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Abstract
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1 Introduction

In broad terms, impact evaluations of health programmes aim to answer the
fundamental counterfactual question: how would the health conditions of individuals
exposed to the programme have evolved in the absence of the intervention? Or,
analogously, how would those who were not exposed to the intervention have fared in
the presence of it? Difficulties in answering such a question rise immediately, as at a
given point in time individuals are observed in only one situation, either exposed or
not exposed to the programme. This feature, inherent to empirical programme
evaluation, resembles the classical missing data problem for econometric analysis.

Matching methods have become increasingly popular among applied researchers
as tools for solving the so-called evaluation problem, especially within the field of
labour economics. Obviously, as it is the case with any other non-experimental
approach, the adequacy of matching estimators in a particular evaluation setting
depends crucially on the research questions of interest, the characteristics of the
analysed intervention and the available data. These factors have been proved
extremely relevant for the validity of matching estimates in a given context.

The general aim of this paper is to review how matching methods try to solve
the evaluation problem — with a particular focus on one popular variant, namely
propensity score matching — and their usefulness for the particular case of health
programme evaluation. The well-known case of matching estimation with a single
discrete treatment will be presented as a basis for discussing recent developments
regarding the application of matching methods for jointly evaluating the impact of
multiple treatments and for evaluating the impact of a continuous treatment. These
extensions of the traditional matching estimators can be particularly relevant for the
investigation of treatment effects in the health sector.

This paper is organised as follows. The next section describes the evaluation
problem with a focus on its particularities for the impact assessment of health
programmes. Section 3 discusses matching estimation of treatment effects for the
classical case of a single discrete treatment, defining the usual treatment effects
parameters of interest, presenting the required identification assumptions, defining the
main matching estimators (with a special interest on propensity score matching and
including the matching with difference-in-differences variant), and discussing their



main theoretical properties and practical features. Sections 4 and 5 follow the same
structure as applied to the joint impact evaluation of multiple programmes and a
single continuous treatment, respectively. Section 6 presents some concluding

remarks.

2 The evaluation problem

Most of the theoretical and empirical literature on programme evaluation relies, at
least implicitly, on basic assumptions regarding participation in the programme. For
ease of exposition, it is normally assumed that:

i. Everyone who is assigned treatment is actually treated (there are not “no

shows”);

ii. There are only partial equilibrium effects, i.e. the health programme does not
affect the (pre-treatment) variables X; taken as exogenous;

iii. Stable Unit Treatment Value Assumption (SUTVA): This assumption contains
usually two components. In the first place, all treated individuals are assumed
to receive the same active treatment and all comparison individuals are
assumed to get the same comparison treatment. The second component is the
assumed absence of interference between units, in the sense that the values of
treated and untreated outcomes for a given individual are not influenced by the
treatment status of other individuals.

Although the validity of all three assumptions might be questioned in specific
settings, the third assumption may be particularly unrealistic in the context of public
health interventions. Treatment benefits usually positively affect untreated individuals
as well, such as in the classical examples of immunisation campaigns and
programmes aimed to reduce the prevalence of communicable diseases. These
treatment externalities, whose magnitude is likely to depend on the number of actually
treated individuals, pose a significant challenge to the assessment of a programme’s
impact through individually randomised or non-experimental studies, since there is
the possibility of non-negligible treatment benefits accruing to the comparison group.
This would lead to an underestimation of the programme effect when comparing the
average outcomes of treatment and comparison samples, as demonstrated by Miguel
and Kremer (2004). However, these authors also demonstrate that it is sometimes



possible to alleviate deviations from SUTVA through design; for example, by
considering higher-level randomisation units rather than individuals (schools in their
case). Non-experimental evaluation of health programme treatment effects can deal
with deviations from SUTVA in a similar way, for instance by considering the
availability of a health programme in a given geographic area as the treatment
variable of interest.

In order to clarify the issues involved, | consider a very common situation in
public health policy in which a health authority implements an intervention in some
geographic areas selected according to some pre-specified criteria. In the treated areas
— those where the health intervention has been implemented — it is not necessarily the
case that all residents will actually receive the intervention (due to self-selection into
the programme, for instance); rather, treatment here is defined as residing in an area
where the programme is available. For simplicity, consider only two localities. If the
treated locality is far enough from the untreated locality (that where the health
intervention has not been implemented) so as to preclude spillovers from occurring
between areas, the “no interference between units” assumption is more likely to be
valid and it is possible for the estimated average treatment effects to take into account
treatment externalities accruing to “individually untreated” people living in the treated
area. In other words, this situation can be seen as a particular case of the SUTVA
assumption, in which the unit of analysis is the group of individuals living in a
locality instead of a single individual.

Formally, using the potential outcome notation suggested by authors such as
R.A. Fisher and A. Roy, and popularised by Rosenbaum and Rubin (1983), let the
programme impact on a particular health outcome Y for an individual i living in the
treated area be given by:

ARG (1)
where T refers to the health outcome of an individual belonging to the treatment group
—i.e. living in the treated area — and C denotes the counterfactual, the health outcome
for the same individual had they been living in the untreated area, thus belonging to

the comparison group. The above formalisation assumes that each individual i is

characterised by a pair of potential outcomes: Y," for the outcome under the active

treatment and Y, for the outcome under the comparison treatment (or no treatment).



Since it is impossible to observe the individual treatment effect — because we
cannot observe both treated and untreated situations for the same individual i — we can
aim to learn something about the programme impact through its average effect in the
population. If data on the health outcome(s) of interest are available for a number of
individuals living in the treated area and a number of individuals residing in the
untreated locality, we can then average these outcomes in both groups and subtract the

second from the first in order to obtain a (naive) estimate of the programme impact:
E I:YiT _YiC :' )

In this case, the average health outcome for individuals living in the comparison
area is intended to act as a substitute for the unobservable counterfactual. However,
individuals exposed to a programme are usually different in a set of observable
characteristics — such as education, income and initial health status — from those
individuals who are not covered by the programme. This problem will be magnified if
individuals self-select into the programme (for instance, through migration towards
the treated area), meaning that unobservable factors such as motivation and relative
importance attributed to their own health status are key in determining treatment
assignment. This makes it difficult to isolate the differences between both groups
which are due to already existing distinctions before treatment — the selection bias —
from those which are due solely to the programme’s impact, as it can be seen by
extending equation (2):

E[Y =Y |=E[YIT]-E[¥°|C]
=E[YTIT]-E[YSIT]+E[YCIT]-E[¥°|C]

=E[Y =Y |T]+E[Y°IT|-E[Y°|C] 3)
The first term in (3) represents the average treatment effect on the treated,
usually the parameter of interest we want to isolate (which will be formally defined
below). This parameter will only be identified if the selection bias, represented by the
second and third terms above, equals zero; this, in turn, will only happen if there are
no systematic differences in the average untreated health outcomes between treatment
and comparison groups.
Equation (3) guides us also regarding the direction of the bias. If individuals
living in the treated area are on average healthier, more health-concerned (for

example, have a ‘healthier’ lifestyle) or more motivated to participate into the



programme than their counterparts in the comparison area to begin with, then the
selection bias term will be positive and the programme impact on health outcomes
will be overestimated. Conversely, if individuals residing in the comparison area tend
to have better health prospects on average than those living in the treated area
(perhaps because the programme was aimed to target a health-deprived locality), then
the selection bias term will be negative and the estimated treatment effect will
underestimate the true programme impact.

For simplicity, no covariates have been included up to this point. Consider now
the analysis with covariates and define common support as the subspace of individual
characteristics that is represented both among treated and comparison groups. One
important result due to Heckman et al. (1998) is the decomposition of the selection
bias into three components:

i. Non-overlapping support of the observables: this is the part of the selection
bias due to comparing non-comparable individuals. Using the whole sample of
treated and untreated individuals can be a source of bias if the treated and
comparison support distributions do not intersect for a given range of
covariate values;

ii. Differences in the distribution of the observables between the two groups over
the common support: this bias component is caused by not adequately
weighting comparable individuals when there are differences in the shapes of
the covariates distributions between treatment and comparison groups. Even in
the region of common support, distributional differences make some untreated
individuals to be more comparable to some specific treated individuals in
terms of the values of their covariates, and misweighting them - i.e. not
reweighting the comparison group’s data so as to equate the observed
covariates’ distribution in the treatment group — can lead to estimation bias;

iii. Selection on unobservables: this final component of the selection bias results
from selective differences between treatment and comparison groups in terms
of unobservable characteristics which are also correlated with their potential
health outcomes. These differences may be observable by the individual, but
not by the researcher.

The first two components are related to observable characteristics and found to
be the most important sources of selection bias by Heckman et al. (1998), although

the third component was still a sizeable fraction of the total bias.



An evaluation design in which the selection bias problem tends to disappear is
that in which treatment and comparison groups are randomly selected from a large
population of potential beneficiaries, such as individuals or localities. In other words,
due to randomisation, treatment status does not depend on potential health outcomes,
and it may be assured that, on average, those individuals exposed to a given
programme are not different from those not exposed to it either regarding observable
characteristics (such as income, education and age) or unobservable ones.
Consequently, any statistically significant difference in health indicators between both
groups can be reliably attributed solely to the programme’s impact.

In most real situations, nevertheless, health programmes have been purposively
implemented by a central authority — for instance by targeting individuals or areas
with worse than average health status — and/or require individuals to self-select into
the programme by taking up the benefits. If all the researcher has for evaluating a
health intervention is non-experimental data, the explicit treatment of the potential
bias caused by omitted variables, either unobserved or intrinsically unobservable, is of
crucial importance for the reliability of the estimates of a programme’s impact. Using
matching methods is one alternative for explicitly addressing and eliminating the first
two sources of selection bias, while assuming that selection on unobservables is not a
problem in the relevant data under certain assumptions. These assumptions and the
formal definition of alternative matching estimators for the single treatment case will
be explained in the next section, preceded by a formal introduction to the parameters
of interest which most of the empirical literature on programme evaluation attempts to

estimate when only one treatment is being considered.

3 Matching estimation of health programme average treatment

effects with a single treatment

3.1 Average treatment effects: definition, identification and variance

efficiency bounds

3.1.1. Definition of average treatment effects



The empirical literature on programme evaluation has traditionally focused on
estimating three main average treatment effects when assessing the impact of a single
treatment.! The definition and identification conditions of each of these treatment
effects will be discussed for the same context of evaluating the impact of the
availability of a given health intervention in a number of geographic areas.

Average Treatment Effect on the Treated (ATT): this parameter represents the
average health impact of the programme among those who have been exposed to it.

Formally, it is defined as:

ATT =E[Y =Y |T |=E[Y|T]-E[Y°|T] (4)

i i
and its sample analogue is ATT =ii(YiT -Y© |T), where Ny stands for the
T i=l

number of treated individuals in the sample. The second term after the last equality in
(4) is the counterfactual to be estimated. The ATT is a measure of the average gain
from the programme to a treated individual randomly drawn from the treated
population, rather than to any member of the population. This is usually a parameter
of special interest in the context of narrowly targeted health programmes, a setting in
which the likely programme impact on untargeted individuals is not the primary
interest of policy-makers. For instance, if a health programme is aimed at extremely
unhealthy individuals such as people infected with malaria residing in areas with high
incidence of the disease, there will probably be little interest from the heath authority
in knowing what the programme effect would be on relatively healthy individuals
living in urban areas.

Average Treatment Effect on the Untreated (ATU): this alternative estimand is
the expected health programme impact among those who have not been treated. In

formal terms:

ATU =E[Y -Y°|C|=E|Y|C|-E[Y°IC] (5)
— Ne

and its sample analogue is ATU =LZ(YiT ~Y,°|C), where Nc represents the
c i=l

number of individuals in the comparison group. The first term after the last equality in
(5) cannot be observed and must be estimated. The ATU parameter recovers the

expected health impact of the programme on an individual randomly drawn from the

! Some extensions of these estimands have also been introduced in the literature; see for instance the
“conditional average treatment effects” developed by Abadie and Imbens (2002).



sub-population of individuals non-exposed to the intervention, and is potentially
useful if we would like to assess the impact of a programme expansion to initially
untreated individuals.

