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Abstract

This paper considers the simultaneous explanation of mortality risk, health and

lifestyles, using a reduced-form system of equations in which the multivariate distribu-

tion is defined by the copula. A copula approximation of the joint distribution allows one

to avoid usually implicit distributional assumptions, allowing potentially more robust

and efficient estimates to be retrieved. By applying the theory of inference functions the

parameters of each lifestyle, health and mortality equation can be estimated separately

to the parameters of association found in their joint distribution, simplifying analysis

considerably.

The use of copulas also enables estimation of skewed multivariate distributions for

the latent variables in a multivariate model of discrete response variables. This flexibility

provides more precise estimates with more appropriate distributional assumptions, but

presents explicit trade-offs during analysis. Information that can be retrieved concerning

distributional assumptions, skewness and tail dependence require prioritisation such

that different needs could generate a different ’best’ model even for the same data.
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gratefully acknowledged.
†Correspond to the author at the Centre for Health Economics, The University of York, York YO10 5DD,

England, or email cq1@york.ac.uk.
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1 Introduction

In this paper the simultaneous explanation of mortality risk, health and lifestyles is con-

sidered, using a reduced-form system of equations in which the multivariate distribution is

defined by a copula. A copula approximation of the joint distribution can avoid the distrib-

utional assumptions implicit in other multivariate families such as the multivariate normal,

Beta, etc., allowing potentially more robust estimation. Employing a method due to Lee

(1983), McLeish and Small (1988) and Joe and Xu (1996) that uses inference functions, the

parameters of each lifestyle, health and mortality equation can be estimated separately to

the parameters of association found in their joint distribution, simplifying analysis consid-

erably.

Analysing lifestyles and health jointly stems from research on the correlation between

socio-economic status and health, as well as income inequalities and health inequalities

(van Doorslaer, Wagstaff and Bleichrodt et al 1997, Wagstaff and van Doorslaer 2000, van

Doorslaer and Koolman 2004). Lifestyles need to be considered in this context because they

may determine health status and mortality. Contoyannis and Jones (2004) and Balia and

Jones (2005), for example, both show that the introduction of lifestyles into a model for

health (and in the latter study, risk of mortality also) reduces the influence of socio-economic

characteristics, altering the explanation of inequalities in health and mortality.

Moreoever, lifestyles can be supposed endogenous: as well as determining health and

mortality, lifestyles can themselves be determined by factors such as income and education,

for example. In the context of the structural equations model this creates a pathway through

which strictly exogenous variables, including income inequalities, may have both direct and

indirect effects on health and mortality, so that some of the variation in health and mortality

can be explained in part by these endogenous factors

2



This paper is an extension of these studies, using the same data and a similar underlying

thesis: that individual lifestyle choices determine health outcomes, including health and

mortality. These choices are influenced by socio-economic characteristics; to some extent

those socio-economic characteristics have a direct effect on health outcomes also, controlling

for lifestyle choices. It is a methodological extension also: Contoyannis and Jones (2004)

used the British Health and Lifestyle Survey (HALS), considering unobserved heterogeneity

via a recursive system of equations for self-assessed health and some endogenous lifestyles.

Balia and Jones (2005) use the HALS data also, including follow-up data on mortality and

health-affecting lifestyles. They also use a recursive system, where endogenous lifestyles are

used to explain self-assessed health and mortality. In both studies the multivariate probit

model is used for estimation.

Other empirical analyses have used various single-equation methods, including interac-

tion effects, as well as instruments, to capture endogeneity using Two-Stage Least-Squares

and the Generalised Method of Moments (Ruhm 2005, Aster 1969, Mullahy and Portney

1990 and Mullahy and Sindelar 1996 respectively, for example). The multivariate structure

of equations provides more flexibity when approximating the true explanation of health

because it not only considers endogeneity but gives it a structural representation in the

model. This paper will use predominantly the same economic model as Contoyannis and

Jones (2004) and Balia and Jones (2005), however the econometric problem is considered

differently.

The results presented here show that, at least in this instance, the assumptions under-

lying the multivariate probit and multivariate normality are robust to the non-normality

uncovered: covariate estimates and estimates of variance-covariance are comparable across

the multivariate probit and the copulas used. As well as providing efficient estimates more

simply than the multivariate probit however, the copula is used to highlight the statistical

significance of skewness in the multivariate distribution, and its relation to what would

otherwise be recognised as tail dependence. The copula provides much more information

about the data and the accuracy of its analysis, as well as facilitating more choice for the
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researcher about exactly what they want to analyse in a multivariate framework.

2 Econometric problem

The behavioural model is as in Balia and Jones (2005); that individuals are assumed to

maximise simultaneously the utility function

max
O

∞P
t=0

βtπt × u (Olt,Ht;XU , µU ) (1)

where t-th period utility is determined by the vector of l (in this case 6) lifestyles Olt,

healthHt and conditional upon exogenous variablesXU and unobserved µU , which influence

individual preferences. Similarly βt influences time preferences, while the probability of

survival period-by-period is given by πt. Thus three elements are to be estimated: health,

lifestyles and mortality, the risk of which influences the utility and optimal levels of the other

two. The outcomes M , H and O1, .., Ol are indicated by dichotomous variables (including

self-reported health). Making the assumption that these follow a linearly-determined latent

scale, following Balia and Jones (2005) gives the reduced form

y∗im = β0mXim + εim (2)

y∗ih = β0hXih + εih (3)

y∗il = β0lXil + εil (4)

such that

yim = 1 (y∗im ≥ 0) (5)

yih = 1 (y∗ih ≥ 0) (6)

yil = 1 (y∗il ≥ 0) (7)

The vectors Xim,Xih and Xil are individual-specific exogenous vectors explaining, re-

spectively, mortality risk, health and lifestyle. Under a structural specification these would

be distinct due to exclusion restrictions needed to satisfy simple order conditions for iden-

tification, but in reduced-form this can be relaxed. Here they are the same.
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Estimation in Balia and Jones (2005) is done via the method of Maximum Simulated

Likelihood (MSL), assuming the errors terms are correlated and the random components

µl, µH and µM are jointly normally distributed (in latent form εl, εH and εM). MSL

is used because the standard multivariate probit is underlied by an 8-dimensional nor-

mal distribution, for which the standard method of Maximum Likelihood and (generalised)

Method of Moments would require substantially more computation. The method of max-

imum likelihood, for example, requires, in this case, integration over 7 cumulative normal

probabilities in order to find solutions. MSL on the other hand simulates the likelihood so

that approximations, rather than the likelihood itself, are maximised. Similarly the Method

of Simulated Moments (or Scores) can be used in place of the more intensive method of

moments (Gouriéorux and Monfort 1996).

The two issues taken with this approach is, in the first place, the estimation itself, which

can be cumbersome and not necessarily efficient compared to standard methods of maximum

likelihood (Hajivassiliou 1997). Secondly, the (multivariate) normality assumption is not

necessarily made according to the best description of the data-generating process, and the

results may not be robust under non-normality. The method presented here will help identify

if these are problems, while showing a more convenient procedure for esitmation.

2.1 Considering multivariate (non-)normality

The motivations for moving away from the normality assumption in a multivariate frame-

work are two-fold. The first is computation: although low orders of dimensionality rarely

present problems for computing multivariate probits, maximising likelihoods across 8 di-

mensions is time-consuming and computationally intensive (Muthén 1979, 1984 discusses

this in some detail). The second is robustness: although some authors have shown that

departures from normality are not necessarily of great concern, they too become more

problematic in higher dimensions (Keselman, Wilcox and Lix 2005, Prokhorov and Schmidt

2005). The robustness issues with standard t and F -tests under non-normality are also

known (Mardia 1971, Ali and Sharma 1996, Curran, West and Finch 1996). In a structure-
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of-equations model, multivariate non-normality can also lead to erroneous rejection of some

models within the structure (see Klein 1998, for example).

The multivariate normal distribution is commonly selected for the convenience of its

use, and because the univariate normal distribution is robust under reasonable levels of

non-normality, and so explains the margins of the joint distribution fairly well (Kowalski

1973). Its use is a result of the common practice of selecting a multivariate distribution

according to identification of the margins. Since the normal distribution is among the most

robust, it is preferred to others such as the multivariate Pareto, Burr or logistic, for example

(Mardia 1962, Takahasi 1965, Satterthwaite and Hutchinson 1978; Cook and Johnson 1981

present a generalised model that nests each of these as special cases).

The normal distribution also tends to be more easily extended to higher dimensions: the

density or characteristic function of the normal distribution can be used, or a linear combi-

nation of normally-distributed random variables (Fang, Kotz and Ng,1989). The preference

for the multivariate normal then can dominate even when the joint density of the data being

analysed appears not to be elliptically symmetric. While a multivariate distribution with

one or more non-normally distributed margins is always non-normal however, a multivariate

distribution with normally-distributed margins but a skewed or kurtotic joint relationship

will be non-normal also.

