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Abstract 

The general aim of this paper is to review how matching methods try to solve the 

evaluation problem – with a particular focus on propensity score matching – and their 

usefulness for the particular case of health programme evaluation. The “classical” 

case of matching estimation with a single discrete treatment is presented as a basis for 

discussing recent developments concerning the application of matching methods for 

jointly evaluating the impact of multiple treatments and for evaluating the impact of a 

continuous treatment. For each case, I review the treatment effects parameters of 

interest, the required identification assumptions, the definition of the main matching 

estimators and their main theoretical properties and practical features. The relevance 

of the “classical” matching estimators and of their extensions for the multiple and 

continuous treatments settings is illustrated using the example of a health programme 

implemented with different levels of population coverage in different geographic 

areas. 
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1 Introduction  
 

In broad terms, impact evaluations of health programmes aim to answer the 

fundamental counterfactual question: how would the health conditions of individuals 

exposed to the programme have evolved in the absence of the intervention? Or, 

analogously, how would those who were not exposed to the intervention have fared in 

the presence of it? Difficulties in answering such a question rise immediately, as at a 

given point in time individuals are observed in only one situation, either exposed or 

not exposed to the programme. This feature, inherent to empirical programme 

evaluation, resembles the classical missing data problem for econometric analysis. 

Matching methods have become increasingly popular among applied researchers 

as tools for solving the so-called evaluation problem, especially within the field of 

labour economics. Obviously, as it is the case with any other non-experimental 

approach, the adequacy of matching estimators in a particular evaluation setting 

depends crucially on the research questions of interest, the characteristics of the 

analysed intervention and the available data. These factors have been proved 

extremely relevant for the validity of matching estimates in a given context. 

The general aim of this paper is to review how matching methods try to solve 

the evaluation problem – with a particular focus on one popular variant, namely 

propensity score matching – and their usefulness for the particular case of health 

programme evaluation. The well-known case of matching estimation with a single 

discrete treatment will be presented as a basis for discussing recent developments 

regarding the application of matching methods for jointly evaluating the impact of 

multiple treatments and for evaluating the impact of a continuous treatment. These 

extensions of the traditional matching estimators can be particularly relevant for the 

investigation of treatment effects in the health sector. 

This paper is organised as follows. The next section describes the evaluation 

problem with a focus on its particularities for the impact assessment of health 

programmes. Section 3 discusses matching estimation of treatment effects for the 

classical case of a single discrete treatment, defining the usual treatment effects 

parameters of interest, presenting the required identification assumptions, defining the 

main matching estimators (with a special interest on propensity score matching and 

including the matching with difference-in-differences variant), and discussing their 
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main theoretical properties and practical features. Sections 4 and 5 follow the same 

structure as applied to the joint impact evaluation of multiple programmes and a 

single continuous treatment, respectively. Section 6 presents some concluding 

remarks.  

 

2 The evaluation problem 
 

Most of the theoretical and empirical literature on programme evaluation relies, at 

least implicitly, on basic assumptions regarding participation in the programme. For 

ease of exposition, it is normally assumed that: 

i. Everyone who is assigned treatment is actually treated (there are not “no 

shows”); 

ii. There are only partial equilibrium effects, i.e. the health programme does not 

affect the (pre-treatment) variables Xi taken as exogenous; 

iii. Stable Unit Treatment Value Assumption (SUTVA): This assumption contains 

usually two components. In the first place, all treated individuals are assumed 

to receive the same active treatment and all comparison individuals are 

assumed to get the same comparison treatment. The second component is the 

assumed absence of interference between units, in the sense that the values of 

treated and untreated outcomes for a given individual are not influenced by the 

treatment status of other individuals. 

Although the validity of all three assumptions might be questioned in specific 

settings, the third assumption may be particularly unrealistic in the context of public 

health interventions. Treatment benefits usually positively affect untreated individuals 

as well, such as in the classical examples of immunisation campaigns and 

programmes aimed to reduce the prevalence of communicable diseases. These 

treatment externalities, whose magnitude is likely to depend on the number of actually 

treated individuals, pose a significant challenge to the assessment of a programme’s 

impact through individually randomised or non-experimental studies, since there is 

the possibility of non-negligible treatment benefits accruing to the comparison group. 

This would lead to an underestimation of the programme effect when comparing the 

average outcomes of treatment and comparison samples, as demonstrated by Miguel 

and Kremer (2004). However, these authors also demonstrate that it is sometimes 
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possible to alleviate deviations from SUTVA through design; for example, by 

considering higher-level randomisation units rather than individuals (schools in their 

case). Non-experimental evaluation of health programme treatment effects can deal 

with deviations from SUTVA in a similar way, for instance by considering the 

availability of a health programme in a given geographic area as the treatment 

variable of interest. 

In order to clarify the issues involved, I consider a very common situation in 

public health policy in which a health authority implements an intervention in some 

geographic areas selected according to some pre-specified criteria. In the treated areas 

– those where the health intervention has been implemented – it is not necessarily the 

case that all residents will actually receive the intervention (due to self-selection into 

the programme, for instance); rather, treatment here is defined as residing in an area 

where the programme is available. For simplicity, consider only two localities. If the 

treated locality is far enough from the untreated locality (that where the health 

intervention has not been implemented) so as to preclude spillovers from occurring 

between areas, the “no interference between units” assumption is more likely to be 

valid and it is possible for the estimated average treatment effects to take into account 

treatment externalities accruing to “individually untreated” people living in the treated 

area. In other words, this situation can be seen as a particular case of the SUTVA 

assumption, in which the unit of analysis is the group of individuals living in a 

locality instead of a single individual.  

Formally, using the potential outcome notation suggested by authors such as 

R.A. Fisher and A. Roy, and popularised by Rosenbaum and Rubin (1983), let the 

programme impact on a particular health outcome Y for an individual i living in the 

treated area be given by: 

 T
i iY Y C−  (1) 

where T refers to the health outcome of an individual belonging to the treatment group 

– i.e. living in the treated area – and C denotes the counterfactual, the health outcome 

for the same individual had they been living in the untreated area, thus belonging to 

the comparison group. The above formalisation assumes that each individual i is 

characterised by a pair of potential outcomes: for the outcome under the active 

treatment and for the outcome under the comparison treatment (or no treatment). 

T
iY

C
iY
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Since it is impossible to observe the individual treatment effect – because we 

cannot observe both treated and untreated situations for the same individual i – we can 

aim to learn something about the programme impact through its average effect in the 

population. If data on the health outcome(s) of interest are available for a number of 

individuals living in the treated area and a number of individuals residing in the 

untreated locality, we can then average these outcomes in both groups and subtract the 

second from the first in order to obtain a (naïve) estimate of the programme impact: 

 T C
i iE Y Y⎡ ⎤−⎣ ⎦  (2) 

In this case, the average health outcome for individuals living in the comparison 

area is intended to act as a substitute for the unobservable counterfactual. However, 

individuals exposed to a programme are usually different in a set of observable 

characteristics – such as education, income and initial health status – from those 

individuals who are not covered by the programme. This problem will be magnified if 

individuals self-select into the programme (for instance, through migration towards 

the treated area), meaning that unobservable factors such as motivation and relative 

importance attributed to their own health status are key in determining treatment 

assignment. This makes it difficult to isolate the differences between both groups 

which are due to already existing distinctions before treatment – the selection bias – 

from those which are due solely to the programme’s impact, as it can be seen by 

extending equation (2): 

 
| |

| | | |

T C T C
i i i i

T C C C
i i i i

E Y Y E Y T E Y C

E Y T E Y T E Y T E Y C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦

|

 

 | |T C C C
i i i iE Y Y T E Y T E Y C⎡ ⎤ ⎡ ⎤ ⎡= − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦  (3) 

The first term in (3) represents the average treatment effect on the treated, 

usually the parameter of interest we want to isolate (which will be formally defined 

below). This parameter will only be identified if the selection bias, represented by the 

second and third terms above, equals zero; this, in turn, will only happen if there are 

no systematic differences in the average untreated health outcomes between treatment 

and comparison groups. 

Equation (3) guides us also regarding the direction of the bias. If individuals 

living in the treated area are on average healthier, more health-concerned (for 

example, have a ‘healthier’ lifestyle) or more motivated to participate into the 

 5



programme than their counterparts in the comparison area to begin with, then the 

selection bias term will be positive and the programme impact on health outcomes 

will be overestimated. Conversely, if individuals residing in the comparison area tend 

to have better health prospects on average than those living in the treated area 

(perhaps because the programme was aimed to target a health-deprived locality), then 

the selection bias term will be negative and the estimated treatment effect will 

underestimate the true programme impact. 

For simplicity, no covariates have been included up to this point. Consider now 

the analysis with covariates and define common support as the subspace of individual 

characteristics that is represented both among treated and comparison groups. One 

important result due to Heckman et al. (1998) is the decomposition of the selection 

bias into three components: 

i. Non-overlapping support of the observables: this is the part of the selection 

bias due to comparing non-comparable individuals. Using the whole sample of 

treated and untreated individuals can be a source of bias if the treated and 

comparison support distributions do not intersect for a given range of 

covariate values; 

ii. Differences in the distribution of the observables between the two groups over 

the common support: this bias component is caused by not adequately 

weighting comparable individuals when there are differences in the shapes of 

the covariates distributions between treatment and comparison groups. Even in 

the region of common support, distributional differences make some untreated 

individuals to be more comparable to some specific treated individuals in 

terms of the values of their covariates, and misweighting them – i.e. not 

reweighting the comparison group’s data so as to equate the observed 

covariates’ distribution in the treatment group – can lead to estimation bias;  

iii. Selection on unobservables: this final component of the selection bias results 

from selective differences between treatment and comparison groups in terms 

of unobservable characteristics which are also correlated with their potential 

health outcomes. These differences may be observable by the individual, but 

not by the researcher. 

The first two components are related to observable characteristics and found to 

be the most important sources of selection bias by Heckman et al. (1998), although 

the third component was still a sizeable fraction of the total bias. 
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An evaluation design in which the selection bias problem tends to disappear is 

that in which treatment and comparison groups are randomly selected from a large 

population of potential beneficiaries, such as individuals or localities. In other words, 

due to randomisation, treatment status does not depend on potential health outcomes, 

and it may be assured that, on average, those individuals exposed to a given 

programme are not different from those not exposed to it either regarding observable 

characteristics (such as income, education and age) or unobservable ones. 

Consequently, any statistically significant difference in health indicators between both 

groups can be reliably attributed solely to the programme’s impact. 

In most real situations, nevertheless, health programmes have been purposively 

implemented by a central authority – for instance by targeting individuals or areas 

with worse than average health status – and/or require individuals to self-select into 

the programme by taking up the benefits. If all the researcher has for evaluating a 

health intervention is non-experimental data, the explicit treatment of the potential 

bias caused by omitted variables, either unobserved or intrinsically unobservable, is of 

crucial importance for the reliability of the estimates of a programme’s impact. Using 

matching methods is one alternative for explicitly addressing and eliminating the first 

two sources of selection bias, while assuming that selection on unobservables is not a 

problem in the relevant data under certain assumptions. These assumptions and the 

formal definition of alternative matching estimators for the single treatment case will 

be explained in the next section, preceded by a formal introduction to the parameters 

of interest which most of the empirical literature on programme evaluation attempts to 

estimate when only one treatment is being considered. 

 

3 Matching estimation of health programme average treatment 

effects with a single treatment 
 

3.1 Average treatment effects: definition, identification and variance 

efficiency bounds 

 

3.1.1. Definition of average treatment effects 
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The empirical literature on programme evaluation has traditionally focused on 

estimating three main average treatment effects when assessing the impact of a single 

treatment.1 The definition and identification conditions of each of these treatment 

effects will be discussed for the same context of evaluating the impact of the 

availability of a given health intervention in a number of geographic areas. 
Average Treatment Effect on the Treated (ATT): this parameter represents the 

average health impact of the programme among those who have been exposed to it. 

Formally, it is defined as: 

 | |T C T C
i i i i |ATT E Y Y T E Y T E Y T⎡ ⎤ ⎡ ⎤ ⎡= − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦  (4) 

and its sample analogue is n (
1

1 |
TN

T C
i i

iT

ATT Y Y T
N =

= −∑ )

|

, where NT stands for the 

number of treated individuals in the sample. The second term after the last equality in 

(4) is the counterfactual to be estimated. The ATT is a measure of the average gain 

from the programme to a treated individual randomly drawn from the treated 

population, rather than to any member of the population. This is usually a parameter 

of special interest in the context of narrowly targeted health programmes, a setting in 

which the likely programme impact on untargeted individuals is not the primary 

interest of policy-makers. For instance, if a health programme is aimed at extremely 

unhealthy individuals such as people infected with malaria residing in areas with high 

incidence of the disease, there will probably be little interest from the heath authority 

in knowing what the programme effect would be on relatively healthy individuals 

living in urban areas. 

Average Treatment Effect on the Untreated (ATU): this alternative estimand is 

the expected health programme impact among those who have not been treated. In 

formal terms: 

 | |T C T C
i i i iATU E Y Y C E Y C E Y C⎡ ⎤ ⎡ ⎤ ⎡= − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦  (5) 

and its sample analogue is n (
1

1 |
CN

T C
i i

iC

ATU Y Y C
N =

= −∑ )

                                                

, where NC represents the 

number of individuals in the comparison group. The first term after the last equality in 

(5) cannot be observed and must be estimated. The ATU parameter recovers the 

expected health impact of the programme on an individual randomly drawn from the 

 
1 Some extensions of these estimands have also been introduced in the literature; see for instance the 
“conditional average treatment effects” developed by Abadie and Imbens (2002). 
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sub-population of individuals non-exposed to the intervention, and is potentially 

useful if we would like to assess the impact of a programme expansion to initially 

untreated individuals. 