Average Treatment Effect (ATE): this is the third of the most commonly studied
average treatment effects, corresponding to the average health programme effect for
the entire population, whether or not a particular individual has been treated. Formally:

ATE = ATT *P(T)+ ATU % P(C)

ATE=E[Y YT [*P(T)+E| Y -Y,|C |*P(C) ©)

where P(T) and P(C) are the probabilities of belonging to the treatment and
comparison groups, respectively. In the sample these probabilities correspond to the

sample frequencies of treated and untreated individuals and hence, as a sample

i i i i
i=1 i=1 i=1

- N Ny Ne
analogue, we have ATE :%Z(Y.T —Y.C):% AR A ED N A |c)}.
As can be seen, counterfactuals must now be estimated for both components of the
ATE. This parameter is relevant for health interventions that could be universally
expanded, addressing the question of what the treatment gain would be to a randomly

selected member of the population.
3.1.2. ldentification of average treatment effects

Consider the evaluation of a health programme in which each individual is
either exposed or not to the single active treatment. Following Imbens (2004), let the
observations of each individual be characterised by the triple (D;, Yi, X;), where D; is
an indicator taking the value of 1 if the individual has been exposed to the programme
and zero otherwise. X; represents a set of exogenous covariates and Y; stands for the
realised individual health outcome distributions, defined as:

y EYi(Di):{Yi: _if D, =0,
Y, if D, =1

Identification of average treatment effects through semi-parametric methods

such as matching is based on two fundamental assumptions about treatment

assignment:

ASSUMPTION 1 (UNCONFOUNDEDNESS): (Y',Y®) L D|X.



This assumption — also called ignorable treatment assignment (Rosenbaum and
Rubin, 1983) or conditional independence assumption (Lechner, 2000) — states that
treatment assignment of a given individual is independent of her potential health
outcomes with and without treatment if the relevant observable covariates (those that
influence an individual’s treatment assignment) are held constant. In other words, this
assumption means that the researcher observes all factors that jointly affect the
potential outcomes and exposure to the programme.

Instead of requiring unconfoundedness to hold as defined in Assumption 1,

some applied work has assumed a weaker form of unconfoundedness called
conditional mean independence, E[Y™,Y®|D, X |=E[Y",Y®| X |. Nevertheless, as

argued by Imbens (2004), this weaker version is intrinsically tied to functional-form
assumptions (e.g. linearity of outcomes in D). Since it would be difficult to argue that
conditional mean independence should hold in a setting where unconfoundedness is
violated, the stronger assumption is often invoked. Moreover, the stronger
unconfoundedness assumption has also the advantage of making conditional mean
independence valid for every transformation of the outcome variable.

As it shall be discussed below, the unconfoundedness assumption is crucial for
the estimation of average treatment effects by matching methods. It is also a less
restrictive assumption than it might seem at first glance: even if two individuals with
the same X differ in their choices regarding exposition to the health intervention due
to unobservables, this does not necessarily invalidate the unconfoundedness
assumption if these different choices are due to unobserved factors that are themselves
unrelated to the health outcomes of interest. In terms of a health programme with the
characteristics already described, the individual-specific gain from living in an area
where the programme is available — which is unobserved by the researcher — is
allowed to be correlated with treatment participation, provided that this individual
gain is not correlated with the individual’s potential health outcome Y © conditional on
X. Unobserved characteristics will only lead to selection bias if they are correlated
both with exposure to the programme and potential health outcomes, e.g. if “more

health-concerned” individuals are also more likely to migrate to areas where the

10



health programme has been implemented in order to obtain access to it, and this

selective migration is not observed by the researcher.

ASSUMPTION 2 (OVERLAP): 0 <P (D =1| X)<1.

The second fundamental assumption states that there are treated and untreated
individuals at all values of X, i.e. there is overlap between treatment and comparison
samples. This assumption refers to the joint distribution of the treatment variable and
covariates, implying that, conditional on X, there must be other variables which affect
exposure to the programme, thus preventing X from being a perfect predictor of
treatment assignment. Importantly, if the unconfoundedness assumption also holds,
these unobserved variables are not correlated with the potential health outcomes.

Under assumptions 1 and 2 above®, average treatment effects can be identified
because, conditional on X, the potential health outcomes Y © of untreated individuals
have the same distribution of the (counterfactual) potential health outcomes that
treated persons would have experienced had they not been treated. Analogous
reasoning applies to the potential outcomes Y'. Therefore, in formal terms and under
the two fundamental assumptions we must have:

F(Y¢|X,D=1)=F(Y°|X,D=0)
F(Y"|X,D=1)=F(Y"|X,D=0)

Average treatment effects can hence be identified because the following
equalities hold:

E(Y°|X,D=1)=E(Y®|X,D=0)=E(Y°|X)
E(Y'|X,D=1)=E(Y"|X,D=0)=E(Y"|X)

If there is no omitted variable bias (no confounding) once we condition on X,
systematic differences — such as average or distributional — in the health outcomes of
treated and untreated individuals can be attributed solely to programme exposition.

This means we can estimate average treatment effects of a health programme in a

subpopulation with covariates X=x by using:

% The effects of migration selectivity of the form illustrated here were first studied by Rosenzweig and
Wolpin (1988) for the general case of public programmes availability.

® Together, assumptions 1 and 2 were denominated “strong ignorability” by Rosenbaum and Rubin
(1983).
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E[YT-Y°|X =x]=E(Y"|X =x)-E(Y®|X =x)
=E(Y"|X=xD=1)-E(Y®|X =x,D=0) (7)
=E(Y|X=x,D=1)-E(Y|X =xD=0)
As it can be noticed, it is only possible to estimate (7) if we can estimate the
expectations E(Y | X =x,D=1)and E(Y | X =x,D =0), that is, if we have common

support for all values of D and X; otherwise, we would have either only treated or
untreated individuals at some values of the covariates and would be impossible to
estimate both expectations.

If the interest lies on the ATT, both a weaker unconfoundedness assumption and

a weaker overlap assumption can be invoked.

AsSUMPTION 3 (WEAK UNCONFOUNDEDNESS): Y© L D| X.
AsSUMPTION 4 (WEAK OVERLAP): P(D =1] X)<1.

These assumptions suffice for identifying the ATT because the moments of the
distribution of YT for the treated are directly measurable; only assumptions about the

potential outcomes of comparison individuals are needed for estimating the

counterfactual in the ATT formula. Analogously, only Y™ LD|X and
0<P(D =1| X)are required if the ATU is to be estimated.

Identification of average treatment effects by matching methods is thus based on
a basic assumption, unconfoundedness, which may or may not be plausible depending
on the particular context, and which is inherently untestable due to the impossibility
of actually observing the counterfactual. Therefore, tests for assessing the validity of
this assumption in the data can only be indirectly made. Imbens (2004) discusses two
approaches. One alternative is to use only comparison groups — such as individuals
who live in two localities where the health programme is not available — for
estimating the average treatment effect of interest, considering one of these groups as
the “treated” sample.® Although not a conclusive evidence, non-rejection of the null
hypothesis of no treatment effect makes more plausible that unconfoundedness holds
in the data, whilst rejecting the null points to the invalidity of at least one of the
comparison groups.

Another approach for proxy-testing the unconfoundedness assumption would be
to use the model for estimating the treatment effect on a variable determined before

* Estimation methods are discussed in the next section.
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the intervention was launched and thus not affected by exposure to the programme,
for instance a lagged value of the health outcome of interest (or a number of them,
provided they do not affect future treatment status). If a statistically significant
treatment effect is found, there is evidence that treatment and comparison groups are
systematically different, and so are their outcome distributions. Conversely, non-
rejecting the null gives some credibility to the unconfoundedness assumption in the
analysed setting.”

UNCONFOUNDEDNESS GIVEN THE PROPENSITY SCORE. A striking result due to
Rosenbaum and Rubin (1983) is that, if unconfoundedness holds by conditioning on X,
all biases due to observable characteristics are also removed by conditioning solely on
a scalar representing the individuals’ conditional probability of receiving treatment
given the set of observable pre-treatment characteristics X — known as the propensity
score — and hence the unconfoundedness assumption remains valid. Formally, define
the propensity score p(X) as the conditional probability of receiving treatment:

p(X)=P(D=1|X =x)=E[D|X =x] (8)

Then, it can be shown that the following must be true:

(YY) LD[X =(Y',Y?)LD|p(X) (9)

The proof of the above result is given in Rosenbaum and Rubin (1983). It
implies that the important results of unconfoundedness given covariates also hold
when conditioning solely on the propensity score: if by conditioning on X we get rid
of the correlation between D and X, the same occurs if we condition on the propensity

score instead. In this case, for instance, estimation of the ATT can be based on:
E[Y°|p(X)=p]=E[Y|p(X)=p,D=0]=E[Y®|p(X)=p,D=1]
and hence E[Y°|D:1]=E[E[YC|p(X):p,D=0}|D:1] can be used for

estimation purposes. It should be noted that, whilst the first part of (9) (independence

of treatment assignment and potential outcomes given observables) represents an

® Frolich (2004) discusses a somewhat weaker test, based on additional untestable assumptions, which
consists in testing the equality of mean pre-programme conditional outcomes between treatment and

comparison groups, E [Y:1 | X] =E [Yf1 | X] =E [YH | X ] Systematic differences between the two
mean outcomes would cast doubt on the plausibility of the unconfoundedness assumption in that
particular setting. It must be noted that, if the interest lies on the programme effects over more than one

health outcome, the plausibility of the unconfoundedness assumption should be analysed on a case-by-
case basis.
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assumption and is hence inherently untestable, independence between the treatment
variable and covariates once conditioning on the propensity score, X L D|p(X), is
a key condition for obtaining reliable estimates in a propensity score matching

estimation context and can be tested with the observed data, as it will be discussed in
Section 3.2.2.

3.1.3. Asymptotic variances and efficiency bounds for average

treatment effects

As expected, estimators proposed in the programme evaluation literature for
recovering the average treatment effects described above have been judged not only
according to their unbiasedness and consistency results, but also according to their
ability of achieving the so-called efficiency bound - the lower bound for the
asymptotic variance of a root-N consistent estimator. Efficiency bounds have been
derived for estimators of the main average treatment effects; here, I will focus on the
ATE and ATT parameters.

Following Hahn (1998), leto?(X) =Var (Y| X )and o7(X)=Var(Y"|X) be
the conditional variances of the potential outcomes, E[p(x)] the unconditional
treatment ~ probability, 7(X)=E(Y'-Y®|X) the conditional ATE, and
r=E[r(X)] the unconditional ATE; analogously, let the unconditional ATT be

7, =E[r(X)|D=1]. Hahn (1998) shows that estimators of the ATE must have

asymptotic variances such as:

oi(X), o2(X) 0
p(x) "1-p(x) )77 t0

oae 2 E

Hahn (1998) also shows that knowing the propensity score does not affect the
variance lower bound (10) for estimating the ATE, but it does change (reduces) the
lower bound for estimating the ATT. The lower bound for the asymptotic variance of

a root-N consistent ATT estimator when the propensity score is known must be:

o | PX)eR(x)  [POOTeE(X)  (z(X)-a) [p(O]
E[p()] E[p(X)][1-p(X)]  E[p(X)]

(11)

14



whilst without knowledge of the propensity score the lower bound will be:

52 s P (X) [p(X)] 02 (X) (=) =5) p(X)
EpO)T  E[PO)TT-p()]  E[p(OX)T

which is larger than (11). Intuitively, this is because the ATT is a weighted average of

(12)

the treatment effect conditional on the covariates, with weights given by the product
of the density of the covariates and the propensity score; if the latter is known, there is
no need to estimate the weighting function and precision is improved, leading to the
reduced lower bound (12) (Imbens, 2004).

By inspecting the formulae above, it is clear that estimating the variances of
ATE and ATT estimators is a difficult task. This requires the estimation of at least one
unknown regression function and conditional variance and usually of the propensity

score as well, as can be seen by rewriting the variance lower bound for the ATE case:

2

62 >E o7 (X) | oe(X) +[E(YTIX)-E(Y¢|X)-7]
P(X) 1-p(X)

Estimation of all the components above can be done, but involves additional
burden to the average treatment effect estimation. A simpler alternative — commonly
used in applied work, as it will be discussed below — is to use bootstrapping methods.