Abandoning the multivariate probit/normality assumption has direct implications in

terms of the econometric problem. The recursive model is one of conditionally-dependent

random variables such that, in this case, endogenous health status is a function within a

function: it is an explanatory variable for mortality risk, while also being explained by

endogenous lifestyle choices. At each level these three are also explained by exogenous

explanatory variables. This structure can only be maintained by assuming a symmetric

distribution, such as the normal, and is subject to Borel’s paradox otherwise (Kolmogorov

1950). The empirical relevance of this is that non-normal (quasi-) Maximum Likelihood

estimates of conditional moments are valid only when the conditional mean is identically

zero, or the assumed and true densities are both unimodal and conditionally symmetric
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about zero (Newey and Steigerwald 1996, Verhoeven and McAleer 2003). When this is not

the case the estimates are not necessarily consistent, and the location and scale of the con-

ditional distribution will not be identified correctly. In order to consider non-normal and/or

skewed latent variables then, the reduced-form must be used, rather than the structural, so

that the health and mortality equations are not conditionally distributed according to the

lifestyle variables.

One significant advantage offered by the multivariate normal distribution is its correla-

tion: few families of distributions, including copulas, are so easily extended to multivari-

ate distributions with generalisable correlation/dependence structures. The best approach

among those discussed here is based subsequently upon the multivariate normal and t dis-

tributions. As copulas they allow a broad range of marginal distributions to be specified,

while retaining the flexible multivariate dependence structure these distributions offer. Mul-

tivariate skewed elliptical distributions, which are presented later and used in the analysis,

represent a very useful approach to combining the dual needs for reliable measures of mul-

tivariate dependence, as well as flexibity in the face of multivariate asymmetry.

3 The copula method

Using Sklar’s (1959) theorem, all multivariate distributions can be held to have a copula

representation, in which each margin is invariant to transformations in every other margin,

or independent of the choice of every other marginal distribution. For any multivariate

distribution with given margins there exists a copula that binds those margins to form the

joint distribution precisely (Smith 2003). A copula in practice is a dependence function,

and each one represents a unique description of the relationship between its margins, while

the distributions of its margins are assigned separately, and with no consideration given

as to the form of the copula. For the purposes of analysis, a copula is a distribution

function for uniformly-distributed random variables. Since univariate CDFs are uniformly-

distributed, the marginal CDF of each dependent variable can be considered a monotonic

transformation, and used as a random variable in the copula.
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Consider two random variables X1,X2 with bivariate distribution function H (x1, x2)

and univariate marginal distributions F1 (x1) and F2 (x2) respectively. Then there exists a

copula C such that

H (x1, x2) = C (F1 (x1) , F2 (x2)) (8)

for all real values of x1, x2 (or (X1,X2) ∈ R). If F1, F2 are continuous, C is unique.

Under discontinuity C is uniquely determined on its domain, the range of the margins

RanF1×RanF2.1 Moreover it can be seen using Sklar’s theorem that, if C is a copula and F1
and F2 are distribution functions, then some function H as defined in Equation (8) is a joint

distribution function (see Nelsen 1999 for this proof). By taking the marginal distribution

functions as dependent variables, which do not contain the dependence structure, the copula

separates the explanation of X1 and X2 from their association, an important distinction

between the copula and standard multivariate distributions.

3.1 Multivariate FGM copulas

The FGM copula is the most commonly seen copula in exposition, since lower polynomials

are more convenient for discussion (Smith 2003, Zimmer and Trivedi 2006). It is also

derivative of another single-parameter family of copulas, the Frank.2 ,3 The bivariate FGM

copula for any u, v in I ∈ [0, 1] is C such that

Cθ (u, v) = uv (1 + θ (1− u) (1− v)) |u=F1(x1),v=F2(x2) (9)

where −1 ≤ θ ≤ 1, with positive and negative dependence for ±θ respectively, and recalling

that F1 (x1), F2 (x2) are (at least) monotonic.4 In practical applications this copula has
1This is not usually considered problematic since the region outside this is not usually of interest (Smith

2003)
2The FGM copula is a first-order Taylor approximation of the more flexible Frank copula. Its subsequent

linearity in the margins has made it a popular exemplar (Smith 2003, Zimmer and Trivedi 2006).
3 ’Single-parameter’ refers to the parameterisation of association: single-parameter families use only one

parameter of association. Joe’s (1997) presentation of single-and multiple-parameter copulas is particularly

useful in this regard.
4This is trivial: since u = F1(x1), v = F2(x2) are univariate distribution functions they must be

monotonic, at least (Nelsen 1999 contains an explanation of quasi-inverses of non-strictly increasing margins,
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been shown to be a somewhat limited measure of dependence (Prieger 2002). Dependence

θ ∈ [−1, 1] corresponds approximately to Spearman and Pearson’s correlations ρ ∈
£
−13 ,

1
3

¤
,

such that ρ = θ
π , and Kendall’s τ ∈

£
−29 ,

2
9

¤
such that τ = 2θ

9 (de Matteis 2001. An appendix

in Quinn 2000 also derives this condition). Mari and Kotz (2001) provide several extensions

of the FGM copula, which can expand this range, but add more parameters.

The FGM is an example of a simple closed-form multivariate CDF, where Equation (9)

is extended into n dimensions. Using the notation of Joe (1997), the multivariate FGM

copula can be given as

C(x1, .., x8; θ) =
8Q

i=1
ui

Ã
1 +

k=8P
1≤i<j

θij [1− ui] [1− uj ]

!
(10)

giving, like the 8-dimensional normal distribution, 8C2 = 28 bivariate association parame-

ters (since θij = θji ∀ i 6= j).5 Here θij ∈ [−1, 1] as before, however more restrictions are

introduced: θij faces a limit also in sum, so that more margins means a narrower range of

dependence for each non-zero θij . Specifically

1 +

¯̄̄̄
¯ n−1P
1≤i<j<n

θij

¯̄̄̄
¯ ≤ θ1n ≤ 1 +

¯̄̄̄
¯θ12 − nP

2≤i<j≤n
θij

¯̄̄̄
¯ (11)

so that lim
n→∞

θij = 0. In fact this limit is much narrower: in practice much fewer than 28

unique values for θij would be practicable. Thus, although the multivariate FGM offers a

parameter for assocation in each bivariate margin, this is not typically feasible in practice.

which can also be used to construct a copula). This property is also necessary to ensure the measure of

association, θ, ’obeys’ the rules for measures of dependence.
5Nelsen (1999) and Mari and Kotz (2001), whose presentation draws on that of Nelsen (1999), provide a

different form for the multivariate FGM, giving

C(x1, ..., x8; θ) =
8

i=1

Fi(xi) 1 +
8

k=2 1<j1<...<jk<n

θj1,...jk [1− Fj1(x1j)] ... [1− Fjk(xjk)]

which contains not nC2 but 2n − n− 1, or
8

i=2

8Ci. In the current problem this would mean 247 different

θj1,...jkterms, which is not considered practicable. Estimation issues aside, the limits on θ in multivariate

FGM copulas would render them all null.
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This limitation is commented upon specifically in Prieger’s (2002) application of the FGM

to the problem of sample selection, in a bivariate context.

3.2 Multivariate Archimedean copulas

Archimedean copulas are a particular class of copula that includes several popular families.

These are copulas whose form, in n dimensions, is reduced to a single function, called a

generator. This is a strictly decreasing, convex and continuous function ϕ : [0, 1] → [0,∞]

in a set Ω of the same, where ϕ (0) = ∞, ϕ (1) = 0 and with inverse ϕ−1 : [0,∞] → [0, 1],

ϕ−1 (0) = 1 and ϕ−1 (∞) = 0.

For (u, v), an Archimedean copula is C such that

C (u, v) = ϕ−1 (ϕ (u) + ϕ (v)) (12)

An example is the Frank copula, given by (Frank 1979)

C (u, v; θ) = −1
θ
ln

Ã
1 +

¡
e−θu − 1

¢ ¡
e−θv − 1

¢
e−θ − 1

!
(13)

As an argument in only one margin, the generator ϕ can be used to extend Archimedean

copulas into higher dimensions easily. For example, for u, v, w, z in I,

C (u, v, w, z) = ϕ−1 (ϕ (u) + ϕ (v) + ϕ (w) + ϕ (z)) (14)

All that is required to extend C is the addition of the generator function for a new margin.

Note that ϕθ belongs to a single-parameter family of generators. Two-parameter generators

also exist, but will not be used here. A pseudo-generation of a multiple-parameter copula

will be achieved with mixtures below.

Multivariate Archimedean class copulas are a popular choice, however estimation in

n-dimensions can be quite limited: for any n > 2-variate distribution to be a copula, the

generator ϕ−1θ ∈ [0,∞)must be completely monotonic. In Archimedean copulas that extend

to negative dependence, ϕ−1θ fails to be monotonic when θ ∈ τ < 0 and n > 2: Archimedean

copulas with n > 2 margins cannot contain negative dependence and still be a distribution.
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In capturing positive multivariate dependence, Archimedean copulas are bound also by

their parameterisation. Unlike the multivariate FGM, where θjk exists for each bivariate

pair (uj , uk), ϕ
−1
θ is usually a function of a single parameter. Equation (14) shows that any

bivariate pair will share a common association parameter. This can be seen for example in

the Frank copula, whose trivariate form is given by

C (u, v, w; θ) = −1
θ
ln

Ã
1 +

¡
e−θu − 1

¢ ¡
e−θv − 1

¢ ¡
e−θw − 1

¢
(e−θ − 1)n−1

!
(15)

3.2.1 The mixture-of-powers approach

An alternative for multivariate Archimedean class copulas is generation according to inverse

Laplace transforms and mixtures of powers (Joe 1997, Zimmer and Trivedi 2006). This is

a transform φ (s) of some univariate CDF M (α) such that

φ (s) =

∞Z
0

e−sαM (α) (16)

for s > 0. Any arbitrary distribution function F will have a unique Laplace transform G,

where

F (x) =

∞Z
0

GαdM (α) (17)

≡ φ (− logG (x))

Zimmer and Trivedi (2006) present the parameter α > 0 as a form of heterogeneity affecting

the random variable X. Since copulas are distribution functions, like F , the bivariate case

can be considered as

C (u, v; θ) =

∞Z
0

Gα
uG

α
v dM (α) (18)

≡ φ (− logGu − logGv)

≡ φ
¡
φ−1 (u) + φ−1 (v)

¢
where Gu = exp

©
φ−1 (u)

ª
, Gv = exp

©
φ−1 (v)

ª
. This can continue into any number of

dimensions, using different Laplace transforms to overcome the singularity of the dependence
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structure. Only n − 1 distinct transforms exist across n(n−1)
2 bivariate margins in an n-

copula, though, so that distinct bivariate margins nevertheless share a common association.

