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Abstract

This paper considers the simultaneous explanation of mortality risk, health and
lifestyles, using a reduced-form system of equations in which the multivariate distribu-
tion is defined by the copula. A copula approximation of the joint distribution allows one
to avoid usually implicit distributional assumptions, allowing potentially more robust
and efficient estimates to be retrieved. By applying the theory of inference functions the
parameters of each lifestyle, health and mortality equation can be estimated separately
to the parameters of association found in their joint distribution, simplifying analysis
considerably.

The use of copulas also enables estimation of skewed multivariate distributions for
the latent variables in a multivariate model of discrete response variables. This flexibility
provides more precise estimates with more appropriate distributional assumptions, but
presents explicit trade-offs during analysis. Information that can be retrieved concerning
distributional assumptions, skewness and tail dependence require prioritisation such

that different needs could generate a different 'best’” model even for the same data.
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1 Introduction

In this paper the simultaneous explanation of mortality risk, health and lifestyles is con-
sidered, using a reduced-form system of equations in which the multivariate distribution is
defined by a copula. A copula approximation of the joint distribution can avoid the distrib-
utional assumptions implicit in other multivariate families such as the multivariate normal,
Beta, etc., allowing potentially more robust estimation. Employing a method due to Lee
(1983), McLeish and Small (1988) and Joe and Xu (1996) that uses inference functions, the
parameters of each lifestyle, health and mortality equation can be estimated separately to
the parameters of association found in their joint distribution, simplifying analysis consid-
erably.

Analysing lifestyles and health jointly stems from research on the correlation between
socio-economic status and health, as well as income inequalities and health inequalities
(van Doorslaer, Wagstaff and Bleichrodt et al 1997, Wagstaff and van Doorslaer 2000, van
Doorslaer and Koolman 2004). Lifestyles need to be considered in this context because they
may determine health status and mortality. Contoyannis and Jones (2004) and Balia and
Jones (2005), for example, both show that the introduction of lifestyles into a model for
health (and in the latter study, risk of mortality also) reduces the influence of socio-economic
characteristics, altering the explanation of inequalities in health and mortality.

Moreoever, lifestyles can be supposed endogenous: as well as determining health and
mortality, lifestyles can themselves be determined by factors such as income and education,
for example. In the context of the structural equations model this creates a pathway through
which strictly exogenous variables, including income inequalities, may have both direct and
indirect effects on health and mortality, so that some of the variation in health and mortality

can be explained in part by these endogenous factors



This paper is an extension of these studies, using the same data and a similar underlying
thesis: that individual lifestyle choices determine health outcomes, including health and
mortality. These choices are influenced by socio-economic characteristics; to some extent
those socio-economic characteristics have a direct effect on health outcomes also, controlling
for lifestyle choices. It is a methodological extension also: Contoyannis and Jones (2004)
used the British Health and Lifestyle Survey (HALS), considering unobserved heterogeneity
via a recursive system of equations for self-assessed health and some endogenous lifestyles.
Balia and Jones (2005) use the HALS data also, including follow-up data on mortality and
health-affecting lifestyles. They also use a recursive system, where endogenous lifestyles are
used to explain self-assessed health and mortality. In both studies the multivariate probit
model is used for estimation.

Other empirical analyses have used various single-equation methods, including interac-
tion effects, as well as instruments, to capture endogeneity using Two-Stage Least-Squares
and the Generalised Method of Moments (Ruhm 2005, Aster 1969, Mullahy and Portney
1990 and Mullahy and Sindelar 1996 respectively, for example). The multivariate structure
of equations provides more flexibity when approximating the true explanation of health
because it not only considers endogeneity but gives it a structural representation in the
model. This paper will use predominantly the same economic model as Contoyannis and
Jones (2004) and Balia and Jones (2005), however the econometric problem is considered
differently.

The results presented here show that, at least in this instance, the assumptions under-
lying the multivariate probit and multivariate normality are robust to the non-normality
uncovered: covariate estimates and estimates of variance-covariance are comparable across
the multivariate probit and the copulas used. As well as providing efficient estimates more
simply than the multivariate probit however, the copula is used to highlight the statistical
significance of skewness in the multivariate distribution, and its relation to what would
otherwise be recognised as tail dependence. The copula provides much more information

about the data and the accuracy of its analysis, as well as facilitating more choice for the



researcher about exactly what they want to analyse in a multivariate framework.

2 Econometric problem

The behavioural model is as in Balia and Jones (2005); that individuals are assumed to

maximise simultaneously the utility function

o0
max > Byme x w (O, Hy; Xu, pyr) (1)
=0

where t-th period utility is determined by the vector of [ (in this case 6) lifestyles Oy,
health H; and conditional upon exogenous variables Xy and unobserved pi;;, which influence
individual preferences. Similarly [, influences time preferences, while the probability of
survival period-by-period is given by ;. Thus three elements are to be estimated: health,
lifestyles and mortality, the risk of which influences the utility and optimal levels of the other
two. The outcomes M, H and Oy, .., O; are indicated by dichotomous variables (including
self-reported health). Making the assumption that these follow a linearly-determined latent

scale, following Balia and Jones (2005) gives the reduced form

Yim = BmXim +&im (2)
Yin = BrXin+em (3)
yi = BiXa+eu (4)
such that
Yim = 1(Yim =0) ()
Yin = 1(yip =0) (6)
yi = 1(yg=0) (7)

The vectors X;m, X;, and X;; are individual-specific exogenous vectors explaining, re-
spectively, mortality risk, health and lifestyle. Under a structural specification these would
be distinct due to exclusion restrictions needed to satisfy simple order conditions for iden-

tification, but in reduced-form this can be relaxed. Here they are the same.



Estimation in Balia and Jones (2005) is done via the method of Maximum Simulated
Likelihood (MSL), assuming the errors terms are correlated and the random components
Wy, pp and py, are jointly normally distributed (in latent form e;, ey and ep7). MSL
is used because the standard multivariate probit is underlied by an 8-dimensional nor-
mal distribution, for which the standard method of Maximum Likelihood and (generalised)
Method of Moments would require substantially more computation. The method of max-
imum likelihood, for example, requires, in this case, integration over 7 cumulative normal
probabilities in order to find solutions. MSL on the other hand simulates the likelihood so
that approximations, rather than the likelihood itself, are maximised. Similarly the Method
of Simulated Moments (or Scores) can be used in place of the more intensive method of
moments (Gouriéorux and Monfort 1996).

The two issues taken with this approach is, in the first place, the estimation itself, which
can be cumbersome and not necessarily efficient compared to standard methods of maximum
likelihood (Hajivassiliou 1997). Secondly, the (multivariate) normality assumption is not
necessarily made according to the best description of the data-generating process, and the
results may not be robust under non-normality. The method presented here will help identify

if these are problems, while showing a more convenient procedure for esitmation.

2.1 Considering multivariate (non-)normality

The motivations for moving away from the normality assumption in a multivariate frame-
work are two-fold. The first is computation: although low orders of dimensionality rarely
present problems for computing multivariate probits, maximising likelihoods across 8 di-
mensions is time-consuming and computationally intensive (Muthén 1979, 1984 discusses
this in some detail). The second is robustness: although some authors have shown that
departures from normality are not necessarily of great concern, they too become more
problematic in higher dimensions (Keselman, Wilcox and Lix 2005, Prokhorov and Schmidt
2005). The robustness issues with standard ¢ and F-tests under non-normality are also

known (Mardia 1971, Ali and Sharma 1996, Curran, West and Finch 1996). In a structure-



of-equations model, multivariate non-normality can also lead to erroneous rejection of some
models within the structure (see Klein 1998, for example).

The multivariate normal distribution is commonly selected for the convenience of its
use, and because the univariate normal distribution is robust under reasonable levels of
non-normality, and so explains the margins of the joint distribution fairly well (Kowalski
1973). Its use is a result of the common practice of selecting a multivariate distribution
according to identification of the margins. Since the normal distribution is among the most
robust, it is preferred to others such as the multivariate Pareto, Burr or logistic, for example
(Mardia 1962, Takahasi 1965, Satterthwaite and Hutchinson 1978; Cook and Johnson 1981
present a generalised model that nests each of these as special cases).