Average Treatment Effect (ATE): this is the third of the most commonly studied 

average treatment effects, corresponding to the average health programme effect for 

the entire population, whether or not a particular individual has been treated. Formally: 

  (6) 
( ) ( )

| ( ) | (T C T C
i i i i

ATE ATT P T ATU P C

ATE E Y Y T P T E Y Y C P C

= ∗ + ∗

⎡ ⎤ ⎡ ⎤= − ∗ + − ∗⎣ ⎦ ⎣ ⎦ )

where P(T) and P(C) are the probabilities of belonging to the treatment and 

comparison groups, respectively. In the sample these probabilities correspond to the 

sample frequencies of treated and untreated individuals and hence, as a sample 

analogue, we have n ( ) ( ) (
1 1 1

1 1 | |
CT NNN

T C T C T C
i i i i i i

i i i

ATE Y Y Y Y T Y Y C
N N= = =

) .
⎡ ⎤

= − = − + −⎢ ⎥
⎣ ⎦

∑ ∑ ∑  

As can be seen, counterfactuals must now be estimated for both components of the 

ATE. This parameter is relevant for health interventions that could be universally 

expanded, addressing the question of what the treatment gain would be to a randomly 

selected member of the population. 

 

3.1.2. Identification of average treatment effects 

 

Consider the evaluation of a health programme in which each individual is 

either exposed or not to the single active treatment. Following Imbens (2004), let the 

observations of each individual be characterised by the triple (Di, Yi, Xi), where Di is 

an indicator taking the value of 1 if the individual has been exposed to the programme 

and zero otherwise. Xi represents a set of exogenous covariates and Yi stands for the 

realised individual health outcome distributions, defined as: 

 ( )
0,

1.

C
i i

i i i T
i i

Y if D
Y Y D

Y if D

⎧ =⎪≡ = ⎨
=⎪⎩

 

Identification of average treatment effects through semi-parametric methods 

such as matching is based on two fundamental assumptions about treatment 

assignment: 

ASSUMPTION 1 (UNCONFOUNDEDNESS): ( ), |T CY Y D X⊥ .  
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This assumption – also called ignorable treatment assignment (Rosenbaum and 

Rubin, 1983) or conditional independence assumption (Lechner, 2000) – states that 

treatment assignment of a given individual is independent of her potential health 

outcomes with and without treatment if the relevant observable covariates (those that 

influence an individual’s treatment assignment) are held constant. In other words, this 

assumption means that the researcher observes all factors that jointly affect the 

potential outcomes and exposure to the programme. 

Instead of requiring unconfoundedness to hold as defined in Assumption 1, 

some applied work has assumed a weaker form of unconfoundedness called 

conditional mean independence, , | , , |T C T C .E Y Y D X E Y Y X⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣ ⎦  Nevertheless, as 

argued by Imbens (2004), this weaker version is intrinsically tied to functional-form 

assumptions (e.g. linearity of outcomes in D). Since it would be difficult to argue that 

conditional mean independence should hold in a setting where unconfoundedness is 

violated, the stronger assumption is often invoked. Moreover, the stronger 

unconfoundedness assumption has also the advantage of making conditional mean 

independence valid for every transformation of the outcome variable. 

As it shall be discussed below, the unconfoundedness assumption is crucial for 

the estimation of average treatment effects by matching methods. It is also a less 

restrictive assumption than it might seem at first glance: even if two individuals with 

the same X differ in their choices regarding exposition to the health intervention due 

to unobservables, this does not necessarily invalidate the unconfoundedness 

assumption if these different choices are due to unobserved factors that are themselves 

unrelated to the health outcomes of interest. In terms of a health programme with the 

characteristics already described, the individual-specific gain from living in an area 

where the programme is available – which is unobserved by the researcher – is 

allowed to be correlated with treatment participation, provided that this individual 

gain is not correlated with the individual’s potential health outcome conditional on 

X. Unobserved characteristics will only lead to selection bias if they are correlated 

both with exposure to the programme and potential health outcomes, e.g. if “more 

health-concerned” individuals are also more likely to migrate to areas where the 

CY
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health programme has been implemented in order to obtain access to it, and this 

selective migration is not observed by the researcher.2

ASSUMPTION 2 (OVERLAP): ( )0 1|P D X 1.< = <  

The second fundamental assumption states that there are treated and untreated 

individuals at all values of X, i.e. there is overlap between treatment and comparison 

samples. This assumption refers to the joint distribution of the treatment variable and 

covariates, implying that, conditional on X, there must be other variables which affect 

exposure to the programme, thus preventing X from being a perfect predictor of 

treatment assignment. Importantly, if the unconfoundedness assumption also holds, 

these unobserved variables are not correlated with the potential health outcomes. 

Under assumptions 1 and 2 above3, average treatment effects can be identified 

because, conditional on X, the potential health outcomes of untreated individuals 

have the same distribution of the (counterfactual) potential health outcomes that 

treated persons would have experienced had they not been treated. Analogous 

reasoning applies to the potential outcomes YT. Therefore, in formal terms and under 

the two fundamental assumptions we must have: 

CY

 
( ) ( )
( ) (

| , 1 | , 0

| , 1 | , 0

C C

T T

F Y X D F Y X D

F Y X D F Y X D )
= = =

= = =
 

Average treatment effects can hence be identified because the following 

equalities hold: 

 
( ) ( ) ( )
( ) ( ) (

| , 1 | , 0 |

| , 1 | , 0 |

C C

T T )

C

T

E Y X D E Y X D E Y X

E Y X D E Y X D E Y X

= = = =

= = = =
 

If there is no omitted variable bias (no confounding) once we condition on X, 

systematic differences – such as average or distributional – in the health outcomes of 

treated and untreated individuals can be attributed solely to programme exposition. 

This means we can estimate average treatment effects of a health programme in a 

subpopulation with covariates X=x by using: 

                                                 
2 The effects of migration selectivity of the form illustrated here were first studied by Rosenzweig and 
Wolpin (1988) for the general case of public programmes availability.  
3 Together, assumptions 1 and 2 were denominated “strong ignorability” by Rosenbaum and Rubin 
(1983). 
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( ) ( )
( ) ( )
( ) ( )

| | |

| , 1 | , 0

| , 1 | , 0

T C T C

T C

E Y Y X x E Y X x E Y X x

E Y X x D E Y X x D

E Y X x D E Y X x D

⎡ ⎤− = = = − =⎣ ⎦

= = = − = =

= = = − = =

 (7) 

As it can be noticed, it is only possible to estimate (7) if we can estimate the 

expectations and ( )| ,E Y X x D= =1 ( )| ,E Y X x D 0= = , that is, if we have common 

support for all values of D and X; otherwise, we would have either only treated or 

untreated individuals at some values of the covariates and would be impossible to 

estimate both expectations. 

If the interest lies on the ATT, both a weaker unconfoundedness assumption and 

a weaker overlap assumption can be invoked. 

ASSUMPTION 3 (WEAK UNCONFOUNDEDNESS):  | .CY D X⊥

ASSUMPTION 4 (WEAK OVERLAP): ( )1| 1.P D X= <  

These assumptions suffice for identifying the ATT because the moments of the 

distribution of YT for the treated are directly measurable; only assumptions about the 

potential outcomes of comparison individuals are needed for estimating the 

counterfactual in the ATT formula. Analogously, only and 

are required if the ATU is to be estimated. 

|TY D X⊥

(0 1|P D X< = )

                                                

Identification of average treatment effects by matching methods is thus based on 

a basic assumption, unconfoundedness, which may or may not be plausible depending 

on the particular context, and which is inherently untestable due to the impossibility 

of actually observing the counterfactual.  Therefore, tests for assessing the validity of 

this assumption in the data can only be indirectly made. Imbens (2004) discusses two 

approaches. One alternative is to use only comparison groups – such as individuals 

who live in two localities where the health programme is not available – for 

estimating the average treatment effect of interest, considering one of these groups as 

the “treated” sample.4  Although not a conclusive evidence, non-rejection of the null 

hypothesis of no treatment effect makes more plausible that unconfoundedness holds 

in the data, whilst rejecting the null points to the invalidity of at least one of the 

comparison groups. 

Another approach for proxy-testing the unconfoundedness assumption would be 

to use the model for estimating the treatment effect on a variable determined before 
 

4 Estimation methods are discussed in the next section. 
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the intervention was launched and thus not affected by exposure to the programme, 

for instance a lagged value of the health outcome of interest (or a number of them, 

provided they do not affect future treatment status). If a statistically significant 

treatment effect is found, there is evidence that treatment and comparison groups are 

systematically different, and so are their outcome distributions. Conversely, non-

rejecting the null gives some credibility to the unconfoundedness assumption in the 

analysed setting.5

UNCONFOUNDEDNESS GIVEN THE PROPENSITY SCORE. A striking result due to 

Rosenbaum and Rubin (1983) is that, if unconfoundedness holds by conditioning on X, 

all biases due to observable characteristics are also removed by conditioning solely on 

a scalar representing the individuals’ conditional probability of receiving treatment 

given the set of observable pre-treatment characteristics X – known as the propensity 

score – and hence the unconfoundedness assumption remains valid. Formally, define 

the propensity score p(X) as the conditional probability of receiving treatment:  

 ( ) ( ) [ ]1| |p X P D X x E D X x≡ = = = =  (8) 

Then, it can be shown that the following must be true: 

 ( ) ( ) ( ), | , |T C T CY Y D X Y Y D p X⊥ ⇒ ⊥  (9) 

The proof of the above result is given in Rosenbaum and Rubin (1983). It 

implies that the important results of unconfoundedness given covariates also hold 

when conditioning solely on the propensity score: if by conditioning on X we get rid 

of the correlation between D and X, the same occurs if we condition on the propensity 

score instead. In this case, for instance, estimation of the ATT can be based on: 

( ) ( ) ( )| | , 0 |C C CE Y p X p E Y p X p D E Y p X p D⎡ ⎤ ⎡ ⎤ ⎡= = = = = = =⎣ ⎦ ⎣ ⎦ ⎣ , 1⎤⎦

                                                

 

and hence can be used for 

estimation purposes. It should be noted that, whilst the first part of 

( )| 1 | , 0 | 1C CE Y D E E Y p X p D D⎡ ⎤⎡ ⎤ ⎡ ⎤= = = = =⎣ ⎦ ⎣ ⎦⎣ ⎦

(9) (independence 

of treatment assignment and potential outcomes given observables) represents an 

 

1 |

5 Frolich (2004) discusses a somewhat weaker test, based on additional untestable assumptions, which 
consists in testing the equality of mean pre-programme conditional outcomes between treatment and 
comparison groups, 1 1| |T C

t t tE Y X E Y X E Y X
− − −

= =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . Systematic differences between the two 
mean outcomes would cast doubt on the plausibility of the unconfoundedness assumption in that 
particular setting. It must be noted that, if the interest lies on the programme effects over more than one 
health outcome, the plausibility of the unconfoundedness assumption should be analysed on a case-by-
case basis. 
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assumption and is hence inherently untestable, independence between the treatment 

variable and covariates once conditioning on the propensity score, ( )| ,X D p X⊥  is 

a key condition for obtaining reliable estimates in a propensity score matching 

estimation context and can be tested with the observed data, as it will be discussed in 

Section 3.2.2. 

 

3.1.3. Asymptotic variances and efficiency bounds for average 

treatment effects 

 

As expected, estimators proposed in the programme evaluation literature for 

recovering the average treatment effects described above have been judged not only 

according to their unbiasedness and consistency results, but also according to their 

ability of achieving the so-called efficiency bound – the lower bound for the 

asymptotic variance of a root-N consistent estimator. Efficiency bounds have been 

derived for estimators of the main average treatment effects; here, I will focus on the 

ATE and ATT parameters. 

Following Hahn (1998), let ( )2 ( ) |C
C X Var Y Xσ = and ( )2 ( ) |T

T X Var Y Xσ =  be 

the conditional variances of the potential outcomes, ( )E p X⎡ ⎤⎣ ⎦  the unconditional 

treatment probability, ( ) ( )|T CX E Y Y Xτ = −  the conditional ATE, and 

( )E Xτ τ⎡= ⎣ ⎤⎦

⎤= ⎦

 the unconditional ATE; analogously, let the unconditional ATT be 

. Hahn (1998) shows that estimators of the ATE must have 

asymptotic variances such as: 

( )1 | 1E X Dτ τ⎡= ⎣

 
( )
( )

( )
( ) ( )(

2 2
22ˆ

1
T C

ATE

X X
E

p X p X
σ σ )Xσ τ τ
⎡ ⎤

≥ + + −⎢
−⎢ ⎥⎣ ⎦

⎥  (10) 

Hahn (1998) also shows that knowing the propensity score does not affect the 

variance lower bound (10) for estimating the ATE, but it does change (reduces) the 

lower bound for estimating the ATT. The lower bound for the asymptotic variance of 

a root-N consistent ATT estimator when the propensity score is known must be: 

 
( ) ( )

( )
( ) ( )
( ) ( )

( )( ) ( )
( )

2 2222
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2 2 2ˆ
1
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p X X X p Xp X X
E
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σ τ τσ
σ

⎡ ⎤⎡ ⎤ ⎡− ⎤⎣ ⎦ ⎣⎢ ⎥≥ + +
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎦  (11) 
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whilst without knowledge of the propensity score the lower bound will be: 
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1
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p X X
2

X p Xp X X
E
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σ

⎡ ⎤⎡ ⎤ −⎣ ⎦⎢ ⎥≥ + +
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (12) 

which is larger than (11). Intuitively, this is because the ATT is a weighted average of 

the treatment effect conditional on the covariates, with weights given by the product 

of the density of the covariates and the propensity score; if the latter is known, there is 

no need to estimate the weighting function and precision is improved, leading to the 

reduced lower bound (12) (Imbens, 2004). 