A trivariate mixture using two distinct transforms φ (s) 6= ψ (s) will give

C (u, v, w; θ) = ψ
¡
ψ−1 ◦ φ

¡
φ−1 (u) + φ−1 (v)

¢
+ ψ−1(w)

¢
(19)

where ψ−1 ◦φ belongs to a class of infinitely differentiable increasing functions (Joe 1997).6

Importantly, dependence is symmetric with respect to u and v, but not w now: this is

an improvement upon, for example, Equation (14). This will produce 7 distinct measures

of dependence for the 28 bivariate pairs of 8 distributions, but all positive. This is the

Jouini and Clemen (1996) condition that θ > 0 under Laplace transforms and multivariate

Archimedean copulas. Correlations from the HALS data show 9 of these 28 pairs are

negatively associated however, contra-indicating the use of Archimedean copulas.

One solution is to use the Laplace transform φ (s) = max
n
(1 + ηs)

−1
η , 0

o
, which does

permit negative association.7 Using this, and another other Laplace transform ψ, a multi-

variate copula can be constructed from Equation (19), such that each bivariate margin has

the appropriate association, at least in terms of sign: the limit to the number of unique

Laplace transforms that can be used still exists. There is, for example, only one known

Laplace transform extending to negative dependence, such that there will always be fewer

unique dependence parameters than bivariate correlations. In practical terms the proce-

dure in Equations (16)-(18) need not be undertaken by the researcher. As well as families

of copulas being widely available, so too are known Laplace transforms (Joe 1997).

6This is a condition assuring monotonicity of ψ−1 ◦ φ mixtures, and hence the mixture-of-powers copula

itself. Since known transforms are readily available in Joe’s (1997) appendix, the requirement of infinite

differentiability is not one the analyst will usually face.
7This is Joe’s (1997) Laplace transform B, or Gamma-form LT, given by φ (s) = (1 + θs)−

1
θ , where θ > 0.

The extension to negativity is, statistically, similar to that of the Clayton copula (Mari and Kotz 2001). That

is, after extension the negative LTB is no longer strictly monotonic. This is also why Laplace-transformed

multivariate copulas do not have mixture representations when extended to negative dependence.
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3.2.2 The mixture of Max-ID approach

Consider instead mixtures of Max-Infinitely Divisible distributions, rather than standard

Archimedean copulas (Joe and Hu 1996, Joe 1997). A multivariate distribution H is called

Max-ID if Hγ is a CDF for all γ > 0 and for all n dimensions.8 In fact the mixture-of-powers

approach just discussed is a mixture of powers of a Max -or Min-ID multivariate distribu-

tion. This approach can be extended to negative dependence for some bivariate margins,

although such extensions are less common or straightforward. If a copula is of the form in

Equation (18), C can take the general form C(u1, .., un) = φ (− lnH(u1, .., un)), and C is

a multivariate CDF if H is Max-ID and − lnφ belongs to a class of infinitely differentiable

increasing functions. This general form contains copulas of the form in Equation (19), how-

ever extensions to negative dependence (a sufficient condition for which is when − lnφ is

convex) do not have mixture representations. Moreover, such extensions tend to generate

multivariate copulas whose margins all have Reverse Rule of Order 2 (RR2), or negatively

dependent: this is because the n-copula would be a mixture of Min-ID distributions, such

that each bivariate margin is RR2.9 This is the case even with general dependence such as

the FGM in Equation (10) that allows unique bivariate association. Consider the copula C

such that

C (u1, .., un) = ψ

Ã
−
P
i<j
lnKij

³
e−piψ

−1(ui), e−pjψ
−1(uj)

´
+

nP
i=1
(qi + n− 2) piψ−1 (ui)

!
(20)

where qi is another Max-ID mixing parameter specific to each marginal CDF. Each Kij

in this expression is a bivariate margin; specifically a bivariate copula. Each Kij then

is Max-ID, giving C (u1, .., un) Positive Orthant Dependence (POD).10 Using the survival

8A univariate CDF F is such that F γ is also a CDF for all γ > 0, but this is not the case for multivariate

distribution functions. In general the n-dimensional CDF H is such that Hγ is a CDF for all γ > n− 1 (Joe

1997). Max-ID is therefore a stronger dependence condition - it is equivalent to Total Positivity of Order 2

where, for x1 < x2 and y1 < y2, F is TP2 if F (x1, y1)F (x2, y2) > F (x1, y2)F (x2, y1).
9RR2, or Reverse Rule of Order 2, is essentially the negative-dependence equivalent of TP2.
10Bivariate distributions are Positive Quadrant Dependent if higher values of one variable are correlated

with higher values of the other, and vice versa (essentially τ > 0). Positive Orthant Dependence is the
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function in each case will instead give negative orthant dependence (Joe 1997, Belzunce and

Semeraro 2004). A component-wise interpretation due to Joe (1997) is that the transform

ψ is used to capture ’global’ dependence (that is, a minimal level of pairwise dependence),

while the specific copula Kij captures the individual (in the context of the multivariate

copula proper) pairwise dependence, and qi contributes to bi/multivariate asymmetry.

From the general method of copulas, the model for mortality risk, health and lifestyles

would require the use of the multivariate FGM and/or the mixture of Archimedean copulas

in order to estimate a closed-form distribution. The FGM however is too limiting in the

degree of dependence it can measure. The Mixture of Powers is too limiting in the number

of dependence parameters it allows and the Mixture of Max-ID copulas allows only totally

positive (or totally negative) dependence. Thus as the dimensionality of the multivariate

distribution increases, these methods become less practical. In terms of likelihoods these

distributions are also prone to some complexity when rendered as densities, making this

approach less attractive also. In order to estimate the entire model another method can

be employed, which uses inference about the joint distribution, taking advantage of the

separation of marginal distributions in a copula from the joint distribution.

4 Inference functions and the Gaussian and t copulas

An alternative method due to Lee (1983), McLeish and Small (1988), Joe and Xu (1996),

Xu (1996) and Joe (1997) is the method of Inference Functions for Margins (IFM).11 For

some multivariate distribution H (X1, ..,Xn;β1, .., βn, θ), consider the corresponding copula

C (F1 (X1;β1) , .., Fn (Xn;βn) ; θ). The marginal parameter vectors β1, .., βn can contain

coefficients due to regression, and/or simple parameters for each distribution. The vector

θ contains measures of assocation for the copula as a whole. The IFM method is a two-

multivariate equivalent. Note that these are weaker than (multivariate) Total Positivity of Order 2, which

implies positive (orthant) quadrant dependence (Mari and Kotz 2001 is a good reference for these dependence

concepts).
11Lee (1983) does not refer to the method as IFM, though.
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step procedure in which each marginal vector of coefficients βi∈n is estimated first, and

separately, to determine
n
β̂1, .., β̂n

o
such that

β̂i = argmax
βi

nP
i=1
ln fi (xi;βi) (21)

and L
³
β̂1, .., β̂n, θ

´
is maximised to find only θ̂ such that

θ̂ = argmax
θ

nP
i=1
ln c (F1 (x1;β1) , .., Fn (xn;βn)) (22)

for some copula C with density c.12 Ordinarily, the method of Maximum Likelihood is to

solve (∂L/∂β1, .., ∂L/∂βn, ∂L/∂θ) = 0, such as would be expected in Equations (10) and

(15), for example.

Estimates from the method of IFM then are such that (∂L1/∂β1, .., ∂Ln/∂βn, ∂L/∂θ) =

0. This holds under regularity conditions, and Joe (1997 and 2005) shows that the IFM

method is efficient relative to the method of maximum likelihood, particularly for discrete

marginal distributions with few categories. It is less so for more categories, and for con-

tinuous marginal distributions with strong dependence, although standard errors for the

parameters in this approach can corrected post-estimation using jacknife methods.

The method of IFM can also be used to estimate the so-called Gaussian copula with a

multivariate normal distribution, in this case given by

C (u1, .., u8) = Φ8
¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) ,Φ

−1
11

¡
Fl1
¡
y∗il1
¢¢
, ..,Φ−116

¡
Fl6
¡
y∗il6
¢¢¢
(23)

In this approach the random variable has a different transformation. Where previously

the copula used Fm (y
∗
im) instead of xim, for example, these use - in the Gaussian case -

Φ−1m (Fm (y
∗
im)). The transformation itself is illustrated in Figure 1, below.