The normal distribution also tends to be more easily extended to higher dimensions: the
density or characteristic function of the normal distribution can be used, or a linear combi-
nation of normally-distributed random variables (Fang, Kotz and Ng,1989). The preference
for the multivariate normal then can dominate even when the joint density of the data being
analysed appears not to be elliptically symmetric. While a multivariate distribution with
one or more non-normally distributed margins is always non-normal however, a multivariate
distribution with normally-distributed margins but a skewed or kurtotic joint relationship
will be non-normal also.

Abandoning the multivariate probit/normality assumption has direct implications in
terms of the econometric problem. The recursive model is one of conditionally-dependent
random variables such that, in this case, endogenous health status is a function within a
function: it is an explanatory variable for mortality risk, while also being explained by
endogenous lifestyle choices. At each level these three are also explained by exogenous
explanatory variables. This structure can only be maintained by assuming a symmetric
distribution, such as the normal, and is subject to Borel’s paradox otherwise (Kolmogorov
1950). The empirical relevance of this is that non-normal (quasi-) Maximum Likelihood
estimates of conditional moments are valid only when the conditional mean is identically

zero, or the assumed and true densities are both unimodal and conditionally symmetric



about zero (Newey and Steigerwald 1996, Verhoeven and McAleer 2003). When this is not
the case the estimates are not necessarily consistent, and the location and scale of the con-
ditional distribution will not be identified correctly. In order to consider non-normal and/or
skewed latent variables then, the reduced-form must be used, rather than the structural, so
that the health and mortality equations are not conditionally distributed according to the
lifestyle variables.

One significant advantage offered by the multivariate normal distribution is its correla-
tion: few families of distributions, including copulas, are so easily extended to multivari-
ate distributions with generalisable correlation/dependence structures. The best approach
among those discussed here is based subsequently upon the multivariate normal and ¢ dis-
tributions. As copulas they allow a broad range of marginal distributions to be specified,
while retaining the flexible multivariate dependence structure these distributions offer. Mul-
tivariate skewed elliptical distributions, which are presented later and used in the analysis,
represent a very useful approach to combining the dual needs for reliable measures of mul-

tivariate dependence, as well as flexibity in the face of multivariate asymmetry.

3 The copula method

Using Sklar’s (1959) theorem, all multivariate distributions can be held to have a copula
representation, in which each margin is invariant to transformations in every other margin,
or independent of the choice of every other marginal distribution. For any multivariate
distribution with given margins there exists a copula that binds those margins to form the
joint distribution precisely (Smith 2003). A copula in practice is a dependence function,
and each one represents a unique description of the relationship between its margins, while
the distributions of its margins are assigned separately, and with no consideration given
as to the form of the copula. For the purposes of analysis, a copula is a distribution
function for uniformly-distributed random variables. Since univariate CDFs are uniformly-
distributed, the marginal CDF of each dependent variable can be considered a monotonic

transformation, and used as a random variable in the copula.



Consider two random variables X7, Xy with bivariate distribution function H (x1,x2)
and univariate marginal distributions Fj (z1) and F» (z2) respectively. Then there exists a
copula C such that

H (z1,22) = C (F1 (1), F2 (22)) (8)

for all real values of x1,z9 (or (X1,X2) € R). If Fy, Fy are continuous, C' is unique.
Under discontinuity C is uniquely determined on its domain, the range of the margins
RanF; xRanFy.! Moreover it can be seen using Sklar’s theorem that, if C' is a copula and F
and Fy are distribution functions, then some function H as defined in Equation (8) is a joint
distribution function (see Nelsen 1999 for this proof). By taking the marginal distribution
functions as dependent variables, which do not contain the dependence structure, the copula
separates the explanation of X; and X5 from their association, an important distinction

between the copula and standard multivariate distributions.

3.1 Multivariate FGM copulas

The FGM copula is the most commonly seen copula in exposition, since lower polynomials
are more convenient for discussion (Smith 2003, Zimmer and Trivedi 2006). It is also
derivative of another single-parameter family of copulas, the Frank.?*> The bivariate FGM

copula for any u,v in I € [0,1] is C' such that

09 (U,, U) = uv (1 +6 (1 - U) (1 - 'U)) ‘u:Fl(Il),U:Fz(xz) (9)

where —1 < 0 < 1, with positive and negative dependence for +60 respectively, and recalling

that Fy (z1), I, (z2) are (at least) monotonic.* In practical applications this copula has

'This is not usually considered problematic since the region outside this is not usually of interest (Smith

2003)
2The FGM copula is a first-order Taylor approximation of the more flexible Frank copula. Its subsequent

linearity in the margins has made it a popular exemplar (Smith 2003, Zimmer and Trivedi 2006).
3'Single-parameter’ refers to the parameterisation of association: single-parameter families use only one

parameter of association. Joe’s (1997) presentation of single-and multiple-parameter copulas is particularly

useful in this regard.
4This is trivial: since u = Fi(xz1),v = F(x2) are univariate distribution functions they must be

monotonic, at least (Nelsen 1999 contains an explanation of quasi-inverses of non-strictly increasing margins,



been shown to be a somewhat limited measure of dependence (Prieger 2002). Dependence

6 € [—1, 1] corresponds approximately to Spearman and Pearson’s correlations p € [—%, %],
such that p = %, and Kendall’'s 7 € [—%, %] such that 7 = %9 (de Matteis 2001. An appendix

in Quinn 2000 also derives this condition). Mari and Kotz (2001) provide several extensions
of the FGM copula, which can expand this range, but add more parameters.

The FGM is an example of a simple closed-form multivariate CDF, where Equation (9)
is extended into n dimensions. Using the notation of Joe (1997), the multivariate FGM

copula can be given as

8 k=8
C’(xl, .y T8; 9) = H u; | 1+ Z l9¢j [1 — ul] [1 — u]‘] (10)
i=1 1<i<y

giving, like the 8-dimensional normal distribution, 8Cy = 28 bivariate association parame-
ters (since 0;; = 0j; V i # j).5 Here 0;; € [—1,1] as before, however more restrictions are
introduced: 0;; faces a limit also in sum, so that more margins means a narrower range of

dependence for each non-zero 0;;. Specifically

n—1 n
T4+ > 045 <01, <1+ |0ia— > 04 (11)
1<i<j<n 2<i<j<n

so that lim 6;; = 0. In fact this limit is much narrower: in practice much fewer than 28
n—oo

unique values for 0;; would be practicable. Thus, although the multivariate FGM offers a

parameter for assocation in each bivariate margin, this is not typically feasible in practice.

which can also be used to construct a copula). This property is also necessary to ensure the measure of

association, 6, 'obeys’ the rules for measures of dependence.
’Nelsen (1999) and Mari and Kotz (2001), whose presentation draws on that of Nelsen (1999), provide a

different form for the multivariate FGM, giving

C(x1,...,x8;0) = Zlil Fi(x:) <1 + 28: > Ojr i (1= iy (@15)] - [1 = Fyy, (%‘M)

k=21<j1<...<jp<n

8

which contains not "Ca but 2" —n — 1, or 3. 3C;. In the current problem this would mean 247 different
=2

0j,,...5, terms, which is not considered practicable. Estimation issues aside, the limits on 6 in multivariate

FGM copulas would render them all null.



This limitation is commented upon specifically in Prieger’s (2002) application of the FGM

to the problem of sample selection, in a bivariate context.

3.2 Multivariate Archimedean copulas

Archimedean copulas are a particular class of copula that includes several popular families.
These are copulas whose form, in n dimensions, is reduced to a single function, called a
generator. This is a strictly decreasing, convex and continuous function ¢ : [0,1] — [0, o0]
in a set Q of the same, where ¢ (0) = 0o, ¢ (1) = 0 and with inverse ¢! : [0,00] — [0, 1],
¢ 1(0) =1 and ¢! (00) = 0.

