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Abstract

This paper considers a regression model with a log-transformed
dependent variable. The log transformed model is estimated by sim-
ple least squares, but computing the conditional mean of the dependent
variable on the original scale given the explanatory variables analyti-
cally requires knowing the conditional distribution of the error term in
the transformed model. We show how to obtain a consistent estima-
tor for the conditional mean and its derivatives without specifying the
conditional distribution of the error term. The asymptotic distribution
of the estimator is derived. The proposed procedure is then illustrated
with health expenditure data from the Medical Expenditure Panel Sur-
vey.
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1 Introduction

Applied economists often estimate models with a log-transformed dependent
variable. Common justifications for using the logarithmic transformation in-
clude to deal with a dependent variable that is badly skewed to the right and
to compute elasticities (Manning, 1998). The conditional mean of the log-
transformed dependent variable given the explanatory variables is usually es-
timated by simple least squares. The conditional mean of the dependent vari-
able on the original scale, however, depends on the conditional distribution
of the error term in the log transformed model. Consequently, the derivatives
of the conditional mean on the original scale with respect to the explanatory
variables also depend on the conditional distribution of the error term. There-
fore, any estimates of the conditional mean and its derivatives must adjust for
the error term distribution. Failure to account for the conditional distribution
may lead to substantially biased estimates.

There are three approaches to account for the error term distribution. The
first is the parametric approach, which specifies the conditional distribution
of the error term parametrically and then computes the conditional mean and
its derivatives either analytically (Manning, 1998; Mullahy, 1998; Manning
and Mullahy, 2002) or numerically (Abrevaya, 2002). Such an approach,
however, may yield misleading results if the functional form of the condi-
tional distribution is misspecified. In practice, the functional form of the
conditional distribution is rarely known. Hence, this approach is not robust.

The second approach decomposes the error term into a standard error
multiplied by a standardized residual term. The standardized residual term is
assumed to be independent of the explanatory variables and has an unknown
distribution. The standard error is fully parameterized (Ai and Norton 2000;
Abrevaya, 2002). This approach clearly imposes fewer restrictions on the
conditional distribution of the error term than the first approach and hence
is more robust. Still, this approach can yield biased estimates if either the
independence condition on the standardized residual term is not satisfied or
if the parameterization of the standard error is misspecified.

The third approach, which is adopted in this paper, assumes that the con-
ditional distribution of the error term given the explanatory variables is com-
pletely unknown. This approach is semiparametric and therefore most robust.
In particular, this approach allows for heteroskedasticity of any form, a prob-
lem that is deemed to be particularly difficult to deal with in practice (see
Manning 1998). Under this specification, we show how to obtain consis-
tent estimates for the conditional mean and its derivatives in Section 2. We
also derive the asymptotic distribution of the proposed estimators and provide
consistent estimates for the asymptotic variance in Section 3. Finally, we em-
pirically implement our estimators with skewed health expenditure data from



the Medical Expenditure Panel Survey in Section 4. Technical proofs are
relegated to the Appendix.

2 Estimation

Before we introduce the model, we adopt the following notation conven-
tions: bold lowercase letters denote random variables; standard lowercase
letters denote the realizations of the random variables; and E{-} denotes the
expectation taken with respect to the distribution of the bold letters in the
bracket.

Assume that the original dependent variable y is possibly a nonlinear
function of K explanatory variables x, excluding a constant, and a random
error term u. The model is given by

In(y) = h(x, 3,) + u,

where A(.,.) is a known measurable function, 3, is a vector of unknown
parameters, and the error term u satisfies the conditional mean restriction
E{u|x =z} = 0 for almost all z.

In most applications, the function h(x,3,) is linear in parameters (3,.
Here we allow h(x, 3,) to be nonlinear in both x and 3,. We assume that no
element of x can be expressed as a function of the other elements, e.g., there
are no higher-order or interaction terms. This assumption is not as restrictive
as it appears because it can always be satisfied by redefining the function .
For example, if x includes income and income squared, then the function
h(x, 3,) can be redefined as a function of income.