By inspecting the formulae above, it is clear that estimating the variances of 

ATE and ATT estimators is a difficult task. This requires the estimation of at least one 

unknown regression function and conditional variance and usually of the propensity 

score as well, as can be seen by rewriting the variance lower bound for the ATE case: 

 
( )
( )

( )
( ) ( ) ( )

2 2 22ˆ | |
1

T C T C
ATE

X X
E E Y X E Y

p X p X
σ σ

σ τ
⎡ ⎤

X⎡ ⎤≥ + + − −⎢ ⎥⎣ ⎦−⎢ ⎥⎣ ⎦
 

Estimation of all the components above can be done, but involves additional 

burden to the average treatment effect estimation. A simpler alternative – commonly 

used in applied work, as it will be discussed below – is to use bootstrapping methods. 

Up to this point, the discussion has been focused on the estimands of interest 

and their characteristics. Thus, the next step is to explain how matching methods can 

recover the average treatment effects of interest for health programme evaluation.  

 

3.2 Matching estimation of average treatment effects 

 

Similarly to estimations based on natural experiments, matching methods 

attempt to mimic an experiment using non-experimental data and, for this purpose, 

need to make some independence and exclusion assumptions. All the matching 

procedures that will be discussed below – including propensity score matching and its 

extensions for the multiple and continuous treatments cases – rely on some version of 

the fundamental unconfoundedness assumption (Assumption 1) coupled with overlap 

(Assumption 2), suitably adapted for the estimation of the average treatment effect of 

interest. For ease of exposition, most of the discussion in this section will focus on 

estimating the ATT; extending the ideas for the estimation of other parameters such as 
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the ATE is often straightforward and will be explicitly addressed according to 

necessity. 

 

3.2.1. Matching on covariates 

 

The matching method is a non-parametric approach that tries to re-establish the 

conditions of an experiment when only non-experimental data are available. It is non-

parametric because no particular specification needs to be assumed for the outcomes, 

treatment decision process or the unobservable term. The broad idea is to construct a 

matched comparison group – containing the missing counterfactual information – 

based on individual observable characteristics: individuals will be compared only to 

their counterparts who are similar in terms of these observable factors. As it was 

explained above, the observable characteristics on which matching will be based 

should be those that affect the individual treatment status and health outcomes 

simultaneously. Variants of this method have proven very useful in empirical research, 

mainly (but not only) when the average treatment effect of interest is the ATT and 

when there is a large pool of comparison individuals. 

Taking Blundell and Costa-Dias (2000) exposition as a starting point, let S be 

the support (set of all possible values) of the vector of explanatory variables X, and let 

S* be the common support of X, the space of X that is observed both among treatment 

and comparison groups in the dataset. A consistent estimator for the ATT of a given 

health programme is the empirical counterpart of: 

 
( )

( )
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*

| , 1 | 1

| 1

T C

S

S

E Y Y X D dF X D

dF X D

⎡ ⎤− = =⎣ ⎦
=

∫
∫

 (13) 

where the numerator is the expected health benefit for individuals exposed to the 

health intervention for whom it was possible to find a comparable (in X terms) 

unexposed individual – i.e., over the common support. Individual health gains must 

then be integrated over the distribution of observables among treated individuals and 

re-scaled by the dimension of the common support. As an illustration, let X take only 

discrete values; then, the sample analogue of expression (13) means that treated and 

comparison individuals will be compared in all cells formed by the combination of x’s 

and a weighted average over these cells will be taken, using as weights the proportion 
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of treated individuals in each of the cells. Furthermore, cells with only treated or 

comparison individuals will not be used for estimation purposes. 

Thus, a consistent estimator for the ATT (13) is simply the mean conditional 

difference in health outcomes over the region of common support  appropriately 

weighted by the distribution of treated individuals over Clearly, matching 

methods will only recover the parameter of interest provided that the outcomes for 

comparison individuals are good approximations to the counterfactual, i.e. if matching 

is performed within the common support region. In this case, the assumption of 

unconfoundedness in the common support region can be invoked as a basis for 

matching estimation of the ATT: 

*,S
*.X S∈

ASSUMPTION 5 (UNCONFOUNDEDNESS IN THE COMMON SUPPORT REGION):  

   *|CY D X for X S⊥ .∈

However, one of the limitations of matching methods is that they do not ensure 

that the support for the comparison group equals the support for the treatment group; 

in other words, often (13) cannot be identified for all subsets of S given D=1, and a 

different parameter – no longer the experimental sample average treatment effect – is 

being defined and estimated. Also, depending on the nature of the health programme, 

the weak overlap assumption (Assumption 4) for identifying the ATT can represent 

quite strong a requirement, for instance when the health intervention has been targeted 

to a very specific group. If the impact of the health programme is homogeneous 

within the treatment group, the only problem of not finding a suitable counterfactual 

for some treated individuals and hence discarding them will be the loss of information. 

On the other hand, if the programme effect is indeed heterogeneous and the 

counterfactual cannot be obtained for some subgroups of treated individuals, the loss 

of observations also limits the parameter that can be identified, which will be 

consistent only for the region of common support. In this situation, it is possible that 

the estimated impact does not represent the mean impact of the health programme, but 

insisting in the estimation of a treatment effect by matching without common support 

can introduce severe bias by relying on the matching of treated individuals – with 

possibly outlying covariate values – to substantially different comparison individuals. 

The next step is to generally define the matching estimator in formal terms. The 

main idea of matching is to pair to each treated individual another (or a group) of 

comparison individual(s), associating to the health outcome of the treated person i T
iY
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a matched outcome  given by the (weighted) outcome(s) of her “neighbour(s)” j in 

the comparison group. The general form of the matching estimator for the ATT within 

the common support region is given by: 

ˆC
jY

 l ( )
*{ }

ˆATT T C
M i j

i T S

Y Y Wβ
∈ ∩

= −∑ i  (14) 

In (14), the summation is performed over the group of individuals belonging to 

the treatment group T and falling within the common support region . The term  

stands for the reweighting that reconstructs the health outcome distribution for the 

treated sample (Blundell and Costa-Dias, 2000). The matching estimator for the ATT 

usually takes the form: 

*S iW

 l ( )
*

*
{ }

1ˆATT T C
M i j

i T S T

Y Y
N

β
∈ ∩

= −∑  (15) 

where  denotes the number of treated individuals falling within the common 

support region. Note that 

*
TN

*

1ˆC
j

T

Y
N∑  corresponds to the estimator for the average 

untreated counterfactual for treated individuals, |C .E Y T⎡ ⎤⎣ ⎦  The general form of the 

estimator for the counterfactual for treated individual i is: 

 ( )
*{ ( ) }

ˆ ˆ | , 1
i

C C
j i ij

j C X S

Y E Y X D W Y
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= = = C
j∑  (16) 

where C(Xi) defines comparable neighbours of i in terms of X characteristics and 

is the weight placed on untreated individual j when compared to i, with ijW [ ]0,1ijW ∈  

and . A commonly used matching estimator (e.g., Dehejia and Wahba, 

2002) takes the form: 
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 (17) 

The particular form assumed by the ATT matching estimator for the 

counterfactual (16) depends on the number of neighbours that will be used in 

constructing the counterfactual health outcome for each treated individual and also on 

the weighting scheme chosen. The simplest matching procedure – called nearest-

neighbour matching (NNM) – consists in using only the health outcome of the 
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observably closest untreated individual as the matched counterfactual. Consequently, 

the matching estimator formula collapses to: 

 l ( )
*{ }

ATT T C
NNM i j

i T S

Y Y Wβ
∈ ∩

= −∑ i  (18) 

where j now refers to the closest comparison individual to treated individual i. Other 

matching procedures will be discussed later in the context of propensity score 

matching; they include radius matching (which uses multiple matches when there is 

more than one comparison observation within a tolerated distance of the treated 

individual in terms of observables to perform the matching, and the counterfactual is 

an average outcome of these comparison individuals) and kernel matching (where the 

counterfactual comes from a weighted average of the outcomes of several or all 

comparison individuals, weights being defined according to the “closeness” of their 

characteristics based on a metric function such as Gaussian or Epanechnikov kernel). 

The definition of closeness for choosing the comparable neighbours j is a 

required step in matching estimation. As mentioned above, the set of comparable 

neighbours for a given treated individual may be restricted to one comparison 

individual or contain many of them who are considered “close enough” in terms of 

observables and whose health outcomes might be differently weighted according to 

their degree of similarity. Closeness of the individual vectors of covariates is usually 

measured by employing Euclidean or Mahalanobis metrics. The latter metric 

incorporates the former but has the advantage of taking into account the correlation 

between coordinates of X: the Mahalanobis distance between treated observation i and 

comparison observation j is given by: 

( ) ( ) ( )1,M i j i j i jd X X X X V X X−′= − −  

where V corresponds to the covariance matrix of the covariates in the sample (only in 

the treated sample if estimating the ATT). In this way, when comparing the covariate 

vectors of any two individuals, the contribution of the Euclidean distance measured 

for a given covariate to the total Mahalanobis distance will depend on the precision 

(in variance terms) with which that particular covariate is measured: the more (less) 

precisely that covariate is measured in the sample, the more (less) weight its 

corresponding distance will be given in the computation of the total Mahalanobis 

distance. 
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Different weighting schemes for matched comparison individuals (as in nearest-

neighbour, radius or kernel matching), which reflect different ways of using the 

available information, can potentially influence the results of the average treatment 

effects estimation. Abadie and Imbens (2002) show that simple matching estimators 

such as nearest-neighbour can suffer from bias and not to be root-N consistent if more 

than one continuous covariate is used (although the bias can be small or even 

disappear under specific conditions, for instance by having a large comparison group 

relatively to the size of the treatment group). The authors also find that matching 

estimators are not generally efficient given a fixed number of matches.6 However, as 

the extensive review made by Imbens (2004) suggests, the current debate on the 

practical advantages of each matching estimator is still inconclusive. 

For the unconfoundedness assumption to be valid in estimating the ATT, the 

matched comparison group cannot differ from the treatment group by any variable 

that is systematically related to the potential outcome . Choosing a “good” and 

rich set of covariates is therefore essential for the credibility of the unconfoundedness 

assumption in the context of matching estimation. Imbens (2004) identifies two main 

issues that dominate the choice of the covariates set. Firstly, in finite samples, 

including covariates that are only weakly correlated with the treatment variable and/or 

the health outcomes may decrease precision (or, in more formal words, increase the 

expected mean squared error). Secondly, and more importantly, covariates that are 

themselves affected by the health programme – such as intermediate outcomes – 

should not be included in the covariates set; as a general rule, health outcomes of 

potential interest for the impact evaluation of a particular programme must be 

excluded from the matching variables used.

CY

7

In summary, the set of matching covariates should basically include pre-

treatment variables, time-invariant characteristics (such as gender and education) and 

variables that are deterministic with regard to time (such as age). Factors which affect 

only treatment status or the potential health outcomes do not need to be controlled for. 

Thus, for instance, if individuals with a higher unobserved trait are more likely to be 

                                                 
6 In practice, since the matching estimator is the (weighted) difference between two sample means, 
standard methods for calculating the variance for difference in means in randomised studies have been 
commonly applied without additional corrections for potential biases (Imbens, 2004). 
7 Behrman et al. (2004) use the percentage of individuals correctly classified regarding treatment status 
(hit-or-miss criterion) as a simple test to choose among sets of regressors for estimating the propensity 
score.  
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exposed to the health intervention, but this unobserved factor has no effect on 

potential health outcomes, then it needs not be included in the set of covariates X. 

Treated and matched comparison individuals do not have to be similar regarding all 

observable characteristics, but instead regarding all confounding variables. Whether 

this is achieved with a particular dataset must be argued on a case-by-case basis, 

taking into consideration also the institutional characteristics that drive the selection 

into treatment. If a dataset contains high-quality data rich in covariates associated 

both with exposition to the programme and health outcomes, matching becomes a 

more sensible choice. 

However, one important consequence of the above is that, the more data the 

researcher uses, the more difficult it will be to find similar untreated individuals and 

the more restricted the common support region can become – for instance, with 

discrete X, small or empty cells may be obtained. An additional general limitation of 

the matching method lies on the difficulty of finding matches when a wide range of X 

variables is being used. Apart from imposing linearity in the parameters (and thus 

coming back to ordinary least-squares regression analysis), one possibility for 

reducing the high dimensionality problem is to combine all covariates into a scalar 

measuring the distance between observations i and j (using Euclidean or Mahalanobis 

metrics), a procedure known generally as inexact matching. Another possibility (more 

commonly used) is to match on the propensity score, a scalar which also condenses all 

the information contained in the covariates vector; this will be the topic of the next 

sub-section. 

 

3.2.2. Matching on the propensity score 

 

An alternative for solving the matching version of the curse of dimensionality is 

to use the propensity score as the matching criterion. The problems are now only the 

estimation of the propensity scores of each individual of the sample as a function of 

the covariates, and the estimation of the mean health outcome in the comparison 

group as a function of the propensity scores. The former is usually done 

parametrically, whereas the specifications of ( )| ,T CE Y Y p X⎡ ⎤−⎣ ⎦  ( )|CE Y p X⎡ ⎤⎣ ⎦  

and ( )|TE Y p X⎡⎣ ⎤⎦  are left unrestricted, resulting in a semi-parametric method. The 
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conditioning vector of individual characteristics has thus its dimension reduced to 

one.8

Intuitively, matching on the propensity score works because it imposes the same 

distribution of covariates for the treatment and comparison groups, that is, the density 

of the matching covariates does not vary with treatment status; therefore, 

unconfoundedness given implies the same given X. The fundamental result is 

that, under unconfoundedness, conditioning on the propensity score leads to the 

removal of the correlation between the set of covariates X and treatments status D: 

( )p X

( )|X D p X⊥  

The propensity score is called a balancing score due to its ability of balancing 

the relevant covariates across the matched groups (Rosenbaum and Rubin, 1983). 