For (u,v), an Archimedean copula is C such that

C(u,v) =9 ' (o (u) + ¢ (v)) (12)

An example is the Frank copula, given by (Frank 1979)

C (u,v:0) = _% In (1 n (6—9u — 1) (6_911 — 1)) (13)

e —1

As an argument in only one margin, the generator ¢ can be used to extend Archimedean

copulas into higher dimensions easily. For example, for u, v, w, z in 1,

C(u,v,w,2) = 97" (¢ () + @ (V) + ¢ (W) + ¢ () (14)

All that is required to extend C'is the addition of the generator function for a new margin.
Note that ¢, belongs to a single-parameter family of generators. Two-parameter generators
also exist, but will not be used here. A pseudo-generation of a multiple-parameter copula
will be achieved with mixtures below.

Multivariate Archimedean class copulas are a popular choice, however estimation in
n-dimensions can be quite limited: for any n > 2-variate distribution to be a copula, the
generator cpgl € [0, 00) must be completely monotonic. In Archimedean copulas that extend
to negative dependence, 4,09_1 fails to be monotonic when 6 € 7 < 0 and n > 2: Archimedean

copulas with n > 2 margins cannot contain negative dependence and still be a distribution.

10



In capturing positive multivariate dependence, Archimedean copulas are bound also by
their parameterisation. Unlike the multivariate FGM, where 6;;, exists for each bivariate
pair (uj,ug), @, !is usually a function of a single parameter. Equation (14) shows that any
bivariate pair will share a common association parameter. This can be seen for example in
the Frank copula, whose trivariate form is given by

C (u71]7w; 9) — _% In (1 + (6_9u _ 1) (6_07} _ 1) (e—Gw . 1)) (15)

(e=0 —1)"!

3.2.1 The mixture-of-powers approach

An alternative for multivariate Archimedean class copulas is generation according to inverse
Laplace transforms and mixtures of powers (Joe 1997, Zimmer and Trivedi 2006). This is

a transform ¢ (s) of some univariate CDF M («) such that

e}

b(s) = / M (a) (16)

0

for s > 0. Any arbitrary distribution function F' will have a unique Laplace transform G,

where
Flz) = / GOdM (o) (17)

0
= ¢(-logG(z))

Zimmer and Trivedi (2006) present the parameter o > 0 as a form of heterogeneity affecting
the random variable X. Since copulas are distribution functions, like F', the bivariate case

can be considered as
[o¢]
C(u,v;0) = /G GSdM (a (18)

(—log Gy, —log Gy)
Ca O)

where G, = exp {gzﬁ_l (w)},Gy = exp {qﬁ_l (v)}. This can continue into any number of

0
= ¢
0

dimensions, using different Laplace transforms to overcome the singularity of the dependence

11



. . . —1 . . . .
structure. Only n — 1 distinct transforms exist across n(n_21 bivariate margins in an n-
copula, though, so that distinct bivariate margins nevertheless share a common association.

A trivariate mixture using two distinct transforms ¢ (s) # ¥ (s) will give

C(u,v,w;0) =1 (¥ oo (o7 (u) + 07" (v) + v (w)) (19)

where 1! 0 ¢ belongs to a class of infinitely differentiable increasing functions (Joe 1997).9
Importantly, dependence is symmetric with respect to v and v, but not w now: this is
an improvement upon, for example, Equation (14). This will produce 7 distinct measures
of dependence for the 28 bivariate pairs of 8 distributions, but all positive. This is the
Jouini and Clemen (1996) condition that # > 0 under Laplace transforms and multivariate
Archimedean copulas. Correlations from the HALS data show 9 of these 28 pairs are
negatively associated however, contra-indicating the use of Archimedean copulas.

One solution is to use the Laplace transform ¢ (s) = max {(1 +ns)7 ,0}, which does
permit negative association.” Using this, and another other Laplace transform 1, a multi-
variate copula can be constructed from Equation (19), such that each bivariate margin has
the appropriate association, at least in terms of sign: the limit to the number of unique
Laplace transforms that can be used still exists. There is, for example, only one known
Laplace transform extending to negative dependence, such that there will always be fewer
unique dependence parameters than bivariate correlations. In practical terms the proce-

dure in Equations (16)-(18) need not be undertaken by the researcher. As well as families

of copulas being widely available, so too are known Laplace transforms (Joe 1997).

This is a condition assuring monotonicity of ! o ¢ mixtures, and hence the mixture-of-powers copula
itself. Since known transforms are readily available in Joe’s (1997) appendix, the requirement of infinite

differentiability is not one the analyst will usually face.

"This is Joe’s (1997) Laplace transform B, or Gamma-form LT, given by ¢ (s) = (1 + 6s)

%, where 6 > 0.
The extension to negativity is, statistically, similar to that of the Clayton copula (Mari and Kotz 2001). That
is, after extension the negative LTB is no longer strictly monotonic. This is also why Laplace-transformed

multivariate copulas do not have mixture representations when extended to negative dependence.
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3.2.2 The mixture of Max-ID approach

Consider instead mixtures of Max-Infinitely Divisible distributions, rather than standard
Archimedean copulas (Joe and Hu 1996, Joe 1997). A multivariate distribution H is called
Max-ID if H" is a CDF for all v > 0 and for all n dimensions.® In fact the mixture-of-powers
approach just discussed is a mixture of powers of a Max -or Min-ID multivariate distribu-
tion. This approach can be extended to negative dependence for some bivariate margins,
although such extensions are less common or straightforward. If a copula is of the form in
Equation (18), C can take the general form C(uy,..,u,) = ¢ (—In H(uy,..,u,)), and C' is
a multivariate CDF if H is Max-ID and — In ¢ belongs to a class of infinitely differentiable
increasing functions. This general form contains copulas of the form in Equation (19), how-
ever extensions to negative dependence (a sufficient condition for which is when —In ¢ is
convex) do not have mixture representations. Moreover, such extensions tend to generate
multivariate copulas whose margins all have Reverse Rule of Order 2 (RRg), or negatively
dependent: this is because the n-copula would be a mixture of Min-ID distributions, such
that each bivariate margin is RRo.? This is the case even with general dependence such as
the FGM in Equation (10) that allows unique bivariate association. Consider the copula C

such that

n

C (u1, ., Up) = (— S n Ky (7P 00, T ) S (g 4 n - 2) i (wi)
i<j i=1 20)
where ¢; is another Max-ID mixing parameter specific to each marginal CDF. Each K;;
in this expression is a bivariate margin; specifically a bivariate copula. Each Kj; then

is Max-ID, giving C (u1, .., u,) Positive Orthant Dependence (POD).! Using the survival

8 A univariate CDF F is such that F” is also a CDF for all v > 0, but this is not the case for multivariate
distribution functions. In general the n-dimensional CDF H is such that H” is a CDF for all v > n—1 (Joe
1997). Max-ID is therefore a stronger dependence condition - it is equivalent to Total Positivity of Order 2

where, for 1 < 22 and y1 < y2, F is TPy if F(z1,y1)F(x2,y2) > F(z1,y2)F(x2,y1).
9RRs, or Reverse Rule of Order 2, is essentially the negative-dependence equivalent of TP.
10Bivariate distributions are Positive Quadrant Dependent if higher values of one variable are correlated

with higher values of the other, and vice versa (essentially 7 > 0). Positive Orthant Dependence is the

13



function in each case will instead give negative orthant dependence (Joe 1997, Belzunce and
Semeraro 2004). A component-wise interpretation due to Joe (1997) is that the transform
1 is used to capture 'global’ dependence (that is, a minimal level of pairwise dependence),
while the specific copula K;; captures the individual (in the context of the multivariate
copula proper) pairwise dependence, and ¢; contributes to bi/multivariate asymmetry.
From the general method of copulas, the model for mortality risk, health and lifestyles
would require the use of the multivariate FGM and/or the mixture of Archimedean copulas
in order to estimate a closed-form distribution. The FGM however is too limiting in the
degree of dependence it can measure. The Mixture of Powers is too limiting in the number
of dependence parameters it allows and the Mixture of Max-ID copulas allows only totally
positive (or totally negative) dependence. Thus as the dimensionality of the multivariate
distribution increases, these methods become less practical. In terms of likelihoods these
distributions are also prone to some complexity when rendered as densities, making this
approach less attractive also. In order to estimate the entire model another method can
be employed, which uses inference about the joint distribution, taking advantage of the

separation of marginal distributions in a copula from the joint distribution.