Inverting the log function, we obtain the dependent variable on the un-
transformed scale

y = exp(h(x, 8,) +u) = exp(h(x, 3,)) exp(u).

The conditional mean of the original dependent variable y given the explana-
tory variables is

F(x,5,) = E{ylx =}
= exp(h(z, 5,)) E{exp(u)|x = )}
= exp(h(z, By)) D ().

The marginal effects of the explanantory variables are found by taking
derivatives (or differences) of the conditional mean with respect to the con-
tinuous (discrete) regressors. Let m = (mq,mo, ..., my)" denote a vector of
non-negative integers and define |m| = my + mg + ... + mg. Define

AME (x,8,)

mi1 ma mpg
Az Ay Axy

() = O"F (2, 8,) =
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where A denotes either the derivative or the difference operator depending
on whether z is continuous or discrete. For example, with z = (21, x5), 24
continuous, x2 a 0-1 dummy, and m = (1,1)’, we have

_OF (21,1, 8y)  OF (21,0, 5)

:um(x) = amF <x750) - axl axl .

For the same example with m = (1,0)’, we have the marginal effect of a
continuous variable x;
aF (I7 BO) .

:U’m(x) = amF (37,50) = axl )

and with m = (0, 1)’, we have the incremental effect for a discrete change in
a dichotomous variable x5

[Lm(l’) =0"F (‘%60) = F(x1> 1760) - F(x1>0760)'

For convenience, we define y,,(z) = F (x,(,) when m = 0. Thus, wu,,(z)
encompasses the estimands of interest, such as the conditional mean, and the
marginal and interaction effects of the explanatory variables.

The focus of this paper is to present a consistent estimator for the deriva-
tive 1, () and for the average derivative p,, = FE{p,,(x)} and to derive the
asymptotic distributions of these estimators.

To estimate the derivative p,,(z), we need to estimate the conditional
mean function F' (z, 5,) which depends on the unknown parameter 5, and
the unknown function D(z). The unknown parameter (3, can be estimated by
standard regression techniques. Given a sample {y;, x;,i = 1,2, ...,n}, IetB
denote the least squares estimator of 5,. We shall not concern ourselves with
the derivation of the asymptotic properties of 3, which are well established.
Instead we will assume that the model satisfies standard conditions so that
the least squares estimator is /n consistent.

Assumption 2.1. The least squares estimator 3 is \/n consistent.

The unknown function D(x) depends on the unknown conditional distri-
bution of the error term u given the explanatory variables x and thus cannot
be estimated by a simple parametric regression. We propose to use a paramet-
ric approximation and then estimate that parametric approximation by least
squares. Specifically, for some integer J, let p/(z) = (pi(z), ..., ps(x))" de-
note the approximating functions so that there is a 7 such that the parametric
function p’ (x)'7 approximates D(z) well. Examples of the approximating
functions include polynomials, splines, and Fourier series. Denote

P=(p" (1), p” (@), 00" ()
al» =In(y;) — h(zy, B);
Q = (exp(1), exp(Ta), ..., exp(Uy)) -
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Then D(x) is estimated by regressing exp(;) on p’(x;):
D(z) = p’(x) (P'P)"'P'Q.
The derivative of the conditional mean is now estimated by

(@) = 0" [exp(h(, B)p’ ()] (P'P) ' P'Q

and the average derivative is estimated by
0 = l Y m . ) J( o\ / 1A

In the following sections, we will derive the asymptotic distributions of 1z, ()
and 7,

3 Asymptotic Results

We first derive the asymptotic properties of 7, (z) and then derive the asymp-
totic properties of 7i,,,. The derivation of the asymptotic properties of i, (z)
draws heavily from Newey (1997). We begin by introducing some regularity
conditions.

Assumption 3.1. {(y;,z;),i = 1,2,...,n} are drawn independently from the
joint distribution of (y,x).

This condition rules out dependent data and hence is restrictive. The main
result however can be generalized to dependent data using the results of Ai
and Sun (2005).

Let || B|| = /trace(B’'B) be the Euclidean norm of matrix B. Also, let
X be the support of x;.