This approach divides the sample into sub-samples where causal comparisons can be 

performed and appropriately reweighs the health outcomes of the comparison group 

individuals. Once we condition on the propensity score, the resulting distribution of 

covariates should be the same in the treatment and comparison groups, and being 

exposed to the health programme or not should be now random for a group of 

individuals with similar propensity scores.9 Thus, the omission of X does not lead to 

any bias, although it may still lead to efficiency loss due to less information used 

(Imbens, 2004). 

In practice, however, individuals with similar propensity score values might end 

up being quite dissimilar regarding a few covariates deemed very important for 

explaining the selection into the health programme and potential health outcomes; 

therefore, in finite samples, it can be more efficient to match on a vector including a 

combination of the individual propensity score and a few important covariates (rather 

than solely on the propensity score), achieving a better balancing of the relevant 

observables in the researcher’s specific context. Importantly, given that the propensity 

score is a balancing score, any combination of that conditional probability with 

                                                 
8 One way of using the estimated propensity scores for estimating average treatment effects is in fact an 
extension of traditional regression methods. The main idea is to use the propensity scores as weights 
for the observations, which are weighted by the inverse of the probability of being assigned to the 
treatment actually received, so as to balance the distribution of covariates between treatment and 
comparison groups. The propensity score weighting method will not be discussed here due to the fact 
that it does not rely on matching procedures; the interested reader is referred to Imbens (2004) for a 
basic review of this estimation method. My discussion focuses on propensity score matching methods. 
9 The rigorous definition of the term “similar” will be given below and depends on the particular 
propensity score matching procedure to be applied.  
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elements of the vector of covariates X – which would contain more information than 

using only the propensity score – is also a balancing score. 

Since the balancing of covariates between treatment and comparison groups is 

essential for obtaining reliable estimation results, it is good practice to assess the 

balancing condition after conditioning on the propensity score. This can be visually 

inspected by plotting the distributions of propensity scores for treatment and 

comparison samples, which should be now roughly equivalent. A test for the equality 

of means of propensity scores in the matched and unmatched sub-samples can 

complement this visual inspection. A regression-based test may be regressing the 

treatment variable on the set of covariates before and after matching has been 

performed; if treatment assignment is really random after matching on the propensity 

score, the regression will show low explanatory power (R-squared) and one will not 

be able to reject the null hypothesis of joint insignificance of the entire covariates’ set. 

Other indicative tests include checking whether the calculated Mahalanobis distance 

between the vectors of covariates of treated and untreated groups is indeed close to 

zero after matching, for instance. 

In principle, the propensity score could be estimated using either parametric or 

non-parametric procedures. Nevertheless, it is well known that non-parametric 

estimators tend to run into trouble when the number of covariates is large, resulting in 

a return to the dimensionality problem that, after all, propensity score matching seeks 

to avoid. For this reason, propensity scores are usually estimated by parametric 

techniques in applied work. Since the problem consists on estimating a conditional 

probability – for a binary treatment variable in the case of a single treatment – there is 

a good idea about the methods that can perform adequately for this task. Thus, logit or 

probit specifications are normally chosen for estimating the individual probabilities of 

being exposed to the active treatment conditional on covariates. 

As previously described, the coupling of the balancing score result due to 

Rosenbaum and Rubin (1983) with the unconfoundedness assumption means that the 

ATT of a given health programme can be estimated using the fact 

that  The propensity score (PS) 

matching estimator for the ATT takes the same general form of the corresponding 

matching estimator: 

( )| 1 | , 0 | 1C CE Y D E E Y p X p D D⎡ ⎤⎡ ⎤ ⎡ ⎤= = = = =⎣ ⎦ ⎣ ⎦⎣ ⎦ .
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The counterfactual is constructed as a weighted average of the health outcomes 

of matched individuals not exposed to the intervention, but this time matched 

according to the propensity score: 

 ( )( )
( )( ) *{ }

ˆ ˆ | , 1
i

C C
j i ij

j C p X S

Y E Y p X D W Y
∈ ∩

= = = C
j∑  (19) 

A common formulation of the PS matching estimator for the ATT is given by: 
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The weight accruing to comparison individual j when constructing the 

counterfactual for treated person i is now dependent on the distance between their 

propensity scores, pj(X) and pi(X) respectively, instead of being dependent on the 

distance between their whole sets of observables as in the matching on covariates’ 

case. As it will be discussed below, the exact weighting scheme to be applied to 

comparison individuals on the basis of their propensity scores will vary according to 

the specific matching method being used. 

ijW

An important step in performing propensity score matching is the weighting 

procedure adopted for constructing the counterfactual. Following Smith and Todd 

(2005), define pi and pj as the estimated propensity scores of treated individual i and 

comparison individual j, respectively. Let the neighbourhood set – the set of 

comparable neighbours for i – be the set of individuals belonging to the comparison 

group C for whom the propensity score is close to i’s propensity score by some pre-

defined measure. Therefore, the matched set, the set of comparison individuals 

matched to i, can be defined as: 

( )iC p

 ( ){ }|i j iM j C p C p= ∈ ∈  (21) 

The propensity score matching methods described below differ in the way they 

define “closeness” – that is, the set ( )iC p – and how the weights are constructed.  ijW

 

A. Nearest-neighbour matching 

The simplest form of applying this matching method is by using the health 

outcome of the closest comparison individual as the counterfactual, without 
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replacement (i.e. each comparison observation can serve as a match for at most one 

treated person). The closest comparison individual forms the singleton matched set Mi 

defined in (21) and is the one for whom the following is true: 

{ }| arg mini ij jM j C j p p= ∈ = −  

where the term i jp p− denotes the Euclidean distance between propensity scores.10 

If there is a tie between two or more comparison observations, this tie is usually 

broken by a random draw. 

This simplest form can lead to considerable bias if it results in many bad 

matches, due to treated individuals being matched to comparison counterparts which 

have very different propensity scores (despite being the “closest” neighbours). This is 

the consequence of having regions in the covariate space with low density of 

propensity scores for the comparison group relative to the treatment group, and of not 

imposing a priori a common support restriction. Additionally, the results obtained 

will depend on the order in which individuals get matched. 

Some flexibility can be introduced by allowing the matching procedure to be 

performed with replacement and/or multiple matches. Matching with replacement is 

less demanding in terms of the overlap condition because it allows extreme 

observations within the comparison group to be used more than once. If re-use occurs, 

matching with replacement will use better matches for each treated individual thus 

reducing the bias, but the variance of the estimates will probably be higher than in the 

no-replacement case due to the smaller number of different comparison observations 

used to construct the counterfactual.  

Therefore, if replacement is allowed but with only the closest neighbour being 

matched to the treated observation, very few observations in the sample might end up 

being heavily used even with similar comparison observations being available, 

leading to an unnecessary increase in variance. On the other hand, using multiple 

nearest neighbours tends to reduce the variance of the treatment effects estimates 

                                                 
10 Straightforward modifications to the conditions for the neighbourhood set in each propensity score 
matching procedure apply to the “matching on covariates” case. For instance, if nearest-neighbour 
matching on a set of variables X is being performed (instead of PS matching), then the condition would 
be ( ) min , ,i i j

j
C X X X j C= − ∈ referring to the Euclidean distance between the vectors of 

covariates of treated individual i and comparison individual j. An alternative metric, such as the 
Mahalanobis distance, could also be used. 
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(more information is used in constructing the counterfactual) at the likely cost of 

increased bias due to poorer matches on average.  

 

B. Caliper matching 

This is an extension of nearest-neighbour matching that avoids bad matches by 

constructing the matched set Mi using only comparison individuals whose propensity 

scores are within a tolerated distance from pi. In formal terms, the matched set is 

denoted by: 

 { }|i i jM j C p p ε= ∈ − <  (22) 

where 0ε >  is a pre-defined tolerance distance, the caliper. If, for instance, the 

interest lies on estimating the ATT, the nearest neighbour will only be matched to the 

corresponding treated observation if the comparison individual’s j propensity score 

falls within the aforementioned tolerated distance. 

The definition of the caliper must be left to the researcher’s subjective concept 

of reasonability. If the caliper criterion leads to the exclusion of treated individuals 

from the analysis (those without a suitable comparison match), one may have to 

redefine the treatment effect parameter being estimated and focus on an ATT for 

individuals within a particular range of covariates values. Caliper matching can be 

made more flexible by using multiple matches when there is more than one suitable 

comparison observation to perform the matching; in this case, the counterfactual 

would be an average health outcome of comparison individuals within the caliper. 

This procedure has been denominated radius matching. 

Therefore, caliper matching enforces the common support condition by 

excluding from the analysis those individuals exposed to the health intervention for 

whom it was not possible to find at least one good match, that is, at least one 

comparison individual whose propensity score falls within the tolerance distance. 

 

C. Stratification or interval matching 

The main idea of this matching method is to divide the common support region 

into intervals (or “blocks”) and then calculating one mean treatment effect for each 

interval. The overall ATT is computed as a weighted average of mean interval effects, 

with weights being defined as the number of treated individuals in each interval 

(analogously, weighting by the total number of individuals in each interval leads to 
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the estimate of the ATE for that particular block). Implementation of this method is 

therefore to be preceded by the definition of the matched set Mi – and thus of the 

common support region – by one of the procedures described herein. 

In formal terms, let the common support of ( ) ( )1|P D X p X= =  be partitioned 

in I intervals containing both treated and comparison individuals – hence discarding 

observations in intervals in which there are either only treated or only comparison 

individuals. Also, let nkATT  represent the difference between average treated and 

comparison outcomes within the kth interval (as if randomisation of treatment had 

occurred within that particular block) and *
T kN ∈  denote the number of treated 

individuals falling within the common support region and in interval k. If we use the 

following estimator for the ATT in the kth interval: 

 n
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then the overall estimated ATT will be given by: 
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One possibility (performed by Dehejia and Wahba, 1999) is to define the 

intervals so as to have statistically insignificant differences between the estimated 

propensity scores of treated and comparison individuals within each interval; the 

balancing of important covariates within each block might be separately assessed as 

well. Alternatively, the common support region can be divided into five categories – 

quintiles – so as to have estimates of the ATT of a health programme according to 

quintiles of income, for instance. 

If the model for the propensity score has been adequately specified, one should 

expect that the distribution of covariates among treatment and comparison groups are 

well balanced within each interval. This works in fact as an informal test of the 

statistical model. When covariates in a given interval end up not being well balanced 

among groups, the researcher can interpret this either as an evidence of the need for 

additional splitting of intervals, or for improving the statistical model of the 

propensity score by, for example, adding more covariates. According to a review 

made by Imbens (2004), no formal algorithm has been proposed for dealing with the 

issue of the optimal number of blocks in finite samples, although based in asymptotic 

properties the author sees no apparent harm in choosing a large number of intervals. 
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Interval matching as described so far allows the estimation of average treatment 

effects in a non-parametric way (of course, usually after the parametric estimation of 

the propensity scores, as in the other matching methods); this is done by 

approximating the unknown function by a step function with fixed jump points, which 

leads to substantial difficulties for establishing asymptotic properties for this estimator 

(Imbens, 2004). As an alternative, least squares regression might be used for 

estimating the average treatment effect of interest within each interval. This is 

equivalent to taking the “unadjusted” regression of the health outcome on the 

treatment variable within each block k and adding covariates to it, resulting in an 

estimated average treatment effect β̂  given by the regression .k k kY D Xα β γ′ ′ ε= + + +  

 

D. Kernel and local linear matching 

In this matching procedure, the counterfactual for each treated individual is 

constructed by using a kernel-weighted average over multiple comparison individuals. 

The general form of the kernel matching estimator is given by: 
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where ( )K ⋅  is a chosen kernel function with mean zero and which integrates to one; 

also, hn is a bandwidth parameter which tends to zero as n tends to infinity (Smith and 

Todd, 2005). The weighting term  in ijW (20) is given by ( ) ( )( )( )
ij C p

K
∈

K⋅ ⋅∑  and, as 

usual, depends on the distance between the propensity score of each comparison 

observation and the treated individual for which the counterfactual is being 

constructed. For kernel functions taking non-zero values only on the interval [-1,1], 

the matched set is denoted by: 

 | i j
i

p p
M j C

h
1

⎧ − ⎫⎪ ⎪= ∈ ≤⎨ ⎬
⎪ ⎪⎩ ⎭

 (25) 

The kernel counterfactual estimate is a weighted average of the health outcomes 

of comparison observations within the bandwidth at the current point of evaluation 

(treated individual i), with greater weights placed on comparison observations with 

propensity scores closer to pi. In matching estimation, the most common kernel 

 28



functions are second-order kernels such as the uniform, Epanechnikov, biweight, 

tricubic and Gaussian. The choice of a particular kernel function will not only affect 

the specific weight accruing to a given comparison observation, but also the 

composition of the common support region S*: for instance, while the Gaussian 

kernel uses all comparison observations in constructing the counterfactual, the other 

functions restrict the neighbourhood set to those comparison observations for which 

i jp p h− ≤ .11  

More important than the particular kernel function chosen is the choice of the 

bandwidth. Kernel estimates are obtained by slicing the data into ever smaller 

intervals as the sample size tends to infinity and estimating local behaviour within 

each interval. As such, the kernel counterfactual estimator belongs to the category of 

local averaging methods for which the definition of “localness” influences results in 

finite samples, turning the bandwidth choice for smoothing the density estimate an 

important step (Cameron and Trivedi, 2005). It can be noticed by looking at (25) that, 

keeping the distance between propensity scores constant, choosing a smaller 

bandwidth is equivalent to being stricter in defining the common support region, by 

excluding some previously used comparison observations – those who no longer 

satisfy the requirement i jp p h− ≤  – and placing a heavier weight on the health 

outcomes of those comparison individuals who are closer to the treated observation.12 

Conversely, increasing the bandwidth means being more tolerant in terms of the 

closeness requirements imposed to comparison observations.13

Smith and Todd (2005) note that kernel matching can be seen as a weighted 

regression of C
jY on an intercept with kernel weights which vary according to the 

evaluation point, with the estimated intercept providing an estimate of the 

counterfactual mean. Additional adjustments for asymmetries of comparison 

observations around treated observations can be made by including in the regression a 

linear term in pi. This is equivalent to a more general specification of the kernel 

                                                 
11 Common support restrictions may be placed on the treatment group as well, e.g. by excluding treated 
individuals whose propensity scores are larger than the largest propensity score in the comparison 
group. A similar though more refined procedure is to “trim” the common support region; this procedure 
is explained in Smith and Todd (2005). 
12 In the limit, continuously reducing h would lead to nearest-neighbour matching. 
13  There are different procedures for defining an “optimal” bandwidth (which will vary with the 
particular kernel function chosen). One common method is to use a plug-in estimate for the bandwidth, 
a simple formula which depends on the sample size and the sample standard deviation, such as the 
Silverman’s plug-in estimate (Cameron and Trivedi, 2005). 
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matching estimator (24) called local linear matching, proposed by Heckman et al. 