4 Inference functions and the Gaussian and ¢ copulas

An alternative method due to Lee (1983), McLeish and Small (1988), Joe and Xu (1996),
Xu (1996) and Joe (1997) is the method of Inference Functions for Margins (IFM).!! For
some multivariate distribution H (X1, .., Xp; 81, .-, B,,, 0), consider the corresponding copula
C(F1(X1;81), . Fn(Xn;8,);0). The marginal parameter vectors (,.., 3, can contain
coefficients due to regression, and/or simple parameters for each distribution. The vector

0 contains measures of assocation for the copula as a whole. The IFM method is a two-

multivariate equivalent. Note that these are weaker than (multivariate) Total Positivity of Order 2, which
implies positive (orthant) quadrant dependence (Mari and Kotz 2001 is a good reference for these dependence

concepts).
"Tee (1983) does not refer to the method as TFM, though.
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step procedure in which each marginal vector of coefficients f3;c,, is estimated first, and
separately, to determine { B Lyeos Bn} such that
N n
B; = argmax »_ In f; (z4; 5;) (21)
i 4=l

and L (5’1, v Bn, 9) is maximised to find only 6 such that

é:argméix f:llnc(Fl (15 81) 5oy Fou (205 B,)) (22)

for some copula C with density c.!? Ordinarily, the method of Maximum Likelihood is to
solve (0L/0pB4,..,0L/0B,,0L/00) = 0, such as would be expected in Equations (10) and
(15), for example.

Estimates from the method of IFM then are such that (0L /081, .., 0Ly /0B, 0L/00) =
0. This holds under regularity conditions, and Joe (1997 and 2005) shows that the IFM
method is efficient relative to the method of maximum likelihood, particularly for discrete
marginal distributions with few categories. It is less so for more categories, and for con-
tinuous marginal distributions with strong dependence, although standard errors for the
parameters in this approach can corrected post-estimation using jacknife methods.

The method of IFM can also be used to estimate the so-called Gaussian copula with a

multivariate normal distribution, in this case given by

C (ut, .y ug) = Ps (V" (Fo (u5n)) » @5, (F (i) @3, (Fy () 5 @1y (Bl (95)))
(23)
In this approach the random variable has a different transformation. Where previously
the copula used F, (y},) instead of xjp, for example, these use - in the Gaussian case -

@, (Fn (y7,)). The transformation itself is illustrated in Figure 1, below.

m

Figure 1 here

The original combination :U;mBm is used to estimate Fy, (¢},,), which in turn is trans-

formed to ®,,! (F,, (47,,)), which is entered into the copula as a random variable. In fact it

o

12 _
Here ¢ = 9F:,..0F,

is the copula density (see deMatteis 2000 for his discussion on copula densities).
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can be considered as a vector of pseudo-observations: @1 (F,, (95,)) is a prediction of the
erstwhile unobserved latent variable ¥, from Equation (2).

Although the model in Equation (23) is essentially a normal distribution, the function
of inverses results in tractability of the marginal distributions also, as in a copula. It
is subsequently much more straightforward than the multivariate probit, because exact

Maximum Likelihood is available for the problem

0 = argmax ; g (O, (Fn (45)) > @5 (F (i), @3, (Fry (9,)) 5 @1y (Fs (i) 3 6)
(24)
which is more easily implemented. For this reason the method of IFM is used: it is permitted
with separated marginal distributions, and it is necessary due to the inversion, in order to get
parameters with interpretable estimates. This copula is a nice alternative the multivariate
probit irrespective of the issues discussed here, being much simpler to specify and estimate.
Comparing copulas, the Gaussian copula provides generalised dependence, unlike the
multivariate mixture approaches, and the method of IFM has shown asymptotic efficiency
relative to the multivariate probit in other studies (Joe 1997, 2005, Joe and Xu 1996).
An alternative is the so-called multivariate t-copula, which is narrower than the Gaussian
and can capture tail dependence of extreme events (Embrechts, Lindskog and McNeil 2003,
Demarta and McNeil 2004). In the Gaussian copula, as in the multivariate normal, such
events become asymptotically independent. Moreover, uncorrelated events are not consid-
ered independent in the t-copula.

The composite, or pairwise, likelihood approach is another example of inference at higher
orders than the univariate margins, wherein the joint likelihood is composed of valid bivari-
ate likelihoods (Lindsay 1988, Kuk and Nott 2000, Andersen 2004, Bellio and Varin 2005,
Zhao and Joe 2005 are examples), although with less efficiency than has been shown for
the IFM. Hustler and Reiss (1989) provide a similar approach: the dependence parameter
for each margin can be estimated in each bivariate margin of the multivariate distribu-
tion. The process identified here as the IFM is also seen elsewhere, for instance in work by

Arellano and Honoré (2000) and Arellano and Carrasco (2002) on panel data models with
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predetermined variables.

4.1 Considering skewness

This approach does not restrict the IFM to multivariate symmetry: the general form

C (w1,72) = H(19) (H{' (Fi (21)), Hy ' (Fy (2))) for some distribution F with inverse H !
can be used, generating so-called Inversion Copulas (Nelsen 1999. Joe 2005 considers Pareto,
Weibull and Gamma margins also). In this instance, for example, non-normal link functions
can be considered alongside univariate probits for each margin.

Multivariate skewness can be also accomodated, via the multivariate skewed normal
and/or multivariate skewed ¢ distributions (Azzalini and Dalla Valle 1996, Azzalini and
Capitanio 1999, 2003). The skewed normal distribution is generated by some random
variable X whose PDF is of the form

f(@;0) = 2¢(2) @(a) (25)

where ¢(.), ®(.) are the familiar standard normal density and distribution functions, re-
spectively, and « is some scalar measuring skewness, such that the distribution of X is
symmetric at « = 0 (i.e. X ~ N(0,1)) and increasing in skewness with increases in |«
Then according to Azzalini and Dalla Valle (1996), X is skewed normal X ~ SN(a).'® The

multivariate skewed normal is given for some random vector X1 where
fu(; @) = 2¢(a; Q) ®(a'2) (26)

where 1] is a vector of skewness components and where X has correlation matrix (2, and
still assuming symmetry about 0. Then as above X ~ SNg(€Q, ). In general form, Azzalini
and Capitanio show that, for the random vector X with distributional symmetry about 0,
and some transformation W (x) that is symmetric about 0 also (although py could be used

it is less simple), there exists some density function fy(x) such that

fu(@) = 2f () F(W (2)) (27)

3Note that X2 ~ x?, irrespective of the value of a.
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where f(.), F(.) are some k-dimensional density and distribution function, respectively.
Any elliptical distribution can be accommodated in this manner, as can non-elliptical dis-
tributions.!* Azzalini and Capitanio (2003) consider the multivariate skewed ¢ distribution,
using this generalisation, such that X ~ St; (2, o, v) with v degrees of freedom.
Although non-trivial, the multivariate skewed t distributional is implemented in the sta-
tistical package R, making estimation relatively straightforward. Marrying this notation to
the copula approach, consider Equation (23). The random vector X = (@, (F (5,)) » @5 (Fy (¥5,)) <I>1*11

for example, is estimated as X ~ SNi(Q, ).

5 The HALS data

The Health and Lifestyle Survey of England (HALS) was a national survey of adults in
private households, carried out (in the first wave) in 1984-5, during two home visits. The
first of these was the survey interview; the second a visit by a nurse for physiological
measurements and to test cognition. The survey has been followed up by 4 subsequent
waves of information collection on the original interviewees: the principle follow-up in 1991-
2 was used to capture change in characteristics, behaviours and beliefs over the 7 years,
and included 5,352 interviewees. Subsequent follow-ups, the most recent in 2005, provided
updated mortality data. Of the original 9,003 respondents 2,491 had died.'® This analysis
follows Balia and Jones (2005), using information at the time of the first survey, coupled with
the most recent mortality data. The second survey is overlooked due in part to attrition,
which can be problematic. In order to avoid confounding mortality with accident, injury

or a genetic predisposition towards early death not related to lifestyle, only individuals 40

Y Non-elliptical distributions will be valid for some «, conditional upon setting an appropriate transfor-

mation W(.). Elliptical distributions will be valid for all c.
"That is to say, 2,433 of the original interviewees still in the system are deceased. The original HALS

was not intended for follow-up, so that not all interviewees were collected in for the second HALS. Only
around 2% from the original HALS are lost from the most recent mortality update, due either to leaving
the country or having otherwise been dropped from the official National Health Service registry. See Cox

(1988, 1995) and Contoyannis and Jones (2004) for more information and discussion of the surveys.
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years of age and over at the time of the first survey are retained for analysis. At this age
and over, initial states of health, education, income and so forth are considered to be stable,
such that subsequent information is not required to explain mortality and health later in

life.