Assumption 3.2. For every J there is a nonsingular constant matrix B such
that: (i) the smallest eigenvalue of E{B x p’(x)p’(x)" x B} is bounded
away from zero uniformly in J; and (ii) there is a sequence of constants ¢ (/)
satisfying sup,y [|p’()|| < ¢o(J) and J = J(n) such that {,(.J)*>J/n — 0
as n — oQ.

This condition imposes restrictions on the approximating functions. Condi-
tions of this sort are common in the literature on series estimation; see Newey
(1997) and Andrews (1991). When the density of x is bounded away from
zero, the constant ¢,(.J) is computed for splines and power series as ¢v/.J and
cJ respectively for some constant ¢; and the restriction in part (ii) is satisfied
by J2/n — 0and J3/n — 0.

For any vector A = (Aq, ..., \,,), denote

G () = max sup |70 [p’ (@]
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Denote e = exp(u) — D (x) . Because we approximate D(z) by p’ (z)'n, the
approximation error will cause bias in the proposed estimator. To control the
bias, the approximation error must shrink to zero as more terms are added to
the approximating functions. We now specify a rate of approximation for the
approximating functions.

Assumption 3.3. (i) X" is compact; (ii) there are o and 7 such that

sup [07(D () — p’(z)'7)| = O(J %) as J — oo
zeX
. _a—|Al . - (DT
forany A < m; (iii))y/nJ "% — 0; and (iv) e = 0.

Assumption 3.4. E{e*|x = x} is bounded, and F{e*/x = z} is bounded
and bounded away from zero for all x.

Assumption 3.5. (i) For every z, h(x, ) is twice continuously differen-
tiable with respect to 5 in the neighborhood of j3; (ii) exp(In(y) — h(z, 5)),
dop(n(u)_hizf) ang & expllnty (2.2 satisfy the stochastic dominance con-
dition in the neighborhood ofﬁﬁo; and (iii) for each element 3, of 3,

dexp(In(y) — h(x, 5,))
a/6’/‘

Var( |x = )

is bounded and

a)\E{anP(ln(ya)ﬂ_ h(x,5,)) x =2} — (9/\pJ(ZE>/7TT _ O(J—(Oér—lk\)/K)

for some m, and ..

Assumption 3.3(i) requires that the explanatory variables have bounded sup-
port. This condition can always be satisfied by discarding observations with
large values. Assumption 3.3(ii) requires that the approximation error shrink
at polynomial rate. This condition is satisfied by splines and power series ap-
proximations with « as the degree of smoothness of D(x). Assumption 3.4
requires that the fourth conditional moment is bounded and the conditional
variance is bounded both from above and below. This condition is common
in the regression literature. Assumption 3.5 is needed so that we can replace
the estimate 3 by the true value. Assumption 3.5(ii) is a stochastic dominance
condition that is commonly imposed in the nonlinear econometric literature.



Denote the regression residuals €; = exp(u;) — D(z;). Denote

o?(z) = BE{e*|x = z};
Vom(z) = 0™ lexp(h(z, 8,))p” (z)]

x(P'P)~! Z o (x:)p” (x:)p” (2:) (P'P)

- x0"[exp(h(x, 8,))p” (x)];
Vi (2) = 0™ [exp(h(z, B))p” ()]’

x(P'P)~ Zg?p‘](:vi)p" () (P'P)~

x 0™ [exp(h(z, B))p’ ()]
The following theorem is proved in the Appendix.

Theorem 1. Under Assumptions 2.1, and 3.1-3.5, we show: (1)

has asymptotically standard normal distribution; and (2)

Ve (2) "2V, (2)/2 — 1 in probability.

Part (1) of the theorem shows that the proposed estimator is consistent
and asymptotically normally distributed. Part (2) provides a consistent esti-
mator for the variance. These two results allow us to conduct the statistical
inference on the estimands. For example, the ¢-ratio —Lw(@ _ can be used

\ 'Unm(x)

for significance tests of the derivative CIf | £=@) | - 1 .96, then the
g P () —

pointwise derivative 1,,(x) is statistically significant at the 5 percent level.
The theorem also reveals that the estimate of the finite dimensional parame-
ter has no effect on the asymptotic distribution of the estimated derivative.
This result is not surprising because the estimator of the finite dimensional
parameter converges to the true value at a faster rate.