(1997) in order to correct for the fact that the probability mass of the estimated 

propensity scores of treated and comparison observations in their sample tended to be 

concentrated at the boundaries (close to one and zero, respectively). In local linear 

matching, the weight is given by a combination of the kernel functions for 

comparison individuals when matched to a given treated observation: 

ijW

 
( ) ( ) ( )

( ) ( )

2

22

ij ik k i ij j i ik k ik C j C
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ij ij k i ik k ij C k C k C
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∈ ∈
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∑ ∑
∑ ∑ ∑

 (26) 

where ( )ij j i nK K p p h= − and ( )ik k i nK K p p h= − . Heckman et al. (1997) argue 

that the advantages of local linear regression over using standard kernel weights 

include a faster rate of convergence near boundary points and greater robustness to 

different data densities. 

*** 

As noted by Imbens (2004), there are no formal results for the variance of the 

propensity score matching estimators when the propensity score is unknown and 

needs to be estimated.14 Therefore, a common procedure is to estimate standard errors 

by bootstrapping; however, the theoretical properties of bootstrap have not yet been 

established for matching estimators (albeit there is some evidence that bootstrapping 

does not lead to valid confidence intervals for some nearest-neighbour estimators; see 

Abadie and Imbens, 2006). Although further research is clearly needed so as to 

establish the reliability of bootstrapped standard errors for multiple matches-based 

estimators, the vast majority of empirical research to date has relied on bootstrapping 

as a feasible alternative for constructing confidence intervals in matching estimation 

settings. 

Finally, given its importance for a credible propensity score matching estimation 

of treatment effects (and for matching procedures in general), the overlap assumption 

should ideally be assessed using the real data. With the propensity score as the only 

covariate, its distributions among treatment and comparison groups can be directly 

plotted and compared, but the validity of the result depends on an adequate 

                                                 
14 When parametric modelling is performed, it is often the case that the estimate of the asymptotic 
variance of the treatment effect estimators ignores the fact that there is an error component associated 
to the estimation of the propensity score (and also to the ordering of the matching process itself), hence 
being considered a “conservative” estimator. 
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specification of the propensity score model. When a high dimensional matrix of 

covariates is being used, a good test of the overlap assumption is to verify the 

distribution of the covariates deemed important for the evaluation in both groups. If in 

fact there is lack of common support in one or more regions of the covariates 

distribution, it can be advisable to drop matches where individual covariates are far 

apart from each other – which, once again, may lead to a necessary redefinition of the 

parameter being estimated. 

 

3.2.3. Matching and difference-in-differences 

 

The identification assumption which underpins matching estimation requires 

that programme exposure and potential health outcomes are independent once the 

relevant covariates are controlled for. Thus, if there remain any systematic differences 

between the health outcomes of treated and comparison individuals, matching 

estimation will not recover the parameter of interest. This will occur, for example, if 

individuals select into the health programme based on unobserved characteristics 

which are themselves correlated with their potential outcomes (e.g., more health-

concerned people, with “better” lifestyles, tend to migrate to areas where the health 

programme of interest is available exactly because of these services availability), or 

when there were differences on health endowments between the areas in which the 

programme was implemented and those where it was not. 

However, even in the cases just described, semi-parametric estimation of 

average treatment effects can still be performed by relying on weaker identification 

assumptions than the ones described in previous sections. If we have reasons to think 

that there remain systematic differences between treated and comparison individuals 

even after matching, but it can be assumed that those differences are time-invariant, a 

difference-in-difference (DD) strategy can be adopted to eliminate the remaining 

biases. 

One important characteristic of matching methods is that they are flexible 

enough to be combined with other estimation strategies such as DD, therefore 

allowing identification of the parameters of interest to be based on weaker, more 

credible assumptions for some settings. Moreover, a combined matching-DD 

approach has two advantages over the standard DD method: firstly, there is no 
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imposition of a linear relationship between treatment and health outcomes, with the 

linking function between health outcomes and treatment status allowed to change over 

time; secondly, comparison observations are reweighed according to their similarity – 

in terms of observable covariates – to their treated counterparts (Smith and Todd, 

2005). One weakness of the DD approach is that usually there are no guidelines 

regarding which covariates, if any, should be included in the regression. 

If t1 denotes the time period after the programme was implemented, the 

evaluation problem for estimating the ATT can be expressed as estimating the 

counterfactual in: 

 ( ) ( ) ( )1 1| 1, | 1, | 1,T C T C
i i i i 1E Y Y D t E Y D t E Y D t− = = = − =  (27) 

With two time periods, where t0 represents the time period before exposure to 

the health programme, and under the assumption that the evolution of health 

outcomes in treatment and comparison groups would have been the same in the 

absence of the programme, (27) is equivalent to: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) (
( ) ( ) ( ) (

1 0 1

1 0 1

1 1 0

| 1, | 1, | 0, | 0,

| 1, | 1, | 0, | 0

| 1, | 0, | 1, | 0,

T C C C
i i i i

T C C C
i i i i

T C C C
i i i i

E Y D t E Y D t E Y D t E Y D t

E Y D t E Y D t E Y D t E Y D t

E Y D t E Y D t E Y D t E Y D t

⎡ ⎤= − = + = − =⎣ ⎦

)
)

0

0

0

,⎡ ⎤= = − = − = − =⎣ ⎦
⎡ ⎤= = − = − = − =⎣ ⎦

 (28) 

Reliable estimation of the last three terms in any line of (28) requires the 

comparison of health outcomes across similar groups. Consider the case of 

propensity-score matching estimation. Heckman et al. (1997) suggest the following 

difference-in-differences propensity score matching (PSDD) estimator for the ATT: 
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The idea behind this estimation procedure is to eliminate any systematic time-

invariant differences – e.g., health endowments or geographic mismatches – between 

groups exposed and unexposed to the health programme, conditional on the 

propensity score. This will be true only if a modified version of the weak 

unconfoundedness assumption holds: 

ASSUMPTION 6 (WEAK UNCONFOUNDEDNESS FOR PSDD): 

( ) ( )
1 0

| .C C
t tY Y D p X− ⊥  
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Unconfoundedness as defined in Assumption 6 states that, conditional on the 

propensity score, it must be the case that comparison individuals have evolved in 

terms of their (average) health outcomes in the same way treated individuals would 

have evolved had they not received treatment; this is the matching-modified version 

of the “parallel trend” assumption invoked for standard DD estimation. This is 

weaker than the assumptions previously defined in this paper because now it is not a 

problem if there are unobserved factors which affect exposure to the programme and 

health outcomes simultaneously, as long as the effect of these unobserved variables 

exhibits the same variation, on average, for treated and comparison individuals. This 

guarantees that the following equality holds and can be used for estimation purposes: 

 ( )( ) ( )( )1 0 1 0
| , 1 | ,C C C C

t t t tE Y Y P X D E Y Y P X D− = = − 0=  

The overlap assumption must hold in both periods: for a given propensity score 

value, there must be both comparison and treated observations in both periods. Also, 

as it can be easily noticed, panel data are required to estimate (29); however, it can be 

the case that i) panel data are not available at least for the comparison individuals, or 

ii) only repeated cross-sections data are available for both groups. Smith and Todd 

(2005) modify the estimator (29) to deal with the former case; for the latter case, 

Blundell and Costa-Dias (2000) propose a repeated cross-section PSDD estimator of 

the ATT that can be expressed as: 
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 (30) 

In (30), T0, T1, C0 and C1 stand for the treatment and comparison groups in the 

periods before and after exposure to the health programme, respectively. Therefore, 

the estimator proposed by Blundell and Costa-Dias (2000) requires matching to be 

performed three times for each treated individual: to find comparable treated 

individual(s) before treatment and comparison individuals before and after the 

programme. 

As to the relevant propensity score to be used when performing the matching 

procedure in a repeated cross-sections context, an alternative is proposed by Blundell 

et al. (2002). Since there are two non-random assignments – to treatment and time of 

observation – and the distribution of covariates must be the same in the four cells 

defined by combining these assignments, the authors use a vector of two propensity 

scores (one for each assignment category) as the matching variable. Once the three 
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counterfactuals have been constructed by a chosen matching procedure, the 

programme ATT is estimated by DD as in (30) under the additional assumptions of 

additive separability of the group and time effects. 

 

4 Matching estimation of health programme average treatment 

effects with multiple treatments 
 

The matching methods discussed so far were originally developed for assessing 

the impact of social programmes when the treatment variable is defined as a binary 

category: the individual is either in the active treatment group or in the comparison 

group (the latter usually defined as the “untreated” case). There has been though some 

recent interest in investigating the potential that matching methods have for jointly 

evaluating the impact of alternative programmes, mainly in labour market policies 

settings (see, for instance, Lechner, 2002; Frölich et al, 2004). This calls of course for 

an extension of the matching procedures described above so as to contemplate the 

case of multiple alternative interventions. 

Obviously, it can be very relevant to evaluate the impact of alternative 

programmes in the context of health interventions as well. Health programmes aimed 

at improving the same health outcomes may contain different components (for 

example, offering a different mix of health services) or the same health intervention 

may be available in several geographic areas, but with different population coverage 

levels across these localities. Another evaluation setting could require the impact 

assessment of the same health programme when individuals have been exposed to the 

intervention for different periods of time. All the settings just described can be seen as 

involving a comparison between the health impacts of alternative “programmes”, 

where for instance coverage levels and length of exposure play the role of compared 

alternatives. 

The required extensions of matching procedures for the case of multiple 

treatments have been proposed almost simultaneously in two papers, Imbens (2000) 

and Lechner (2000). They show that the main results obtained for the case of 

matching with a single treatment apply for the multivariate case as well. I will present 

these developments relating them to the aforementioned health sector relevant case of 
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a health programme with different levels of population coverage between localities, 

the so-called “dose-response” context. 

 

4.1 Average treatment effects: definition and identification 

 

4.1.1. Definition of average treatment effects 

 

Applying the definitions introduced by Lechner (2000) to a more specific 

context, let a given health programme be implemented in a group of localities 

according to sequentially increasing, mutually exclusive coverage levels l denoted by 

{ }0,1, 2,...,l = L . A given individual i who lives in a locality with a coverage level l 

will have then only one element of the outcomes set { }0 1 2, , ,..., LY Y Y Y observed at a 

given point in time, the remaining being her counterfactual outcomes. The treatment 

variable D can now assume one of (L+1) discrete values: { }0,1, 2,..., .D L∈  

The average treatment effects of interest defined for the single treatment case 

are expanded so as to encompass the availability of multiple treatments, although the 

focus remains on pair wise comparisons between the health effects of two different 

coverage levels, e.g., and 1 1l = 2 22, .l l 1l= >  The causal effects of interest are now 

related to the difference , that is, the effect of being exposed to treatment level 

2 and not being exposed to treatment level 1. 

2
iY Y− 1

i

Average Treatment Effect (ATE): this is the expected health effect of living in a 

locality with a coverage level 2l =  instead of living in an area with  for an 

individual randomly drawn from the entire population. 

1l =

 2,1 2 1 2 1ATE E Y Y E Y E Y⎡ ⎤ ⎡ ⎤ ⎡= − = − ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (31) 

Note that the average treatment effect of being subjected to coverage level 2 

instead of 1 is symmetric to the treatment effect of being subjected to the latter instead 

of the former, i.e. 2,1 1,2.ATE ATE= −  Note also that 2 1l lE Y Y⎡ ⎤−⎣ ⎦ involves the 

computation of the expected value of every counterfactual outcome for that particular 

pair wise comparison, as can be seen by expanding (31): 
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 (32) 

Thus, in the matching estimator case, the ATE can be obtained by estimating the 

expected outcomes conditional on covariates in both groups and weighting them by 

the distribution of these covariates in the full sample: 

  (33) ( ) ( )
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2 1
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where ( )Xf x  denotes the density of X in the whole sample. A modified version of the 

unconfoundedness assumption is necessary for (33) to be valid; this assumption is 

rigorously defined in the next sub-section. 

Lechner (2000) suggests also a redefinition of the ATE so as to refer only to the 

population exposed to the two coverage levels of a given pair wise comparison. This 

“restricted ATE” is similar to the definition of the ATE when the treatment variable is 

binary: 

  (34) 2,1 2 1 2 1| 1, 2 | 1, 2 | 1, 2RATE E Y Y D E Y D E Y D⎡ ⎤ ⎡ ⎤ ⎡= − = = = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦

The above treatment effect is also symmetric in the sense that 
2,1 1,2.R RATE ATE= −  

Average Treatment Effect on the Treated (ATT): this parameter corresponds to 

the average effect among those who reside in a locality with a coverage level  

when compared to those who live in a locality with coverage level 

2l =

1.l =  

  (35) 2,1 2 1 2 1| 2 | 2 | 2ATT E Y Y D E Y D E Y D⎡ ⎤ ⎡ ⎤ ⎡= − = = = − =⎣ ⎦ ⎣ ⎦ ⎣ ⎤⎦

Thus, in the context of a health programme with multiple possible levels of 

coverage, the ATT is equivalent to the marginal gain (in terms of health outcomes) 

accruing to a randomly selected individual from a locality with coverage level 2, 

relative to what would have been her outcome if she had lived in a locality with 

coverage level 1. Again, under unconfoundedness, the ATT can be identified in the 

matching estimation context as: 
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where ( )| 2X Df x=  denotes the density of X only among individuals exposed to 

treatment level 2. 