5.1 Indicators of a healthy lifestyle

The lifestyle variables employed here are the same as those used in Balia and Jones (2005)
and Contoyannis and Jones (2004), drawing on the analysis of Belloc and Breslow (1972)
and Kenkel (1995). These are indicators for diet, weight, smoking and sleeping behaviour,
alcohol consumption and exercise. All are dichotomous in this study. Diet is measured
with an indicator for whether or not breakfast is eaten within one hour of waking (Kenkel
1995). Smoking is an indicator of whether or not the individual is currently smoking (any
number of cigarettes per day). Exercise is measured by participation in one of 14 exercise
categories in the fortnight preceding the survey. Alcohol consumption is a gender-specific
measure of prudent alcohol consumption.!® Sleep is measured as either optimal or not;
optimal sleep shown by Belloc and Breslow (1972) to be between 7 and 9 hours per night.
More or less is not considered separately, but together are suboptimal. Healthy weight is
anything below obesity, as measured by a Body Mass Index (BMI) below 30 for males and

28.5 for females.1”

16>Prudent’ alcohol consumption is given as less than 21 units of alcohol per week for males and less than
14 units per week for females (Contoyannis and Jones 2004). This does not distinguish between moderate
drinking and abstinence, despite evidence that moderate alcohol consumption can be beneficial, as both

Contoyannis and Jones (2004), and Balia and Jones (2005) discuss.
1"Evidence has shown some more dexterity is required when using BMI. Deurenberg, Yap and van Staveren

(1998), for example, find that the obesity-rated BMI should be lower for some cultural backgrounds, such
as South-East Asian. In our 1984-5 sample anglo Europeans constitute around 98% of the available cultural
backgrounds, so any such differential is unlikely to be problematic. No indications were found of systematic

variations in obesity according to other backgrounds.
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5.2 Explanatory variables

Exogenous variables in the models are predominately dichotomous. They are given and

described in Table 1, below
Table 1 here

As the table shows they are familiar considerations for explanators for health: vari-
ables representing social class, education, marital status, employment status, cultural back-
ground, geographical region and area type, residential tenure and physical, household and

parental characteristics.

5.3 Some descriptive results

Some descriptive statistics for variables of interest are given in Table 1 also. After clean-
ing the data of missing values for variables of interest (including those lost to the official
registry), and restricting analysis to people aged 40 years and over at the time of the first
survey, we are left with 3,655 from the original 9,003.

The majority of respondents correspond to at least one healthy lifestyle, apart from
exercising, of which only 32% partake. Around 41% now are deceased, while in the original
HALS 70% considered themselves to be in good health. With an average age of 57, after
censoring at 40, this is not necessarily surprising, particularly when considering the lifestyles.

Social class is fairly normally distributed, and gender is only slightly in favour of females.
For education the generation(s) under consideration become apparent, with around 61% of
respondents offering no educational qualification. The proportions of full-time employed
and retired, after dropping the younger-than-40, are also quite significant. As mentioned
previously European caucasians make up 98% of the sample. Also high is married respon-

dents, 76%. Home ownership, another indicator of social class, is around 66%.'%

'8This differs from the earlier study by Contoyannis and Jones (2004) due to a previous coding error,
corrected in this paper (in Contoyannis and Jones 2004, home ownership for the entire population was about

87% - in fact it is about 63%). It now, due largely to greater variation, has much stronger correlation
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Nine of the 28 pairwise correlations (not shown) are negative, effectively proscribing
the use of the mixture copulas. Urban living has a negative correlation lifestyles and a
(subsequent) positive correlation with mortality. A social gradient appears to exist across
health, mortality and lifestyles. These however are the only two variable with relatively

consistent correlation.

6 Estimation

The presence of negative correlation precludes the reliable use of the mixture of Max-ID
copulas, even if survival functions were used in some instances, and managing adequate
representation of dependence is difficult with the Mixture of Powers copulas. After dif-
ferentiation the Mixture-of-Powers density is too cumbersome to be estimated, unless the
number of mixtures is reduced too far for the distribution to be informative: in fact, to
be practicable the Mixture of Powers is not much better at capturing dependence than the
multivariate FGM. Although the copulas can be more informative for sub-sected dimensions
of the problem, estimating all of mortality risk, health and lifestyles is feasible only with
the inferencing approach of the Gaussian and ¢ copulas.

The log-likelihood for the problem is as in Equation (24). Unlike the multivariate probit,
this considers the summed logs of multivariate normal densities, rather than distributions.
Three functional forms for F' can be considered, or three link functions for Equations (2)-(7).

These are the probit,

Pr(Y = 1[a; 8) = ® (a') (28)
the fatter-tailed logit,
Pr (Y = 1|z;8) = exp (—exp (2'8)) (29)
and the complementary log-log
Pr(Y =1|z;8) =1 — exp (exp (—2'B)) (30)

with the dependent variables. Comparison however gives no indication that previous results were affected

significantly by the higher value.
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which is an asymmetric extension of the logit, useful in particular for fairly heavily right-
skewed distributions of 2’3, or in this case the inverted probabilities of mortality and exer-

cising.

7 Results and discussion

Employing the method of IFM has specific implications in terms of the results. Being able
to choose freely both the marginal distributions and the joint distributions, separately from
one another, means more information must be considered overall, and considered separately.
Some of this is information gained over and above standard methods of estimation; most of

it will relate to goodness of fit and model selection.

7.1 Specifying and selecting marginal distributions

The appropriate link function for each margin is selected according to varying criteria which,

along with cell predictions, are contained in Table 2, below.
Table 2 here

The probit, logit and complementary log-log functions are equally complex, so the results
are the same across the tests. The BIC will not identify differences without parsimony
gains in one specification over another, and the Expected Cross-Validation Index (ECVI)
will consistently give the same recommendation as the AIC in this case: while it is useful
to minimise the underestimation of fit relative to the AIC, it is essentially the AIC divided
by the sample size.

The predictive accuracy of each function has also been included in Table 2, and offers
different optimal specifications. Only the overall accuracy of predictions have been included:
the predictions of 0 and 1 separately is not useful. Due to its structure, the complementary
log-log consistently predicts more Os accurately by virtue of predicting more of them. More-
over there is no predisposition towards accuracy in one or the other outcome, so neither

can be justified as a criterion for model selection (although this need not always be the
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case). The combination used here is according to the overall accuracy in cell predictions -
a mixture of probit, logit and complementary log-log link functions for the margins.

There is no particular econometric imperative attached to either the probit or logit.
The complementary log-log is preferred for mortality and exercising, due to their much
higher rates of failure (such that the probability that the indicator will be 0 is substantially
higher), and due to the dichotomising of SAH one would reasonably expect a latent distri-
bution of health with fatter tails, for which the logit is better-suited, but for the remaining
lifestyles no similar information is available. Kolmogorov-Smirnoff can be used to compare
the distributions of the predicted probabilities to determine whether there is any statistical
relevance to the choice made.!” Considering the dimensions in toto, Table 3 (below) from
the corresponding analysis of the joint distribution shows that, for each of the candidate

copulas, the mixture of probit, logit and complementary log-log models is optimal.?

Table 3 here

The differences between the skewed and symmetric distributions are worth consideration,
particularly for the multivariate skewed t distribution. This is because the symmetric
multivariate ¢ distribution may have greater consideration of tail dependence than the the
multivariate skewed ¢, which will affect the distribution at its centre, but one or the other

will be of more importance to the researcher, who may have to choose between them.