Up to this point, the discussion has been focused on the estimands of interest
and their characteristics. Thus, the next step is to explain how matching methods can

recover the average treatment effects of interest for health programme evaluation.
3.2 Matching estimation of average treatment effects

Similarly to estimations based on natural experiments, matching methods
attempt to mimic an experiment using non-experimental data and, for this purpose,
need to make some independence and exclusion assumptions. All the matching
procedures that will be discussed below — including propensity score matching and its
extensions for the multiple and continuous treatments cases — rely on some version of
the fundamental unconfoundedness assumption (Assumption 1) coupled with overlap
(Assumption 2), suitably adapted for the estimation of the average treatment effect of
interest. For ease of exposition, most of the discussion in this section will focus on

estimating the ATT; extending the ideas for the estimation of other parameters such as
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the ATE is often straightforward and will be explicitly addressed according to

necessity.
3.2.1. Matching on covariates

The matching method is a non-parametric approach that tries to re-establish the
conditions of an experiment when only non-experimental data are available. It is non-
parametric because no particular specification needs to be assumed for the outcomes,
treatment decision process or the unobservable term. The broad idea is to construct a
matched comparison group — containing the missing counterfactual information —
based on individual observable characteristics: individuals will be compared only to
their counterparts who are similar in terms of these observable factors. As it was
explained above, the observable characteristics on which matching will be based
should be those that affect the individual treatment status and health outcomes
simultaneously. Variants of this method have proven very useful in empirical research,
mainly (but not only) when the average treatment effect of interest is the ATT and
when there is a large pool of comparison individuals.

Taking Blundell and Costa-Dias (2000) exposition as a starting point, let S be
the support (set of all possible values) of the vector of explanatory variables X, and let
S* be the common support of X, the space of X that is observed both among treatment
and comparison groups in the dataset. A consistent estimator for the ATT of a given
health programme is the empirical counterpart of:

L*E[YT -Y¢|X,D=1]dF (X |D=1)
[ dF(x|D=1)

(13)

where the numerator is the expected health benefit for individuals exposed to the
health intervention for whom it was possible to find a comparable (in X terms)
unexposed individual — i.e., over the common support. Individual health gains must
then be integrated over the distribution of observables among treated individuals and
re-scaled by the dimension of the common support. As an illustration, let X take only
discrete values; then, the sample analogue of expression (13) means that treated and
comparison individuals will be compared in all cells formed by the combination of x’s
and a weighted average over these cells will be taken, using as weights the proportion
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of treated individuals in each of the cells. Furthermore, cells with only treated or
comparison individuals will not be used for estimation purposes.

Thus, a consistent estimator for the ATT (13) is simply the mean conditional

difference in health outcomes over the region of common support S°, appropriately

weighted by the distribution of treated individuals over X €S”. Clearly, matching
methods will only recover the parameter of interest provided that the outcomes for
comparison individuals are good approximations to the counterfactual, i.e. if matching
is performed within the common support region. In this case, the assumption of
unconfoundedness in the common support region can be invoked as a basis for
matching estimation of the ATT:

ASSUMPTION 5 (UNCONFOUNDEDNESS IN THE COMMON SUPPORT REGION):
YCLD|X for XeS.

However, one of the limitations of matching methods is that they do not ensure
that the support for the comparison group equals the support for the treatment group;
in other words, often (13) cannot be identified for all subsets of S given D=1, and a
different parameter — no longer the experimental sample average treatment effect — is
being defined and estimated. Also, depending on the nature of the health programme,
the weak overlap assumption (Assumption 4) for identifying the ATT can represent
quite strong a requirement, for instance when the health intervention has been targeted
to a very specific group. If the impact of the health programme is homogeneous
within the treatment group, the only problem of not finding a suitable counterfactual
for some treated individuals and hence discarding them will be the loss of information.
On the other hand, if the programme effect is indeed heterogeneous and the
counterfactual cannot be obtained for some subgroups of treated individuals, the loss
of observations also limits the parameter that can be identified, which will be
consistent only for the region of common support. In this situation, it is possible that
the estimated impact does not represent the mean impact of the health programme, but
insisting in the estimation of a treatment effect by matching without common support
can introduce severe bias by relying on the matching of treated individuals — with
possibly outlying covariate values — to substantially different comparison individuals.

The next step is to generally define the matching estimator in formal terms. The

main idea of matching is to pair to each treated individual another (or a group) of

comparison individual(s), associating to the health outcome Y," of the treated person i
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a matched outcome \fjc given by the (weighted) outcome(s) of her “neighbour(s)” j in

the comparison group. The general form of the matching estimator for the ATT within

the common support region is given by:

~ATT ~
ﬂM = Z (YiT _ch )Wi (14)
ie{TNS™}
In (14), the summation is performed over the group of individuals belonging to

the treatment group T and falling within the common support regionS™. The term W,

stands for the reweighting that reconstructs the health outcome distribution for the
treated sample (Blundell and Costa-Dias, 2000). The matching estimator for the ATT

usually takes the form:

Bul= X (W) (15)

i{TnS"} NT

where N; denotes the number of treated individuals falling within the common

. ~c 1 .
support region. Note that ZYJ.C N corresponds to the estimator for the average
T

untreated counterfactual for treated individuals, E[YC |T]. The general form of the

estimator for the counterfactual for treated individual i is:

YO=E(YIX,.D=1)= > wyYS (16)

J
jefC(X)ns™}
where C(X;) defines comparable neighbours of i in terms of X characteristics and

W, is the weight placed on untreated individual j when compared to i, with W, e [0,1]

and Z W; =1. A commonly used matching estimator (e.g., Dehejia and Wahba,

je{C(X)ns’}
2002) takes the form:
A~ ATT T 1 c| 1
Pu = Z Y, - Z N Yj N (17)
ie{TnS"} jfe(x)nsy Ne(x;) T

The particular form assumed by the ATT matching estimator for the
counterfactual (16) depends on the number of neighbours that will be used in
constructing the counterfactual health outcome for each treated individual and also on
the weighting scheme chosen. The simplest matching procedure — called nearest-

neighbour matching (NNM) — consists in using only the health outcome of the
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observably closest untreated individual as the matched counterfactual. Consequently,
the matching estimator formula collapses to:

:/B\S:l:/l = z (YiT _ch )Wi (18)
TS}

where j now refers to the closest comparison individual to treated individual i. Other
matching procedures will be discussed later in the context of propensity score
matching; they include radius matching (which uses multiple matches when there is
more than one comparison observation within a tolerated distance of the treated
individual in terms of observables to perform the matching, and the counterfactual is
an average outcome of these comparison individuals) and kernel matching (where the
counterfactual comes from a weighted average of the outcomes of several or all
comparison individuals, weights being defined according to the “closeness” of their

characteristics based on a metric function such as Gaussian or Epanechnikov kernel).
The definition of closeness for choosing the comparable neighbours j is a
required step in matching estimation. As mentioned above, the set of comparable
neighbours for a given treated individual may be restricted to one comparison
individual or contain many of them who are considered “close enough” in terms of
observables and whose health outcomes might be differently weighted according to
their degree of similarity. Closeness of the individual vectors of covariates is usually
measured by employing Euclidean or Mahalanobis metrics. The latter metric
incorporates the former but has the advantage of taking into account the correlation
between coordinates of X: the Mahalanobis distance between treated observation i and

comparison observation j is given by:

dM(xi,xj)z\/(xi—xj)'v1(xi—xj)

where V corresponds to the covariance matrix of the covariates in the sample (only in

the treated sample if estimating the ATT). In this way, when comparing the covariate
vectors of any two individuals, the contribution of the Euclidean distance measured
for a given covariate to the total Mahalanobis distance will depend on the precision
(in variance terms) with which that particular covariate is measured: the more (less)
precisely that covariate is measured in the sample, the more (less) weight its
corresponding distance will be given in the computation of the total Mahalanobis

distance.
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Different weighting schemes for matched comparison individuals (as in nearest-
neighbour, radius or kernel matching), which reflect different ways of using the
available information, can potentially influence the results of the average treatment
effects estimation. Abadie and Imbens (2002) show that simple matching estimators
such as nearest-neighbour can suffer from bias and not to be root-N consistent if more
than one continuous covariate is used (although the bias can be small or even
disappear under specific conditions, for instance by having a large comparison group
relatively to the size of the treatment group). The authors also find that matching
estimators are not generally efficient given a fixed number of matches.® However, as
the extensive review made by Imbens (2004) suggests, the current debate on the
practical advantages of each matching estimator is still inconclusive.

For the unconfoundedness assumption to be valid in estimating the ATT, the

matched comparison group cannot differ from the treatment group by any variable

that is systematically related to the potential outcome Y. Choosing a “good” and
rich set of covariates is therefore essential for the credibility of the unconfoundedness
assumption in the context of matching estimation. Imbens (2004) identifies two main
issues that dominate the choice of the covariates set. Firstly, in finite samples,
including covariates that are only weakly correlated with the treatment variable and/or
the health outcomes may decrease precision (or, in more formal words, increase the
expected mean squared error). Secondly, and more importantly, covariates that are
themselves affected by the health programme — such as intermediate outcomes —
should not be included in the covariates set; as a general rule, health outcomes of
potential interest for the impact evaluation of a particular programme must be
excluded from the matching variables used.’

In summary, the set of matching covariates should basically include pre-
treatment variables, time-invariant characteristics (such as gender and education) and
variables that are deterministic with regard to time (such as age). Factors which affect
only treatment status or the potential health outcomes do not need to be controlled for.

Thus, for instance, if individuals with a higher unobserved trait are more likely to be

®In practice, since the matching estimator is the (weighted) difference between two sample means,
standard methods for calculating the variance for difference in means in randomised studies have been
commonly applied without additional corrections for potential biases (Imbens, 2004).

" Behrman et al. (2004) use the percentage of individuals correctly classified regarding treatment status
(hit-or-miss criterion) as a simple test to choose among sets of regressors for estimating the propensity
score.
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exposed to the health intervention, but this unobserved factor has no effect on
potential health outcomes, then it needs not be included in the set of covariates X.
Treated and matched comparison individuals do not have to be similar regarding all
observable characteristics, but instead regarding all confounding variables. Whether
this is achieved with a particular dataset must be argued on a case-by-case basis,
taking into consideration also the institutional characteristics that drive the selection
into treatment. If a dataset contains high-quality data rich in covariates associated
both with exposition to the programme and health outcomes, matching becomes a
more sensible choice.

However, one important consequence of the above is that, the more data the
researcher uses, the more difficult it will be to find similar untreated individuals and
the more restricted the common support region can become — for instance, with
discrete X, small or empty cells may be obtained. An additional general limitation of
the matching method lies on the difficulty of finding matches when a wide range of X
variables is being used. Apart from imposing linearity in the parameters (and thus
coming back to ordinary least-squares regression analysis), one possibility for
reducing the high dimensionality problem is to combine all covariates into a scalar
measuring the distance between observations i and j (using Euclidean or Mahalanobis
metrics), a procedure known generally as inexact matching. Another possibility (more
commonly used) is to match on the propensity score, a scalar which also condenses all
the information contained in the covariates vector; this will be the topic of the next

sub-section.
3.2.2. Matching on the propensity score

An alternative for solving the matching version of the curse of dimensionality is
to use the propensity score as the matching criterion. The problems are now only the
estimation of the propensity scores of each individual of the sample as a function of
the covariates, and the estimation of the mean health outcome in the comparison

group as a function of the propensity scores. The former is usually done

parametrically, whereas the specifications of E[YT-Y®|p(X)], E[Y®|p(X)]

and E[YT | p(x)] are left unrestricted, resulting in a semi-parametric method. The
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conditioning vector of individual characteristics has thus its dimension reduced to
one.®

Intuitively, matching on the propensity score works because it imposes the same
distribution of covariates for the treatment and comparison groups, that is, the density
of the matching covariates does not vary with treatment status; therefore,

unconfoundedness given p(X) implies the same given X. The fundamental result is

that, under unconfoundedness, conditioning on the propensity score leads to the

removal of the correlation between the set of covariates X and treatments status D:
X LD|p(X)

The propensity score is called a balancing score due to its ability of balancing
the relevant covariates across the matched groups (Rosenbaum and Rubin, 1983).
This approach divides the sample into sub-samples where causal comparisons can be
performed and appropriately reweighs the health outcomes of the comparison group
individuals. Once we condition on the propensity score, the resulting distribution of
covariates should be the same in the treatment and comparison groups, and being
exposed to the health programme or not should be now random for a group of
individuals with similar propensity scores.® Thus, the omission of X does not lead to
any bias, although it may still lead to efficiency loss due to less information used
(Imbens, 2004).