The derivative estimator 7i,,(x) and its asymptotic variance can be com-
puted as follows:

(i) Estimate the log transformed model by least squares; save the
predicted values on the log scale h(z, 3) and the regression residuals u; =

In(y:) — h(zi, B);



(i) regress exp(;) on p’(z;) using robust standard errors; save the
regression coefficients in 7 and its heteroskedasticity-consistent covariance
matrix in £2; and R N

(iii) compute i, (z) = O™[exp(h(x,B))p’ (x)F and Vm(z) =
" exp(h(x, B))p” (x))' Q0™ [exp(h(x, B))p” (x)].

Next, we derive the asymptotic distribution of the estimated average deriv-
ative 7i,,,. Denote

E{(0™[h(x, 8,) D(x)] — p10)*}

Unm = +

(xl)l] (P/P)flplsz(P/P)fl
iz 15m[h(l‘u Bo) P ()]

where 3, = diag(v?(x), ..., v*(z,)) and v?(x) = E{e?|x = x}. Denote

S (9w, B)D ()] — )

Upyn, = 5 +
L (Z“ HP! ) (P'P)'P'S, P(P'P)!
iy 0" k(e )P (x)

with &, = diag(22, ..., 22).

rTn

The following theorem is also proved in the Appendix.

Theorem 2. Under Assumptions 2.1, and 3.1 - 3.5, we show that: (1)
/2 (ﬁm 11,,,) has asymptotically standard normal distribution; and (2)
Unm — 1 In probability.

Theorem 2 shows that the average derivative estimator is asymptotically
normally distributed and provides a consistent estimator for the asymptotic
variance. These results can be used for statistical inference on the average

derivatives. For instance, if L m ) > 1.96, then the average derivative ,,

is statistically significant at t gpercent level. It is interesting to note that
the estimated finite dimensional parameter has no effect on the asymptotic
distribution of the average derivative estimator. This seems counterintuitive
because both the parameter estimator 5 and the average derivtive estimator
converge at the same rate and, in a sequential estimation like ours, gener-

ally the estimator in the first step affects the asymptotic distribution of the
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estimator in the second step estimation. The estimated parameter B affects
the asymptotic distribtution of the average derivative estimator through two
channels: one through h(z;, 3) and the other through the residual u;. It so
happens in this case that these two effects offset each other.

The average derivative estimator 7., and its asymptotic variance can be

computed as follows:

(i) Estimate the log transformed model by least squares; save the
predicted vaIueAs on the log scale h(z, 3) and the regression residuals u; =
In(y;) — h(zs, B);

(i) regress exp(w;) on p’(z;) using robust standard errors; save the
regression coefficients in 7 and its heteroskedasticity-consistent covariance
matrix in 2;

(ii1) compute both the sample mean and the sample variance of

O™ [exp(h(wi, B))p’ (x:)] 7,

denoted 11,,,(x) and S; and
(iv) compute

S

Upm =— *+
n

S 0" HP ()] o 0", B)P ()]

n n

One potential criticism of our model specification is that the functional
form of h(x, ) may be misspecified because the conditional mean of the
log-transformed dependent variable given the explanatory variables is really
unknown. The question then is whether our estimator is biased. It is inter-
esting to note that our estimator is still consistent even if the function form
of h(x, 5) is misspecified. This is because In(y) = h(x, ) + u and hence
any bias resulting from misspecified 2 (x, 3) will be corrected through the re-
gression residuals u. However, if h(x, 3) is correctly specified, then our esti-
mator utilizes more information than the simple average derivative estimator
proposed by Powell, Stock, and Stoker (1989) and hence is more efficient.

Another potential criticism of our approach is that the number of the ap-
proximating terms, J, is not uniquely determined by the sufficient conditions
of Assumptions 2.1 and 3.1-3.5. In practice, these sufficient conditions are
not very useful for choosing J. A feasible and practical way to determine .J
is to apply the cross-validation approach, which chooses J to minimize

Zn: (exp(ﬂi) — pJ@i)/(P/iPi)lP’i@i)z

=1



where P_; and @_i denote P and @ with the i-th row deleted.