19Results from these tests, not presented, indicate significant differences when the Complementary Log-Log

function was used, but no difference between the Probit and Logit.
20This step assumes that each combination of margins (or inverse probabilites) is accurate, leaving only

dependence to be captured by the joint distribution. Thus the "best’ copula is taken to be representing the
correlation structure of the latent variables in each margins most accurately.

Although the Multivariate Probit is included, its likelihood is not directly comparable due to func-
tional form: unlike it, the copula distributions are 8 dimensions of inverse probabilities estimated non-
parametrically, although for the information criteria the full k& = 356 was used. Thus the information
criteria should be used to compare the copulas, but not to infer that they are better than the standard
Multivariate Probit. The argument is that the information and efficiency gains in the joint distribution, and

the fit in the margins, are the advantages due to the use of copulas.
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7.2 Comparing the ¢ and Gaussian copulas, skewness and symmetry
7.2.1 Skewness

Degrees of freedom in the multivariate ¢ copula (or distribution) can be fixed or estimated
freely, as in this case. Maximum-Likelihood estimates of the degrees of freedom from the
skewed t are around df = 27.5 whereas, for the symmetric ¢, df = 12.9. This follows on
from the previous section: because the skewness affects the distribution principally around
the mean, central tendency is estimated more precisely, so that lower tail dependence is
observed. The means of the inverse probabilities from each model (including the ’observed’
data) are in Table 4, below.?! They are generally similar except for mortality risk and
exercise, for which quite disparate results can be seen, particularly with the skewed normal

distribution.
Table 4 here

In this instance the skewed ¢ is tending fairly Gaussian, based on the degrees of freedom,
which raises the question of whether skewness or tail dependence is more important. Con-
sidering extreme events, for example, would favour tail dependence over skewness. From a
purely statistical standpoint, the choice is dependent upon the skewness estimates for the

multivariate normal and ¢ models. These are in Table 5, below.
Table 5 here

The parameter corresponding to mortality risk in the skewed normal distribution is quite
large, relative to the ¢, as well as having a different sign. Sign differences occur in other
margins as well. For the multivariate Gaussian copula, the skewed normal distribution is

preferred to the symmetric normal by virtue of the statistical significance of the skewness

213ome explanation of the ’observed’ data is required. These are the inverse predicted probabilities used
by the copula for the joint distribution, as shown in Figure 1. So the ’observed’ mean is the mean of the
inverted predicted probabilites of ¥ = 1 in each dimension, which was passed into each copula according to

Equation (23).
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vector: the trade-off from the ¢-copula does not exist for the Gaussian, which ignores tail
dependence anyway. For mortality risk, SAH, eating breakfast and exercising, skewness is
counter-directional in the normal and t distributions. In all cases, except eating breakfast
in the skewed t and sleeping well in the skewed normal, skewness is statistically significant
at 5% (and at 10% for eating breakfast in the skewed ¢). Accordingly the distribution is

considered to be a skewed ¢, although with reasonably high degrees of freedom.

7.2.2 Fitting a model vs. replicating data

Goodness of fit was considered previously with respect to the margins, using information
criteria. Looking again at Table 5, the skewed joint distributions are a marked improvement
upon the symmetric. Between symmetric distributions the multivariate ¢ copula is more
noticably better than the Gaussian than between the skewed distribution, in which there is
not much improvement due to the use of the ¢t. This reflects previous comments concerning
the Gaussian-tending degrees of freedom observed in the multivariate skewed ¢, relative to
the symmetric. At df = 27.5, the t and Gaussian copulas are not as distinct, compared to
their symmetric counterparts. Overall the skewed multivariate t-copula is still preferred,
according to information criteria.

Goodness of fit can be considered also within the context of replication. The central
question asked is, how close is the copula’s approximation of the data-generating process
to the process itself? This is a different question to the one answered with information
criteria and the log-likelihood. By simulating dependent multivariate data using estimated
means, covariances and skew (and degrees of freedom for the multivariate ¢) an appreciation
is gained of the difference between the observed data and its behaviour according to each
copula. This has been measured using relative distances between the distributions and

Kolmogorov-Smirnoff tests. The results are in Table 6, below.
Table 6 here

Of most use is the left-hand column, which gives each replicated distribution’s distance

from the one upon which it was estimated. The implications are not as straightforward as
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for other measures of fit, in part because Table 6 illustrates goodness of replication, not of
fit. It also raises another potential trade-off between poorer fit and better approximation of
the data-generating process. In part this is because, certainly in this instance, the results
are equivocal, relative to the information criteria. More importantly though it will depend
upon the analysis. For an explanatory model more precise estimates of coefficients would
be preferable. For a predictive model we would find the information on replication more
useful, because our confidence in predictions may change accordingly.

Procedures for comparing the fit graphically can be found in de Matteis (2001). This
can be done using Quantile-Quantile plots of non-parametric distribution functions, as well
as analytical methods described in Frees and Valdez (1998), although these will not always
be practicable, as in this case. Quinn (2006) also contains QQ-plots and empirical distance

as criteria for copula selection in bivarariate models.

7.2.3 Inference and the variance-covariance of the estimates

There is an efficiency loss from using inference functions for the margins of a multivariate
distribution. This is due to the partitioning of the variance-covariance matrix since, under
inference, #zlﬁv = 0 for the parameters (or vector of parameters, but vector notation is
supressed here for convenience) (3, and [, from two separated margins u # v. Similarly
for dependence 0,, between any two margins u and v, the cross-partial derivatives %
and % are practically inaccessible when using elliptical copulas based upon inversion. If
functions of these estimates are required (one may wish, for example, to gauge the associa-
tion between one or more regressors in two margins and the dependence between their linear
predictions), or Fisher Information on marginal parameters within the joint distribution,
a jackkifing procedure would be used.?? For other copulas such as the Archimedean class,
jackknifing may be preferable anyway, relative to finding a matrix of analytical solutions.

The particular advantage of the jackknife approach is that far less needs to be coded

228till suppressing vector notation, the converse cross-partial derivative % = 0 (from a proof in the

appendix of Joe 2005, not reproduced here).
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for analysis - only the marginal likelihoods in the first step of the IFM and the joint in
the second. Asymptotically consistent estimates will then, under jackknifing, provide as-
ymptotically efficient estimates for the variance-covariance matrix of the regressors (Joe

2005).

7.3 Comparing size and significance

Figures 2-9 (below) show the marginal effects and t¢-statistics for the covariates in the
margins, for all of the feasible methods of analysis. The actual model used in each dimension
is indicated, as is statistical significance at 5 and 10%. The reference individual is female,
single, not European caucasian, living in London (Urban), degree-qualified and in the first

social class, and employed full-time.
Figures 2-9 here

One noticeable result is the positive, statistically significant impact of being European
caucasian on both reducing the risk of mortality and being in good health. The impact
is more significant on health, but is significant in both equations nonetheless. Being male
generates an increased risk of mortality but has a small and insignificant - though also
positive - effect on health. Being married and owning a house has a marked effect on
reducing mortality risk. Controlling for social class (though not income directly) home
ownership improves health, also. Marriage does not have an effect. Balia and Jones (2005)
in fact excluded marital status from the mortality equation in their reduced form model,
however it does appear to be highly significant in the lifestyles they retained. Being married
may therefore be having a substantial indirect effect on mortality risk. Household size was
also supposed to affect lifestyles, rather than health or mortality risk directly, and this
appears to be the case. Household size has an important positive and negative affect only
on prudent drinking and exercise respectively. Since the sample is restricted to individuals
aged 40 years and over it is reasonable to take this as representative of behaviour with large

families, particularly children.
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With specific regard to model selection, the marginal effects and t-statistics due to age
and its quadratic in the equation for mortality risk are particularly interesting. Selection
criteria favoured the use of the complementary log-log model for mortality risk, only in
which model does age and age squared show markedly different results to the other models.
In this case mortality risk is increasing with age but at a decreasing rate, which the other
models do not predict. The effect of age on health is consistent across all models. So
too are the estimates for the remaining explanatory variables. Moreover, in the mortality
equation alone it also appears the complementary log-log returns estimates nearest to the
multivariate probit. This is a pattern occassionally repeated in other equations, but not as
consistently across all parameters as in this equation.