In practice, however, individuals with similar propensity score values might end
up being quite dissimilar regarding a few covariates deemed very important for
explaining the selection into the health programme and potential health outcomes;
therefore, in finite samples, it can be more efficient to match on a vector including a
combination of the individual propensity score and a few important covariates (rather
than solely on the propensity score), achieving a better balancing of the relevant
observables in the researcher’s specific context. Importantly, given that the propensity

score is a balancing score, any combination of that conditional probability with

& One way of using the estimated propensity scores for estimating average treatment effects is in fact an
extension of traditional regression methods. The main idea is to use the propensity scores as weights
for the observations, which are weighted by the inverse of the probability of being assigned to the
treatment actually received, so as to balance the distribution of covariates between treatment and
comparison groups. The propensity score weighting method will not be discussed here due to the fact
that it does not rely on matching procedures; the interested reader is referred to Imbens (2004) for a
basic review of this estimation method. My discussion focuses on propensity score matching methods.

® The rigorous definition of the term “similar” will be given below and depends on the particular
propensity score matching procedure to be applied.
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elements of the vector of covariates X — which would contain more information than
using only the propensity score — is also a balancing score.

Since the balancing of covariates between treatment and comparison groups is
essential for obtaining reliable estimation results, it is good practice to assess the
balancing condition after conditioning on the propensity score. This can be visually
inspected by plotting the distributions of propensity scores for treatment and
comparison samples, which should be now roughly equivalent. A test for the equality
of means of propensity scores in the matched and unmatched sub-samples can
complement this visual inspection. A regression-based test may be regressing the
treatment variable on the set of covariates before and after matching has been
performed; if treatment assignment is really random after matching on the propensity
score, the regression will show low explanatory power (R-squared) and one will not
be able to reject the null hypothesis of joint insignificance of the entire covariates’ set.
Other indicative tests include checking whether the calculated Mahalanobis distance
between the vectors of covariates of treated and untreated groups is indeed close to
zero after matching, for instance.

In principle, the propensity score could be estimated using either parametric or
non-parametric procedures. Nevertheless, it is well known that non-parametric
estimators tend to run into trouble when the number of covariates is large, resulting in
a return to the dimensionality problem that, after all, propensity score matching seeks
to avoid. For this reason, propensity scores are usually estimated by parametric
techniques in applied work. Since the problem consists on estimating a conditional
probability — for a binary treatment variable in the case of a single treatment — there is
a good idea about the methods that can perform adequately for this task. Thus, logit or
probit specifications are normally chosen for estimating the individual probabilities of
being exposed to the active treatment conditional on covariates.

As previously described, the coupling of the balancing score result due to
Rosenbaum and Rubin (1983) with the unconfoundedness assumption means that the

ATT of a given health programme can be estimated using the fact
that E[ Y |D=1]= E[E[YC |p(X)=p,D=0]| Dzl}. The propensity score (PS)

matching estimator for the ATT takes the same general form of the corresponding

matching estimator:
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A~ ATT ~
Prs = Z (YiT _ch )Wi
ie{TNS"}

The counterfactual is constructed as a weighted average of the health outcomes
of matched individuals not exposed to the intervention, but this time matched
according to the propensity score:

YO=E(YSIp(X).D=1)= > WY/ (19)
je(C(pi(X))ns"}

A common formulation of the PS matching estimator for the ATT is given by:

32: = Z [YiT - Z WinjCJ Nl* (20)

ie{Tns"} je(C(pi(X))ns"y
The weight W; accruing to comparison individual j when constructing the

counterfactual for treated person i is now dependent on the distance between their
propensity scores, p;j(X) and pi(X) respectively, instead of being dependent on the
distance between their whole sets of observables as in the matching on covariates’
case. As it will be discussed below, the exact weighting scheme to be applied to
comparison individuals on the basis of their propensity scores will vary according to
the specific matching method being used.

An important step in performing propensity score matching is the weighting
procedure adopted for constructing the counterfactual. Following Smith and Todd

(2005), define p; and p; as the estimated propensity scores of treated individual i and
comparison individual j, respectively. Let the neighbourhood set C ( pi)— the set of
comparable neighbours for i — be the set of individuals belonging to the comparison
group C for whom the propensity score is close to i’s propensity score by some pre-

defined measure. Therefore, the matched set, the set of comparison individuals

matched to i, can be defined as:
M, ={jeC|p;eC(p)} (21)
The propensity score matching methods described below differ in the way they

define “closeness” — that is, the set C ( p; ) — and how the weights W, are constructed.

A. Nearest-neighbour matching
The simplest form of applying this matching method is by using the health

outcome of the closest comparison individual as the counterfactual, without
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replacement (i.e. each comparison observation can serve as a match for at most one
treated person). The closest comparison individual forms the singleton matched set M;

defined in (21) and is the one for whom the following is true:
M. :{j eCl]j :argmjiani - ij}
where the termH P, — ijdenotes the Euclidean distance between propensity scores.™

If there is a tie between two or more comparison observations, this tie is usually
broken by a random draw.

This simplest form can lead to considerable bias if it results in many bad
matches, due to treated individuals being matched to comparison counterparts which
have very different propensity scores (despite being the “closest” neighbours). This is
the consequence of having regions in the covariate space with low density of
propensity scores for the comparison group relative to the treatment group, and of not
imposing a priori a common support restriction. Additionally, the results obtained
will depend on the order in which individuals get matched.

Some flexibility can be introduced by allowing the matching procedure to be
performed with replacement and/or multiple matches. Matching with replacement is
less demanding in terms of the overlap condition because it allows extreme
observations within the comparison group to be used more than once. If re-use occurs,
matching with replacement will use better matches for each treated individual thus
reducing the bias, but the variance of the estimates will probably be higher than in the
no-replacement case due to the smaller number of different comparison observations
used to construct the counterfactual.

Therefore, if replacement is allowed but with only the closest neighbour being
matched to the treated observation, very few observations in the sample might end up
being heavily used even with similar comparison observations being available,
leading to an unnecessary increase in variance. On the other hand, using multiple

nearest neighbours tends to reduce the variance of the treatment effects estimates

19 Straightforward modifications to the conditions for the neighbourhood set in each propensity score
matching procedure apply to the “matching on covariates” case. For instance, if nearest-neighbour
matching on a set of variables X is being performed (instead of PS matching), then the condition would

be C(Xi):min”Xi—Xj”, j €C, referring to the Euclidean distance between the vectors of
i

covariates of treated individual i and comparison individual j. An alternative metric, such as the
Mahalanobis distance, could also be used.
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(more information is used in constructing the counterfactual) at the likely cost of
increased bias due to poorer matches on average.

B. Caliper matching

This is an extension of nearest-neighbour matching that avoids bad matches by
constructing the matched set M; using only comparison individuals whose propensity
scores are within a tolerated distance from p;. In formal terms, the matched set is
denoted by:

M, ={jeCl|p,—p;| <&} (22)
where £ >0 is a pre-defined tolerance distance, the caliper. If, for instance, the
interest lies on estimating the ATT, the nearest neighbour will only be matched to the
corresponding treated observation if the comparison individual’s j propensity score
falls within the aforementioned tolerated distance.

The definition of the caliper must be left to the researcher’s subjective concept
of reasonability. If the caliper criterion leads to the exclusion of treated individuals
from the analysis (those without a suitable comparison match), one may have to
redefine the treatment effect parameter being estimated and focus on an ATT for
individuals within a particular range of covariates values. Caliper matching can be
made more flexible by using multiple matches when there is more than one suitable
comparison observation to perform the matching; in this case, the counterfactual
would be an average health outcome of comparison individuals within the caliper.
This procedure has been denominated radius matching.

Therefore, caliper matching enforces the common support condition by
excluding from the analysis those individuals exposed to the health intervention for
whom it was not possible to find at least one good match, that is, at least one

comparison individual whose propensity score falls within the tolerance distance.

C. Stratification or interval matching

The main idea of this matching method is to divide the common support region
into intervals (or “blocks”) and then calculating one mean treatment effect for each
interval. The overall ATT is computed as a weighted average of mean interval effects,
with weights being defined as the number of treated individuals in each interval

(analogously, weighting by the total number of individuals in each interval leads to

26



the estimate of the ATE for that particular block). Implementation of this method is
therefore to be preceded by the definition of the matched set M; — and thus of the

common support region — by one of the procedures described herein.

In formal terms, let the common support of P(D =1| X )= p(X) be partitioned

in | intervals containing both treated and comparison individuals — hence discarding

observations in intervals in which there are either only treated or only comparison
individuals. Also, let ﬁ represent the difference between average treated and

comparison outcomes within the kth interval (as if randomisation of treatment had

occurred within that particular block) and N;_ denote the number of treated

individuals falling within the common support region and in interval k. If we use the
following estimator for the ATT in the kth interval:
g )
iek Tek jek Cek
then the overall estimated ATT will be given by:
i = 3 (AT, xN; ) 29
k=L T

One possibility (performed by Dehejia and Wahba, 1999) is to define the
intervals so as to have statistically insignificant differences between the estimated
propensity scores of treated and comparison individuals within each interval; the
balancing of important covariates within each block might be separately assessed as
well. Alternatively, the common support region can be divided into five categories —
quintiles — so as to have estimates of the ATT of a health programme according to
quintiles of income, for instance.

If the model for the propensity score has been adequately specified, one should
expect that the distribution of covariates among treatment and comparison groups are
well balanced within each interval. This works in fact as an informal test of the
statistical model. When covariates in a given interval end up not being well balanced
among groups, the researcher can interpret this either as an evidence of the need for
additional splitting of intervals, or for improving the statistical model of the
propensity score by, for example, adding more covariates. According to a review
made by Imbens (2004), no formal algorithm has been proposed for dealing with the
issue of the optimal number of blocks in finite samples, although based in asymptotic

properties the author sees no apparent harm in choosing a large number of intervals.
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Interval matching as described so far allows the estimation of average treatment
effects in a non-parametric way (of course, usually after the parametric estimation of
the propensity scores, as in the other matching methods); this is done by
approximating the unknown function by a step function with fixed jump points, which
leads to substantial difficulties for establishing asymptotic properties for this estimator
(Imbens, 2004). As an alternative, least squares regression might be used for
estimating the average treatment effect of interest within each interval. This is
equivalent to taking the *“unadjusted” regression of the health outcome on the

treatment variable within each block k and adding covariates to it, resulting in an

estimated average treatment effect 3 given by the regression Y = a. +pD+y X +e.

D. Kernel and local linear matching
In this matching procedure, the counterfactual for each treated individual is
constructed by using a kernel-weighted average over multiple comparison individuals.

The general form of the kernel matching estimator is given by:
A ATT

D YK Pih
1 . jeC(p;) ) hn
P P
T N i
ZieC(pi)K( JhrI j

where K (-) is a chosen kernel function with mean zero and which integrates to one;

(24)

also, hy is a bandwidth parameter which tends to zero as n tends to infinity (Smith and
Todd, 2005). The weighting term W;, in (20) is given by ( /z jec( ) and, as

usual, depends on the distance between the propensity score of each comparison
observation and the treated individual for which the counterfactual is being
constructed. For kernel functions taking non-zero values only on the interval [-1,1],

e

The kernel counterfactual estimate is a weighted average of the health outcomes

the matched set is denoted by:

<1} (25)

of comparison observations within the bandwidth at the current point of evaluation
(treated individual i), with greater weights placed on comparison observations with

propensity scores closer to pi. In matching estimation, the most common kernel
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functions are second-order kernels such as the uniform, Epanechnikov, biweight,
tricubic and Gaussian. The choice of a particular kernel function will not only affect
the specific weight accruing to a given comparison observation, but also the
composition of the common support region S*: for instance, while the Gaussian
kernel uses all comparison observations in constructing the counterfactual, the other
functions restrict the neighbourhood set to those comparison observations for which
p—p|<h.t

More important than the particular kernel function chosen is the choice of the
bandwidth. Kernel estimates are obtained by slicing the data into ever smaller
intervals as the sample size tends to infinity and estimating local behaviour within
each interval. As such, the kernel counterfactual estimator belongs to the category of
local averaging methods for which the definition of “localness” influences results in
finite samples, turning the bandwidth choice for smoothing the density estimate an
important step (Cameron and Trivedi, 2005). It can be noticed by looking at (25) that,
keeping the distance between propensity scores constant, choosing a smaller
bandwidth is equivalent to being stricter in defining the common support region, by

excluding some previously used comparison observations — those who no longer

satisfy the requirement ‘pi - pj‘gh — and placing a heavier weight on the health

outcomes of those comparison individuals who are closer to the treated observation.*
Conversely, increasing the bandwidth means being more tolerant in terms of the
closeness requirements imposed to comparison observations.*?