Figure 1 here

The original combination x0imβ̂m is used to estimate Fm (ŷ∗im), which in turn is trans-

formed to Φ−1m (Fm (ŷ
∗
im)), which is entered into the copula as a random variable. In fact it

12Here c = ∂C
∂F1,..,∂Fn

is the copula density (see deMatteis 2000 for his discussion on copula densities).
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can be considered as a vector of pseudo-observations: Φ−1m (Fm (ŷ
∗
im)) is a prediction of the

erstwhile unobserved latent variable y∗m from Equation (2).

Although the model in Equation (23) is essentially a normal distribution, the function

of inverses results in tractability of the marginal distributions also, as in a copula. It

is subsequently much more straightforward than the multivariate probit, because exact

Maximum Likelihood is available for the problem

θ̂ = argmax
θ

nP
i=1
lnφ8

¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) ,Φ

−1
11

¡
Fl1
¡
y∗il1
¢¢
, ..,Φ−116

¡
Fl6
¡
y∗il6
¢¢
; θ
¢

(24)

which is more easily implemented. For this reason the method of IFM is used: it is permitted

with separated marginal distributions, and it is necessary due to the inversion, in order to get

parameters with interpretable estimates. This copula is a nice alternative the multivariate

probit irrespective of the issues discussed here, being much simpler to specify and estimate.

Comparing copulas, the Gaussian copula provides generalised dependence, unlike the

multivariate mixture approaches, and the method of IFM has shown asymptotic efficiency

relative to the multivariate probit in other studies (Joe 1997, 2005, Joe and Xu 1996).

An alternative is the so-called multivariate t-copula, which is narrower than the Gaussian

and can capture tail dependence of extreme events (Embrechts, Lindskog and McNeil 2003,

Demarta and McNeil 2004). In the Gaussian copula, as in the multivariate normal, such

events become asymptotically independent. Moreover, uncorrelated events are not consid-

ered independent in the t-copula.

The composite, or pairwise, likelihood approach is another example of inference at higher

orders than the univariate margins, wherein the joint likelihood is composed of valid bivari-

ate likelihoods (Lindsay 1988, Kuk and Nott 2000, Andersen 2004, Bellio and Varin 2005,

Zhao and Joe 2005 are examples), although with less efficiency than has been shown for

the IFM. Hustler and Reiss (1989) provide a similar approach: the dependence parameter

for each margin can be estimated in each bivariate margin of the multivariate distribu-

tion. The process identified here as the IFM is also seen elsewhere, for instance in work by

Arellano and Honoré (2000) and Arellano and Carrasco (2002) on panel data models with
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predetermined variables.

4.1 Considering skewness

This approach does not restrict the IFM to multivariate symmetry: the general form

C (x1, x2) = H(1,2)

¡
H−1
1 (F1 (x1)) ,H

−1
2 (F2 (x2))

¢
for some distribution F with inverse H−1

can be used, generating so-called Inversion Copulas (Nelsen 1999. Joe 2005 considers Pareto,

Weibull and Gamma margins also). In this instance, for example, non-normal link functions

can be considered alongside univariate probits for each margin.

Multivariate skewness can be also accomodated, via the multivariate skewed normal

and/or multivariate skewed t distributions (Azzalini and Dalla Valle 1996, Azzalini and

Capitanio 1999, 2003). The skewed normal distribution is generated by some random

variable X whose PDF is of the form

f(x;α) = 2φ(x)Φ(αx) (25)

where φ(.), Φ(.) are the familiar standard normal density and distribution functions, re-

spectively, and α is some scalar measuring skewness, such that the distribution of X is

symmetric at α = 0 (i.e. X ∼ N(0, 1)) and increasing in skewness with increases in |α|.

Then according to Azzalini and Dalla Valle (1996), X is skewed normal X ∼ SN(α).13 The

multivariate skewed normal is given for some random vector X[k×1] where

fk(x;α) = 2φ(x;Ω)Φ(α
0x) (26)

where α[k×1] is a vector of skewness components and where X has correlation matrix Ω, and

still assuming symmetry about 0. Then as above X ∼ SNk(Ω, α). In general form, Azzalini

and Capitanio show that, for the random vector X with distributional symmetry about 0,

and some transformation W (x) that is symmetric about 0 also (although µX could be used

it is less simple), there exists some density function fk(x) such that

fk(x) = 2f(x)F (W (x)) (27)

13Note that X2 ∼ χ2, irrespective of the value of α.
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where f(.), F (.) are some k-dimensional density and distribution function, respectively.

Any elliptical distribution can be accommodated in this manner, as can non-elliptical dis-

tributions.14 Azzalini and Capitanio (2003) consider the multivariate skewed t distribution,

using this generalisation, such that X ∼ Stk,v(Ω, α, v) with v degrees of freedom.

Although non-trivial, the multivariate skewed t distributional is implemented in the sta-

tistical package R, making estimation relatively straightforward. Marrying this notation to

the copula approach, consider Equation (23). The random vectorX =
¡
Φ−1m (Fm (y

∗
im)) ,Φ

−1
h (Fh (y

∗
ih)) , Φ

−1
11

for example, is estimated as X ∼ SNk(Ω, α).

5 The HALS data

The Health and Lifestyle Survey of England (HALS) was a national survey of adults in

private households, carried out (in the first wave) in 1984-5, during two home visits. The

first of these was the survey interview; the second a visit by a nurse for physiological

measurements and to test cognition. The survey has been followed up by 4 subsequent

waves of information collection on the original interviewees: the principle follow-up in 1991-

2 was used to capture change in characteristics, behaviours and beliefs over the 7 years,

and included 5,352 interviewees. Subsequent follow-ups, the most recent in 2005, provided

updated mortality data. Of the original 9,003 respondents 2,491 had died.15 This analysis

follows Balia and Jones (2005), using information at the time of the first survey, coupled with

the most recent mortality data. The second survey is overlooked due in part to attrition,

which can be problematic. In order to avoid confounding mortality with accident, injury

or a genetic predisposition towards early death not related to lifestyle, only individuals 40

14Non-elliptical distributions will be valid for some α, conditional upon setting an appropriate transfor-

mation W (.). Elliptical distributions will be valid for all α.
15That is to say, 2,433 of the original interviewees still in the system are deceased. The original HALS

was not intended for follow-up, so that not all interviewees were collected in for the second HALS. Only

around 2% from the original HALS are lost from the most recent mortality update, due either to leaving

the country or having otherwise been dropped from the official National Health Service registry. See Cox

(1988, 1995) and Contoyannis and Jones (2004) for more information and discussion of the surveys.
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years of age and over at the time of the first survey are retained for analysis. At this age

and over, initial states of health, education, income and so forth are considered to be stable,

such that subsequent information is not required to explain mortality and health later in

life.

5.1 Indicators of a healthy lifestyle

The lifestyle variables employed here are the same as those used in Balia and Jones (2005)

and Contoyannis and Jones (2004), drawing on the analysis of Belloc and Breslow (1972)

and Kenkel (1995). These are indicators for diet, weight, smoking and sleeping behaviour,

alcohol consumption and exercise. All are dichotomous in this study. Diet is measured

with an indicator for whether or not breakfast is eaten within one hour of waking (Kenkel

1995). Smoking is an indicator of whether or not the individual is currently smoking (any

number of cigarettes per day). Exercise is measured by participation in one of 14 exercise

categories in the fortnight preceding the survey. Alcohol consumption is a gender-specific

measure of prudent alcohol consumption.16 Sleep is measured as either optimal or not;

optimal sleep shown by Belloc and Breslow (1972) to be between 7 and 9 hours per night.

More or less is not considered separately, but together are suboptimal. Healthy weight is

anything below obesity, as measured by a Body Mass Index (BMI) below 30 for males and

28.5 for females.17

16 ’Prudent’ alcohol consumption is given as less than 21 units of alcohol per week for males and less than

14 units per week for females (Contoyannis and Jones 2004). This does not distinguish between moderate

drinking and abstinence, despite evidence that moderate alcohol consumption can be beneficial, as both

Contoyannis and Jones (2004), and Balia and Jones (2005) discuss.
17Evidence has shown some more dexterity is required when using BMI. Deurenberg, Yap and van Staveren

(1998), for example, find that the obesity-rated BMI should be lower for some cultural backgrounds, such

as South-East Asian. In our 1984-5 sample anglo Europeans constitute around 98% of the available cultural

backgrounds, so any such differential is unlikely to be problematic. No indications were found of systematic

variations in obesity according to other backgrounds.

19



5.2 Explanatory variables

Exogenous variables in the models are predominately dichotomous. They are given and

described in Table 1, below

Table 1 here

As the table shows they are familiar considerations for explanators for health: vari-

ables representing social class, education, marital status, employment status, cultural back-

ground, geographical region and area type, residential tenure and physical, household and

parental characteristics.

5.3 Some descriptive results

Some descriptive statistics for variables of interest are given in Table 1 also. After clean-

ing the data of missing values for variables of interest (including those lost to the official

registry), and restricting analysis to people aged 40 years and over at the time of the first

survey, we are left with 3,655 from the original 9,003.