4 Empirical Example

4.1 Data and Model

We illustrate the methods by analyzing data from the Medical Expenditure
Panel Survey 2000 Full Year Consolidated Data File, collected by the Agency
for Healthcare Research and Quality. The MEPS contain data on health care
services and expenditures, as well as insurance, demographics, and employ-
ment, for the general American population. We limited the sample to the
22,095 persons (out of the original 25,096 persons) who had complete re-
sponses and were not in active military duty in 2000. Of these, we analyzed
the 12,222 who were aged 18 and older and had positive health care expen-
ditures, to abstract from the concerns of modeling zero expenditures.

The dependent variable is the logarithm of total expenditures, which in-
cludes inpatient, outpatient, dental, and emergency room expenditures. The
mean expenditure was $1,922, and ranged from $3 to $213,023 (see Table
1). Taking the logarithm of the dependent variable removed much of the
skewness (from 12.27 down to .26).

We also controlled for the standard demographic characteristics and health
status. The sample was 42.1 percent male, 12.7 percent African-American,
and 17.8 percent Hispanic. The mean age was 48 years, and ranged from
1 to 90. Nearly one-half had more than a high school education. We also
controlled for income in five broad categories.

We use the 9 x 1 column vector x to denote the main explanatory vari-
ables, not including age. Specifically, x; is the constant term; x; — x5
are dummy variables for male, African American, Hispanic, and education
greater than 12 years; x4 — X9 are the dummy variables for the four income
groups, with the lowest income group as the reference. We specify that the
regression function is linear in parameters. The model also controls for age,
age squared, and interactions between age and the other explanatory vari-
ables. The log-transformed model is given by:

In(y) = x'8, + (x x age)'5; + (x x age?)' 3, +u,

which will be estimated by simple least squares. We subtracted 40 from age
so that the referent person is 40 years old, then scaled age by dividing by 100.
The cross-validation for the MEPS data suggests the following approxima-
tion in the second stage regression

exp(u) = X'y + (x x age)'m; + (x x age?) Ty + €.
Hence,

p(z) = (2, age x o', age* x 2
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is a column vector with 27 elements. We estimate the unknown coefficients
B, by simple least squares. Let 5 denote the least squares estimator obtained
by regressing In(y;) on z;. Denote @; = In(y;) — «3. Let D(z) denote the
predicted value obtained from regressing exp(u;) on p(x;). The estimated
conditional mean and its derivatives are

Fio(x) =exp(a'By + (x x age) By + (x x age) By) D(x)
=exp(2'By + (z x age)'B, + B
x(2'To + (z X age) Ty + (z x age?)'wy);
Fign () = O™ [fg ()]

We compute three estimates—mean expenditures, and the incremental
effect of sex and of race—both for a representative person and for the en-
tire sample. The representative person is a 40-year-old non-Hispanic white
female with a high school education in the lowest income group (i.e., xo =
(0,0,0,0,0,0,0,0,0)). For the representative person calculations are sim-
plified because interactions with age (really age less 40) are all zero. For the
representative person, mean expenditures are

Ho (o) = exp(Bo1)(Tor);
the incremental effect of changing sex from female to male for a referent
person (i.e., Azs, = (0,1,0,0,0,0,0,0,0)");

Afig(zo) N
ﬁ%; = PJO("EO + Amsex) - Mo(l’o)

=exp(Bo1 + Bo2) X (Tor + Toz2) — Ho(Zo)
and the incremental effect of changing race from white to African-American
(i.e., AZyoee = (0,0,1,0,0,0,0,0,0));

Afip(0) _ z
g = Hoo + Atyace) = fio(wo)

= exp(Bgy + Bos) X (To1 + Tos) — Ho(wo).

The estimates 301,302,303 are the coefficients on the constant, male, and
African-American in the main regression, and 7o, 7o, To3 are the coeffi-
cients on the constant, male, and African-American in the regression to pre-
dict the error squared.