Smith and Todd (2005) note that kernel matching can be seen as a weighted

regression of ch on an intercept with kernel weights which vary according to the

evaluation point, with the estimated intercept providing an estimate of the
counterfactual mean. Additional adjustments for asymmetries of comparison
observations around treated observations can be made by including in the regression a

linear term in p;. This is equivalent to a more general specification of the kernel

' Common support restrictions may be placed on the treatment group as well, e.g. by excluding treated
individuals whose propensity scores are larger than the largest propensity score in the comparison
group. A similar though more refined procedure is to “trim” the common support region; this procedure
is explained in Smith and Todd (2005).

12 In the limit, continuously reducing h would lead to nearest-neighbour matching.

3 There are different procedures for defining an “optimal” bandwidth (which will vary with the
particular kernel function chosen). One common method is to use a plug-in estimate for the bandwidth,
a simple formula which depends on the sample size and the sample standard deviation, such as the
Silverman’s plug-in estimate (Cameron and Trivedi, 2005).
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matching estimator (24) called local linear matching, proposed by Heckman et al.
(1997) in order to correct for the fact that the probability mass of the estimated
propensity scores of treated and comparison observations in their sample tended to be

concentrated at the boundaries (close to one and zero, respectively). In local linear

matching, the weight W; is given by a combination of the kernel functions for

comparison individuals when matched to a given treated observation:

_ Kij KeC Ki ( P — B )2 _[Kij ( P — b )}[Zjec Kik ( Py — pi)i|

= . .
Zjec KijZkeC Kj ( P~ pi) _[Zkec Ki ( P =P )}

where K; =K(p;—p;/h,)and K, =K (p,—p,/h,). Heckman et al. (1997) argue

W.

ij

(26)

that the advantages of local linear regression over using standard kernel weights
include a faster rate of convergence near boundary points and greater robustness to
different data densities.

.

As noted by Imbens (2004), there are no formal results for the variance of the
propensity score matching estimators when the propensity score is unknown and
needs to be estimated.* Therefore, a common procedure is to estimate standard errors
by bootstrapping; however, the theoretical properties of bootstrap have not yet been
established for matching estimators (albeit there is some evidence that bootstrapping
does not lead to valid confidence intervals for some nearest-neighbour estimators; see
Abadie and Imbens, 2006). Although further research is clearly needed so as to
establish the reliability of bootstrapped standard errors for multiple matches-based
estimators, the vast majority of empirical research to date has relied on bootstrapping
as a feasible alternative for constructing confidence intervals in matching estimation
settings.

Finally, given its importance for a credible propensity score matching estimation
of treatment effects (and for matching procedures in general), the overlap assumption
should ideally be assessed using the real data. With the propensity score as the only
covariate, its distributions among treatment and comparison groups can be directly
plotted and compared, but the validity of the result depends on an adequate

“When parametric modelling is performed, it is often the case that the estimate of the asymptotic
variance of the treatment effect estimators ignores the fact that there is an error component associated
to the estimation of the propensity score (and also to the ordering of the matching process itself), hence
being considered a “conservative” estimator.
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specification of the propensity score model. When a high dimensional matrix of
covariates is being used, a good test of the overlap assumption is to verify the
distribution of the covariates deemed important for the evaluation in both groups. If in
fact there is lack of common support in one or more regions of the covariates
distribution, it can be advisable to drop matches where individual covariates are far
apart from each other — which, once again, may lead to a necessary redefinition of the
parameter being estimated.

3.2.3. Matching and difference-in-differences

The identification assumption which underpins matching estimation requires
that programme exposure and potential health outcomes are independent once the
relevant covariates are controlled for. Thus, if there remain any systematic differences
between the health outcomes of treated and comparison individuals, matching
estimation will not recover the parameter of interest. This will occur, for example, if
individuals select into the health programme based on unobserved characteristics
which are themselves correlated with their potential outcomes (e.g., more health-
concerned people, with “better” lifestyles, tend to migrate to areas where the health
programme of interest is available exactly because of these services availability), or
when there were differences on health endowments between the areas in which the
programme was implemented and those where it was not.

However, even in the cases just described, semi-parametric estimation of
average treatment effects can still be performed by relying on weaker identification
assumptions than the ones described in previous sections. If we have reasons to think
that there remain systematic differences between treated and comparison individuals
even after matching, but it can be assumed that those differences are time-invariant, a
difference-in-difference (DD) strategy can be adopted to eliminate the remaining
biases.

One important characteristic of matching methods is that they are flexible
enough to be combined with other estimation strategies such as DD, therefore
allowing identification of the parameters of interest to be based on weaker, more
credible assumptions for some settings. Moreover, a combined matching-DD

approach has two advantages over the standard DD method: firstly, there is no
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imposition of a linear relationship between treatment and health outcomes, with the
linking function between health outcomes and treatment status allowed to change over
time; secondly, comparison observations are reweighed according to their similarity —
in terms of observable covariates — to their treated counterparts (Smith and Todd,
2005). One weakness of the DD approach is that usually there are no guidelines
regarding which covariates, if any, should be included in the regression.

If t; denotes the time period after the programme was implemented, the
evaluation problem for estimating the ATT can be expressed as estimating the

counterfactual in:
E(Y -Y°|D=1t)=E(Y [D=1t)-E(Y,°|D=1t,) (27)
With two time periods, where ty represents the time period before exposure to
the health programme, and under the assumption that the evolution of health

outcomes in treatment and comparison groups would have been the same in the

absence of the programme, (27) is equivalent to:

E(YID=1t)-[ E(Y D=1t )+E(Y°[D=0)-E(Y°|D=0t,)]

=E(YID=1t)-E(Y°|D=1t)-[ E(Y%°|D=0)-E(Y°|D=01)] (28)

=E(YID=1t)-E(Y°|D=0t)-[ E(Y|D=11)-E(Y°|D=01,)]

Reliable estimation of the last three terms in any line of (28) requires the
comparison of health outcomes across similar groups. Consider the case of
propensity-score matching estimation. Heckman et al. (1997) suggest the following
difference-in-differences propensity score matching (PSDD) estimator for the ATT:

~ 1
o= 2 | (XE)- 3w (vg i) @)
T ie{Ts"} je{Cms*}

The idea behind this estimation procedure is to eliminate any systematic time-
invariant differences — e.g., health endowments or geographic mismatches — between
groups exposed and unexposed to the health programme, conditional on the
propensity score. This will be true only if a modified version of the weak

unconfoundedness assumption holds:

ASSUMPTION 6 (WEAK UNCONFOUNDEDNESS FOR PSDD):

(Y -YS) LD p(X).
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Unconfoundedness as defined in Assumption 6 states that, conditional on the
propensity score, it must be the case that comparison individuals have evolved in
terms of their (average) health outcomes in the same way treated individuals would
have evolved had they not received treatment; this is the matching-modified version
of the “parallel trend”” assumption invoked for standard DD estimation. This is
weaker than the assumptions previously defined in this paper because now it is not a
problem if there are unobserved factors which affect exposure to the programme and
health outcomes simultaneously, as long as the effect of these unobserved variables
exhibits the same variation, on average, for treated and comparison individuals. This
guarantees that the following equality holds and can be used for estimation purposes:

E(YS-YS|P(X),D=1)=E(YS Y |P(X),D=0)

The overlap assumption must hold in both periods: for a given propensity score
value, there must be both comparison and treated observations in both periods. Also,
as it can be easily noticed, panel data are required to estimate (29); however, it can be
the case that i) panel data are not available at least for the comparison individuals, or
ii) only repeated cross-sections data are available for both groups. Smith and Todd
(2005) modify the estimator (29) to deal with the former case; for the latter case,
Blundell and Costa-Dias (2000) propose a repeated cross-section PSDD estimator of
the ATT that can be expressed as:

A 1
ﬁsTEID - N> Z HYQ N Z WiJ'YJ%]_[_ {Z WinJ?1 N Z Wini(t:cJ B (30)
je

T iefns') jeffors*) Gins jefCons*)

In (30), To, T1, Co and C; stand for the treatment and comparison groups in the
periods before and after exposure to the health programme, respectively. Therefore,
the estimator proposed by Blundell and Costa-Dias (2000) requires matching to be
performed three times for each treated individual: to find comparable treated
individual(s) before treatment and comparison individuals before and after the
programme.

As to the relevant propensity score to be used when performing the matching
procedure in a repeated cross-sections context, an alternative is proposed by Blundell
et al. (2002). Since there are two non-random assignments — to treatment and time of
observation — and the distribution of covariates must be the same in the four cells
defined by combining these assignments, the authors use a vector of two propensity

scores (one for each assignment category) as the matching variable. Once the three
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counterfactuals have been constructed by a chosen matching procedure, the
programme ATT is estimated by DD as in (30) under the additional assumptions of

additive separability of the group and time effects.

4 Matching estimation of health programme average treatment

effects with multiple treatments

The matching methods discussed so far were originally developed for assessing
the impact of social programmes when the treatment variable is defined as a binary
category: the individual is either in the active treatment group or in the comparison
group (the latter usually defined as the “untreated” case). There has been though some
recent interest in investigating the potential that matching methods have for jointly
evaluating the impact of alternative programmes, mainly in labour market policies
settings (see, for instance, Lechner, 2002; Frolich et al, 2004). This calls of course for
an extension of the matching procedures described above so as to contemplate the
case of multiple alternative interventions.

Obviously, it can be very relevant to evaluate the impact of alternative
programmes in the context of health interventions as well. Health programmes aimed
at improving the same health outcomes may contain different components (for
example, offering a different mix of health services) or the same health intervention
may be available in several geographic areas, but with different population coverage
levels across these localities. Another evaluation setting could require the impact
assessment of the same health programme when individuals have been exposed to the
intervention for different periods of time. All the settings just described can be seen as
involving a comparison between the health impacts of alternative “programmes”,
where for instance coverage levels and length of exposure play the role of compared
alternatives.

The required extensions of matching procedures for the case of multiple
treatments have been proposed almost simultaneously in two papers, Imbens (2000)
and Lechner (2000). They show that the main results obtained for the case of
matching with a single treatment apply for the multivariate case as well. I will present
these developments relating them to the aforementioned health sector relevant case of
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a health programme with different levels of population coverage between localities,
the so-called “dose-response” context.

4.1 Average treatment effects: definition and identification

4.1.1. Definition of average treatment effects

Applying the definitions introduced by Lechner (2000) to a more specific
context, let a given health programme be implemented in a group of localities

according to sequentially increasing, mutually exclusive coverage levels | denoted by

I :{0,1,2,..., L}. A given individual i who lives in a locality with a coverage level |

will have then only one element of the outcomes set {YO,Yl,YZ,...,YL} observed at a

given point in time, the remaining being her counterfactual outcomes. The treatment

variable D can now assume one of (L+1) discrete values: D {0,1, 2,..., L}.

