt) — BW, — 02 — ), (®)
N = eap(abin(ti) + in(ts) + B5W; + va;) ©)

5The AFT model can be written as In(T;) = ;3 + ou;, where Tj is latent survival time o is a
scale factor depending on the shape parameter and u; is the disturbance term.
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where t; is the duration variable starting for smoking initiation , t5 is sm_years for
smoking cessation and t3 is lifespan for length of life. W; is a matrix of exogenous
variables that affect the three time-to-failure responses, Z; and Z,; are matrices
of different sets of factors which have a direct effect on starting and quitting re-
spectively, but do not affect the other outcome variables. The trivariate model in
equations (7)-(9) is identified when the three hazard functions share the same covari-
ates and this depends on non-linearity of the functional form. However, estimators
that rely on functional form for identification are usually unstable: stronger identi-
fication restrictions are recommended to achieve more reliable estimates. Therefore,
we decided to set some exclusion restrictions: the regressors in Zy; and Z»; have been
chosen as instrumental variables in the smoking duration equations which need to
be excluded from the lifespan equation.

The model assumes that the smoking variables, t;; and ¢;5, have a causal effect
on mortality, ¢;3, and that t;; has a causal effect on the risk of quitting smoking,
tio. It also assumes that ¢;; and t;5 are potentially endogenous. We assume that
endogeneity depends on an unobserved random effect which is common to the three
equations and is distributed independently of the response and the observed covari-
ates. Therefore the error structure in the model is characterised by a latent factor
which reflect the fact that the hazard of quitting depends on unobservables affecting
also age at starting (for example, propensity to experiment) and the hazard of dy-
ing depends on unobservables affecting selection into smoking duration (for example,
individual frailty).

Latent factor models have been employed to account for endogeneity of regressors
in simultaneous equations models and selection bias due to unmeasured variables.
Many studies of health care utilisation take into account the endogeneity of the
insurance status chosen by the patient and estimate models for binary, continuous
or count outcome variables and endogenous binary regressors (see e.g., Goldman,

1995; Mello et al., 2002; Deb and Trivedi, 2006).
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Unobservable heterogeneity is integrated out either by specifying a continu-
ous distribution for heterogeneity and evaluating the integrals in the likelihood by
quadrature or simulation methods, or by approximating the heterogeneity distribu-
tion by discrete mass-points (see e.g., Heckman and Singer, 1984; Mroz, 1999). Mroz
(1999) proposes a discrete factor approximation in simultaneous equation models to
estimate the impact of a binary regressor on a continuous outcome. In the context
of quality of care in hospitals Picone et al. (2003) use a latent factor model where
intensity of treatment and length of stay are treated as endogenous, and estimate
a model for a binary dependent variable and two continuous endogenous variables.
Original applications of the latent factor model using a discrete approximation of
the heterogeneity distribution can be found also in van Ours (2003, 2004, 2006).
Studying the dynamics in the use of drugs and wage effects, he estimates bivariate
duration models for the duration of non-use of two drugs and, more recently, for
starting and quitting using a specific drug. Any parametric assumption on hetero-
geneity is relaxed and the joint model is estimated in a semi-parametric framework.
The advantage of using this methodology is that it gives consistent estimates un-
der any distributional assumption about the error term, while maximum likelihood
estimators strictly rely on joint normality or other parametric assumptions.

Assuming that our recursive model can be described by a one-latent factor model,
the error process depends on a common shock that affects smoking behaviours and

mortality:

vii = o1li +uy;
Voi = 02l +ug; (10)
vsi = 03l +us;

where the error components u; are independent in the three duration equations and [;

16



is the unobservable heterogeneity term that can be considered as an approximation
for the unmeasured or missing variables. The p, are factor loadings and can be
interpreted as coefficients for the unobserved variables.

The joint distribution of the errors is:

f(Vu, V2i7V3i) = /°° f(’/u‘, V2i7V3i|l) : dG(l) (11)

where f(v14, V94, v5|1) is the joint distribution conditional on [ and G(I) is the
marginal continuous distribution function of [. Given independence of wuy;, uo;, us;,

equation (11) is equivalent to:

f (Vi vai, v3i) = /OO full) f(vall) f(vaill) - (1) dl (12)

This specification allows us to integrate out heterogeneity and implies specifying
a parametric distribution for the density g(7). In the case of our model, as specified

in (7), the contribution to the sample likelihood of individual 7 is:

L; = /_OO {f(t1|$1,l;ﬁl,91, 01)

h(t2|$27 l; o, Ba, 03, Q2)q ) S(t2|$2, l; g, B2, 02, Q2)
(tis|zs, l; as, 03, Bs, 03, 03)

-g(l)dl 13
(73|$3,l;0637537ﬁ3;93793)} 9() (13)

S
h(t3|$3, l; asg, 537 ﬁ?)? 637 Q3)d : S

The first component of the likelihood, f(t1), is the density function for time
spent in the status of non smoking, for every individual, conditional on a vector
of observed regressors affecting smoking initiation, x;, and the latent factor [. Ex-
smokers, (¢ = 1), for whom a complete spell of smoking years is observed, contribute
with both the hazard and survival functions, h(t2),S(t2), while current smokers,
(¢ = 0), who have a censored spell, contribute only with the survival function,
S(tz). The hazard of dying is observed for both ex-smokers and current smokers:

those who have a complete spell (d = 1) are represented by the hazard function

17



h(ts), while those who are still alive at the time of the follow-up are represented by

S(ts)

the left-truncated survival function Fre) where 73 is the truncation variable, age at

the time of the first interview.
The error variance-covariance matrix deriving from the error structure in equa-
tion (10) depends on the distribution of the latent factor /;, and the distribution of

the error terms in each equation:®

Vi 01V + Viurn 0102V, 0103V(1,)
Cov vy | = 03V + Vius) 0203V(1,) (14)
V3 Q%‘/(li) + ‘/(Um)

where V) is the variance of the latent factor and V{,,) on the diagonal are the
variances of the independent error components.

The effect of the latent factor I; on smoking durations and mortality hazard is
captured by the factor loadings, the cross-product of which determines the associa-
tion between the errors of the three durations models. As a result, we look at the
signs of the elements of matrix (14) to test hypotheses on the effect of unobserved
heterogeneity. The covariance between errors in the smoking initiation and cessa-
tion models is measured by 0;02V(;,), which is expected to be positive in order to
reflect smoking experimentation; 0,03V(;,) is the covariance between errors of the
smoking initiation and lifespan model and a negative value is expected from Adda
and Lechene (2001)’s argument that frailty is a source of selection into smoking;
finally 0203V(s,), which is the covariance between the errors of the smoking cessation
and lifespan model, is expected to be negative according to Balia and Jones (2007)’s

argument that of frailty is a source of selection out of smoking.