The majority of respondents correspond to at least one healthy lifestyle, apart from

exercising, of which only 32% partake. Around 41% now are deceased, while in the original

HALS 70% considered themselves to be in good health. With an average age of 57, after

censoring at 40, this is not necessarily surprising, particularly when considering the lifestyles.

Social class is fairly normally distributed, and gender is only slightly in favour of females.

For education the generation(s) under consideration become apparent, with around 61% of

respondents offering no educational qualification. The proportions of full-time employed

and retired, after dropping the younger-than-40, are also quite significant. As mentioned

previously European caucasians make up 98% of the sample. Also high is married respon-

dents, 76%. Home ownership, another indicator of social class, is around 66%.18

18This differs from the earlier study by Contoyannis and Jones (2004) due to a previous coding error,

corrected in this paper (in Contoyannis and Jones 2004, home ownership for the entire population was about

87% - in fact it is about 63%). It now, due largely to greater variation, has much stronger correlation
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Nine of the 28 pairwise correlations (not shown) are negative, effectively proscribing

the use of the mixture copulas. Urban living has a negative correlation lifestyles and a

(subsequent) positive correlation with mortality. A social gradient appears to exist across

health, mortality and lifestyles. These however are the only two variable with relatively

consistent correlation.

6 Estimation

The presence of negative correlation precludes the reliable use of the mixture of Max-ID

copulas, even if survival functions were used in some instances, and managing adequate

representation of dependence is difficult with the Mixture of Powers copulas. After dif-

ferentiation the Mixture-of-Powers density is too cumbersome to be estimated, unless the

number of mixtures is reduced too far for the distribution to be informative: in fact, to

be practicable the Mixture of Powers is not much better at capturing dependence than the

multivariate FGM. Although the copulas can be more informative for sub-sected dimensions

of the problem, estimating all of mortality risk, health and lifestyles is feasible only with

the inferencing approach of the Gaussian and t copulas.

The log-likelihood for the problem is as in Equation (24). Unlike the multivariate probit,

this considers the summed logs of multivariate normal densities, rather than distributions.

Three functional forms for F. can be considered, or three link functions for Equations (2)-(7).

These are the probit,

Pr (Y = 1|x;β) = Φ
¡
x0β
¢

(28)

the fatter-tailed logit,

Pr (Y = 1|x;β) = exp
¡
− exp

¡
x0β
¢¢

(29)

and the complementary log-log

Pr (Y = 1|x;β) = 1− exp
¡
exp

¡
−x0β

¢¢
(30)

with the dependent variables. Comparison however gives no indication that previous results were affected

significantly by the higher value.
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which is an asymmetric extension of the logit, useful in particular for fairly heavily right-

skewed distributions of x0β, or in this case the inverted probabilities of mortality and exer-

cising.

7 Results and discussion

Employing the method of IFM has specific implications in terms of the results. Being able

to choose freely both the marginal distributions and the joint distributions, separately from

one another, means more information must be considered overall, and considered separately.

Some of this is information gained over and above standard methods of estimation; most of

it will relate to goodness of fit and model selection.

7.1 Specifying and selecting marginal distributions

The appropriate link function for each margin is selected according to varying criteria which,

along with cell predictions, are contained in Table 2, below.

Table 2 here

The probit, logit and complementary log-log functions are equally complex, so the results

are the same across the tests. The BIC will not identify differences without parsimony

gains in one specification over another, and the Expected Cross-Validation Index (ECVI)

will consistently give the same recommendation as the AIC in this case: while it is useful

to minimise the underestimation of fit relative to the AIC, it is essentially the AIC divided

by the sample size.

The predictive accuracy of each function has also been included in Table 2, and offers

different optimal specifications. Only the overall accuracy of predictions have been included:

the predictions of 0 and 1 separately is not useful. Due to its structure, the complementary

log-log consistently predicts more 0s accurately by virtue of predicting more of them. More-

over there is no predisposition towards accuracy in one or the other outcome, so neither

can be justified as a criterion for model selection (although this need not always be the
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case). The combination used here is according to the overall accuracy in cell predictions -

a mixture of probit, logit and complementary log-log link functions for the margins.

There is no particular econometric imperative attached to either the probit or logit.

The complementary log-log is preferred for mortality and exercising, due to their much

higher rates of failure (such that the probability that the indicator will be 0 is substantially

higher), and due to the dichotomising of SAH one would reasonably expect a latent distri-

bution of health with fatter tails, for which the logit is better-suited, but for the remaining

lifestyles no similar information is available. Kolmogorov-Smirnoff can be used to compare

the distributions of the predicted probabilities to determine whether there is any statistical

relevance to the choice made.19 Considering the dimensions in toto, Table 3 (below) from

the corresponding analysis of the joint distribution shows that, for each of the candidate

copulas, the mixture of probit, logit and complementary log-log models is optimal.20

Table 3 here

The differences between the skewed and symmetric distributions are worth consideration,

particularly for the multivariate skewed t distribution. This is because the symmetric

multivariate t distribution may have greater consideration of tail dependence than the the

multivariate skewed t, which will affect the distribution at its centre, but one or the other

will be of more importance to the researcher, who may have to choose between them.

19Results from these tests, not presented, indicate significant differences when the Complementary Log-Log

function was used, but no difference between the Probit and Logit.
20This step assumes that each combination of margins (or inverse probabilites) is accurate, leaving only

dependence to be captured by the joint distribution. Thus the ’best’ copula is taken to be representing the

correlation structure of the latent variables in each margins most accurately.

Although the Multivariate Probit is included, its likelihood is not directly comparable due to func-

tional form: unlike it, the copula distributions are 8 dimensions of inverse probabilities estimated non-

parametrically, although for the information criteria the full k = 356 was used. Thus the information

criteria should be used to compare the copulas, but not to infer that they are better than the standard

Multivariate Probit. The argument is that the information and efficiency gains in the joint distribution, and

the fit in the margins, are the advantages due to the use of copulas.
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7.2 Comparing the t and Gaussian copulas, skewness and symmetry

7.2.1 Skewness

Degrees of freedom in the multivariate t copula (or distribution) can be fixed or estimated

freely, as in this case. Maximum-Likelihood estimates of the degrees of freedom from the

skewed t are around df = 27.5 whereas, for the symmetric t, df = 12.9. This follows on

from the previous section: because the skewness affects the distribution principally around

the mean, central tendency is estimated more precisely, so that lower tail dependence is

observed. The means of the inverse probabilities from each model (including the ’observed’

data) are in Table 4, below.21 They are generally similar except for mortality risk and

exercise, for which quite disparate results can be seen, particularly with the skewed normal

distribution.

Table 4 here

In this instance the skewed t is tending fairly Gaussian, based on the degrees of freedom,

which raises the question of whether skewness or tail dependence is more important. Con-

sidering extreme events, for example, would favour tail dependence over skewness. From a

purely statistical standpoint, the choice is dependent upon the skewness estimates for the

multivariate normal and t models. These are in Table 5, below.

Table 5 here

The parameter corresponding to mortality risk in the skewed normal distribution is quite

large, relative to the t, as well as having a different sign. Sign differences occur in other

margins as well. For the multivariate Gaussian copula, the skewed normal distribution is

preferred to the symmetric normal by virtue of the statistical significance of the skewness

21Some explanation of the ’observed’ data is required. These are the inverse predicted probabilities used

by the copula for the joint distribution, as shown in Figure 1. So the ’observed’ mean is the mean of the

inverted predicted probabilites of y = 1 in each dimension, which was passed into each copula according to

Equation (23).
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vector: the trade-off from the t-copula does not exist for the Gaussian, which ignores tail

dependence anyway. For mortality risk, SAH, eating breakfast and exercising, skewness is

counter-directional in the normal and t distributions. In all cases, except eating breakfast

in the skewed t and sleeping well in the skewed normal, skewness is statistically significant

at 5% (and at 10% for eating breakfast in the skewed t). Accordingly the distribution is

considered to be a skewed t, although with reasonably high degrees of freedom.

7.2.2 Fitting a model vs. replicating data

Goodness of fit was considered previously with respect to the margins, using information

criteria. Looking again at Table 5, the skewed joint distributions are a marked improvement

upon the symmetric. Between symmetric distributions the multivariate t copula is more

noticably better than the Gaussian than between the skewed distribution, in which there is

not much improvement due to the use of the t. This reflects previous comments concerning

the Gaussian-tending degrees of freedom observed in the multivariate skewed t, relative to

the symmetric. At df = 27.5, the t and Gaussian copulas are not as distinct, compared to

their symmetric counterparts. Overall the skewed multivariate t-copula is still preferred,

according to information criteria.

Goodness of fit can be considered also within the context of replication. The central

question asked is, how close is the copula’s approximation of the data-generating process

to the process itself? This is a different question to the one answered with information

criteria and the log-likelihood. By simulating dependent multivariate data using estimated

means, covariances and skew (and degrees of freedom for the multivariate t) an appreciation

is gained of the difference between the observed data and its behaviour according to each

copula. This has been measured using relative distances between the distributions and

Kolmogorov-Smirnoff tests. The results are in Table 6, below.

Table 6 here

Of most use is the left-hand column, which gives each replicated distribution’s distance

from the one upon which it was estimated. The implications are not as straightforward as
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for other measures of fit, in part because Table 6 illustrates goodness of replication, not of

fit. It also raises another potential trade-off between poorer fit and better approximation of

the data-generating process. In part this is because, certainly in this instance, the results

are equivocal, relative to the information criteria. More importantly though it will depend

upon the analysis. For an explanatory model more precise estimates of coefficients would

be preferable. For a predictive model we would find the information on replication more

useful, because our confidence in predictions may change accordingly.