Balia and Jones (2005) excluded parental smoking from the health equation in their
structural form, however it has a consistently significant negative effect in the reduced
form, particularly in the case of both parents smoking. Their economic significance is,
apart from illness-related absence from work and not being European caucasian, compa-
rable to the other explanators of good or poor health, and only in the smoking equation
is parental smoking elsewhere significant. This doesn’t suggest Balia and Jones (2005)
restricted parental smoking erroneously, though. The two effects could be reconciled by
testing for a direct effect on health as well as the indirect effect via the propensity to smoke.

As stated above, home ownership has a significant role in determining eating breakfast,
not smoking and sleeping well, with a reasonably-sized effect. Among the other statistically
significant results are the large effect of being male on the likelihood of not being obese, the
large effect of not being European caucasian on drinking imprudently (here being male has
a larger effect still), and the non-smoking equation, in which the reference female seems the
least likely of all to smoke. The strength of the effect of unemployment on the propensity
to smoke stands out, also. Suburban living seems to provide lower chances of being obese,
yet living almost anywhere else in the UK besides London increases those chances, which

corresponds reasonably well with exercise, also.
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Balia and Jones (2005) considered only not smoking, eating breakfast and sleeping
well as endogenous, and non-obesity, prudent drinking and exercising as exogenous. The
covariate explanation in these equations is significant overall though, as are the effects of
covariates in each. This suggests some explanatory power may still be contained in these
equations, for health and the risk of mortality. Exercise due to non-urban living and not
being single shows interesting results that might reflect the time of the survey and the age
of the individuals (recall that the sample is restricted to individuals 40 years of age and
over). While the prevalent image of single urban living might include more time spent in a
gym, for example, the sample here is older. Non-urban areas may also afford for space for
outdoor sports, relative to cities.

In a few instances the non-normal marginal distribution has altered the significance of
covariates, across the models. These are not considered to be drastic, however: something
that was barely statistically significant may now barely be insignificant at a 5 or 10% level,
not including age in the equation for mortality risk. The differences between the t-statistics
are not large enough that the covariate in question would have been otherwise excluded
from or included in the analysis. The differences that do exist however, together with those
in the marginal effects between different models, suggest that the considerations made here
are not without merit.

This can also be seen in the variance-covariances of the outcomes, given in Table 7,

below.2?

Table 7 here

These are of interest vis a vis the point taken previously from Klein (1998) that, under
non-normality (or even asymmetric normality) a structure-of-equations model may recom-

mend erroneous rejection of one or more equations in the structure, due to non-robust

23 Correlations are used rather than the variance-covariance matrix so that comparisons can be made on
the same scale (which for copulas will vary, unlike the multivariate probit). We would already expect, for
example, some elements of the variance-covariance matrices to be scaled differently based on the estimates

in Figure 1.
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distributional assumptions. As such the matrices in Table 7 would indicate such a problem
with a structural, normally-symmetric system of equations. This would be evident in, for
example, statistically less significant correlation between mortality risk and/or SAH and
the endogenous lifestyles, relative to the symmetric normal estimates. In fact there is no

such indication.

8 Conclusion

The methods and results presented here lead to two conclusions: first, that more flexible
approaches to estimating multivariate data, even multivariate dichotomous data, are a
worthwhile enterprise.

Specific to the elliptical copulas, the results show an improvement in estimation due
to approximating a joint distributions using the multivariate ¢ distribution rather than the
multivariate normal. There is also an improvement above that when considering multivari-
ate skewed distributions, rather than the more commonly-considered symmetric ones. The
difference between skewness and symmetry was alone enough to alter what would otherwise
have been thought about tail dependence in the joint distribution, which has significant
implications for analysis concerning itself with extreme events.

The copula approach allows such flexibility where traditional models do not, particularly
when analysing jointly-distribution discrete random variables, which is more cumbersome
than with continuous random variables. The copula model for mortality risk, health and
lifestyle was both able to capture idiosyncracies of the data such as skewness and tail
dependence, while also being simpler to implement and estimate.

The analysis here also showed that this approach generates more information about the
models and the results, which can be used to select better-fitting marginal and joint distri-
butions. In fact several trade-offs were identified during estimation, between information
of different types on different behaviour of the data. Which of these types of information
is preferred depends upon the focus of the analysis, but estimation with copulas can be

responsive to this need where standard multivariate analysis might not.
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Variable

Definition Megn/ _ Std.Dev.
Proportion =1

Health status
deceased

sah

Lifestyle
non-smoker
breakfast
sleeping well
prudent drinker
non-obese
exercising

Social Class
scl
sc2
sc3

Education
degree

HVQ/A level

CSE/O level
none
other

Marital status
married
widowed

divorced/separated

single

Occupation
full time
part time

shift/casual worker

unemployed
absent (iliness)
retired
housekeeper

1 if deceased at June 2005 0.41 0.4911
1 if self-assessed health is excellent or good (O if fair or 0.70 0.4572
poor)

1 if not currently smoking 0.70 0.4585
1 if regularly eating a 'healthy' breakfast 0.71 0.4552
1 if sleeping between 7 and 9 hours 0.58 0.4932
1 if consuming alcohol prudently 0.88 0.3251
1 if under 'obese' 0.85 0.3538
1 if engaged in physical exercise 0.32 0.4677
1 if "professional/student”, "managerial/intermediate" 0.32 0.4648
1 if "skilled", "armed service" 0.47 0.4990
1 if "partly skilled", "unskilled", "unclassified" 0.22 0.4128
1 if University 0.13 0.3308
1if !—hgher Vocational Qualifications or A level (or 0.12 0.3305
equivalent)

1if CSE or O level (or equivalent) 0.09 0.2924
1 if no qualification 0.61 0.4882
1 if any other vocational or professional qualification 0.05 0.2130
1 if married 0.76 0.4268
1 if widowed 0.13 0.3339
1 if divorced or separated 0.05 0.2280
1if single 0.06 0.2312
1 if employed full-time 0.36 0.4813
1 if employed part-time 0.13 0.3384
1 if shift/casual worker 0.06 0.2327
1 if unemployed 0.03 0.1716
1 if absent from work due to illness/injury 0.03 0.1789
1 if retired 0.34 0.4733
1 if housekeeper 0.10 0.3024

Table 1. Variable definitions and descriptive statistics.
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Mean/

Variable Definition Proportion = 1 Std.Dev.
Geography
Scotland 1ifin Scotland 0.10 0.2954
Wales 1ifin Wales 0.06 0.2333
Northern England 1 if in the North of England 0.07 0.2468
North-western England 1 if in the North-west of England 0.13 0.3339
Yorkshire 1if in Yorkshire 0.09 0.2807
West midlands 1 if in the West-midlands of England 0.08 0.2716
East midlands 1 if in the East-midlands of England 0.08 0.2660
Anglia 1ifin Anglia 0.04 0.1959
South-western England 1 if in the South-west of England 0.09 0.2839
South-eastern England 1 if in the South-east of England 0.19 0.3901
London 1ifin London 0.09 0.2924
Area
Rural 1if in Rural area 0.22 0.4132
Suburban 1if in Suburban area 0.47 0.4993
Urban 1ifin Urban area 0.31 0.4627
Ethnicity
European caucasian 1 if European caucasian 0.98 0.1436
Physical Characteristics
gender (male) 1if Male 0.46 0.4981
height Height in inches 65.95 3.7032
age Age in years 57.47 11.6733
age® Age?/100 34.39 14.0761
Residential
Characteristics
owner 1 if owning own home 0.66 0.4746
household size Number of people in the household 1.65 1.2723
smoking household 1 if anyone smokes in the household 0.35 0.4773
Parental Characteristics
mother smoked 1 if only mother smoked/s 0.03 0.1731
father smoked 1 if only father smoked/s 0.60 0.4909
both smoked 1 if both smoked/s 0.25 0.4306
mother's drinking Mother's drinking (0-4, non-to-heavy drinker) 0.91 0.9812
father's drinking Father's drinking (0-4, non-to-heavy drinker) 1.89 1.2005