6 Analysis needed to be done in order to find the best distribution fitting the data. We model
uy; using a log-logistic density, us; using a Weibull density and ug; using a Gompertz density. This
is explained in the next section.
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2.2.  FEstimation techniques

For simplicity, equation (13) can be written as:

- / TS0 g d (15)

[e.o]

To evaluate the integral in (15), which does not exist in closed form, parametric and
semiparametric estimation methods can be used. We use two parametric procedures,
Gauss-Hermite Quadrature (GHQ) and Maximum Simulated Likelihood (MSL), and
a semi-parametric approach, the Discrete Factor Model (DFM).

GHQ evaluates the integral in (15) using numerical integration by quadrature.
The likelihood is approximated to a weighted sum of densities evaluated at different

points:

L, ~ % ;wj %(\/ﬁgaj) (16)

The weights (w;) and the abscissas (a;) are tabulated in Abramowitz and Stegun
(1965), M is the number of elements in the vector of weights or abscissas and p is the
factor loading. The accuracy of GHQ depends on the number of evaluation points
used to approximate the integral. The log-likelihood of the model and the estimated
coefficients from different numbers of evaluation points need to be compared.

As an alternative MSL can be used. This means maximising a log-likelihood
based on a simulated estimate of the density, where the simulator of the density is
obtained by Monte Carlo integration. In this case, a finite number of draws from
g(l) is necessary to approximate the density and the individual contribution to the

simulated likelihood function becomes a sample average over the number of draws

(R):

R
—~ 1 ,
L; = = 2 S(02") (17)

where 2" are draws from a standard normal distribution. An asymptotic property
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of MSL is that for larger R and N the estimator is unbiased and consistent, but
the literature suggests that increasing the number of draws is more computationally
intensive. Compared to GHQ, however MSL technique has the adavantage of being
more usable in the case of high-dimensional integrals.

The density can be computed either using random draws from a given g(l),
pseudo-random numbers, antithetic draws (—z;, z;) or Halton sequences. The last
two types of draws allow for negative correlation over observations which reduces
the variance of the simulated density function. We use Halton draws, which are
based on a non-random selection of points within the domain of integration and are
known to cover well the domain of the sampling distribution (see Train, 2003).

The GHQ and the MSL estimations are based on normality of the heterogeneity
term: the latent factor has a standard normal distribution, I; ~ N(0,1). The
DFM offers a semi-parametric alternative which has the advantage of reducing the
bias in the identification of the distribution of the latent factor when it is non-
normal. Heckman and Navarro (2007) discuss semi-parametric identification of the
distribution of unobservable heterogeneity in models with treatment times: they
adopt a common factor specification as well.

A finite density estimator can be derived that approximates the unknown density

g(1) using a step function based on a set of mass points, 7. The likelihood becomes:

L= Z e S(0mw) (18)

k=1
where 7, = Pr(l = n;) is a probability weight and 7y, is the mass point, each 7, > 0

K

and Y m, = 1. To ensure that the probability weights sum up to one, we give
k=1

the probabilities 7 a logistic form, 7, = %, where ¢ need to be estimated to

1+ 3 €%
i=1

recover the probability weights. Mean and variance of the discrete distribution are
K K
calculated as m(y = % > meny and Vi = Y- (g — mqy)*.
k=1 k=1
As in the GHQ and MSL procedures, the factor loadings (g) are estimated to-
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gether with the other coefficients, the mass points and the probability weights are
additional parameters to estimate.

Since the model includes an intercept for each equation, the location of the
distribution of [ is arbitrary; also the scale of [ is arbitrary and undetermined (see
Mroz, 1999). Therefore, identification of the DFM requires some normalisations. We
impose two identification restrictions: we fix the first and last mass point respectively
to 0 and 1, this means restricting both mean and variance of the discrete distribution

which only depend on K — 1 probability weights and K — 2 mass points.”

3. Results

3.1.  The sample and the shape of the hazard and survival functions

This section shows simple statistics that describe the raw data as well as the main
results of the non-parametric and parametric analysis carried out on the univariate
durations models. This is useful to identify the best distributions for our survival

variables.

"The existing literature on the DFM offers a range of equivalent strategies to identify the
additional parameters of the discrete distribution by fixing the scale and/or the location of the
distribution. If both are fixed, one of the factor loading is set to 1 and either one of the 7y is set to
0 (see Mroz, 1999) or the mean of the discrete distribution is restricted to be null with the result
that one of 7y can be expressed as a function of the others (Kan et al., 2003, see e.g.,). If only the
location is fixed, the first and the last mass points are set respectively to 0 and 1 (this strategy
is used by Mroz (1999) when k > 2). Other applications also impose that the middle mass points
follow a logistic distribution such that n, € (0,1) (see Mello et al., 2002; Picone et al., 2003). The
7, can be parameterised using various distributions as the logistic, the normal or the sine function
such that each 7y is between 0 and 1 and they sum up to 1. We have compared our approach to
identification to these other approaches to check robustness of the results.
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Table 2

Variable definitions and summary statistics

Variable name Variable definition Mean S.D.

Survival time variables

and censoring indicators
starting number of years elapsed before starting 33.184 21.543
sm_years number of years a person smoked 32.237 14.008
lifespan number of years lived by April 2005 73.999 9.624
start 1 if started smoking before the HALS, 0 otherwise 0.624  0.484
quit 1 if quitted smoking before the HALS, 0 otherwise 0.503  0.500
death 1 if has died by April 2005, 0 alive 0.428  0.495

Observed characteristics
scl 1 if professional/student or managerial/intermediate, 0 otherwise 0.300  0.458
sc2 1 if skilled or armed service, 0 otherwise 0.474  0.499
sc3 1 if partly skilled, unskilled, unclass. or never occupied, 0 otherwise 0.226  0.418
degree 1 if University degree, 0 otherwise 0.117  0.321
hvgqA 1 if higher vocational qualifications or A level or equivalent, 0 otherwise  0.116  0.321
O-cse 1 if O level/CSE, 0 otherwise 0.091  0.288
no edu. 1 if no qualification, 0 otherwise 0.625 0.484
other edu. 1 if other vocational/professional qualifications, 0 otherwise 0.050 0.218
married 1 if married, 0 otherwise 0.752  0.432
widow 1 if widow, 0 otherwise 0.129  0.335
sepdiv 1 if separated or divorced, 0 otherwise 0.056  0.229
single 1 if single, 0 otherwise 0.063  0.244
full time 1 if full time worker or student, 0 otherwise
part time 1 if part time worker, 0 otherwise 0.129  0.335
unemployed 1 if the individual unemployed, 0 otherwise 0.031 0.174
sick 1 if absent from work due to sickness, 0 otherwise 0.033 0.178
retired 1 if retired, O otherwise 0.356  0.479
housekeeper 1 if housekeeper, 0 otherwise 0.097  0.296
rural 1 if lives in the countryside, 0 otherwise 0.214 0.410
suburb 1 if lives in the suburbs of the city, 0 otherwise 0.462  0.499
household size number of other people in the house 1.602 1.253
mother smoked 1 if only mother smoked, 0 otherwise 0.046  0.209
father smoked 1 if only father smoked, 0 otherwise 0.580 0.494
both smoked 1 if both parents smoked, 0 otherwise 0.228 0.419

continued on next page
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Table 2 — continued from previous page