The symmetry property for the ATE measures mentioned above does not 

necessarily hold in the case of the ATT. To see this, notice that 

which is different from 

 because the conditioning sets differ. This difference will hold if 

individuals living in the compared areas systematically differ in a way related to their 

health outcomes. 

1,2 1 2 1 2| 1 | 1 | 1ATT E Y Y D E Y D E Y D⎡ ⎤ ⎡ ⎤ ⎡= − = = = − =⎣ ⎦ ⎣ ⎦ ⎣ ,⎤⎦

)( 2,1ATT−

Summing up, as in the case of a single treatment, estimating the ATT is less 

demanding in terms of required information than estimating the ATE (even if the 

latter is pair wise restricted). Estimating 2,1ATT requires only identification of 

; estimation of 1 | 2E Y D⎡ =⎣ ⎤⎦
2,1
RATE requires identification of two counterfactuals, 

and . The more demanding situation is that of estimation 

of the ATE, for which the series of counterfactuals 

1 | 2E Y D⎡ ⎤=⎣ ⎦
2 | 1E Y D⎡ =⎣ ⎤⎦

1 | 1E Y D⎡ ⎤≠⎣ ⎦ and  

need to be identified.

2 | 2E Y D⎡ ⎤≠⎣ ⎦
15

 

4.1.2. Identification of average treatment effects 

 

The treatment effects defined above can be consistently estimated using 

matching methods even in a multiple treatment setting. Analogously to the single 

treatment case, identification is based on two fundamental assumptions about 

treatment – or, in our case, coverage level – assignment: unconfoundedness and 

overlap. Let be the individual probability of being assigned to coverage level l ( )lp X

                                                 
15  Since many alternative comparisons of programmes are possible when multiple treatments are 
available, Lechner (2001) suggested further treatment effects parameters which are not going to be 
discussed here. In the present setting, these composite measures would refer to the average treatment 
effect for an individual of being exposed to coverage level l compared to the treatment effect of being 
randomly assigned to any of the other available coverage levels with the probabilities valid in the 
population. 
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given the vector of individual covariates X; then, the two fundamental assumptions 

are: 

ASSUMPTION 7 (UNCONFOUNDEDNESS FOR MULTIPLE TREATMENTS): 

  (37) ( )0 1 2, , ,..., | .LY Y Y Y D X⊥

ASSUMPTION 8 (OVERLAP FOR MULTIPLE TREATMENTS): 

 ( ) { }0 1, 0,1, 2,..., .lp X l L< < ∀ ∈  (38) 

Unconfoundedness given covariates for the multiple treatments case (37) is just 

an extension of the same assumption (in its stronger version) for the single treatment 

case. Lechner (2000) proves for the multiple treatments case that, if 

unconfoundedness holds given covariates, it also holds when conditioning solely on a 

particular function of the covariates, the generalised balancing score: 

 ( ) ( ) ( ) ( )0 1 2 0 1 2, , ,..., | , , ,..., |L LY Y Y Y D X x Y Y Y Y D b X b x⊥ = ⇒ ⊥ =  (39)

which is true if ( ) ( ) ( ) ( ) (| | | l ).E P D l X x b X b x P D l X x p x⎡ ⎤= = = = = = =⎣ ⎦ By 

using the same reasoning as in the single treatment case, under unconfoundedness we 

must have: 

 
( ) ( ) ( ) ( )

( )( ) ( )

0 1| | , ,..., , | |

| |

LE P D l X Y Y Y b X E P D l X b X

P D l b X P D l X

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦⎣ ⎦
= = = =

 

and a valid balancing score is the vector of all but one (the linearly independent) 

individual propensity scores ( ) ( ) ( ) ( )1 2, ,..., .Lp x p x p x p x⎡ ⎤= ⎣ ⎦
JG

All the relevant 

counterfactuals – and therefore all the relevant treatment effects – are identified by 

relying on (37) and (39). As in the single treatment case, the mechanical balancing 

score property is combined with unconfoundedness so as to make valid the propensity 

score matching approach, although now the conditioning set ( )p X
JG

 is not of single 

dimension anymore.  

An important result derived by Lechner (2000) states that the evaluation 

problem with multiple treatments is substantially simplified when the interest lies in 

pair wise comparisons, e.g. when separately estimating the average health effect of 

increasing the coverage level of a given programme from l0 to l1 , l1 to l2 , and so forth. 

Weaker versions of the basic assumptions (37) and (38) are now required, and a 

reduction of the conditioning set to one is possible. To see this, let the treatment effect 

of interest be that associated to increasing the programme’s coverage level from  1l =
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to . In this case, for identifying the ATE, ATER and ATT, the sufficient 

assumptions are, respectively: 

2l =

(i) Weak unconfoundedness and overlap assumptions for estimating the ATE: 

 ( ) ( ) ( ) ( )2 1 2 1 1 1, | , | ,..., L LY Y D X x Y Y D p X p x p X p x⎡ ⎤⊥ = ⇒ ⊥ = =⎣ ⎦  (40) 

 ( ) { }0 1, 0,1, 2,...,lp x l L< < ∀ ∈  (41) 

(ii) Weak unconfoundedness and overlap assumptions for estimating the ATER: 

 { } ( ) ( ) { }2 1 2 1 1|1,2 1|1,2, | , 1, 2 , | , 1, 2Y Y D X x D Y Y D p X p x D⊥ = ∈ ⇒ ⊥ = ∈  (42) 

where ( ) { }( ) ( )
( ) ( )

1
1|1,2

1 21| 1, 2 ,
p x

p x P D D X x
p x p x

= = ∈ = =
+

 is the generalised 

propensity score, and: 

 ( ) { }0 1,lp x l< < ∈ 1, 2

=

 (43) 

Notice that the latter case is similar to that of a binary treatment variable for 

which , but recall that, in the general case of multiple treatments, 

 

( ) ( )1 2 1p x p x+

( ) ( )1 2 1.p x p x+ <

(iii) Weak unconfoundedness and overlap assumptions for the 2,1ATT : 

 { } ( ) ( ) { }1 1 1|1,2 1|1,2| , 1, 2 | , 1,Y D X x D Y D p X p x D⊥ = ∈ ⇒ ⊥ = ∈ 2  (44) 

 ( ) { }0 1,lp X l< < ∈ 1, 2  (45) 

With the set of assumptions (i), all relevant counterfactuals for the 2,1ATE  and 
1,2ATE are identified, because it is implied that: 

  2 2| , | , 2 ,E Y X x D l E Y X x D l⎡ ⎤ ⎡ ⎤= = = = = ∀ ≠⎣ ⎦ ⎣ ⎦ 2

1 1 1| , | , 1 ,E Y X x D l E Y X x D l⎡ ⎤ ⎡ ⎤= = = = = ∀ ≠⎣ ⎦ ⎣ ⎦  

Notice that the conditioning sets above are still of L dimension. 

Unconfoundedness is relaxed in (ii) by referring only to assignment to the pair of 

compared treatment levels 1 and 2 (and their respective subpopulations); if both 

potential outcomes of interest are independent of assignment to any coverage level l 

as stated in (i), then it implies that the same is true when comparing only the groups of 

individuals assigned to any pair of treatment levels. Thus, (ii) is a logical implication 

of (i) and identification is based on the following equalities: 

 ( ) ( ) ( ) ( )2 1|1,2 1|1,2 2 1|1,2 1|1,2| , 1 |E Y p X p x D E Y p X p x D⎡ ⎤ ⎡= = = =⎣ ⎦ ⎣ , 2⎤= ⎦  
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 ( ) ( ) ( ) ( )1 1|1,2 1|1,2 1 1|1,2 1|1,2| , 2 |E Y p X p x D E Y p X p x D⎡ ⎤ ⎡= = = =⎣ ⎦ ⎣ , 1⎤= ⎦  

In this case, the counterfactual expected outcome can be consistently identified 

by adjusting for the adequate distribution of the (single dimensional) generalised 

propensity score  For example, for the ( )1|1,2 .p X 2,1ATT : 

 
( )

( ) ( )1|1,2

1 1 1|1,2

1 1|1,2 1|1,2 1|1,2
| 2

| 2 | , 1 | 2

| , 1
p D p

E Y D E E Y p X D D

E Y p X D f dp
=

⎡ ⎤⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎣ ⎦

= = = =

= = ⋅∫
 (46) 

where corresponds to the distribution of the generalised propensity score in the 

sub-sample in the active treatment, i.e. coverage level 2. 

1|1,2 | 2p D
f

=

Conditioning can be based on the generalised propensity score, but obviously a 

finer balancing score can also be used, including combinations of the generalised 

propensity score and covariates deemed to be particularly relevant in a given context. 

It is also valid to condition directly on the vector ( ) ( )1 2,p x p x⎡ ⎤⎣ ⎦ , which is finer than 

the conditional probability ( )1|1,2p x in the sense that the latter is equivalent to its 

expectation conditional on and( )1p x ( )2 ,p x  that is: 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1|1,2 1 2 1 2 1|1,2

1 2| , | ,
p X

E p X p X p X E p X p X p X
p X p X

⎡ ⎤
⎡ ⎤ = =⎢ ⎥⎣ ⎦ +⎣ ⎦

 

In each case, the parameters ATER and ATT can now be estimated by relying on 

the set of assumptions (ii), as 1 | 2E Y D⎡ ⎤=⎣ ⎦  and 2 | 1E Y D⎡ ⎤=⎣ ⎦ are identifiable 

counterfactuals. 

If, however, interest lies only in estimating the 2,1,ATT  the set of assumptions 

(iii) suffices for identifying the required counterfactual 1 | 2E Y D⎡ ⎤=⎣ ⎦  by relying on 

the equality ( ) ( ) ( ) ( )1 1|1,2 1|1,2 1 1|1,2 1|1,2| , 2 |E Y p X p x D E Y p X p x D⎡ ⎤ ⎡= = = =⎣ ⎦ ⎣ , 1 .⎤= ⎦

⎤= ⎦

 

Recall that and that, by unconfoundedness, 

the second expectation term is equal to 

2,1 2 1| 2 | 2ATT E Y D E Y D⎡ ⎤ ⎡= = −⎣ ⎦ ⎣

( )1 1|1,2| , 1 |E E Y p X D D 2 .⎡ ⎤⎡ ⎤= =⎣ ⎦⎣ ⎦  

A careful examination of the statements above leads to two important 

implications. Firstly, a sample reduction property for pair wise comparisons of 

treatment levels is derived (Lechner, 2000). If coverage levels 1 and 2 are being 

compared and the interest lies in estimating only the parameters ATER and ATT, 
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unconfoundedness can be assumed to hold only for the sub-sample of individuals 

subjected to treatment levels 1 and 2, implying that this sub-sample is the only one 

required for the empirical analysis; in other words, individuals exposed to treatment 

levels  – and thus the existence of multiple treatments – can be ignored for 

this particular analysis. 

{1,2}l ≠

Secondly, a conditioning set reduction is achieved when making pair wise 

comparisons and estimating the ATER and ATT parameters. Propensity score 

matching can be based on the single dimension conditioning set a composite 

individual index. Importantly, Imbens (2000) and Lechner (2000) show that, for the 

pair wise comparison case, a similar reduction can also be derived for estimating the 

ATE, which involves the computation of 

( )1|1,2 ,p X

( )| , |l lE E Y p X D l D l⎡ ⎤⎡ ⎤= ≠⎣ ⎦⎣ ⎦ . Also in 

this case,  and the vector of propensity scores ( )1|1,2p X ( ) ( ) (1 2,p x p x p x)⎡ ⎤= ⎣ ⎦
JG

 are 

valid balancing scores. 

Finally, variance bounds for the estimators of the expected potential outcome 

,lE Y⎡ ⎤⎣ ⎦ the ATE 2 1 ,E Y Y⎡ −⎣ ⎤⎦ the ATT 2 1 | 2E Y Y D⎡ ⎤− =⎣ ⎦ and the mean 

counterfactual outcome 1 | 2E Y D⎡ ⎤=⎣ ⎦  have been derived by Frolich (2004).  