To compute the four estimates for the sample, similar calculations are
required for each observation. However, in general the formulas will have
more non-zero terms, including interactions. For example, for a person aged
50 (the age variable equals .1) changes in sex or race requires also changing
the iteractions between those variables and age and age squared.

11



4.2 Results

Most of the demographic variables have a statistically significant main effect
on logged annual health care expenditures (see the first column of Table 2).
Log expenditures are lower for men. They are also lower African-Americans
and Hispanics, which may reflect differences in access or insurance. The
relationship between income and expenditures has the familiar U-shape; log
expenditures are highest for those in the lowest income group, but increase
with income for the upper four income groups. Log expenditures increase
with age. Only a few of the interactions between age and other variables are
statistically signficant (results not shown).

Although the heteroskedasticity regression, which predicts the squared
residuals, has a low R?, several variables are statistically significant (see the
second column of Table 2). This will lead to differences in predicted ex-
penditures on the raw scale from those calculated with a simple scalar Duan
smearing factor. The predicted error variance is higher for both men and
African-Americans. Therefore, predictions of mean expenditures for men
will differ from women for two reasons. One is the difference between men
and women found in the main expenditure regression, and the other is the
difference between men and women due to heteroskedasticity. These dif-
ferences go in the opposite direction. Likewise for race. Therefore, even
though the coefficients on male and African-American are negative in the ex-
penditure equation, predicted expenditures might end up being higher after
controlling for heteroskedasticity.

Predicted expenditures for a 40-year-old non-Hispanic white female with
a high school education in the lowest income group are $2,946 (see Table 3).
This is higher than the overall mean largely because of being in the lowest
income group. This is also nearly 50 percent higher than the estimate made
with a single scalar Duan smearing factor. Accounting for the heteroskedas-
ticity in the retransformation makes an enormous difference. Men are pre-
dicted to spend about $500 less than women, a smaller gender difference
than when assuming homoskedasticity.

The incremental effect of race demonstrates the importance of control-
ling for heteroskedasticity in the retransformation. African-Americans spend
more than whites. Although this result is not statistically significant, it shows
that the overall effect can be positive even when a variable has a negative
coefficient in the expenditure equation. The positive coefficient on race in
the error variance equation dominates the negative coefficient on race in the
expenditure equation.

When averaged over the sample, the predicted mean expenditures is the
same as the overall sample mean (to within a dollar). This is somewhat closer
than assuming homoskedasticity.

The incremental effects averaged over the sample assuming heteroskedas-

12



ticity are the opposite sign than when assuming homoskedasticity. Using
the semiparametric derivative estimator, men spend on average slightly more
than women ($61), although the difference is not statistically significant. This
is in stark contrast to using a scalar Duan smearing factor, which finds that
men spend $467 less than women. The difference, again, is explained by
how heteroskedasticity is handled during the retransformation. The incre-
mental effect of gender ranged over the whole sample from —-$1,257 to $826,
using the semiparametric derivative estimator, but was always negative for
the scalar Duan smearing factor. The difference between African-Americans
and whites over the sample is $140, again opposite in sign to the effect found
under homoskedasticity.

5 Conclusion

The log transformation is commonly used to deal with skewed data, and the
conditional mean of the original dependent variable, marginal effects and in-
teraction effects of explanatory variables on the original dependent variables
are often the variables of interest in applied econometrics. In this paper, we
present estimators for those variables for log transformed dependent variable
models where the error term is possibly heteroskedastic and has an unknown
distribution. We show that the estimators are consistent and asymptotically
normally distributed. We provide consistent estimators for the asymptotic
variances. The ratio of the estimate divided by the estimated standard error
has a standard normal distribution and can be used for statistical inference.
To illustrate the importance of calculating the correct interaction effect and
standard errors, we consider a model to predict health care expenditures for
adults using a nationally representative sample. As is commonly done, the
dependent variable was transformed by taking the logarithm. We find that
the incremental effects of explanatory variables are quite sensitive to assump-
tions about homoskedasticity.