Variable name Variable definition Mean S.D.
others smoked 1 if anyone else in house smoked, 0 otherwise 0.345 0475
cohsmo 1 if person started smoking after 1954 , O otherwise 0.242  0.428
male 1 if male, 0 otherwise 0.454  0.498
age age in years 58.046 11.754

For the purpose of our analysis, the sample from the HALS has been reduced
according to item non-response in the variables of interest. Furthermore, the cu-
mulative distribution of age at death suggests restricting the analysis to individuals
older than 40.8 The remaining sample consists of 4646 individuals of whom about
45 per cent are males and the mean age is 58 years. About 43 per cent of the
respondents had died by April 2005 and the mean lifespan is 74 years. Those who
started smoking at some point in their life account for the 62 per cent of the sample
among whom about 50 per cent had stopped smoking at the time of the interview
in the HALS (1984-85). On average, current and ex-smokers in the sample have
smoked for around 32 years. Complete summary statistics are reported in Table 2.

All the individuals in the sample are at risk of starting smoking from time 0 (i.e.,
there is no left-censoring) and the data contain a record of starting for each subject
at risk: the median survival before starting smoking is 21 as shown in Table 3. Here
the analysis looks at both starters and never smokers, hence censored survival times,
which are longer than completed spells, are considered. Non-parametric estimation
of the survivor, hazard and cumulative hazard functions are obtained using the
Kaplan-Meier (KM) or product-limit estimator. This implies ordering the observed

failure times from a sample of censored survival data as times ¢ <ty < ... < t; <

80nly 1 per cent of the sample died before age 40, so this small part of the sample is not
retained in the analysis. This allows us to avoid confounding mortality with accidents, injuries or
a genetic predisposition towards early death not related to smoking.

23



Table 3
Median survival times

starting starting quitting lifespan
actual 21 17 43 80.2
predicted  34.293 17.356 41.639 78.355

..t < co. Each time interval contains a death time and this death time is assumed
to occur at the start of the interval, while the censored times fall into the intervals.
The empirical survivor function, from which it is possible to derive the estimated

failure function and the integrated hazard function is as follows:

T

S(t) = ]1;[1 T (19)
Where n; and d; are respectively the number of persons at risk of making a transition
and the number of persons for which exit is observed. Therefore, the estimated
survivor function is the product, for each time j, of the ratio between those who
survive and the total number of persons at risk; it has the shape of a step function
with origin at ¢ = 0 and at each ¢; the height is equal to S(¢;). The cumulative

hazard function is estimated using the Nelson-Aalen (NA) estimator that behaves

better than the KM estimator in small samples:

Hity=> -2 (20)

Figure 2 shows the survivor function, with survival diminishing faster for indi-
viduals aged 15 to 20 years and then less than proportionally. In fact, the hazard of
starting smoking increases up to age 20 and then falls closer to 0 for individuals of
35 years or older.

About half of the 2910 individuals who started smoking claimed to be ex-smokers,
with year of starting ranging from 1906 to 1982 and year of quitting from 1915 to
1986. The median duration of smoking is 43 years; 25 per cent of the sample survived

for 26 years and 75 per cent for as long as 59 years. Non-parametric estimates for
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Figure 2
Non-parametric functions for smoking initiation
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sm_years are shown in Figure 3 and show a decreasing pattern of survival, which
diminishes less than proportionally for the first 40 years of the analysis time. In
fact, the probability of surviving as a current smoker is still high (between 1 and
0.50) for durations as long as 40 years, after which it starts decreasing faster. The
shape of the hazard function is increasing, with a peak between 50 and 60 years of
smoking, and then decreases. This is confirmed by the large jump in the cumulative
hazard function at the highest survival times.

To analyse li fespan we need to consider that individuals who died before the
observation time in the HALS (1984-85) are not surveyed but are excluded from the
sample. The idea of exclusion must not be confused with the problem of missing
observations, but simply refers to the fact that the HALS sample is the result of a
selection process, conditional on the event of death having not occurred prior to the
survey time. We could think of the HALS sample as made up of individuals who have

a relatively lower hazard of dying, since individuals with a higher hazard will have
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Figure 3
Non-parametric functions for smoking cessation
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died before any information had been collected about them. Hence, the remaining
sample would have a lower hazard than the truncated part of the population. The
median survival time is 80 years. Figure 4 shows that the survivor function has
a decreasing pattern and the hazard function is increasing: the latter is steeper
for durations longer than 80 years and shows a decreasing pattern after the peak,

around age 95, where the cumulative hazard function flatters out.

3.2.  Results from univariate duration models

This section illustrates results from univariate duration models for smoking and
lifespan. Regression models are estimated under the restrictive assumption of exo-
geneity, that will be relaxed in the next step of the analysis.

The regression approach to duration analysis requires some testing in order to
specify the parametric distribution which best fits the data. We use the cumula-

tive Cox-Snell residuals as well as statistical tests that penalise the log-likelihood,
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Figure 4
Non-parametric functions for lifespan
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like the Akaike and Bayesian information criteria (AIC and BIC), to discriminate
among distributions that represent smoking durations and lifespan. We compare
the exponential, Weibull, log-normal and log-logistic distributions.”

Ideally, to analyse smoking dynamics, information recorded at the time when the
individual started and quit smoking (e.g., price of tobacco, family situation, social
context, peer influences and so on) would be desirable. Unfortunately this is not
available in the dataset we use. In this work, smoking initiation and cessation are

specified as a flexible function of age and depend on demographics, socio-economic

controls (social class, education level, occupational status), geographical variables

9The exponential is the most basic model: it describes a flat hazard function, that is the hazard
function is constant over time, and requires no additional parameter to be estimated (the shape
parameter is set equal to one). The Weibull has a more general form of the hazard function, which
can be monotonically increasing or decreasing depending on the shape parameter. If the shape
parameter equals 1, then the Weibull reduces to the exponential distribution. The log-logistic
and the log-normal represent the logarithm of time using a logistic and a normal distribution
respectively. They tend to produce similar results: the shape parameter can describe either a
monotonically decreasing hazard rate or a first increasing and then decreasing hazard rate.
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and marital status, as in 1984-85, under the assumption that they reflect past social
and economic background.*?