 

4.2 Matching estimation of average treatment effects 

 

4.2.1. Matching on the propensity score 

 

Using the same notation as in Section 3, estimators of the treatment effects 

discussed above can be expressed as follows: 

 n
{ } { }

2,1

2
2 2

1 1
ii D j D

ATT Y W Y
N N∈ = ∈ =

= −∑ ∑ 1 ij j  (47) 

 n n { }( ) n { }( )2,1 2,1 1,2
2 | 1, 2 1| 1, 2RATE ATT P D D ATT P D D= ⋅ = ∈ − ⋅ = ∈  (48) 

 n
{ } (

2,1

2 { 1}
0

1 1L

il i il ji D j D
l l l

ATE W Y W Y P D l
N N∈ = ∈ =

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ )=  (49) 

where i indexes an individual belonging to the active treatment group and j denotes a 

matched individual belonging to the comparison treatment group. 
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The actual estimation of average treatment effects with multiple treatments by 

propensity score matching (PSM) follows the same general steps performed as in the 

single treatment case. Consistent estimates of ( )P D l= and |lE Y D l⎡ ⎤=⎣ ⎦ are 

obtained, respectively, by cell frequencies and the average outcomes for individuals 

exposed to treatment level l. The PSM estimator of the counterfactual can then be 

constructed according to the steps suggested by Lechner (2000):16

1) Specify and estimate a multiple choice model in order to obtain the individual 

vectors of (generalised) propensity scores (one for each individual): 

( ) ( ) ( ) ( )0 1 2ˆ ˆ ˆ ˆ, , ,..., .L
i i i ip X p X p X p X⎡⎣ ⎤⎦ For the particular case of different 

coverage levels of the same health programme, an ordered choice model 

would be appropriate, but other settings may rather call for a multinomial 

choice model; 

2) Estimate the counterfactual expectations of the outcome variables conditional 

on the respective propensity scores. In the case of investigating the ATT of 

being subjected to treatment level 2 instead of 1, having already computed in 

the first step, for each individual, ( ) ( )
( ) ( )

1
1|1,2

1 2

ˆ
ˆ

ˆ ˆ
p X

p X
p X p X

=
+

 or 

, this is achieved by: ( ) ( )1 2ˆ ˆ,p X p X⎡⎣ ⎤⎦

a) choosing one individual from the sub-sample belonging to 2D =  and 

temporarily excluding her from the sample; 

b) finding an individual in the sub-sample 1D =  who is the closest one to 

the individual chosen in a), either in terms of ( )1|1,2p̂ X or in terms of 

the vector ( ) ( )1 2ˆ ˆ,p X p X⎡⎣ ⎤⎦ . Obviously, this is to be preceded by the 

definition of a “closeness” measure for the analysis, such as the 

Euclidean or Mahalanobis distances. The comparison individual 

chosen in this step will be replaced in the corresponding sub-sample to 

allow her possible re-use as a match to other 2D =  individuals; 

                                                 
16  Lechner relies on nearest-neighbour with replacement as the matching procedure, although the 
suggested protocol can be easily adapted to make use of the alternative PSM procedures discussed for 
the single treatment case. However, since the role of each sub-sample as treatment and comparison 
group is reversed for estimating all the treatment effects parameters, it is necessary to rely on matching 
with replacement when the number of individuals is different in the treatment level sub-samples.  
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c) repeating steps b) and c) until all individuals belonging to the 2D =  

group are matched to a comparison counterpart; 

d) using the sample mean of the outcomes in the resulting comparison 

group formed above (which may contain repeated comparison 

individuals as matches) to compute the counterfactual conditional 

expectation. The conditional expectation 2 | 2E Y D⎡ ⎤=⎣ ⎦  is estimated as 

the mean outcome in the sub-sample 2;D =  

3) Repeat step 2) for all the relevant pair wise combinations of l1 and l2 (if 

estimating average treatment effects for additional pair wise comparisons of 

other treatment levels); 

4) Calculate the estimated average treatment effect of interest using the results 

obtained in steps 2) and 3); 

5) Obtain the estimated variance of treatment effects. For the parameter 2,1,ATT  

for instance, Lechner (2002) suggests calculating the variance of 

 by 1ˆ | 2E Y D⎡ ⎤=⎣ ⎦

( )
{ }

( )
m (

2

1
2

2

ˆ

| 1
ij

j D

W
Var Y D

N
∈ = ×
∑

) ,= and the variance of 

 by 2ˆ | 2E Y D⎡ ⎤=⎣ ⎦
m ( )

2

| 2
.

Var Y D
N

=
The term m ( |Var Y D l )=  denotes the 

empirical variance in the respective sub-sample, N2 represents the number of 

individuals in the 2D =  group and  denotes the number of times 

observation 

ˆ
ijW

{ }1j D∈ =  appears in the comparison group formed for the 

counterfactual estimation. The estimated variance of the treatment effect will 

be given by the summation of the two variance terms defined above. Another 

alternative is to use bootstrapping. 

 

As mentioned in step 1), two possibilities emerge for estimating the generalised 

propensity score or selection probabilities (Lechner, 2002). The first alternative is to 

specify and estimate each conditional binary choice equation separately – using probit 

or logit models – to obtain the pair wise conditional probabilities  Estimation 

of each binary choice equation requires only data for individuals belonging to the sub-

samples involved in the corresponding pair wise comparison; therefore, if all possible 

( )1|1,2ˆ .ip x
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pair wise comparisons are of interest, this procedure will have to be repeated 

( )1 2L L −  times (where L denotes the total number of treatment levels). One 

advantage of this procedure is that it does not require the “independence of irrelevant 

alternatives” assumption; also, since the conditional probabilities are not 

interdependent, misspecification of one binary choice equation does not imply that all 

conditional probabilities are misspecified (and different sets of regressors might in 

principle be used across the binary models). A drawback of the method is the fact that, 

with many treatment levels, many binary choice models will have to be estimated and 

interpreted, one for each pair wise comparison. 

A second possibility for obtaining the generalised propensity score is to specify 

a choice problem incorporating all the possible treatment levels and estimating it in 

one step using the full sample, through a multinomial/ordered choice model. In the 

multinomial case, a probit specification might be preferred because, unlike the logit, it 

does not rely on the “independence of irrelevant alternatives” assumption. Moreover, 

compared to the estimation of several binary choice models, it seems richer in the 

sense that it allows investigation of the relevant factors which determine individual 

selection into alternative treatment levels. An important drawback of this procedure is, 

however, its somewhat restrictive character: restrictions on the covariance matrix of 

error terms need to be imposed, and there is the danger of misspecification of all 

conditional probabilities if one choice equation is misspecified, since the derived 

conditional probabilities are interdependent. Furthermore, the existence of more than 

four treatment alternatives makes necessary the utilisation of simulated maximum 

likelihood methods in order to approximate the results of a multinomial probit 

model.17

Checks should be performed regarding the common support condition. In the 

pair wise comparison setting between treatment levels 1 and 2, this means that overlap 

must be observed between the distributions of ( )1|1,2p̂ x or ( ) ( )1 2ˆ ˆ,p x p x .⎡ ⎤⎣ ⎦  In cases 

where all the pair wise average treatment effects are of interest, it can be good 

practice to restrict the estimation over the joint common support – the overlap region 

                                                 
17  The empirical application of Lechner (2002) found that the correlation of the conditional 
probabilities obtained via multinomial and binary choices models was very high (between 0.980 and 
0.998). Thus, in his context, no significant differences in the evaluation results should be expected 
using one or another approach, although no generalisation of such a result is warranted for other 
settings. 
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of the distribution of propensity scores across all treatment levels – such that all 

treatment effects refer to the same sub-population and no comparability problems 

arise. 

The balancing of covariates across treatment and comparison groups is essential 

for the reliability of treatment effects estimates. Although no clear procedure 

dominates for checking which of the alternatives for obtaining the conditional 

probabilities (namely, matching on the vector of propensity scores or on the 

generalised propensity score obtained either by a multinomial or binary choice models) 

does a better job in balancing the covariates, some possibilities are the Mahalanobis 

distance and the (median absolute or mean squared) standardised bias. The latter is 

used by Lechner (2002) for measuring the matching quality through the distance 

between the marginal distributions of the relevant covariates. 

Additionally, simple diagnostic checks can be performed regarding the (average) 

number of times a comparison observation is used as match in a given pair wise 

comparison, when using each of the three alternatives mentioned above for 

performing the matching. One way of doing that is to compute, for each of the three 

procedures, the mean of the weights for matched comparison observations, with 

weights being defined as the number of treated individuals a given comparison 

individual is matched to. Better matching procedures will use more comparison 

observations as matches without loss from the point of view of covariates balancing, 

therefore leading to smaller estimated standard errors of treatment effects. 

 

4.2.2. Propensity score matching and difference-in-differences 

 

As in the single treatment case, the identification assumption behind propensity 

score coupled with difference-in-differences (PSDD) is weaker than the 

unconfoundedness assumption used for simple propensity score matching, because the 

former allows the bias – between active and comparison treatment groups – to be 

different from zero, requiring only bias stability over time. Estimating average 

treatment effects by a PSDD approach is a feasible option due to the mechanical 

validity of the balancing property of the (generalised) propensity score, in the sense 

that the balancing of covariates is achieved whether or not unconfoundedness holds. 

In other words, the resulting equality of counterfactuals (36) and (46) can be used in a 
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difference-in-differences estimation context when unconfoundedness does not seem a 

plausible identification assumption. 

In the multiple treatments context, the difference-in-differences approach 

recovers the treatment effect of being exposed to treatment level l versus the non-

participation version of treatment status, say 1l = (being equivalent to “no coverage”); 

it generally does not allow comparisons between alternative treatment levels because 

pre-programme health outcomes provide information only about untreated outcomes 

(Frolich, 2004). Thus, with panel data, the necessary counterfactual for identifying 

the ,0lATT  in a difference-in-differences framework can be obtained by using PSM 

and conditioning only on the generalised propensity score: 

  (50) 

( )

( ) ( )
( ) ( )

1 0 1 0

0| ,01

0| ,00

0 0 0| ,0

0 0| ,0 0| ,0 0| ,0
|

0| ,0 0| ,0 0| ,0
|

| , 0 | | , 0 |

| , 0

| , 0

l

l

l
t t t t

l l l
t p D l

l l l
t p D l

E E Y Y X D D l E E Y Y p X D D l

E Y p X D f p dp

E Y p X D f p dp
=

=

⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤− = = = − =⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
⎡ ⎤= = ⋅⎣ ⎦

⎡ ⎤− = ⋅⎣ ⎦

∫
∫

⎤= ⎦

where  denotes the health outcome of a matched untreated (i.e. not covered by the 

programme) individual in the post-programme period, represents the health 

outcome of the same individual in the pre-programme period and 

1

0
tY

0t
Y

0| ,0lp denotes the 

conditional probability of not being exposed to the programme within the sub-sample 

of uncovered individuals and those exposed to the treatment level of interest l. 

 

5 Matching estimation of health programme average treatment 

effects with a continuous treatment 
 

When the interest lies in evaluating the impact of only one health programme for 

which data are available on several different levels of population coverage across 

geographic regions, a more sensible evaluation strategy can be the utilisation of 

propensity score methods adapted to the continuous treatment case. In this particular 

context, the treatment variable might not be amenable to be naturally discretised: the 

definition of a number of discrete categories can be a very arbitrary process, the 

magnitude of the estimated treatment effects (and therefore of other parameters, such 

as the estimated “optimum” coverage level) can be sensitive to the criteria used for 

definition of categories, and information regarding treatment effects within each 
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category is lost. Nevertheless, the observed variation in exposures to coverage levels 

can still be used to identify the programme impact. 

It has been only recently that a methodological contribution for the continuous 

treatment context has been advanced in the literature by Hirano and Imbens (HI, 

2004), who discuss and illustrate the application of propensity scores in a regression 

context for evaluating the impact of continuous treatments. Following their work, a 

brief discussion of matching procedures in the continuous treatment case is presented 

by Flores (2004) and another empirical application of the HI method is performed by 

Aguero et al. (2006). 

The discussion herein adapts the suggestions made by HI (2004) to the different 

case of a health programme with several different levels of population coverage 

across geographic areas. Although the authors suggest a complete parametric 

procedure which does not involve matching methods, I discuss some alternatives for 

evaluating such programmes through a semi-parametric approach. These alternatives 

apply to the more general case of treatments offered in different dosages. 

 

5.1 Average treatment effects: definition and identification 

 

5.1.1. Definition of average treatment effects 

 

As in the preceding discussion, let ( )iY l be the set of potential outcomes for 

individual or in other words the individual dose-response function 

according to all possible coverage levels (doses) 

1,..., ,i = N

[ ]min max,l l l∈ . For each individual, 

we observe the coverage level to which they were actually exposed, 

[ ]min max,iL l l∈ , the associated potential outcome corresponding to that particular 

coverage level  and their vector of covariates Due to the missing data 

problem inherent to programme evaluation, the research question of interest is to 

identify the curve of average potential outcomes; that is, the parameter of interest is 

the average dose-response function: 

( )i i iY Y L= .iX

 ( ) ( ){ }il E Y lμ =  (51) 

which represents the function of the average potential health outcomes computed over 

all possible programme coverage levels (e.g., 0% to 100%). 
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Since the treatment variable is modelled as continuous, other policy-relevant 

parameters can be estimated apart from the entire average dose-response curve. For 

example, as suggested by Flores (2004), the coverage level at which the expected 

health outcome is maximised can be derived, along with the corresponding maximum 

value of this outcome. The optimal treatment level – i.e. the treatment level that 

maximises the expected health outcome18 – can be expressed as: 

 ( ){ }
min max[ , ]

arg max il l l
l E∗

∈
= Y l  (52) 

and the corresponding expected potential health outcome at the optimal treatment 

level would then be: 

 ( ) ( )il E Y lμ ∗ ∗⎡ ⎤= ⎣ ⎦  (53) 

Additionally, as in HI (2004), we might be interested in constructing the curve 

for the marginal impact of each coverage level of interest on the health outcome, by 

pair wise calculating programme average health effects for every observed “jump” in 

the value of the coverage level. This parameter can be defined as: 

 ( ) ( ) ( ) ( ) ( )1 1 0 1 0 1 0 min ma, , [ , ].i il l l E Y l E Y l l l l lμ μΔ = − = − ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ x  (54) 

In the latter case, might alternatively be a reference coverage level (e.g., no 

treatment or the smallest positive coverage observed in a given context) to which all 

other coverage levels are compared. If is the lowest possible coverage level (e.g. 

zero) and l is the optimal treatment level as defined in 

0l

0l

∗ (52), the computation of (54) 

leads to an estimate of the maximum individual health gain that can be expected from 

the intervention: 

 ( ) ( ) ( ) ( )0 0 0, , [ , ].i il l E Y l E Y l l l l lμ μ∗ ∗ ∗ ∗⎡ ⎤Δ = − = − ∈⎡ ⎤⎣ ⎦⎣ ⎦ min max

                                                

 (55) 

 

5.1.2. Identification of average treatment effects 

 

Similarly to the single and multiple treatments settings, identification of the 

required counterfactuals can be achieved by relying on (suitably adapted) “selection 

on observables” assumptions (HI, 2004). 