The average treatment effects of interest defined for the single treatment case
are expanded so as to encompass the availability of multiple treatments, although the
focus remains on pair wise comparisons between the health effects of two different

coverage levels, e.g., |, =1and I, =2, I, >1,. The causal effects of interest are now

related to the difference Y, —Y?, that is, the effect of being exposed to treatment level

2 and not being exposed to treatment level 1.
Average Treatment Effect (ATE): this is the expected health effect of living in a
locality with a coverage level | =2 instead of living in an area with 1=1 for an

individual randomly drawn from the entire population.
ATE* =E[Y?-Y'|=E[Y?]|-E[Y'] (31)
Note that the average treatment effect of being subjected to coverage level 2

instead of 1 is symmetric to the treatment effect of being subjected to the latter instead

of the former, i.e. ATE®*'=—ATE. Note also that E[Y'Z—Y'l] involves the

computation of the expected value of every counterfactual outcome for that particular

pair wise comparison, as can be seen by expanding (31):
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ATE? = EI:YZ —Y1]= E':Y2 —YY DZO]P(D:0)+E[Y2 Y D=1]P(D=1)+
+E[Y*-Y!|D=2]P(D=2)+..+

+E[Y*-Y'|D=L|P(D=L) (32)

=Y E[Y?*-Y'|D=I|P(D=I)

L
=0

Thus, in the matching estimator case, the ATE can be obtained by estimating the
expected outcomes conditional on covariates in both groups and weighting them by
the distribution of these covariates in the full sample:

ATE* =E[Y?|-E[Y']
:E[E(YﬂX)]—E[E(YHX)] (33)
= [[E(Y?*1X =% D=2)-E(Y*|X =x,D=1) - f, (x)dx
where f, (x) denotes the density of X in the whole sample. A modified version of the

unconfoundedness assumption is necessary for (33) to be valid; this assumption is
rigorously defined in the next sub-section.

Lechner (2000) suggests also a redefinition of the ATE so as to refer only to the
population exposed to the two coverage levels of a given pair wise comparison. This
“restricted ATE™ is similar to the definition of the ATE when the treatment variable is
binary:

ATER =E[Y?-Y'|D=12]|=E[Y?|D=12]-E[Y'|D=12] (34)

The above treatment effect is also symmetric in the sense that
ATE2* = —ATEL?.

Average Treatment Effect on the Treated (ATT): this parameter corresponds to
the average effect among those who reside in a locality with a coverage level | =2
when compared to those who live in a locality with coverage level | =1.

ATT* =E[Y?-Y'|D=2]|=E[Y?|D=2]-E[Y'|D=2] (35)

Thus, in the context of a health programme with multiple possible levels of
coverage, the ATT is equivalent to the marginal gain (in terms of health outcomes)
accruing to a randomly selected individual from a locality with coverage level 2,
relative to what would have been her outcome if she had lived in a locality with
coverage level 1. Again, under unconfoundedness, the ATT can be identified in the

matching estimation context as:
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ATT* =E[Y*-Y'|D=2|=E[Y?|D=2]-E[Y'|D=2]
:E[Y2|D:2]-E[E(Y1|X,D=1)|D=2] (36)
=E[Y?|D=2]-[E(Y'| X =x,D =1)- f, 5, (x)dx

where f><|D:2(X) denotes the density of X only among individuals exposed to

treatment level 2.
The symmetry property for the ATE measures mentioned above does not
necessarily hold in the case of the ATT. To see this, notice that

ATT* =E[Y'-Y?|D=1]=E[Y"|D=1]-E[Y?|D=1], which is different from
(—ATT“) because the conditioning sets differ. This difference will hold if

individuals living in the compared areas systematically differ in a way related to their
health outcomes.

Summing up, as in the case of a single treatment, estimating the ATT is less
demanding in terms of required information than estimating the ATE (even if the

latter is pair wise restricted). Estimating ATT?' requires only identification of

E[Y'|D=2]; estimation of ATEZ"requires identification of two counterfactuals,
E[Y'|D=2]and E[Y?|D =1]. The more demanding situation is that of estimation

of the ATE, for which the series of counterfactuals E[Y1 |D ¢1] and E[Y2 |D = 2}

need to be identified."
4.1.2. ldentification of average treatment effects

The treatment effects defined above can be consistently estimated using
matching methods even in a multiple treatment setting. Analogously to the single
treatment case, identification is based on two fundamental assumptions about

treatment — or, in our case, coverage level — assignment: unconfoundedness and

overlap. Let p' (x)be the individual probability of being assigned to coverage level |

15 Since many alternative comparisons of programmes are possible when multiple treatments are
available, Lechner (2001) suggested further treatment effects parameters which are not going to be
discussed here. In the present setting, these composite measures would refer to the average treatment
effect for an individual of being exposed to coverage level | compared to the treatment effect of being
randomly assigned to any of the other available coverage levels with the probabilities valid in the
population.

37



given the vector of individual covariates X; then, the two fundamental assumptions
are:

ASSUMPTION 7 (UNCONFOUNDEDNESS FOR MULTIPLE TREATMENTS):
(YOY5Y2,.Y ) LDIX. (37)
ASSUMPTION 8 (OVERLAP FOR MULTIPLE TREATMENTS):
0<p'(X)<1 VIe{012,..,L}. (38)

Unconfoundedness given covariates for the multiple treatments case (37) is just
an extension of the same assumption (in its stronger version) for the single treatment
case. Lechner (2000) proves for the multiple treatments case that, if
unconfoundedness holds given covariates, it also holds when conditioning solely on a

particular function of the covariates, the generalised balancing score:
(YO.YLY2. YY) ID[X =x = (YO,Yl,YZ,...,YL)J_D|b(x)=b(x) (39)
which is true if E[P(D=1I|X =x)|b(X)=b(x)]=P(D=1|X=x)=p'(x). By

using the same reasoning as in the single treatment case, under unconfoundedness we

must have:
E[P(D=11X)[Y°Y",...Y5b(X)]=E[P(D=1]X)|b(X)]
=P(D=I|b(X))=P(D=1]X)
and a valid balancing score is the vector of all but one (the linearly independent)
individual propensity scores B(x)z[pl(x), P (X),-ens pL(x)]. All the relevant

counterfactuals — and therefore all the relevant treatment effects — are identified by
relying on (37) and (39). As in the single treatment case, the mechanical balancing
score property is combined with unconfoundedness so as to make valid the propensity

score matching approach, although now the conditioning set B(X) is not of single

dimension anymore.

An important result derived by Lechner (2000) states that the evaluation
problem with multiple treatments is substantially simplified when the interest lies in
pair wise comparisons, e.g. when separately estimating the average health effect of
increasing the coverage level of a given programme from lpto I , 1; to I, , and so forth.
Weaker versions of the basic assumptions (37) and (38) are now required, and a
reduction of the conditioning set to one is possible. To see this, let the treatment effect

of interest be that associated to increasing the programme’s coverage level from 1 =1
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to I=2. In this case, for identifying the ATE, ATEgr and ATT, the sufficient
assumptions are, respectively:

(i) Weak unconfoundedness and overlap assumptions for estimating the ATE:
Y2Y'LID|[X =x=Y2Y  LD|[ p'(X)=p'(x),.. p*(X)=p"(x)] (40)
0<p'(x)<l vle{012,..,L} (41)

(i) Weak unconfoundedness and overlap assumptions for estimating the ATEg:
Y2Y'LD|X=x,De{l,2}=Y%Y'LD|p"*(X)=p"?(x),De{L2} (42)

1
where p*?(x)=P(D=1|De{1,2},X = x)z# is the generalised
p(x)+p*(x)
propensity score, and:

0<p'(x)<1lefs2} (43)
Notice that the latter case is similar to that of a binary treatment variable for

which p*(x)+ p?(x)=1, but recall that, in the general case of multiple treatments,
p'(x)+ p®(x)<1.
(iii) Weak unconfoundedness and overlap assumptions for the ATT**:
Y'1D|X=x,De{l,2}=Y"'LD|p**(X)=p*"*(x),De{l2} (44)
0<p'(X)<1le{12} (45)
With the set of assumptions (i), all relevant counterfactuals for the ATE*' and

ATE?are identified, because it is implied that:

E[Y?|X=xD=I]=E[Y*|X =x,D=2],vI#2
E[Y'[X=xD=1]=E[Y'|X =x,D=1],vI=1

Notice that the conditioning sets above are still of L dimension.
Unconfoundedness is relaxed in (ii) by referring only to assignment to the pair of
compared treatment levels 1 and 2 (and their respective subpopulations); if both
potential outcomes of interest are independent of assignment to any coverage level |
as stated in (i), then it implies that the same is true when comparing only the groups of
individuals assigned to any pair of treatment levels. Thus, (ii) is a logical implication

of (i) and identification is based on the following equalities:

E[Y?|p"*(X)=p"*(x),D=1]=E[Y?*| p™*(X)=p"*(x),D=2]
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E[Y'|p"*(X)=p"*(x),D=2]=E[Y!| p"*(X)=p"*(x),D=1]
In this case, the counterfactual expected outcome can be consistently identified

by adjusting for the adequate distribution of the (single dimensional) generalised

propensity score p*? (X ). For example, for the ATT**:
E[Y!|D=2]= E[E[Y1| p™2(X),D=1]| D=2]
:IE[Y1| p**(X),D :1] fpm'2|D:2(pm’z)dpm'2

corresponds to the distribution of the generalised propensity score in the

(46)
where f ...,
sub-sample in the active treatment, i.e. coverage level 2.

Conditioning can be based on the generalised propensity score, but obviously a
finer balancing score can also be used, including combinations of the generalised

propensity score and covariates deemed to be particularly relevant in a given context.

It is also valid to condition directly on the vector| p*(x), p*(x) |, which is finer than
the conditional probability p”l’z(x) in the sense that the latter is equivalent to its

expectation conditional on p*(x)and p*(x), that is:

E[p™*(X)1p"(X). P*(X)]= pl(xp)li)i)z(x)

In each case, the parameters ATEg and ATT can now be estimated by relying on

| p*(X), p?(X) [= p™*(X)

the set of assumptions (ii), as E[Y'|D=2] and E[Y?|D=1]are identifiable

counterfactuals.

If, however, interest lies only in estimating the ATT?*, the set of assumptions
(iii) suffices for identifying the required counterfactual E[Y1 |D = 2] by relying on
the equality E[Y'|p"?(X)=p™*(x),D=2]=E[Y'|p"*(X)=p"?(x),D=1].
Recall that ATT**=E[Y?|D=2]|-E|Y'|D=2]and that, by unconfoundedness,
the second expectation term is equal to E [E [Yl | p*?(X),D =1] |D= 2}.

A careful examination of the statements above leads to two important
implications. Firstly, a sample reduction property for pair wise comparisons of
treatment levels is derived (Lechner, 2000). If coverage levels 1 and 2 are being

compared and the interest lies in estimating only the parameters ATEgr and ATT,

40



unconfoundedness can be assumed to hold only for the sub-sample of individuals
subjected to treatment levels 1 and 2, implying that this sub-sample is the only one
required for the empirical analysis; in other words, individuals exposed to treatment

levels | #{1,2} — and thus the existence of multiple treatments — can be ignored for

this particular analysis.
Secondly, a conditioning set reduction is achieved when making pair wise

comparisons and estimating the ATEr and ATT parameters. Propensity score

matching can be based on the single dimension conditioning set p** (X ) a composite

individual index. Importantly, Imbens (2000) and Lechner (2000) show that, for the

pair wise comparison case, a similar reduction can also be derived for estimating the

ATE, which involves the computation of E[E[Y' 1p'(X),D=1]] D;tl] Also in

this case, p*™?(X) and the vector of propensity scores E(x)=[p1(x), pz(x)] are

valid balancing scores.

Finally, variance bounds for the estimators of the expected potential outcome

E[Y']| the ATE E[Y’-Y'], the ATT E[Y’-Y'|D=2] and the mean

counterfactual outcome E [Yl |D= 2} have been derived by Frolich (2004).