Smoking initiation may be influenced by past parental smoking: this is taken
into account including dummy variables for parents’ smoking. We also suppose that
smoking behaviours (both initiation and cessation) are influenced by awareness of
the the health consequences of smoking. This can be captured by defining cohorts
according to a particular historical period.!! In the UK the first scientific report was
published in 1954 (Doll and Hill, 1954) and in the same year, the Minister of Health
reported on the findings of a Government-approved scientific committee which had
been investigating possible links between smoking and lung cancer. The committee
concluded that there exist a relationship between smoking and lung cancer and that
risk increases particularly with the amount of cigarettes smoked. We include an
indicator to control for the effect of the first dissemination of smoking effects on
health: individuals who started smoking after 1954 are assumed to be more aware
about the health risks of smoking, therefore they might start later and quit earlier.

The Cox-Snell residuals test and the information criteria, as reported in Figure
5 and Table 4, suggest that the distributions with the best fit are the log-normal
and the log-logistic. We present results from the estimation of the log-logistic model
which has been shown to best fit the HALS data in Forster and Jones (2001).

In a first run of the model we exploited information from the full sample of
respondents, however, predicted median age of starting were far too high when com-
pared to the actual values, and this gives an indication that the model is inadequate.
This is shown in Table 3. Standard duration models assume that eventually every-

one fails. In this case, everyone would eventually start smoking. This seems to be

10Education could also be interpreted as a signal of individual ability which would explain dif-
ferences in the onset of smoking for individuals with different ability. In this view, education is
exogenous in the determination of smoking duration and does not represent educational invest-
ments. van Ours (2006) use education as an indicator of ability in models of dynamics drug use.

"Tn a study on the US population, Farrell and Fuchs (1982) assume that the youngest cohort
are more aware about the health consequences of smoking and use the Second World War, the year
of publication of the first article linking smoking to lung cancer, and the publication of the first
official report on smoking and health as critical years to define cohorts.
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Figure 5
Cozx-Snell residuals test for smoking initiation
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an implausible assumption, and models based on this assumption do not do a good
job of fitting the observed data. An alternative is to use a split population model.
This augments the standard duration analysis by adding a splitting mechanism. So,
for example, a logit or probit specification could be added to model the probabil-
ity that somebody will eventually start smoking. When this splitting mechanism
is added to the duration model, it does a far better job of explaining the observed
data on age of starting than models that omit a splitting mechanism (see Forster
and Jones, 2001). The results of Forster and Jones suggest that a simplified version
of the split population model, which can be viewed as a two-part specification of the
duration model, will work well with the HALS data. This uses a standard binary
choice model, such as a logit or probit, for the indicator of whether an individual
has started and then applies the duration model only to the starters in the sample.

As a result, we select a sub-sample of starters only and replicate the non-parametric
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Table 4
Comparison between distributions for duration models

Information criterium exponential ~ Weibull  log-normal log-logistic =~ Gompertz

Smoking Initiation (N = 4646)

AlIC 11671.870  11497.430 10469.330  10621.200

BIC 11826.520 11658.530 10630.430  10782.300

Smoking Initiation (N=2901)

AlIC 6033.338 612.578 340.021 137.149

BIC 6176.685 761.898 489.341 286.469

Smoking Cessation (N=2901)

AIC 5766.691 5085.732  5444.553 5203.633

BIC 5904.065 5229.079  5587.900 5346.980

Lifespan (N=2901)

AIC —723.702 —1003.105 —860.944 —881.075 —1004.825
BIC —604.245  —877.676 —735.5147 —755.6456 —879.396

analysis as well as the estimation of the regression model.'? The KM estimate of
the survival function on the sub-sample, as reported in Figure 6, shows a steeper
decrease around the age of 17-20 than the same curve for the full sample; the KM
hazard function, in the same figure, is first increasing and then decreasing but the
decrease starts later and is not so steep towards zero as in the full sample.
Estimation of the duration model for the sub-sample of starters means that each
individual has a complete spell for starting and the contribution to the sample

likelihood for individual 4 is simply given by their density function:!?

Where ¢; = exp(—z;5) is a non-negative function that depends on observed

characteristics and whose shape is given by the ancillary parameter v: if v > 1 the

12The choice of the log-logistic distribution is based again on the comparison of different distri-
butions.

3Note that the censoring indicator disappears. everybody in the sub-sample did start smoking
at some point in life. When the model is estimated over the full sample, the censoring indicator
helps to identify individuals for whom we observe a complete spell (non censoring) and individuals
for whom the survival time is censored to the last observation.
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Figure 6
Non-parametric functions for smoking initiation - only starters
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hazard rate is monotonically increasing; if v < 1 the hazard first rises and then
decreases monotonically. The log-logistic model has an AFT metric.

Graphical analysis from the fitted model, reported in Figure 7, shows that sur-
vival declines rapidly from ages 17-18; the hazard is predicted to rise and then fall
monotonically. Table 5 reports results from the regression model: time to starting
is predicted to accelerate for men, individuals in the bottom social classes, with
no education, part-time workers, housekeepers, retired and workers in sick leave as
well as for individuals whose father or both parents used to smoke. Survival time is
predicted to be longer for older individuals and for those who started smoking after
1954, when knowledge of health risks began to be disseminated. Predicted median
age at starting is about 17, very close to the actual value as reported in Table 3.