ASSUMPTION 9 (WEAK UNCONFOUNDEDNESS FOR A CONTINUOUS TREATMENT): 
 

18 The use of the word “optimal” in this context is very specific to the definition given in the text – that 
is, in terms of maximum health effects – and does not encompass considerations regarding any costs 
incurred to achieve such effects.  
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  (56) ( ) min max| , [ , ]i i iY l L X all l l l⊥ ∈ .

This is a weak version of the unconfoundedness assumption because it does not 

require the joint independence of all potential outcomes ( ){ } [ min max,
;

l l l
Y l

∈ ]
rather, it 

requires pair wise conditional independence for each of the potential health outcomes 

at a given treatment level with the actual treatment assignment.19  Therefore, this 

assumption states that there are no unobserved factors that affect both individual 

potential health outcomes and the coverage levels to which individuals have been 

exposed, given the pre-treatment covariates. 

For propensity score matching procedures, it is necessary to redefine the 

propensity score so as to take into account the continuous nature of the treatment 

being evaluated. Let the conditional density of the programme coverage given 

covariates be expressed as: 

 ( ) ( )|, L Xr l x f l x= |  (57) 

The generalised propensity score (GPS) – that is, the conditional density of the 

coverage level given pre-treatment covariates – is then given by: 

 ( ),i i iR r L X=  (58) 

HI (2004) show that, by the standard results presented before, the GPS for the 

continuous case is also a balancing score in the sense that, within strata with the same 

value of the probability that ( ),r l X , iL l=  for a given individual does not depend on 

the value of their covariates, it is a random event. This is again a mechanical result 

and does not require unconfoundedness. But HI (2004) also show that weak 

unconfoundedness given pre-treatment covariates implies the same result given the 

generalised propensity score: 

 
( ) ( ) ( )

( ) ( )( ) ( )( )
min max

min max

| | , , [ ,

| , , | , , [ ,L L

Y l L X Y l L r l X all l l l ]

]f l r l X Y l f l r l X all l l l

⊥ ⇒ ⊥ ∈

⇔ = ∈
 (59) 

The last term in (59) is the conditional density of coverage level l (this is 

analogous to the probability of an individual being exposed to the particular coverage 

level l in the discrete treatment case), given the GPS evaluated at that same coverage 

level. Propensity scores will then be calculated for all observed coverage levels, but 

only one will be used at one time. 

                                                 
19 However, as stressed by Imbens (1999), in practice it would be difficult to find a situation where the 
weak unconfoundedness assumption should be valid but not its strong version. 
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As a corollary of the unconfoundedness assumption (56) coupled with the GPS 

result given by (59), we can write the fundamental result for propensity score 

matching: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )

[ ] ( ) min max

| , | ,

| , , | ,

| , | , , [ ,

i

i i

E Y l E E Y l r l X r r l X

E E Y l L l r l X r r l X

E E Y L l R r r l X all l l l

⎡ ⎤= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= = =⎡ ⎤⎣ ⎦⎣ ⎦
⎡ ⎤= = = ∈⎣ ⎦ ].

)

                                                

 (60) 

Notice again that the outer average is taken over the GPS evaluated at l (and not 

over ). As usual, this averaging procedure is performed in order to control 

for systematic differences in the observed covariates across groups of individuals 

exposed to different treatment levels. The components of 

( ,i ir L X

(60) can be estimated with 

the observed data and a logical estimation procedure would be to firstly regress the 

observed health outcome on the observed individual treatment level exposure and its 

corresponding GPS, and then taking the expectation of that regression over the GPS 

evaluated at each relevant treatment level. 

 

5.2 Propensity score matching estimation of average treatment effects 

 

HI (2004) suggest an entirely parametric procedure for estimating the average 

dose-response function, as opposed to the semi-parametric approach of propensity 

score matching in the case of single or multiple treatments.20 Nevertheless, similarly 

to the discussion in previous sections, a more flexible approach to the estimation of 

the average dose-response function is possible, such as relying on the matching 

methods already described. In this case, parametric assumptions may be made only 

for estimating the GPS 21 , placing no restrictions on the relationship between 

programme exposure, covariates (summarised by the GPS) and the relevant health 

outcome. Among the matching methods previously presented, possible adaptations of 

the propensity score matching (PSM) procedure will be the focus herein. Two 

 
20 The suggested three-stage estimation procedure will not be presented and discussed here because it 
does not make use of matching methods at any stage. The interested reader is referred to HI’s (2004) 
original paper. 
21 A non-parametric procedure could also be used for estimating the GPS, as in Flores (2004). Although 
more flexibility is introduced in the average dose-response function estimation, it is well known that 
non-parametric procedures tend to run into trouble when a large number of covariates are being 
considered. Non-parametric estimation of the GPS will not be discussed in this paper.  

 50



possible ways of performing PSM in the continuous treatment case are briefly 

discussed by Flores (2004). Here, I adapt and extend one of the alternatives. 

Let the parameter of interest be the entire average dose-response function ( ).lμ  

In order to obtain this curve, we have to estimate the average expected health outcome 

at each treatment level of interest. Thus, for a given coverage level l, we need to 

estimate the expectation ( ) .E Y l⎡⎣ ⎤⎦ Estimation of the conditional distribution of the 

treatment (coverage) level given covariates, ( ) ,i iL f X= can follow HI (2004) 

suggested approach. The authors propose using the normal distribution, such as:22

 ( )2
0 1|i i iL X N X ,β β σ′+∼  (61) 

A maximum likelihood method is suggested for the above estimation. In this 

case, the estimated GPS is given by the predicted values of the regression, based on 

the probability density function of Li, ( )2| , ,i i if L X β σ :  

 ( )2

0 122

1 1 ˆ ˆˆ exp
ˆ2ˆ2

i iR L β β
σπσ

⎛ ⎞′= − − −⎜
⎝ ⎠

iX ⎟

                                                

 (62) 

As pointed out by Flores (2004), for estimating the average dose-response 

function at coverage level l, it might be unfeasible to find observations with exactly 

that value of the coverage level in the continuous treatment case. This difficulty 

implies that matching has now to be performed not only on the GPS, but also on the 

treatment level. By following this procedure, in addition to the potential bias 

introduced by not matching exactly on the GPS, there is potential bias resulting from 

the need of using observations belonging to the neighbourhood of (instead of exactly 

exposed to) treatment level l in order to get information about the potential health 

outcomes at that particular treatment level. 

The matching problem arising from the continuous nature of the treatment 

variable and the resulting difficulty in finding observations exposed exactly to level l 

can be circumvented by assuming that a given individual has been exposed to l if her 

actually assigned coverage level is sufficiently close to l. Formally, define two groups 

that exhaust the sample (in the sense that any sampled observation must belong to one 

and only one of the groups): 

 
22 Of course, more general models are also possible, such as heteroskedastic normal distributions for 
instance. 
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where h is a chosen bandwidth that determines the set of treatment levels considered 

sufficiently close to the level of interest l. For the first group of individuals (i), their 

observed individual health outcomes  can be seen as suitable approximations to 

their potential outcomes at coverage level l,

iY

( ).iY l The basic evaluation problem 

appears in obtaining the counterfactual potential health outcomes, at coverage level l, 

for those individuals who have been exposed to treatment levels far apart from l. Yet, 

assuming unconfoundedness, PSM can be used to construct the required 

counterfactuals. For any individual j, all that has to be done is to find at least one 

comparable observation i in the first group whose health outcome could be reliably 

used to impute the missing data. 

In formal terms, let ( )j jM r denote the matched set for individual j, i.e. the set of 

individuals within the first group matched to j. In the simplest case of nearest-

neighbour matching, the singleton matched set will be formed by the observation i for 

which the following two conditions are valid: 

a) [ ], ,iL l h l h∈ − + and 

b) ( ) ( ) ( ){ }| arg min , ,j j i i j ji
M r i i r l X r l X= = − .  

Condition b) requires the definition of some metric for the distance ⋅  between 

GPS, such as the Euclidean or Mahalanobis distances. As in the preceding single and 

multiple treatments settings, flexibility can be introduced by allowing a given 

observation i to be matched to multiple neighbours. Also, a common support 

requirement can be enforced by imposing a maximum “tolerated distance” between 

GPS when looking for matches. For instance, caliper matching with multiple 

neighbours can be performed, in which case the definition of the matched set in b) 

would be replaced by ( ) ( ) ( ){ }| , ,j j i i j jM r i r l X r l X ,ε= − < where ε is the pre-

defined tolerated distance between GPS (the caliper). The procedure for constructing 

the matching set should then be repeated, with replacement, for every observation j. 

Having constructed the set ( )j jM r  which contains at least one matched i 

observation to a given individual j, the counterfactual health outcome of the latter can 
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be imputed. The general form of the GPS matching estimator for the relevant 

individual counterfactual can be written as: 

 ( ) ( )ˆ
j

j ji i i
i M

Y l W Y L
∈

= ∑  (63) 

where  stands for the weight attributed to observation i when matched to j (with 

the sum of weights being equal to one). In the nearest-neighbour matching case, the 

weight attributed to the matched individual i is equal to one and the imputed 

counterfactual is the health outcome of this closest neighbour, i.e.: 

jiW

 ( ) ( )ˆ ,j i iY l Y L i M= ∈ j  

For the multiple-matches case, the simplest counterfactual estimator would be: 

 ( ) ( )1ˆ
jj

j i i
i MM

Y l Y L
N ∈

= ∑  

where 
jMN denotes the number of individuals belonging to the matched set for 

individual j. In principle, different and more complex weighting schemes could 

alternatively be applied, such as kernel weights; moreover, besides weighting by the 

GPS, one could devise weights depending also on the distance .iL l−  

As a final step, the GPS matching estimator of the average dose-response 

function at a given treatment level l can be written as: 

 ( ) ( ) ( )( ) [1ˆ ˆ , ,i i j ii j
E Y l Y L Y l L l h l h

N
⎡ ⎤ = + ∈ −⎣ ⎦ ∑ ∑ ]+  (64) 

Having this estimator, the treatment effect parameters defined from (52) to (55) 

can also be estimated, and bootstrap methods can be used for calculating standard 

errors and the corresponding confidence intervals for the estimated treatment effect 

parameters. 

Regardless of the matching procedure implemented, diagnostic checks should be 

performed in order to assess the balancing of covariates across individuals with 

similar GPS for a given treatment level, and the quality of the matches used. This can 

be done by applying suitably adapted versions of previously discussed methods for 

the multiple treatments case and/or the procedures suggested by HI (2004), who 

address some of the difficulties posed to diagnostic checking when the treatment 

variable is continuous. For instance, in order to assess the degree to which covariates 

are balanced by conditioning on the estimated GPS, HI (2004) suggest dividing the 

range of variation of the treatment variable – and therefore the sample of observations 
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– into intervals of the form a il L lb≤ ≤ (three in their empirical application) and 

investigate, for each covariate and via t-tests, whether the mean in one of these 

intervals is different from the mean (for the same interval) in the remaining groups 

combined. The authors compare the change in the achieved covariates balance when 

conditioning on the GPS, by comparing the number of t-statistics which lead to 

rejection of the null of means equality in the unadjusted versus GPS-adjusted intervals. 

However, in HI (2004) procedure, the treatment variable is indeed discretised 

and no general criteria are suggested for a “suitable” intervals definition, which is 

important because the result of the test will depend on this particular decision. 

Moreover, the GPS needs also to be discretised for implementing the check 

{ } (1 |a i b i ), ,X l L l r l X⊥ ≤ ≤ where ( )1 ⋅ is an indicator function of whether an 

individual’s observed treatment level belongs to the corresponding interval. HI (2004) 

perform this test by evaluating the GPS at the median treatment level of the sub-

sample of individuals determined by the interval [ ],a i bl L l≤ ≤ that is, the test is 

whether { } [ ]( ,1 |
a bi a i b i imed l l ), .X l L l r l X⊥ ≤ ≤ The authors implement this test by 

blocking on that particular GPS ( )r ⋅ and testing equality of means within quintiles of 

the values for that GPS in the interval. In other words, covariates means within groups 

defined by [ ],i a bL l l∈  and [ ],i a bL l l∉ are being compared for individuals who have 

similar values – belong to the same quintile – of [ ]( ), ,
a b imed l lr l X (i.e., who have similar 

conditional densities of being exposed to the median coverage level ).[ ],a bmed l ll 23

 

6 Concluding remarks 
 

In this paper, I reviewed the state of the art of the literature on matching 

methods, with a special focus on its propensity score variant. The broad usefulness of 

this approach was discussed from the specific point of view of health programmes 

evaluation. Extensions of the classical matching estimators for the multiple and 

continuous treatments cases were presented and their relevance for impact evaluations 

                                                 
23 Five different comparisons should then be performed for each covariate; nevertheless, HI (2004) 
combine these five differences in means, weighting by the number of observations in each GPS group, 
and get a summary t-statistic for the difference in means across the five quintiles.  
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in the health sector was illustrated using the example – fairly common in real settings 

– of a health programme implemented with different levels of population coverage in 

several geographic areas. 

The discussion performed in this paper made clear that the validity of matching 

estimates of treatment effects depends crucially on the “selection on observables” 

identification assumption. If, in a given context, such assumption seems reasonable, 

then matching methods can go a long way in providing reliable answers for evaluation 

questions. There remain, however, important aspects of matching estimators still to be 

fully investigated, such as analytic closed forms for the variance of the treatment 

effects matching estimates, the relative performance of different matching procedures 

for obtaining estimates of average treatment effects in the multiple treatments case 

and a fully developed and tested matching protocol for the continuous treatment 

setting. Further research on such topics is certainly needed. 
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