4.2 Matching estimation of average treatment effects
4.2.1. Matching on the propensity score

Using the same notation as in Section 3, estimators of the treatment effects
discussed above can be expressed as follows:

—=21 1 1
ATT = N_ZZie{D=2} Y, _N_Zje{D=l}Winj (47)

2

1

ATE, =ATT -P(D=2|De{12})-ATT -P(D=1|De{12}) (48)

ATE" - z[[NiZHWY o) ] P(D= U} (49)

where i indexes an individual belonging to the active treatment group and j denotes a

matched individual belonging to the comparison treatment group.
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The actual estimation of average treatment effects with multiple treatments by

propensity score matching (PSM) follows the same general steps performed as in the

single treatment case. Consistent estimates of P(D:I) and E[Y'|D:I] are

obtained, respectively, by cell frequencies and the average outcomes for individuals
exposed to treatment level 1. The PSM estimator of the counterfactual can then be
constructed according to the steps suggested by Lechner (2000):*°

1) Specify and estimate a multiple choice model in order to obtain the individual

vectors of (generalised) propensity scores (one for each individual):
[ B7(X), Bl (X), B7 (X ). B (X)]. For the particular case of different
coverage levels of the same health programme, an ordered choice model
would be appropriate, but other settings may rather call for a multinomial
choice model;

2) Estimate the counterfactual expectations of the outcome variables conditional
on the respective propensity scores. In the case of investigating the ATT of
being subjected to treatment level 2 instead of 1, having already computed in

. o . pt(X)
the first step, for each individual, p™*(X)=— _

or

[ﬁl(x ), p* (X )] , this is achieved by:

a) choosing one individual from the sub-sample belonging to D=2 and
temporarily excluding her from the sample;
b) finding an individual in the sub-sample D =1 who is the closest one to

A1l1,2

the individual chosen in a), either in terms of p (X)or in terms of

the vector [ﬁl(x ), p? (X )] Obviously, this is to be preceded by the

definition of a “closeness” measure for the analysis, such as the
Euclidean or Mahalanobis distances. The comparison individual
chosen in this step will be replaced in the corresponding sub-sample to
allow her possible re-use as a match to other D =2 individuals;

16 echner relies on nearest-neighbour with replacement as the matching procedure, although the
suggested protocol can be easily adapted to make use of the alternative PSM procedures discussed for
the single treatment case. However, since the role of each sub-sample as treatment and comparison
group is reversed for estimating all the treatment effects parameters, it is necessary to rely on matching
with replacement when the number of individuals is different in the treatment level sub-samples.
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c) repeating steps b) and c) until all individuals belonging to the D=2
group are matched to a comparison counterpart;

d) using the sample mean of the outcomes in the resulting comparison
group formed above (which may contain repeated comparison

individuals as matches) to compute the counterfactual conditional

expectation. The conditional expectation E [YZ |D = 2] is estimated as

the mean outcome in the sub-sample D = 2;

3) Repeat step 2) for all the relevant pair wise combinations of I, and I, (if
estimating average treatment effects for additional pair wise comparisons of
other treatment levels);

4) Calculate the estimated average treatment effect of interest using the results
obtained in steps 2) and 3);

5) Obtain the estimated variance of treatment effects. For the parameter ATT**,

for instance, Lechner (2002) suggests calculating the variance of

> (W)

E[v!|D=2] by 2=t xVar(Y|D=1), and the variance of
[ | } y (N2)2 ( | )
Var (Y |D=2)

E[Y’|D=2] by . The term Var(Y|D=1) denotes the

2

empirical variance in the respective sub-sample, N, represents the number of

individuals in the D=2 group and V\A/ij denotes the number of times

observation je{D =1} appears in the comparison group formed for the

counterfactual estimation. The estimated variance of the treatment effect will
be given by the summation of the two variance terms defined above. Another

alternative is to use bootstrapping.

As mentioned in step 1), two possibilities emerge for estimating the generalised
propensity score or selection probabilities (Lechner, 2002). The first alternative is to
specify and estimate each conditional binary choice equation separately — using probit

A2

or logit models — to obtain the pair wise conditional probabilities p: (x) Estimation

of each binary choice equation requires only data for individuals belonging to the sub-

samples involved in the corresponding pair wise comparison; therefore, if all possible
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pair wise comparisons are of interest, this procedure will have to be repeated

L(L—l)/2 times (where L denotes the total number of treatment levels). One

advantage of this procedure is that it does not require the “independence of irrelevant
alternatives” assumption; also, since the conditional probabilities are not
interdependent, misspecification of one binary choice equation does not imply that all
conditional probabilities are misspecified (and different sets of regressors might in
principle be used across the binary models). A drawback of the method is the fact that,
with many treatment levels, many binary choice models will have to be estimated and
interpreted, one for each pair wise comparison.

A second possibility for obtaining the generalised propensity score is to specify
a choice problem incorporating all the possible treatment levels and estimating it in
one step using the full sample, through a multinomial/ordered choice model. In the
multinomial case, a probit specification might be preferred because, unlike the logit, it
does not rely on the “independence of irrelevant alternatives” assumption. Moreover,
compared to the estimation of several binary choice models, it seems richer in the
sense that it allows investigation of the relevant factors which determine individual
selection into alternative treatment levels. An important drawback of this procedure is,
however, its somewhat restrictive character: restrictions on the covariance matrix of
error terms need to be imposed, and there is the danger of misspecification of all
conditional probabilities if one choice equation is misspecified, since the derived
conditional probabilities are interdependent. Furthermore, the existence of more than
four treatment alternatives makes necessary the utilisation of simulated maximum
likelihood methods in order to approximate the results of a multinomial probit
model."’

Checks should be performed regarding the common support condition. In the

pair wise comparison setting between treatment levels 1 and 2, this means that overlap

must be observed between the distributions of ﬁ”l'z(x)or[ﬁl(x), f)z(x)]. In cases

where all the pair wise average treatment effects are of interest, it can be good

practice to restrict the estimation over the joint common support — the overlap region

Y The empirical application of Lechner (2002) found that the correlation of the conditional
probabilities obtained via multinomial and binary choices models was very high (between 0.980 and
0.998). Thus, in his context, no significant differences in the evaluation results should be expected
using one or another approach, although no generalisation of such a result is warranted for other
settings.
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of the distribution of propensity scores across all treatment levels — such that all
treatment effects refer to the same sub-population and no comparability problems
arise.

The balancing of covariates across treatment and comparison groups is essential
for the reliability of treatment effects estimates. Although no clear procedure
dominates for checking which of the alternatives for obtaining the conditional
probabilities (namely, matching on the vector of propensity scores or on the
generalised propensity score obtained either by a multinomial or binary choice models)
does a better job in balancing the covariates, some possibilities are the Mahalanobis
distance and the (median absolute or mean squared) standardised bias. The latter is
used by Lechner (2002) for measuring the matching quality through the distance
between the marginal distributions of the relevant covariates.

Additionally, simple diagnostic checks can be performed regarding the (average)
number of times a comparison observation is used as match in a given pair wise
comparison, when using each of the three alternatives mentioned above for
performing the matching. One way of doing that is to compute, for each of the three
procedures, the mean of the weights for matched comparison observations, with
weights being defined as the number of treated individuals a given comparison
individual is matched to. Better matching procedures will use more comparison
observations as matches without loss from the point of view of covariates balancing,

therefore leading to smaller estimated standard errors of treatment effects.

4.2.2. Propensity score matching and difference-in-differences

As in the single treatment case, the identification assumption behind propensity
score coupled with difference-in-differences (PSDD) is weaker than the
unconfoundedness assumption used for simple propensity score matching, because the
former allows the bias — between active and comparison treatment groups — to be
different from zero, requiring only bias stability over time. Estimating average
treatment effects by a PSDD approach is a feasible option due to the mechanical
validity of the balancing property of the (generalised) propensity score, in the sense
that the balancing of covariates is achieved whether or not unconfoundedness holds.
In other words, the resulting equality of counterfactuals (36) and (46) can be used in a
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difference-in-differences estimation context when unconfoundedness does not seem a
plausible identification assumption.

In the multiple treatments context, the difference-in-differences approach
recovers the treatment effect of being exposed to treatment level | versus the non-
participation version of treatment status, say | =1(being equivalent to “no coverage™);
it generally does not allow comparisons between alternative treatment levels because
pre-programme health outcomes provide information only about untreated outcomes
(Frolich, 2004). Thus, with panel data, the necessary counterfactual for identifying
the ATT'? in a difference-in-differences framework can be obtained by using PSM
and conditioning only on the generalised propensity score:

E[E[v/-v, 1X,0=0]|D=1]=E[E[¥’ -, |p"*(X).D=0]|D=1]
- J' E[Ytlo |p™(X),D = 0] . ( pou,o)dpou,o (50)
_.[ E|:Yt0 |p”°(X),D = 0] f oo ( pou‘o)dpo“'o

where YtlO denotes the health outcome of a matched untreated (i.e. not covered by the

programme) individual in the post-programme period, Y, represents the health

outcome of the same individual in the pre-programme period and p®° denotes the

conditional probability of not being exposed to the programme within the sub-sample
of uncovered individuals and those exposed to the treatment level of interest I.

5 Matching estimation of health programme average treatment

effects with a continuous treatment

When the interest lies in evaluating the impact of only one health programme for
which data are available on several different levels of population coverage across
geographic regions, a more sensible evaluation strategy can be the utilisation of
propensity score methods adapted to the continuous treatment case. In this particular
context, the treatment variable might not be amenable to be naturally discretised: the
definition of a number of discrete categories can be a very arbitrary process, the
magnitude of the estimated treatment effects (and therefore of other parameters, such
as the estimated “optimum” coverage level) can be sensitive to the criteria used for

definition of categories, and information regarding treatment effects within each
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category is lost. Nevertheless, the observed variation in exposures to coverage levels
can still be used to identify the programme impact.

It has been only recently that a methodological contribution for the continuous
treatment context has been advanced in the literature by Hirano and Imbens (HI,
2004), who discuss and illustrate the application of propensity scores in a regression
context for evaluating the impact of continuous treatments. Following their work, a
brief discussion of matching procedures in the continuous treatment case is presented
by Flores (2004) and another empirical application of the HI method is performed by
Aguero et al. (2006).

The discussion herein adapts the suggestions made by HI (2004) to the different
case of a health programme with several different levels of population coverage
across geographic areas. Although the authors suggest a complete parametric
procedure which does not involve matching methods, I discuss some alternatives for
evaluating such programmes through a semi-parametric approach. These alternatives
apply to the more general case of treatments offered in different dosages.

5.1 Average treatment effects: definition and identification
5.1.1. Definition of average treatment effects

As in the preceding discussion, let Y, (I)be the set of potential outcomes for
individual i1=1,...,N, or in other words the individual dose-response function

according to all possible coverage levels (doses) Ie[l . For each individual,

min’lmax]
we observe the coverage level to which they were actually exposed,
L e[l | |, the associated potential outcome corresponding to that particular

min ! max]

coverage level Y, =, (L;) and their vector of covariates X;.Due to the missing data
problem inherent to programme evaluation, the research question of interest is to

identify the curve of average potential outcomes; that is, the parameter of interest is

the average dose-response function:
u(1)=E{Y, (1)} (51)
which represents the function of the average potential health outcomes computed over

all possible programme coverage levels (e.g., 0% to 100%).
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Since the treatment variable is modelled as continuous, other policy-relevant
parameters can be estimated apart from the entire average dose-response curve. For
example, as suggested by Flores (2004), the coverage level at which the expected
health outcome is maximised can be derived, along with the corresponding maximum
value of this outcome. The optimal treatment level — i.e. the treatment level that

maximises the expected health outcome®® — can be expressed as:

I"=arg max E{Y,(I)} (52)

T€llin max

and the corresponding expected potential health outcome at the optimal treatment

level would then be:

()= ()] 9
Additionally, as in HI (2004), we might be interested in constructing the curve
for the marginal impact of each coverage level of interest on the health outcome, by

pair wise calculating programme average health effects for every observed “jump” in

the value of the coverage level. This parameter can be defined as:
A(L) = ()= (1) =E[Y (L) [-E[Yi (1) s by €[ b - (54)
In the latter case, I, might alternatively be a reference coverage level (e.g., no
treatment or the smallest positive coverage observed in a given context) to which all
other coverage levels are compared. If I;is the lowest possible coverage level (e.g.
zero) and 1" is the optimal treatment level as defined in (52), the computation of (54)

leads to an estimate of the maximum individual health gain that can be expected from

the intervention:

A = u(1) = (1) = E[Y (1) |- E[Y, (1) ] 17y €D D] (55)
5.1.2. ldentification of average treatment effects

Similarly to the single and multiple treatments settings, identification of the
required counterfactuals can be achieved by relying on (suitably adapted) “selection
on observables” assumptions (HI, 2004).