To estimate the hazard of quitting we exclude past parental smoking variables as
they are likely to have a direct effect on age at starting but not on smoking cessation,

and we assume that smoking behaviours in the household at the time of the survey
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Table 5
Results from univariate duration models

Smoking Smoking Lifespan
initiation cessation
(AFT metric) (AFT metric) (PH metric)

Variable Coeff. S.E. Coeff. S.E. Coefft S.E.
In(starting) —0.481** 0.052 —0.232* 0.099
quit —0.222** 0.066
In(sm_years) 0.250** 0.064
scl 0.006 0.011 —0.083* 0.033 —0.101 0.078
sc3 —0.024* 0.011 0.027 0.034 0.126* 0.064
degree 0.020 0.020 —0.082 0.059 0.032 0.153
hvgA 0.021 0.020 0.028 0.058 —0.041 0.151
no edu. —0.035* 0.016 0.0907 0.049 0.180 0.119
other edu. —0.010 0.024 0.128" 0.072  0.280" 0.159
part time —0.067** 0.016 0.000 0.050 0.031 0.122
unemployed —0.012 0.023 0.186* 0.084 0.492** 0.150
sick —0.068** 0.024 0.096 0.073 0.638"* 0.128
retired —0.106** 0.016 0.065 0.046 —0.003 0.098
housekeeper —0.055** 0.018 0.036 0.061 0.2597 0.145
rural 0.012 0.012 —0.067" 0.037 —0.006 0.078
suburb 0.019" 0.010 —0.055" 0.030  0.007 0.061
household size 0.002 0.005 —-0.019 0.015 —0.038 0.032
male —0.181** 0.011 —0.131** 0.033 0.349** 0.069
In(age) 0.794** 0.049 0.496** 0.146 0.673" 0.382
widow 0.010 0.016 0.095* 0.045

sepdiv 0.014 0.020 0.325** 0.076

single 0.043* 0.019 0.145* 0.060

cohsmo 0.328** 0.015 —0.223** 0.048

mother smoked —0.026 0.024

father smoked
both smoked
others smoked
cons

—0.040"* 0.015
—0.062** 0.016

—0.249 0.199

0.390** 0.032
3.141** 0.571

—12.565"* 1.303

ol 0.136** 0.002
p
14

2.036** 0.049

0.084** 0.005

Notes:

T:10%

Significance levels:
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Figure 7
Log-logistic functions for smoking initiation
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can influence time to quit smoking. The logarithm of age at starting is included in
the model, under the restrictive assumption of exogeneity, that will be relaxed in
the next step of the analysis. The graphical analysis in Figure 8 shows that, except
for the exponential, all the distributions fit the data quite well. The information
criteria help to discriminate among these and favour the Weibull distribution (Table
4). The sample likelihood to maximise is the product of the density and the survival

functions:

L; = [\pt? eap(—Mt?)]% - [exp(—NitD)] %

where ¢; is the censoring indicator that separates the contribution of ex-smokers from
the contribution of current smokers: complete spells are recorded for ex-smokers
(¢; = 1) while censored spells are measured for current smokers (¢; = 0). \; is a

non-negative function that depends on observed characteristics, \; = exp(—pz;[);
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Figure 8
Cozx-Snell residuals test for smoking cessation
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pt? ~!is the baseline hazard whose shape depends on the ancillary parameter p. The
Weibull model can yield a monotonic increasing or decreasing hazard of quitting: if
p = 1 the Weibull equals the exponential, with h(t) = A; if p > 1 the hazard function
is monotonically increasing and when p < 1 the hazard function is monotonically
decreasing, representing respectively positive and negative duration dependence.
The Weibull model is estimated using the AFT metric.

The graphical analysis allows comparison of the fitted survivor and hazard func-
tions with the non-parametric functions in Figure 3, and shows that the Weibull
survivor function is a good match for the Kaplan-Meier survivor function: the fitted
hazard function moves away from the empirical hazard function only for the right
tail of the survival time distribution (Figure 9). Table 5 shows that time to quitting
is predicted to be shorter for higher age at starting: starting smoking later in life is
likely to accelerate time to quitting, meaning that late starters smoke relatively less.

Shorter durations of smoking are predicted for men, individuals in the upper socio-
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Figure 9

Weibull functions for smoking cessation
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economic class, and for those who started smoking after 1954. Longer durations
are predicted for the unemployed and not married individuals. Ageing and other
smokers in the household decelerate time to quitting, so that duration of smoking
is predicted to be longer. The model predicts positive duration dependence and a
median time to quitting of about 42 years, very close to the actual value.

The hazard of dying is assumed to be a function of the same observed charac-
teristics that are included in the smoking equations, however dummy variables for
parents and others’ smoking behaviours and dissemination effect are excluded, as
well as marital status.!* The logarithm of starting and sm_years and the censoring
indicator for quitting are included as regressors. At this point, we do not attempt
to deal with potential endogeneity of these variables, so estimates should be treated

with caution if they are to be interpreted as causal effects of smoking on lifespan.

14Marital status is assumed to have a direct effect on lifestyles such as smoking rather than on
the hazard of dying, and marital status as observed in 1984 for individuals aged 40 or over reflects
marital status over a longer period of time, hence explaining smoking durations.
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Figure 10
Cozx-Snell residuals test for lifespan
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The Cox-Snell residual test and information criteria are used to compare five
alternative distributions (see Figure 10 and Table 4), including the Gompertz dis-
tribution. The Gompertz is the favoured distribution.!® The sample likelihood for a
left-truncated and right-censored survival time variable is the product of the hazard
function, observed only for deaths, and the survival function conditional on survival
up to the interview date (where 7; is age at the time of the interview) for every

individual in the sample:

oenn(uy . CEPC S ep(uti) — 1)
L; = [piexp(ut;)] cxp(— 2 [eaplpm) 1) (21)

The Gompertz model is parameterized as a proportional hazard model or log-

relative hazard form, where the baseline hazard is exp(ut;) and ¢; = exp(z;5)

15The maximization of the likelihood in the Weibull model does not converge to a global maxi-
mum, so that tests based on the Weibull estimated coefficients and residuals are not reliable. The
Gompertz mortality model is the most used in biology and medical modelling.
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Figure 11
Gompertz functions for smoking cessation
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scales the baseline hazard multiplicatively by the same amount at each instant ¢.
If 14 is positive the hazard function increases with time, if it is negative the hazard
function decreases with time. The exponential hazard function is a special case of the
Gompertz hazard when g = 0. The Gompertz model produces estimated functions,
see Figure 11, that mimic very well the empirical functions reported in Figure 4.
The hazard function increases with time and is convex. Estimated coefficients,
reported in Table 5, show that the hazard of dying is significantly higher for men, it
increases with age and for individuals from the bottom social class, poor education,
unemployed, sick and housekeepers. The relationship between smoking behaviours
and mortality is tested looking at the coefficients of the survival time variables
and the censoring indicator: the hazard of dying is predicted to decrease with age
at onset of smoking, meaning that starting later in life is negatively related with
length of life. However, the model also predicts that ex-smokers have a lower hazard

of dying, although, at the same time, the latter increases with time spent smoking.
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Duration dependence is positive and median time to death is predicted to be about

78 years, quite close to the actual value.

3.3.  Results from the latent factor model

The univariate duration models presented in this section suffer from not considering
the endogeneity bias which potentially affects the estimates. Here we relax the re-
strictive assumption of exogeneity and estimate the model in equations (7) to (9) as a
latent factor model with a common random variable representing individual-specific
unobservable heterogeneity. Estimation is carried out by means of the techniques
described in section 2.2. Coefficients and factor loadings are estimated simultane-
ously.