Procedures for comparing the fit graphically can be found in de Matteis (2001). This

can be done using Quantile-Quantile plots of non-parametric distribution functions, as well

as analytical methods described in Frees and Valdez (1998), although these will not always

be practicable, as in this case. Quinn (2006) also contains QQ-plots and empirical distance

as criteria for copula selection in bivarariate models.

7.2.3 Inference and the variance-covariance of the estimates

There is an efficiency loss from using inference functions for the margins of a multivariate

distribution. This is due to the partitioning of the variance-covariance matrix since, under

inference, ∂2l
∂βu∂βv

= 0 for the parameters (or vector of parameters, but vector notation is

supressed here for convenience) βu and βv from two separated margins u 6= v. Similarly

for dependence θuv between any two margins u and v, the cross-partial derivatives ∂2l
∂θ∂βu

and ∂2l
∂θ∂βv

are practically inaccessible when using elliptical copulas based upon inversion. If

functions of these estimates are required (one may wish, for example, to gauge the associa-

tion between one or more regressors in two margins and the dependence between their linear

predictions), or Fisher Information on marginal parameters within the joint distribution,

a jackkifing procedure would be used.22 For other copulas such as the Archimedean class,

jackknifing may be preferable anyway, relative to finding a matrix of analytical solutions.

The particular advantage of the jackknife approach is that far less needs to be coded

22Still suppressing vector notation, the converse cross-partial derivative ∂2l
∂β∂θv

= 0 (from a proof in the

appendix of Joe 2005, not reproduced here).
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for analysis - only the marginal likelihoods in the first step of the IFM and the joint in

the second. Asymptotically consistent estimates will then, under jackknifing, provide as-

ymptotically efficient estimates for the variance-covariance matrix of the regressors (Joe

2005).

7.3 Comparing size and significance

Figures 2-9 (below) show the marginal effects and t-statistics for the covariates in the

margins, for all of the feasible methods of analysis. The actual model used in each dimension

is indicated, as is statistical significance at 5 and 10%. The reference individual is female,

single, not European caucasian, living in London (Urban), degree-qualified and in the first

social class, and employed full-time.

Figures 2-9 here

One noticeable result is the positive, statistically significant impact of being European

caucasian on both reducing the risk of mortality and being in good health. The impact

is more significant on health, but is significant in both equations nonetheless. Being male

generates an increased risk of mortality but has a small and insignificant - though also

positive - effect on health. Being married and owning a house has a marked effect on

reducing mortality risk. Controlling for social class (though not income directly) home

ownership improves health, also. Marriage does not have an effect. Balia and Jones (2005)

in fact excluded marital status from the mortality equation in their reduced form model,

however it does appear to be highly significant in the lifestyles they retained. Being married

may therefore be having a substantial indirect effect on mortality risk. Household size was

also supposed to affect lifestyles, rather than health or mortality risk directly, and this

appears to be the case. Household size has an important positive and negative affect only

on prudent drinking and exercise respectively. Since the sample is restricted to individuals

aged 40 years and over it is reasonable to take this as representative of behaviour with large

families, particularly children.
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With specific regard to model selection, the marginal effects and t-statistics due to age

and its quadratic in the equation for mortality risk are particularly interesting. Selection

criteria favoured the use of the complementary log-log model for mortality risk, only in

which model does age and age squared show markedly different results to the other models.

In this case mortality risk is increasing with age but at a decreasing rate, which the other

models do not predict. The effect of age on health is consistent across all models. So

too are the estimates for the remaining explanatory variables. Moreover, in the mortality

equation alone it also appears the complementary log-log returns estimates nearest to the

multivariate probit. This is a pattern occassionally repeated in other equations, but not as

consistently across all parameters as in this equation.

Balia and Jones (2005) excluded parental smoking from the health equation in their

structural form, however it has a consistently significant negative effect in the reduced

form, particularly in the case of both parents smoking. Their economic significance is,

apart from illness-related absence from work and not being European caucasian, compa-

rable to the other explanators of good or poor health, and only in the smoking equation

is parental smoking elsewhere significant. This doesn’t suggest Balia and Jones (2005)

restricted parental smoking erroneously, though. The two effects could be reconciled by

testing for a direct effect on health as well as the indirect effect via the propensity to smoke.

As stated above, home ownership has a significant role in determining eating breakfast,

not smoking and sleeping well, with a reasonably-sized effect. Among the other statistically

significant results are the large effect of being male on the likelihood of not being obese, the

large effect of not being European caucasian on drinking imprudently (here being male has

a larger effect still), and the non-smoking equation, in which the reference female seems the

least likely of all to smoke. The strength of the effect of unemployment on the propensity

to smoke stands out, also. Suburban living seems to provide lower chances of being obese,

yet living almost anywhere else in the UK besides London increases those chances, which

corresponds reasonably well with exercise, also.
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Balia and Jones (2005) considered only not smoking, eating breakfast and sleeping

well as endogenous, and non-obesity, prudent drinking and exercising as exogenous. The

covariate explanation in these equations is significant overall though, as are the effects of

covariates in each. This suggests some explanatory power may still be contained in these

equations, for health and the risk of mortality. Exercise due to non-urban living and not

being single shows interesting results that might reflect the time of the survey and the age

of the individuals (recall that the sample is restricted to individuals 40 years of age and

over). While the prevalent image of single urban living might include more time spent in a

gym, for example, the sample here is older. Non-urban areas may also afford for space for

outdoor sports, relative to cities.

In a few instances the non-normal marginal distribution has altered the significance of

covariates, across the models. These are not considered to be drastic, however: something

that was barely statistically significant may now barely be insignificant at a 5 or 10% level,

not including age in the equation for mortality risk. The differences between the t-statistics

are not large enough that the covariate in question would have been otherwise excluded

from or included in the analysis. The differences that do exist however, together with those

in the marginal effects between different models, suggest that the considerations made here

are not without merit.

This can also be seen in the variance-covariances of the outcomes, given in Table 7,

below.23

Table 7 here

These are of interest vis a vis the point taken previously from Klein (1998) that, under

non-normality (or even asymmetric normality) a structure-of-equations model may recom-

mend erroneous rejection of one or more equations in the structure, due to non-robust

23Correlations are used rather than the variance-covariance matrix so that comparisons can be made on

the same scale (which for copulas will vary, unlike the multivariate probit). We would already expect, for

example, some elements of the variance-covariance matrices to be scaled differently based on the estimates

in Figure 1.
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distributional assumptions. As such the matrices in Table 7 would indicate such a problem

with a structural, normally-symmetric system of equations. This would be evident in, for

example, statistically less significant correlation between mortality risk and/or SAH and

the endogenous lifestyles, relative to the symmetric normal estimates. In fact there is no

such indication.

8 Conclusion

The methods and results presented here lead to two conclusions: first, that more flexible

approaches to estimating multivariate data, even multivariate dichotomous data, are a

worthwhile enterprise.

Specific to the elliptical copulas, the results show an improvement in estimation due

to approximating a joint distributions using the multivariate t distribution rather than the

multivariate normal. There is also an improvement above that when considering multivari-

ate skewed distributions, rather than the more commonly-considered symmetric ones. The

difference between skewness and symmetry was alone enough to alter what would otherwise

have been thought about tail dependence in the joint distribution, which has significant

implications for analysis concerning itself with extreme events.

The copula approach allows such flexibility where traditional models do not, particularly

when analysing jointly-distribution discrete random variables, which is more cumbersome

than with continuous random variables. The copula model for mortality risk, health and

lifestyle was both able to capture idiosyncracies of the data such as skewness and tail

dependence, while also being simpler to implement and estimate.

The analysis here also showed that this approach generates more information about the

models and the results, which can be used to select better-fitting marginal and joint distri-

butions. In fact several trade-offs were identified during estimation, between information

of different types on different behaviour of the data. Which of these types of information

is preferred depends upon the focus of the analysis, but estimation with copulas can be

responsive to this need where standard multivariate analysis might not.
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Variable Definition Mean/   
Proportion = 1 Std.Dev. 