13



6 Appendix

Proof of Theorem 1. Denote

(exp(uq), exp(ug), ..., exp(u,))’;

( ( ) pj(xl)lﬂ—> e D<xn) - pJ<xn),7T),§
(61,52, .. En)/;

I(z)' x (P'P)"'P'Q.

5() p
For any vector A < m

dim(Bg)

N - P ~
PD) =0 De)= 3 O x (PP)P ag B~ Bo) +
dlm (Bo) dim(By) —
I ,_0Q
Z Z Z 0)\ J ) 1p 6ﬁraﬁs >
(ﬁs - BsO)(ﬁr - 57"0)
— Al + A2,

where £ is between 3, and B and

Q = (exp(ln(y1) — h(21, 8)), ... exp(In(yn) — Mz, B)).
By Theorem 1 of Newey (1997),
a)\pJ(l,)/ % (P/P) 1P/§§2 0/\ |iE { 86Xp(111( 8)5 (X 50))‘ x}]

in probability. Assumption 2.1 and 3.5 imply A1 = O,(n/2).
Note that

2

aApJ@U)/ % (P/P)—1P/822§25
<&p’(x) x (P'P)~' x 9™’ (x) x zn: (62 exp lnayﬁn)a; h(ﬂﬁnﬁ)))
—gupa Y (Fepllel M BDY o, )

i=1

where the last equality follows from Assumption 3.5(ii). By Assumption
3.5(iii), A2 = 0,(n"Y/2). Hence, 9 D(z) — 0 D(x) = O,(n~1/2).
Denote

V)\n() a)\J 20'5512]1'1 )(P/) a)\J()
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By Theorem 2 of Newey (1997), Vy,(z)~/2(0* D(z) — 9 D(x)) — N(0,1)
in distribution. Furthermore, it is straightforward to show

V() = Op(C\A\(J>2/”)~

Hence, Vi, (z)"/2(8*D(z) — 8 D(z)) — N(0,1) in distribution.
Note thaty,,(x) — p,, () =

> 0 exp(h(z, B,)) x (9*D(x) — 9*D(x)) +

:g(am exp(h(z, B)) — " exp(h(z, By))) x (*D(x) — & D(x))
Ai(am—A exp(h(z, B)) — "X exp(h(z, By))) x P*D(z)
zgam* exp(h(z, By)) x (9*D(z) — &*D(x)) + Op(n~12).
penoe
Valw) = 0" [exp(h(z, o)) Z(, e (e ()

X(P'P)™t x 0™ [exp(h(x, By)) x p’(x)] .
By Theorem 2 of Newey (1997),
V()72 0 exp(h(x, By)) x (9*D(x) = *D(x)) — N(0,1)

A<m

in distribution. This proves V,,(z)~Y2(ji,,,(z) — p,, (7)) — N(0, 1) in distri-
bution.
Denote g; = exp(u;) — p’(z;)'(P'P)~*P'Q and

V() = 0 [exp(h(z, By)) Zs (P'P)”!

<™ [exp(h(z, By)) x p” ()] .

By Theorem 2 of Newey (1997), V,(2)Y2V,,(z)~Y/2 — 1 in probability. Note
that the difference between V,,(z) and V,(z) is that 53, is replaced by a NG
consistent estimator 3. It is easy to show that V,,(z)*/2V,(z)"/2 — 1 in
probability. This completes the proof of the theorem.
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Proof of Theorem 2. The proof is similar to the proof of Theorem 1 except
that the O,(n~'/2) terms are no longer ignored. First, from the proof of
Theorem 1, we immediately have

R o amy) 50 -
PD(x) =P D(x) = ) 8APJ($)'(P'P)71P'85 (B, = Bro) +0p(n*2)
r=1 T

holds uniformly for all x and all A\ < m. Denote
fim(2) = 0" [exp(h(, Bo)) % D())
Write 3 00 Fi, (23) = D20 i () =

Z 0" exp(h(ws, By)) x (3>‘ﬁ($z) — 8/\13(%)) +

A<m

> (0" exp(h(ai, B)) — 0™ exp(h(x;, By))) (0" D(x;) — 0*D(x;))
> (@ exp(h(z:, B)) — 0™ exp(h(x:, By))) x 9*D(x;)