Tables 6 and 7 reports results from the latent factor model estimated using uni-
dimensional GHQ and MSL. Integration by quadrature works well with 10 evaluation
points. We checked sensitivity of the quadrature approximation using up to 24 eval-
uation points and comparing relative differences in coefficients estimates and model
log-likelihood. For MSL we created 400 Halton draws per equation and dropped
10 initial draws to avoid correlation between the first elements of the sequence (see
Train, 2003). Both parametric techniques lead to very similar estimated coefficients:
only very small difference in the point estimates of the factor loadings and in the
log-likelihood of the model can be noted.'6

Table 8 reports results from the DFM with 3 points of support: based on a like-
lihood ratio (LR) test we prefer 3 to 2 points of support.!” We tried unsuccessfully

to include one additional point of support, but the algorithm does not converge

16To check robustness of results we estimated the model relaxing the assumption of unit variance.
The new parametric distribution for the heterogeneity term is I; ~ N(0,02), where o2 is the
unknown variance, and one of the factor loadings need to be set to 1 for identification reasons.
Results do not differ much in terms of log-likelihood and estimated coefficients even if the variance
is unknown.

"The LR test is a x3 = 11.986 with p-value= 0.003. Furthermore, coefficients from the DFM
with & = 3 are much closer to those from the parametric estimations than those from the DFM
with k£ = 2.
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Table 6
Results from latent factor model - GHQ estimator

Smoking Smoking Lifespan
inatiation cessation
(AFT metric) (AFT metric) (PH metric)

Variable Coeff. S.E. Coeff. S.E. Coeff. S.E.
In(starting) —0.482** 0.053 —0.185 0.134
quit —0.244** 0.080
In(sm_years) 0.255"* 0.068
scl 0.007 0.011 —0.083* 0.033 —0.109 0.082
sc3 —0.024* 0.011 0.027 0.034  0.124" 0.067
degree 0.019 0.020 —0.082 0.059 0.033 0.160
hvgA 0.021 0.020 0.028 0.058 —0.048 0.157
no edu. —0.035* 0.016  0.090" 0.049 0.186 0.124
other edu. —0.010 0.024 0.128" 0.072  0.289" 0.166
part time —0.067** 0.016  0.000 0.050 0.032 0.127
unemployed —0.012 0.023 0.186* 0.084  0.509** 0.157
sick —0.068** 0.024  0.096 0.073  0.680*" 0.140
retired —0.106** 0.016 ~ 0.065 0.046  0.002 0.103
housekeeper —0.055** 0.018  0.036 0.061 0.2787 0.150
rural 0.012 0.012 —0.067" 0.037 —0.009 0.082
suburb 0.0197 0.010 —0.055" 0.030  0.008 0.064
household size 0.002 0.005 —0.019 0.015 —0.040 0.033
male —0.181** 0.011 —0.132** 0.033  0.379** 0.079
In(age) 0.794** 0.049  0.497** 0.146  0.418 0.453
widow 0.010 0.016  0.095* 0.045

sepdiv 0.014 0.020  0.325** 0.076

single 0.044* 0.019  0.145* 0.060

cohsmo 0.328** 0.015 —0.222** 0.048

mother smoked —0.027 0.024

father smoked
both smoked
others smoked

—0.040** 0.015
—0.062** 0.016

0.390** 0.032

cons —0.250 0.199 3.141** 0.571 —12.261** 1.374
¥ 0.135** 0.002
P 2.036** 0.049
n 0.092** 0.008
01 —0.013 0.018
02 —0.006 0.049
03 0.334* 0.155
logL: -20706.918
N: 2901
Notes:
Significance levels:  1: 10%  *: 5%  *x: 1%
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Table 7
Results from latent factor model - MSL estimator

Smoking Smoking Lifespan
nitiation cessation
(AFT metric) (AFT metric) (PH metric)

Variable Coeff. S.E. Coeff. S.E. Coeff. S.E.
In(starting) —0.483** 0.054 —0.176 0.137
quit —0.249** 0.082
In(sm_years) 0.257** 0.069
scl 0.007 0.011 -0.083* 0.033 —0.110 0.082
sc3 —0.024* 0.011  0.027 0.034  0.124" 0.068
degree 0.019 0.020 —0.082 0.059 0.034 0.161
hvqA 0.021 0.020 0.028 0.058 —0.048 0.158
no edu. —0.035* 0.016  0.090" 0.049 0.186 0.125
other edu. —0.010 0.024  0.128" 0.072  0.290" 0.167
part time —0.067** 0.016  0.000 0.050 0.032 0.127
unemployed —0.012 0.023  0.186* 0.084  0.510** 0.158
sick —0.068"* 0.024  0.096 0.073  0.685** 0.141
retired —0.106** 0.016  0.065 0.046  0.003 0.103
housekeeper —0.055** 0.018  0.036 0.061 0.2817 0.150
rural 0.012 0.012 —0.067" 0.037 —0.009 0.082
suburb 0.0197 0.010 —0.055" 0.030  0.008 0.065
household size 0.002 0.005 -0.019 0.015 —0.041 0.033
male —0.181"* 0.011 —0.132** 0.034  0.384** 0.080
In(age) 0.794** 0.049  0.497** 0.146  0.387 0.456
widow 0.010 0.016  0.095* 0.045

sepdiv 0.014 0.020 0.325** 0.076

single 0.044* 0.019  0.145* 0.060

cohsmo 0.328** 0.015 —0.222** 0.048

mother smoked —0.027 0.024

father smoked
both smoked
others smoked

—0.040** 0.015
—0.062** 0.016

0.390** 0.032

cons —0.250 0.199 3.141** 0.571 —12.234** 1.379
¥ 0.135** 0.002
P 2.036** 0.049
n 0.093** 0.009
o1 —0.014 0.017
02 —0.009 0.049
03 0.355* 0.150
logL: ~20706.622
N: 2901
Notes:
Significance levels:  1: 10%  *: 5%  *x: 1%
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Table 8
Results from latent factor model - DFM estimator (k=3)

Smoking
inatiation
(AFT metric)

Smoking
cessation
(AFT metric)

Lifespan

(PH metric)