    
Health status    
  deceased 1 if deceased at June 2005 0.41 0.4911 

  sah 1 if self-assessed health is excellent or good (0 if fair or 
poor) 0.70 0.4572 

    
Lifestyle    
  non-smoker 1 if not currently smoking 0.70 0.4585 
  breakfast 1 if regularly eating a 'healthy' breakfast 0.71 0.4552 
  sleeping well 1 if sleeping between 7 and 9 hours 0.58 0.4932 
  prudent drinker 1 if consuming alcohol prudently 0.88 0.3251 
  non-obese 1 if under 'obese' 0.85 0.3538 
  exercising 1 if engaged in physical exercise 0.32 0.4677 
    
Social Class    
  sc1 1 if "professional/student", "managerial/intermediate" 0.32 0.4648 
  sc2 1 if "skilled", "armed service" 0.47 0.4990 
  sc3 1 if "partly skilled", "unskilled", "unclassified" 0.22 0.4128 
    
Education    
  degree 1 if University 0.13 0.3308 

  HVQ/A level 1 if Higher Vocational Qualifications or A level (or 
equivalent) 0.12 0.3305 

  CSE/O level 1 if CSE or O level (or equivalent) 0.09 0.2924 
  none 1 if no qualification 0.61 0.4882 
  other 1 if any other vocational or professional qualification 0.05 0.2130 
    
Marital status    
  married 1 if married 0.76 0.4268 
  widowed 1 if widowed 0.13 0.3339 
  divorced/separated 1 if divorced or separated 0.05 0.2280 
  single 1 if single 0.06 0.2312 
    
Occupation    
  full time 1 if employed full-time 0.36 0.4813 
  part time 1 if employed part-time 0.13 0.3384 
  shift/casual worker 1 if shift/casual worker 0.06 0.2327 
  unemployed 1 if unemployed 0.03 0.1716 
  absent (illness) 1 if absent from work due to illness/injury 0.03 0.1789 
  retired 1 if retired 0.34 0.4733 
  housekeeper 1 if housekeeper 0.10 0.3024 

 
Table 1. Variable definitions and descriptive statistics. 
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Variable Definition Mean/   

Proportion = 1 Std.Dev. 

Geography    
  Scotland 1 if in Scotland 0.10 0.2954 
  Wales 1 if in Wales 0.06 0.2333 
  Northern England 1 if in the North of England 0.07 0.2468 
  North-western England 1 if in the North-west of England 0.13 0.3339 
  Yorkshire 1 if in Yorkshire 0.09 0.2807 
  West midlands 1 if in the West-midlands of England 0.08 0.2716 
  East midlands 1 if in the East-midlands of England 0.08 0.2660 
  Anglia 1 if in Anglia 0.04 0.1959 
  South-western England 1 if in the South-west of England 0.09 0.2839 
  South-eastern England 1 if in the South-east of England 0.19 0.3901 
  London 1 if in London 0.09 0.2924 
    
Area    
  Rural 1 if in Rural area 0.22 0.4132 
  Suburban 1 if in Suburban area  0.47 0.4993 
  Urban 1 if in Urban area 0.31 0.4627 
    
Ethnicity    
  European caucasian  1 if European caucasian 0.98 0.1436 
    
Physical Characteristics    
  gender (male) 1 if Male 0.46 0.4981 
  height Height in inches 65.95 3.7032 

  age Age in years 57.47 11.6733 

  age2 Age2/100 34.39 14.0761 
    
Residential 
Characteristics    

  owner 1 if owning own home 0.66 0.4746 
  household size Number of people in the household 1.65 1.2723 
  smoking household 1 if anyone smokes in the household 0.35 0.4773 
    
Parental Characteristics    
  mother smoked 1 if only mother smoked/s 0.03 0.1731 
  father smoked 1 if only father smoked/s 0.60 0.4909 
  both smoked 1 if both smoked/s 0.25 0.4306 
  mother's drinking Mother's drinking (0-4, non-to-heavy drinker) 0.91 0.9812 
  father's drinking Father's drinking (0-4, non-to-heavy drinker) 1.89 1.2005 

 
Table 1(Cont). Variable definitions and descriptive statistics.
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  % Correct AIC BIC 
  MV Probit Probit Logit CLog-Log Probit Logit CLog-Log Probit Logit CLog-Log 
mortality 0.7839 0.7852 0.7874 0.7899 3304.612 3299.585 3314.392 3558.97 3553.943 3568.75 
SAH 0.6416 0.6421 0.6430 0.6364 4126.101 4125.847 4125.206 4380.459 4380.205 4379.564 
breakfast 0.6492 0.6487 0.6506 0.6410 4106.177 4108.384 4101.67 4360.535 4362.742 4356.028 
not obese 0.6150 0.6164 0.6249 0.6049 2933.099 2930.946 2936.521 3187.457 3185.304 3190.879 
non-smoker 0.6722 0.6725 0.6780 0.6651 3993.578 3993.232 3998.705 4247.936 4247.59 4253.063 
sleeping well 0.5789 0.5765 0.5759 0.5735 4911.126 4911.547 4909.652 5165.484 5165.905 5164.009 
prudent drinker 0.6810 0.6802 0.6925 0.6635 2385.302 2382.104 2392.089 2639.659 2636.462 2646.447 
exerciser 0.6287 0.6276 0.6301 0.6328 4301.734 4301.714 4300.307 4556.092 4556.072 4554.665 

 
Table 2. Percentages of correctly-predicted outcomes and Information Criteria from Probit, Logit and Complementary Log-Log models (shaded cells are the 

optimum model for each margin according to each criterion). 
 
 
 
 
 
 

mortality  SAH  breakfast  not obese 
 Probit Logit   Probit Logit   Probit Logit   Probit Logit 

Probit  0.3160  Probit  0.9940  Probit  0.9230  Probit  0.5140 
CLog-Log 0.0030 0.3030  CLog-Log 0.6490 0.2400  CLog-Log 0.3310 0.0770  CLog-Log 0.3610 0.0150 

               
non-smoker  sleeping well  prudent drinker  exerciser 

 Probit Logit   Probit Logit   Probit Logit   Probit Logit 
Probit  0.8690  Probit  1  Probit  0.0160  Probit  0.9970 
CLog-Log 0.1690 0.0280  CLog-Log 0.5710 0.4270  CLog-Log 0.0440 0.0000  CLog-Log 0.2520 0.6490 

 
Table 3. p-values from Kolmogorov-Smirnoff tests for difference in distribution of linearly-predicted probabilities, Pr(y = 1) (p < 0.05 (shaded cells) represent 

statistically equivalent distributions).  
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  Symmetric Normal Skewed Normal Symmetric t Skewed t Observed 
mortality -0.2854 -1.6646 -0.3174 -0.3779 -0.2850 
 (1.0955) (1.7617) (1.0461) (1.0689) (1.0957) 
SAH 0.5686 0.7137 0.6117 0.9210 0.5686 
 (0.4652) (0.4873) (0.3926) (0.5396) (0.4653) 
breakfast 0.5957 0.3277 0.6209 0.7475 0.5959 
 (0.4546) (0.5278) (0.4339) (0.4630) (0.4547) 
not obese 1.1224 1.0611 1.1212 1.1213 1.1227 
 (0.3730) (0.3780) (0.3633) (0.3670) (0.3731) 
non-smoker 0.5958 0.3519 0.6202 0.7329 0.5960 
 (0.5518) (0.6033) (0.5255) (0.5507) (0.5518) 
sleeping well 0.2148 0.3635 0.2297 0.2965 0.2148 
 (0.2504) (0.2913) (0.2352) (0.2527) (0.2493) 
prudent drinker 1.3454 1.1837 1.3542 1.3383 1.3459 
 (0.5502) (0.5735) (0.5309) (0.5388) (0.5502) 
exerciser -0.5025 -0.0791 -0.4842 -0.3588 -0.5028 

  (0.4461) (0.6152) (0.4209) (0.4520) (0.4461) 

 
Table 4. Predicted mean (standard deviation) in each dimension of the mortality risk, health 

and lifestyle models. 
 
 
 

  Skewed Normal Skewed t 
mortality 13.8945 -2.7993 
 (1.3244) (0.1755) 
SAH 1.0472 -5.2299 
 (0.1696) (0.2363) 
breakfast -1.9399 0.1935 
 (0.2085) (0.1094) 
not obese 0.4219 2.3438 
 (0.1300) (0.1265) 
non-smoker 1.5039 0.7909 
 (0.1889) (0.1076) 
sleeping well 0.1234 -0.4122 
 (0.0990) (0.0766) 
prudent drinker 0.7700 0.3279 
 (0.1286) (0.0922) 
exerciser 0.9166 -0.9720 

  (0.2489) (0.1429) 

 
Table 5. Estimated Skewness parameters (standard errors) for each dimension of the 

mortality risk, health and lifestyle models. 
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    Log-likelihood AIC BIC ECVI 
 MV Probit -14548.75 29809.50 32018.07 8.16 

Gaussian copulas (IC)         
     Probit margins -10204.68 21137.36 23395.56 5.78 
     Probit/Clog-Log margins -10387.55 21503.10 23761.30 5.88 
     Logit/Clog-Log margins -10137.91 21003.82 23262.02 5.75 
Gaussian copulas (% Correct)     
     Probit/Clog-Log margins -10484.83 21697.66 23955.86 5.94 
     Mixed margins -9836.056 20400.11 22658.31 5.58 
t copulas (IC)     
     Probit margins -10148.79 21027.58 23291.99 5.75 
     Probit/Clog-Log margins -10349.44 21428.88 23693.29 5.86 
     Logit/Clog-Log margins -10110.19 20950.38 23214.79 5.73 
t copulas (% Correct)     
     Probit/Clog-Log margins -10215.59 21161.18 23425.59 5.79 

S
ke

w
ed

 

     Mixed margins -9836.055 20402.11 22666.52 5.58 
Gaussian copulas (IC)     
     Probit margins -10993.64 22699.28 24907.85 6.21 
     Probit/Clog-Log margins -11111.91 22935.82 25144.39 6.28 
     Logit/Clog-Log margins -10865.48 22442.96 24651.53 6.14 
Gaussian copulas (% Correct)     
     Probit/Clog-Log margins -11005.55 22723.10 24931.67 6.22 
     Mixed margins -10721.94 22155.88 24364.45 6.06 
t copulas (IC)     
     Probit margins -10706.44 22126.88 24341.65 6.05 
     Probit/Clog-Log margins -10881.76 22477.52 24692.29 6.15 
     Logit/Clog-Log margins -10657.82 22029.64 24244.41 6.03 
t copulas (% Correct)     
     Probit/Clog-Log margins -10695.08 22104.16 24318.93 6.05 