ASSUMPTION 9 (WEAK UNCONFOUNDEDNESS FOR A CONTINUOUS TREATMENT):

18 The use of the word “optimal” in this context is very specific to the definition given in the text — that
is, in terms of maximum health effects — and does not encompass considerations regarding any costs
incurred to achieve such effects.
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Y, () LL|X, all el (56)

min? Imax]'
This is a weak version of the unconfoundedness assumption because it does not

require the joint independence of all potential outcomes {Y(I)} ; rather, it

€| min » max]

requires pair wise conditional independence for each of the potential health outcomes
at a given treatment level with the actual treatment assignment.’® Therefore, this
assumption states that there are no unobserved factors that affect both individual
potential health outcomes and the coverage levels to which individuals have been
exposed, given the pre-treatment covariates.

For propensity score matching procedures, it is necessary to redefine the
propensity score so as to take into account the continuous nature of the treatment
being evaluated. Let the conditional density of the programme coverage given

covariates be expressed as:
r(l,x)=f (1) (57)
The generalised propensity score (GPS) — that is, the conditional density of the
coverage level given pre-treatment covariates — is then given by:
Ri:r(Li,Xi) (58)
HI (2004) show that, by the standard results presented before, the GPS for the
continuous case is also a balancing score in the sense that, within strata with the same
value of r(I, X ),the probability that L, =1 for a given individual does not depend on
the value of their covariates, it is a random event. This is again a mechanical result
and does not require unconfoundedness. But HI (2004) also show that weak
unconfoundedness given pre-treatment covariates implies the same result given the
generalised propensity score:
Y(D)LLIX=Y()LL|r(LX), all Tell ;]
& fL(I|r(I,X),Y(I))= fL(I|r(I,X)), all 1<l ;1.1

The last term in (59) is the conditional density of coverage level | (this is

(59)

analogous to the probability of an individual being exposed to the particular coverage
level | in the discrete treatment case), given the GPS evaluated at that same coverage
level. Propensity scores will then be calculated for all observed coverage levels, but

only one will be used at one time.

9 However, as stressed by Imbens (1999), in practice it would be difficult to find a situation where the
weak unconfoundedness assumption should be valid but not its strong version.
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As a corollary of the unconfoundedness assumption (56) coupled with the GPS
result given by (59), we can write the fundamental result for propensity score

matching:

E[Y()]=E[E[YM)Ir(LX)=r]Ir(l,X)]
=E[E[Y()IL=Lr(LX)=r]r(1,X)] (60)
=E[E[Y|L =LR =r]ir(LX)], all 1e[l,.1.]

Notice again that the outer average is taken over the GPS evaluated at | (and not

over r(L;, X;)). As usual, this averaging procedure is performed in order to control

for systematic differences in the observed covariates across groups of individuals
exposed to different treatment levels. The components of (60) can be estimated with
the observed data and a logical estimation procedure would be to firstly regress the
observed health outcome on the observed individual treatment level exposure and its
corresponding GPS, and then taking the expectation of that regression over the GPS

evaluated at each relevant treatment level.
5.2 Propensity score matching estimation of average treatment effects

HI (2004) suggest an entirely parametric procedure for estimating the average
dose-response function, as opposed to the semi-parametric approach of propensity
score matching in the case of single or multiple treatments.?® Nevertheless, similarly
to the discussion in previous sections, a more flexible approach to the estimation of
the average dose-response function is possible, such as relying on the matching
methods already described. In this case, parametric assumptions may be made only
for estimating the GPS?', placing no restrictions on the relationship between
programme exposure, covariates (summarised by the GPS) and the relevant health
outcome. Among the matching methods previously presented, possible adaptations of
the propensity score matching (PSM) procedure will be the focus herein. Two

% The suggested three-stage estimation procedure will not be presented and discussed here because it
does not make use of matching methods at any stage. The interested reader is referred to HI’s (2004)
original paper.

1 A non-parametric procedure could also be used for estimating the GPS, as in Flores (2004). Although
more flexibility is introduced in the average dose-response function estimation, it is well known that
non-parametric procedures tend to run into trouble when a large number of covariates are being
considered. Non-parametric estimation of the GPS will not be discussed in this paper.

50



possible ways of performing PSM in the continuous treatment case are briefly
discussed by Flores (2004). Here, | adapt and extend one of the alternatives.

Let the parameter of interest be the entire average dose-response function x(1).

In order to obtain this curve, we have to estimate the average expected health outcome

at each treatment level of interest. Thus, for a given coverage level |, we need to
estimate the expectation E[Y(I)]. Estimation of the conditional distribution of the
treatment (coverage) level given covariates, L, = f (X;), can follow HI (2004)
suggested approach. The authors propose using the normal distribution, such as:?
Li|Xi~N(ﬁ'0+ﬂ1'Xi,o-2) (61)

A maximum likelihood method is suggested for the above estimation. In this
case, the estimated GPS is given by the predicted values of the regression, based on

the probability density function of Li, f(L;|X;,5,07):

.1 1 S a2
Ri:WEXpi_Z&Z(Li_ﬂO_ﬂlxi)J (62)

As pointed out by Flores (2004), for estimating the average dose-response

function at coverage level I, it might be unfeasible to find observations with exactly
that value of the coverage level in the continuous treatment case. This difficulty
implies that matching has now to be performed not only on the GPS, but also on the
treatment level. By following this procedure, in addition to the potential bias
introduced by not matching exactly on the GPS, there is potential bias resulting from
the need of using observations belonging to the neighbourhood of (instead of exactly
exposed to) treatment level | in order to get information about the potential health
outcomes at that particular treatment level.

The matching problem arising from the continuous nature of the treatment
variable and the resulting difficulty in finding observations exposed exactly to level |
can be circumvented by assuming that a given individual has been exposed to | if her
actually assigned coverage level is sufficiently close to |. Formally, define two groups
that exhaust the sample (in the sense that any sampled observation must belong to one

and only one of the groups):

22 Of course, more general models are also possible, such as heteroskedastic normal distributions for
instance.
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i e[l—h,l+h]
group <
jlL g[l-h1+h]
where h is a chosen bandwidth that determines the set of treatment levels considered
sufficiently close to the level of interest I. For the first group of individuals (i), their

observed individual health outcomes Y; can be seen as suitable approximations to

their potential outcomes at coverage level I, Y,(l). The basic evaluation problem

appears in obtaining the counterfactual potential health outcomes, at coverage level I,
for those individuals who have been exposed to treatment levels far apart from I. Yet,
assuming unconfoundedness, PSM can be used to construct the required
counterfactuals. For any individual j, all that has to be done is to find at least one
comparable observation i in the first group whose health outcome could be reliably

used to impute the missing data.
In formal terms, letM (rj)denote the matched set for individual j, i.e. the set of
individuals within the first group matched to j. In the simplest case of nearest-

neighbour matching, the singleton matched set will be formed by the observation i for

which the following two conditions are valid:
a) L e[l-hl+h]and

b) Mj(rj):{i li =arg miinHri (LX) =r, (1, XJ)H}
Condition b) requires the definition of some metric for the distance | -| between

GPS, such as the Euclidean or Mahalanobis distances. As in the preceding single and
multiple treatments settings, flexibility can be introduced by allowing a given
observation i to be matched to multiple neighbours. Also, a common support
requirement can be enforced by imposing a maximum “tolerated distance” between
GPS when looking for matches. For instance, caliper matching with multiple

neighbours can be performed, in which case the definition of the matched set in b)
would be replaced by Mj(rj)={i|Hri(I,Xi)—rj(l,xj)H<g},whereg is the pre-

defined tolerated distance between GPS (the caliper). The procedure for constructing

the matching set should then be repeated, with replacement, for every observation j.

Having constructed the set Mj(rj) which contains at least one matched i

observation to a given individual j, the counterfactual health outcome of the latter can
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be imputed. The general form of the GPS matching estimator for the relevant

individual counterfactual can be written as:

)= D WY ( (63)

IeM
where W; stands for the weight attributed to observation i when matched to j (with
the sum of weights being equal to one). In the nearest-neighbour matching case, the
weight attributed to the matched individual i is equal to one and the imputed
counterfactual is the health outcome of this closest neighbour, i.e.:
Y, (=Y (L), ieM,
For the multiple-matches case, the simplest counterfactual estimator would be:

ZY

M IEM

where NMJ_ denotes the number of individuals belonging to the matched set for

individual j. In principle, different and more complex weighting schemes could

alternatively be applied, such as kernel weights; moreover, besides weighting by the

GPS, one could devise weights depending also on the distance H L - I||

As a final step, the GPS matching estimator of the average dose-response

function at a given treatment level | can be written as:

ELY ()] = (T (L)+ X Y, (). Le[1-hl+h] (64)

Having this estimator, the treatment effect parameters defined from (52) to (55)
can also be estimated, and bootstrap methods can be used for calculating standard
errors and the corresponding confidence intervals for the estimated treatment effect
parameters.

Regardless of the matching procedure implemented, diagnostic checks should be
performed in order to assess the balancing of covariates across individuals with
similar GPS for a given treatment level, and the quality of the matches used. This can
be done by applying suitably adapted versions of previously discussed methods for
the multiple treatments case and/or the procedures suggested by HI (2004), who
address some of the difficulties posed to diagnostic checking when the treatment
variable is continuous. For instance, in order to assess the degree to which covariates
are balanced by conditioning on the estimated GPS, HI (2004) suggest dividing the

range of variation of the treatment variable — and therefore the sample of observations
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— into intervals of the form |, <L, <I, (three in their empirical application) and

investigate, for each covariate and via t-tests, whether the mean in one of these
intervals is different from the mean (for the same interval) in the remaining groups
combined. The authors compare the change in the achieved covariates balance when
conditioning on the GPS, by comparing the number of t-statistics which lead to
rejection of the null of means equality in the unadjusted versus GPS-adjusted intervals.

However, in HI (2004) procedure, the treatment variable is indeed discretised
and no general criteria are suggested for a “suitable” intervals definition, which is
important because the result of the test will depend on this particular decision.

Moreover, the GPS needs also to be discretised for implementing the check
X L1{l, <L <l }|r(l,X;), where 1(-) is an indicator function of whether an
individual’s observed treatment level belongs to the corresponding interval. HI (2004)
perform this test by evaluating the GPS at the median treatment level of the sub-

sample of individuals determined by the interval [I, <L, <I,], that is, the test is
whether XiJ‘l{IaSLiSlb}lri(lmed[la,lb]’xi)' The authors implement this test by

blocking on that particular GPS r(-)and testing equality of means within quintiles of

the values for that GPS in the interval. In other words, covariates means within groups

defined by L, [l,.1,] and L; ¢[l,,1,]are being compared for individuals who have

similar values — belong to the same quintile — of r(lmed[I It Xi) (i.e., who have similar

23

conditional densities of being exposed to the median coverage level 1 ., ,,).

6 Concluding remarks

In this paper, | reviewed the state of the art of the literature on matching
methods, with a special focus on its propensity score variant. The broad usefulness of
this approach was discussed from the specific point of view of health programmes
evaluation. Extensions of the classical matching estimators for the multiple and

continuous treatments cases were presented and their relevance for impact evaluations

% Five different comparisons should then be performed for each covariate; nevertheless, HI (2004)
combine these five differences in means, weighting by the number of observations in each GPS group,
and get a summary t-statistic for the difference in means across the five quintiles.
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in the health sector was illustrated using the example — fairly common in real settings
— of a health programme implemented with different levels of population coverage in
several geographic areas.

The discussion performed in this paper made clear that the validity of matching
estimates of treatment effects depends crucially on the “selection on observables”
identification assumption. If, in a given context, such assumption seems reasonable,
then matching methods can go a long way in providing reliable answers for evaluation
questions. There remain, however, important aspects of matching estimators still to be
fully investigated, such as analytic closed forms for the variance of the treatment
effects matching estimates, the relative performance of different matching procedures
for obtaining estimates of average treatment effects in the multiple treatments case
and a fully developed and tested matching protocol for the continuous treatment

setting. Further research on such topics is certainly needed.
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