Variable Coeff. S.E. Coeff. S.E. Coeff. S.E.
In(starting) —0.507** 0.0567 —0.034 0.163
quit —0.349** 0.088
In(sm_years) 0.276** 0.073
scl 0.007 0.011 —0.083* 0.033 —0.113 0.085
sc3 —0.023* 0.011 0.027 0.034  0.120" 0.071
degree 0.019 0.020 —0.080 0.059 0.063 0.167
hvgA 0.021 0.020 0.028 0.058 —0.056 0.166
no edu. —0.035* 0.016  0.092F 0.049 0.181 0.131
other edu. —0.010 0.024  0.131F 0.072 0.276 0.177
part time —0.067** 0.016 —0.001 0.050 0.012 0.133
unemployed —0.013 0.023  0.187* 0.084  0.543** 0.167
sick —0.070** 0.024  0.090 0.073  0.740*" 0.153
retired —0.106*" 0.016  0.062 0.046 —0.002 0.109
housekeeper —0.055** 0.018  0.035 0.061 0.292F 0.159
rural 0.012 0.012 —0.067F 0.037 —0.002 0.086
suburb 0.019" 0.010 —0.054" 0.030  0.015 0.067
household size 0.002 0.005 —0.019 0.015 —0.045 0.035
male —0.181** 0.011 —0.135"* 0.034  0.419** 0.086
In(age) 0.792** 0.049  0.513** 0.146  0.019 0.540
widow 0.010 0.016  0.095* 0.045

sepdiv 0.013 0.020  0.326** 0.076

single 0.044* 0.019  0.149* 0.060

cohsmo 0.328** 0.015 —0.216** 0.048

mother smoked
father smoked
both smoked
others smoked

—-0.025 0.024
—0.039** 0.015
—0.061** 0.016

0.390** 0.032

cons —0.242 0.199 3.147** 0.572 —12.134** 1.455
¥ 0.135** 0.002
» 2.040** 0.049
K 0.106** 0.012
01 —0.062 0.045
P2 —0.128 0.114
03 1.836** 0.406
1o —2.464 1.547
G 2.679** 0.940
© —0.907 0.979
T 0.912** 0.095
T2 0.025* 0.012
m(l) —0.021
Vo 0.151
logL: -20701.663
N: 2901
Notes:
Significance levels:  1: 10%  *,25%  *x: 1%
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suggesting that the model is no longer identified.'® Estimates from the DFM are
consistent with those from the GHQ and MSL.

The factor loadings can be interpreted as coefficients of the random effect [ in
the three equations. We notice that p3 has a statistically significant positive impact
on lifespan, meaning that there exist unobservable factors that increase the hazard
of dying. Factor loadings ¢; and oy are not statistically significant but we notice
that they both have a negative sign: unobservable factors accelerate both the hazard
of starting and the hazard of quitting smoking. We calculate the elements of the
covariance matrix of equation (14) substituting into it the estimated factor loadings.
This is shown in Table 9.

The covariance between the smoking duration equations errors, cov(vy;, Va;), i8
0102V{1,) in equation (14) and it is close to zero. Nonetheless the positive sign is in
line with the hypothesis of unobservable heterogeneity as an individual preference
for experimentation: those people who start smoking soonest quit early. Once this
effect is taken into account what is measured by the coefficient of In(starting) is just
the causal relationship between age at onset of smoking and the hazard of quitting.
0103V(;;) measures the covariance between the error terms of the smoking initiation
and lifespan equation, cov(vy;, v3;), and is negative and close to zero. Unobservable
heterogeneity here seems to represent frailer individuals’ selection into smoking:
given the lower opportunity cost of smoking for people who are likely to die earlier,
they also start smoking sooner. Finally, covariance between errors in the smoking

cessation and lifespan equations, cov(vy;, v3;), is given by 0203V(;,) and is close to zero

18This problem can be related to the nature of the date we use: the probability weights are very
large on one mass point suggesting that increasing the number of mass points will not improve
identification of the discrete factor distribution. This is in line with the findings of Monte Carlo
studies which show that two to four points of support adequately model many distributions Mroz
(1999).

We also find that the model is not always identified for every set of starting values for the
additional parameters. Local maxima can be found maximising the likelihood and estimates might
be sensible to changes in the starting values. From a practical point of you, this feature of the
DFM may encourage practitioners to use more stable estimation methods such as the parametric
approaches proposed here.
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Table 9
Estimated covariances
GHQ MSL DFM (k=3)
COV(V”, VQi) 0.0002 0.0001 0.0012

cov(vis,vg)  -0.0024  -0.0049  -0.0172
cov(vy,vs)  -0.0014  -0.0030  -0.0357

and negative.'? In this case, the random effect would represent frailer individuals’
selection out of smoking. For any age at starting, there exist people who quit sooner
and die earlier.

Robustness of the estimation results to different exclusion restrictions has been
checked. We also estimated a version of our trivariate model where the hazard
functions depend on the same observed individual characteristics. This sensitivity
analysis shows that identification of the causal effects of age at starting on quitting
smoking, and of both smoking durations on the hazard of mortality is not affected
by the set of instruments chosen. The duration dependence parameters as well
as the additional parameters of the mixture model which indicate unobservable
heterogeneity do not vary significantly. Tables with summary results are reported
in the Appendix.

Overall, the latent factor model coefficients, estimated using both the semi-
parametric and the parametric techniques, do not differ much from those obtained
from the univariate hazard regression models. Together with the low covariances
reported in table 9, this can be interpreted as low unobservable heterogeneity in the
data. We are interested in the determinants of smoking initiation and cessation, and
their effect on individual lifespan. The coefficients of the education and social class
variables indicate that individuals in the lowest socio-economic groups tend to be
younger when they start smoking than people from the middle and upper groups.
Time to starting also depends on occupational status and accelerates for individuals
who are not in full-time jobs: in particular, coefficients of variables indicating being

in a part-time job, absent from work due to sickness, retired or housekeeper are

19We notice that the DFM produces bigger numbers for cov(vy;,v3;) and cov(va;, v3;).
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highly statistically significant. However, the impact of having a father (or both
parents) who used to smoke is about twice the impact of being in the lower social
class (or having no education). We notice that the variable cohsmo has the highest
impact: for people who started smoking after 1954, time to starting decelerates by
some 38% more than for those who started before that year. This is an indication of
the strong positive effect of the dissemination of information about the health risk
of smoking among the British population and the associated cultural change over
time.

Social class and education are important determinants of the hazard of quitting
but the variable cohsmo as well as marital status variables seem to explain more of
the variability. The impact of being separated or divorced is twice that of singletons,
and 3 times that of widows. Time to quit accelerates if smokers started after 1954
and the impact of cohsmo is about 2.7 times that of being in the top social class or
having a degree. The coefficient of In(starting) represents the elasticity of time to
quit with respect to changes in age at starting and this is very close to the elasticity
with respect to age. The estimated elasticity shows that the causal effect of age at
starting is negative, meaning that one additional year in age at starting gives an
acceleration to time to quit and that starting at young ages determines an increase
in the number of years spent smoking. The positive elasticity with respect to age
indicates that time to quit decelerates as smokers get older: this suggest that older
smokers may believe that they would not gain much from quitting when the end of
their lifespan is close.