S
ym

m
et

ric
 

     Mixed margins -10394.53 21503.06 23717.83 5.88 
 

Table 6. Information criteria from the joint (copula) distributions 
(shaded rows contain the ‘best’ model according to minimum information criterion). 
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Mortality Observed Symmetric 
Normal 

Skewed 
Normal 

Symmetric 
t Skewed t 

 
SAH Observed Symmetric 

Normal 
Skewed 
Normal 

Symmetric 
t Skewed t 

Observed            Observed           
Symmetric Normal 0.0010      Symmetric Normal 0.0030     
Skewed Normal 0.0940 0.0010     Skewed Normal 0.0100 0.5010    
Symmetric t 0.0020 0.1340 0.0010    Symmetric t 0.0890 0.0010 0.0010   
Skewed t 0.0000 0.0780 0.0220 0.2410    Skewed t 0.6820 0.1210 0.0480 0.3410   
             

Breakfast Observed Symmetric 
Normal 

Skewed 
Normal 

Symmetric 
t Skewed t 

 
Not obese Observed Symmetric 

Normal 
Skewed 
Normal 

Symmetric 
t Skewed t 

Observed            Observed           
Symmetric Normal 0.2910      Symmetric Normal 0.0240     
Skewed Normal 0.1250 0.4010     Skewed Normal 0.2010 0.1810    
Symmetric t 0.0050 0.0040 0.0060    Symmetric t 0.0040 0.7230 0.0620   
Skewed t 0.0390 0.5360 0.3700 0.1480    Skewed t 0.2630 0.5010 0.4010 0.1480   
             

Non-smoker Observed Symmetric 
Normal 

Skewed 
Normal 

Symmetric 
t Skewed t 

 
Sleeping well Observed Symmetric 

Normal 
Skewed 
Normal 

Symmetric 
t Skewed t 

Observed            Observed           
Symmetric Normal 0.0020      Symmetric Normal 0.2050     
Skewed Normal 0.0170 0.9360     Skewed Normal 0.3070 0.3700    
Symmetric t 0.0000 0.0260 0.0110    Symmetric t 0.0370 0.0330 0.4010   
Skewed t 0.0370 0.3410 0.4330 0.2630    Skewed t 0.0650 0.0330 0.5730 0.2000   
             

Prudent drinking Observed Symmetric 
Normal 

Skewed 
Normal 

Symmetric 
t Skewed t 

 
Exercise Observed Symmetric 

Normal 
Skewed 
Normal 

Symmetric 
t Skewed t 

Observed            Observed           
Symmetric Normal 0.1240      Symmetric Normal 0.2600     
Skewed Normal 0.1210 0.8880     Skewed Normal 0.0020 0.0040    
Symmetric t 0.0210 0.0970 0.1080    Symmetric t 0.0010 0.1340 0.0060   
Skewed t 0.2770 0.8600 0.8280 0.0870    Skewed t 0.0650 0.4010 0.0480 0.1640   

 
Table 7. p-values from Kolmogorov-Smirnoff tests for differences between distributions  

(shaded cells <-> p < 0.5 represents a statistically significant difference at 5% level of significance). 
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Observed data 

 mortality SAH breakfast not obese non-
smoker 

sleeping 
well 

prudent 
drinker exerciser 

mortality 1        
SAH -0.3998 1       
breakfast 0.4034 0.3042 1      
not obese 0.0250 0.4407 0.1760 1     
non-
smoker 0.1859 0.4328 0.7514 0.2379 1    

sleeping 
well -0.5175 0.4960 0.0754 0.2065 0.0868 1   

prudent 
drinker 0.1828 -0.1405 0.4127 -0.4740 0.4787 -0.0668 1  

exerciser -0.8008 0.6135 -0.1200 0.2832 -0.0425 0.5432 -0.3273 1 
         

Symmetric Normal distribution 

 mortality SAH breakfast not obese non-
smoker 

sleeping 
well 

prudent 
drinker exerciser 

mortality 1        
SAH -0.4076 1       
breakfast 0.4567 0.2373 1      
not obese 0.0039 0.5376 0.1522 1     
non-
smoker 0.1667 0.4443 0.7358 0.2385 1    

sleeping 
well -0.4915 0.4533 0.0365 0.2467 0.0715 1   

prudent 
drinker 0.1898 -0.1877 0.4238 -0.4921 0.4579 -0.0693 1  

exerciser -0.8066 0.5941 -0.1535 0.2966 -0.0125 0.5127 -0.3186 1 
         

Skewed Normal distribution 

 mortality SAH breakfast not obese non-
smoker 

sleeping 
well 

prudent 
drinker exerciser 

mortality 1        
SAH -0.4511 1       
breakfast 0.3890 0.2308 1      
not obese -0.0220 0.4138 0.1149 1     
non-
smoker 0.1648 0.3879 0.7429 0.1698 1    

sleeping 
well -0.5404 0.4806 0.0782 0.2123 0.0988 1   

prudent 
drinker 0.1822 -0.1180 0.4288 -0.5201 0.5056 -0.0353 1  

exerciser -0.8117 0.6221 -0.1452 0.3045 -0.0538 0.5348 -0.3314 1 

 
Table 8. Correlation matrices from the joint distribution  

(bold cells are significant at 5%). 
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Symmetric t distribution 

 mortality SAH breakfast not obese non-
smoker 

sleeping 
well 

prudent 
drinker exerciser 

mortality 1        
SAH -0.4099 1       
breakfast 0.4506 0.2726 1      
not obese 0.0137 0.3997 0.1461 1     
non-
smoker 0.2360 0.4120 0.7695 0.2018 1    

sleeping 
well -0.5503 0.4833 -0.0110 0.1848 0.0284 1   

prudent 
drinker 0.1930 -0.0945 0.4329 -0.4870 0.4901 -0.0571 1  

exerciser -0.8139 0.6060 -0.1820 0.2563 -0.0987 0.5562 -0.3217 1 
         

Skewed t distribution 

 mortality SAH breakfast not obese non-
smoker 

sleeping 
well 

prudent 
drinker exerciser 

mortality 1        
SAH -0.4247 1       
breakfast 0.4281 0.2801 1      
not obese 0.0004 0.4973 0.1840 1     
non-
smoker 0.1683 0.4287 0.7431 0.2248 1    

sleeping 
well -0.5201 0.4595 0.0193 0.2149 0.0533 1   

prudent 
drinker 0.2180 -0.2013 0.3989 -0.4901 0.4495 -0.0968 1  

exerciser -0.8145 0.6204 -0.1685 0.3158 -0.0404 0.5279 -0.3686 1 
 

Table 8(Cont). Correlation matrices from the joint distribution  
(bold cells are significant at 5%). 
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Figure 1. Relating inverse functions to random variables. 
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Figure 2. Marginal effects and t-statistics for Mortality Risk (all models). 
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Figure 3. Marginal effects and t-statistics for Self-Assessed Health (all models). 
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Figure 4. Marginal effects and t-statistics for eating Breakfast (all models). 
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Figure 5. Marginal effects and t-statistics for Non-obesity (all models). 
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Figure 6. Marginal effects and t-statistics for Not Smoking (all models). 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

ag
e

ag
e2

he
ig

ht
sc

3
sc

45
su

bu
rb

ru
ra

l
ow

ne
r

ho
u

m
al

e
lh

qn
on

e
lh

qO
lh

qh
nd

A
lh

qo
th

m
ar

rie
d

w
id

ow
di

vs
ep pa
rt

si
ck

re
td

ke
ep

hs
e

un
em

p
w

ks
hf

t1
sm

ot
he

r
m

ot
hs

m
o

fa
th

sm
o

bo
th

sm
o

al
pa

al
m

a
sc

ot
se

as
t

sw
es

t
an

gl
ia

em
id

s
w

m
id

s
yo

rk
s

nw
es

t
no

rth
w

al
es

et
hw

he
u

MV Probit Probit Logit Clog-Log

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

ag
e

ag
e2

he
ig

ht
sc

3
sc

45
su

bu
rb

ru
ra

l
ow

ne
r

ho
u

m
al

e
lh

qn
on

e
lh

qO
lh

qh
nd

A
lh

qo
th

m
ar

rie
d

w
id

ow
di

vs
ep

pa
rt

si
ck

re
td

ke
ep

hs
e

un
em

p
w

ks
hf

t1
sm

ot
he

r
m

ot
hs

m
o

fa
th

sm
o

bo
th

sm
o

al
pa

al
m

a
sc

ot
se

as
t

sw
es

t
an

gl
ia

em
id

s
w

m
id

s
yo

rk
s

nw
es

t
no

rth
w

al
es

et
hw

he
u

t -statistics

Marginal effects 

10%   level of  signif icance
  5%   level of  signif icance



 49

 

 
Figure 7. Marginal effects and t-statistics for Sleeping Well (all models). 
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Figure 8. Marginal effects and t-statistics for Prudent Drinking (all models). 
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Figure 9. Marginal effects and t-statistics for Exercising (all models). 
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