= 0" fexp(h(a, B ()] x (P'P) PSS x (B )+

=1

Z(ﬁ o) [anp(g(gi’BO))><pj(xi)’](P’P)_IP’Q+0p(n1/2)

—Z@m Ot PN Efexpinty) — hxPix =2l 5 _ g

+0p( 1/2) = op(n 1/2)

where the second equality follows from substituting for P D(x;) — 0 D(x;)

and 0*D(z;) and linearizing ™ exp(h(z;, 3)), the third equality follows
from applying Theorem 1 of Newey to obtain

" lexp(i(a. 50) x ()] x (P'P) PSS

o lesplhtr, ) LELCA) R )b =

8m[anp(ggi>ﬁo)) > pJ(%)/] « (P/P)—lplQ

0 exp(h(z;, 50))E{6Xp(ln(}’) — h(x,5y))|x = x}]
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in probability uniformly over x, and the last equality follows from the fact

dlexp(h(zi, Bo)) E{exp(In(y) — h(x,50))[x = z:}]
a5

" ]=o0.
Hence, 370", (Fin (i) — Him)
= g;(ﬁm(%) — fhyn) + 0p(n*?)
= é(am[exp(h(wi, Bo))p’ (x:)'] x (P'P)"'P'D — p,)
+ ﬁ; 0" [exp(h(xi, Bo))p” (2:)'] % (P'P) " P'E + 0p(n'/?)
- Y0 esplhr, ) D) ) 4

Z " [exp(h(xi, Bo))p” (2:)] x (P'P)"'P'E + 0,(n'/?).

The theorem now follows from applying a central limit theorem.
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Table 1
Summary statistics for the 2000 MEPS data.

Variable Min. Mean Max. Std. Dev.

Dependent Variables
Expenditures 3 1,922 213,023 5,749
In(expenditures) 110 6.25 12.27 1.56

Explanatory Variables
Age 18 48.0 90 17.4
Male 0 421 1 494
African-American 0 127 1 333
Hispanic 0 178 1 .383
Education > 12 years 0 449 1 497
Income group 1 (lowest) 0 .106 1 .308
Income group 2 0 .044 1 204
Income group 3 0 135 1 342
Income group 4 0 313 1 464
Income group 5 (highest) 0 402 1 490

N=12,222
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Table 2
Regression results for linear model to predict logged health care expen-
ditures and the squared error.

OLS
Variable In(y) exp(é)
Constant 6.388 ** 497 **
(.070) (.75)
Male -400 ** 116 **
(.034) (.33)
African-American -.184 ** 154 *
(.057) (.62)
Hispanic =372 ** .35
(.047) (.38)
Education > 12 years 095  ** -13
(.036) (.31)
Income group 2 =175 -2.60 **
(.111) (.92)
Income group 3 =172 * -1.78
(.084) (.93)
Income group 4 -.108 -2.10 *
(.074) (.88)
Income group 5 (highest) —.0659 -2.69 **
(.074) (.89)
(Age — 40)/100 1.09 ** -2.26
(.41) (3.06)
((Age — 40)/100)” 13 —4.02
(1.36) (9.79)
Additional interactions 16 included 16 included
N 12,222 12,222
R? .08 .008

N=12,222. Robust standard errors are estimated using Huber-White ro-
bust standard errors. * Statistically significant at the 5 percent level; ** sta-
tistically significant at the 1 percent level.
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Table 3
The three estimates of interest ($), both for a specific person and for the entire
sample.

Semiparametric Scalar Duan

Derivative Smearing
Estimator Estimator
For the reference person
Mean 2,946 ** 2,078
(443)
Incremental effects
Male compared to female —510 ** —685
(155)
Black compared to white 266 -349
(298)
Averaged over sample
Mean 1,923 ** 1,998
(312)
Incremental effects
Male compared to female 61 —467
(237)
Black compared to white 140 -513
(353)

The specific person is a 40-year old non-Hispanic white female, with high
school education in the lowest income group. * Statistically significant at the
5 percent level; ** statistically significant at the 1 percent level.
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