To some extent a socio-economic gradient on the hazard of dying can be found as
well, although only few variables of interest are statistically significant. Being unem-
ployed or absent from work due to sickness matter more than other socio-economic
characteristics and they do increase the hazard of dying. For the unemployed the
hazard is 66 per cent higher than the hazard of employed individuals and is 4 times

the hazard of a partly skilled or unskilled worker (sc3). The hazard of dying is
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relatively more elastic to changes in the number of years spent smoking than in
age at starting: the former elasticity is 8 times the elasticity with respect to age at
starting. Also, the hazard of mortality for ex-smokers is 70 per cent of the hazard
of current smokers.

The effect of the quitting variables (being an ex-smoker and number of years
smoked) on the hazard of dying is predicted to be higher than in the univariate model
for lifespan, in particular if we look at the results from the DFM. The latent factor
model predicts a smaller and not statistically significant effect of age at starting on
the mortality hazard rate, and this is estimated to be even smaller by the DFM.
Hence, in the presence of unobservables, the elasticity of mortality hazard with
respect to age at starting is overestimated if the econometric model does not include
a latent heterogeneity term.

Furthermore, it is interesting to notice that the impact of unemployment (and
sickness abscence) on the hazard of dying is about 1.6 (2.1) times of being a former
smoker. If we look at social class and education, however, the impact of quitting is
about 3 times that of being in the top social class and 5.5 times that of having a

degree.

4. Conclusions

This paper investigates the relationship between smoking behaviours and individual
lifespan using the British HALS. The nature of the data collection in this survey
gave us the scope to exploit longitudinal information about smoking habits, as time
to starting and quitting using tobacco, and length of life. Duration models are
used to explore determinants of the hazard of starting, quitting and dying. Our
main interest lies in the causal effect of age at starting on smoking cessation and
mortality risk, and of smoking duration on mortality risk. The econometric issue

concerns unobservable heterogeneity and selection bias affecting the estimates of the
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causal effects as well as the duration dependence parameters.

A recursive system of three hazard regressions is estimated, which allows for a
mixture of hazards functions depending on observed individual characteristics and a
common latent factor representing individual time-invariant heterogeneity. Gauss-
Hermite quadrature and Simulated Maximum Likelihood are used to approximate
the log-likelihood of our model when parametric assumptions on the common la-
tent factor are specified. Estimates from these two approaches are compared to a
Discrete Factor Model which has the advantage of not relying upon any parametric
assumption on the latent factor. Results are robust to the choice of a continuous or
discrete mixture model and to changes in the exclusion restrictions.

Analysis of the covariance structure of the errors does not give very strong evi-
dence of selection, but confirms our initial hypotheses about the role of unobservable
heterogeneity in the relation between smoking and mortality. Our results suggest
that unobservable heterogeneity affecting the correlation between age at starting
and duration of smoking depends on individual-specific preference for experimen-
tation: there would be smokers who started soonest and quit earliest since they
are not meant to be hard-core smokers, but rather experimenters. We also find
that unobserved frailty partly drives correlation between smoking and mortality in
a manner that differs depending on which smoking duration variable is considered.
Specifically, unobserved frailty drives selection into early smoking initiation as well
as selection out of smoking or, in other words, into early smoking cessation. The
recent literature gives mixed evidence about unobserved frailty: our model distin-
guishes between the two selection effects and suggests that they can co-exist as they
act differently on smoking initiation and cessation.

Overall, investigation of the determinants of mortality hazard and smoking ini-
tiation and cessation does not seem to be substantially affected by unobservable
heterogeneity and the estimated covariances show that there is not a statistically

significant association between errors due to the presence of a latent common fac-
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tor. However, covariances have economic significance and using a latent factor model
seems to be a better choice to correct for the upward bias in the estimate of the
causal effect of age at starting and the downward bias of the causal effects of quitting
variables and the duration dependence parameter in the lifespan equation.

Our analysis provides additional empirical evidence on the linkage between socio-
economic characteristics, lifestyles and mortality. From a policy point of view, we
suggest that investments in health, in terms of opting for a less heavy smoking be-
haviour, can be realised by improving socio-economic conditions, diffusing knowledge
about the health risk of smoking, and delaying age at onset of smoking. Further-
more, our findings show that a reduction in the hazard of mortality has to do, in
turn, with improving socio-economic conditions in the population, as well as with
increasing the quitting rate and shortening the the number of years spent smoking,

in particular, as stressed above, by delaying time to starting smoking.
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Appendix A

Table A.1
Selected coefficients in the lifespan equation from alternative GHQ models

Model I* Model 11 Model III

Variable Coeff.b Coeft. Coeft.
In(starting) —0.185 —0.200 —0.220
quit —0.244** —0.238** —0.214**
In(sm_years) 0.255** 0.261** 0.257**
~ 0.135** 0.135** 0.136**
) 2.036** 2.036** 2.036**
n 0.092** 0.093** 0.092**
01 —0.013 —0.012 —0.010
02 —0.006 —0.005 0.005
03 0.334* 0.341* 0.331*
logL —20706.918 —20704.343 —20702.566

Notes:
% Model I is our preferred specification, Model II includes marital status in

the lifespan equation, Model III does not allow for any exclusion restric-
tions.
b Significance levels: *: 5%  xx: 1%

Table A.2

Selected coefficients in the lifespan equation from alternative MSL models

Model 1 Model 11 Model III

In(starting) —0.176 —0.192 —0.213
quit —0.249** —0.243** —0.218**
In(sm_years) 0.257** 0.262** 0.257**
¥ 0.135** 0.135** 0.135**
p 2.036** 2.036** 2.036**
I 0.093** 0.094** 0.093**
01 —0.014 —0.013 —0.012
02 —0.009 —0.007 0.003
03 0.355* 0.361* 0.350*
logL —20706.622 —20704.030 —20702.278
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Table A.3

Selected coefficients in the lifespan equation from alternative DFM

Model 1 Model II Model IIT
In(starting) —0.034 —0.070 —0.075
quit —0.349** —0.332** —0.319**
In(sm_years) 0.276** 0.274** 0.267**
~ 0.135** 0.135** 0.135**
p 2.040** 2.040** 2.039**
I 0.106** 0.104** 0.105**
01 —0.062 —0.057 —0.053
02 —0.128 —0.122 —0.107
03 1.836** 1.803** 1.884**
logL —20701.663 —20698.906 —20696.469
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