Table 1(Cont). Variable definitions and descriptive statistics.
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% Correct AIC BIC

MV Probit Probit Logit CLog-Log Probit Logit CLog-Log Probit Logit CLog-Log
mortality 0.7839 0.7852 0.7874 0.7899 3304.612 3299.585 3314.392 3558.97 3553.943 3568.75
SAH 0.6416 0.6421 0.6430 0.6364 4126.101 4125.847 4125.206 4380.459 4380.205 4379.564
breakfast 0.6492 0.6487 0.6506 0.6410 4106.177 4108.384 4101.67 4360.535 4362.742 4356.028
not obese 0.6150 0.6164 0.6249 0.6049 2933.099 2930.946 2936.521 3187.457 3185.304 3190.879
non-smoker 0.6722 0.6725 0.6780 0.6651 3993.578 3993.232 3998.705 4247.936 4247.59 4253.063
sleeping well 0.5789 0.5765 0.5759 0.5735 4911.126 4911.547 4909.652 5165.484 5165.905 5164.009
prudent drinker 0.6810 0.6802 0.6925 0.6635 2385.302 2382.104 2392.089 2639.659 2636.462 2646.447
exerciser 0.6287 0.6276 0.6301 0.6328 4301.734 4301.714 4300.307 4556.092 4556.072 4554.665

Table 2. Percentages of correctly-predicted outcomes and Information Criteria from Probit, Logit and Complementary Log-Log models (shaded cells are the
optimum model for each margin according to each criterion).

mortality SAH breakfast not obese
Probit Logit Probit Logit Probit Logit Probit Logit
Probit 0.3160 Probit 0.9940 Probit 0.9230 Probit 0.5140
ClLog-Log 0.0030 0.3030 CLog-Log 0.6490 0.2400 CLog-Log 0.3310 0.0770 CLog-Log 0.3610 0.0150
non-smoker sleeping well prudent drinker exerciser
Probit Logit Probit Logit Probit Logit Probit Logit
Probit 0.8690 Probit 1 Probit 0.0160 Probit 0.9970
ClLog-Log 0.1690 0.0280 CLog-Log 0.5710 0.4270 CLog-Log 0.0440 0.0000 CLog-Log 0.2520 0.6490

Table 3. p-values from Kolmogorov-Smirnoff tests for difference in distribution of linearly-predicted probabilities, Pr(y = 1) (p < 0.05 (shaded cells) represent
statistically equivalent distributions).
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Symmetric Normal ~ Skewed Normal Symmetric t Skewed t Observed

mortality -0.2854 -1.6646 -0.3174 -0.3779 -0.2850
(1.0955) (1.7617) (1.0461) (1.0689) (1.0957)
SAH 0.5686 0.7137 0.6117 0.9210 0.5686
(0.4652) (0.4873) (0.3926) (0.5396) (0.4653)
breakfast 0.5957 0.3277 0.6209 0.7475 0.5959
(0.4546) (0.5278) (0.4339) (0.4630) (0.4547)
not obese 1.1224 1.0611 1.1212 1.1213 1.1227
(0.3730) (0.3780) (0.3633) (0.3670) (0.3731)
non-smoker 0.5958 0.3519 0.6202 0.7329 0.5960
(0.5518) (0.6033) (0.5255) (0.5507) (0.5518)
sleeping well 0.2148 0.3635 0.2297 0.2965 0.2148
(0.2504) (0.2913) (0.2352) (0.2527) (0.2493)
prudent drinker 1.3454 1.1837 1.3542 1.3383 1.3459
(0.5502) (0.5735) (0.5309) (0.5388) (0.5502)
exerciser -0.5025 -0.0791 -0.4842 -0.3588 -0.5028
(0.4461) (0.6152) (0.4209) (0.4520) (0.4461)

Table 4. Predicted mean (standard deviation) in each dimension of the mortality risk, health
and lifestyle models.

Skewed Normal Skewed t

mortality 13.8945 -2.7993
(1.3244) (0.1755)

SAH 1.0472 -5.2299
(0.1696) (0.2363)

breakfast -1.9399 0.1935
(0.2085) (0.1094)

not obese 0.4219 2.3438
(0.1300) (0.1265)

non-smoker 1.5039 0.7909
(0.1889) (0.1076)

sleeping well 0.1234 -0.4122
(0.0990) (0.0766)

prudent drinker 0.7700 0.3279
(0.1286) (0.0922)

exerciser 0.9166 -0.9720
(0.2489) (0.1429)

Table 5. Estimated Skewness parameters (standard errors) for each dimension of the
mortality risk, health and lifestyle models.
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Log-likelihood AlC BIC ECVI

MV Probit -14548.75 29809.50 32018.07 8.16
Gaussian copulas (IC)
Probit margins -10204.68 21137.36 23395.56 5.78
Probit/Clog-Log margins -10387.55 21503.10 23761.30 5.88
Logit/Clog-Log margins -10137.91 21003.82 23262.02 5.75
Gaussian copulas (% Correct)

= Probit/Clog-Log margins -10484.83 21697.66 23955.86 5.94

g Mixed margins -9836.056 20400.11 22658.31 5.58

% t copulas (IC)

Probit margins -10148.79 21027.58 23291.99 5.75

Probit/Clog-Log margins -10349.44 21428.88 23693.29 5.86

Logit/Clog-Log margins -10110.19 20950.38 23214.79 5.73
t copulas (% Correct)

Probit/Clog-Log margins -10215.59 21161.18 23425.59 5.79

Mixed margins -9836.055 20402.11 22666.52 5.58
Gaussian copulas (IC)

Probit margins -10993.64 22699.28 24907.85 6.21

Probit/Clog-Log margins -11111.91 22935.82 25144.39 6.28

Logit/Clog-Log margins -10865.48 22442.96 24651.53 6.14
Gaussian copulas (% Correct)

L Probit/Clog-Log margins -11005.55 22723.10 24931.67 6.22

g Mixed margins -10721.94 22155.88 24364.45 6.06

; t copulas (IC)

a Probit margins -10706.44 22126.88 24341.65 6.05
Probit/Clog-Log margins -10881.76 22477.52 24692.29 6.15
Logit/Clog-Log margins -10657.82 22029.64 24244.41 6.03

t copulas (% Correct)
Probit/Clog-Log margins -10695.08 22104.16 24318.93 6.05
Mixed margins -10394.53 21503.06 23717.83 5.88

Table 6. Information criteria from the joint (copula) distributions
(shaded rows contain the ‘best’ model according to minimum information criterion).
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Mortality Observed Symmetric Skewed Symmetric Skewed t SAH Observed Symmetric Skewed Symmetric Skewed t
Normal Normal t Normal Normal t
Observed Observed
Symmetric Normal 0.0010 Symmetric Normal 0.0030
Skewed Normal 0.0940 0.0010 Skewed Normal 0.0100 0.5010
Symmetric t 0.0020 0.1340 0.0010 Symmetric t 0.0890 0.0010 0.0010
Skewed t 0.0000 0.0780 0.0220 0.2410 Skewed t 0.6820 0.1210 0.0480 0.3410
Breakfast Observed Sﬁg?pﬁ;": ?\lﬁmﬁ Symrpetnc Skewed t Not obese Observed Sﬁg?pﬁ;": ?\lﬁmﬁ Symrpetnc Skewed t
Observed Observed
Symmetric Normal 0.2910 Symmetric Normal 0.0240
Skewed Normal 0.1250 0.4010 Skewed Normal 0.2010 0.1810
Symmetric t 0.0050 0.0040 0.0060 Symmetric t 0.0040 0.7230 0.0620
Skewed t 0.0390 0.5360 0.3700 0.1480 Skewed t 0.2630 0.5010 0.4010 0.1480
Non-smoker Observed Symmetric Skewed Symmetric Skewed t Sleeping well Observed Symmetric Skewed Symmetric Skewed t
Normal Normal t Normal Normal t
Observed Observed
Symmetric Normal 0.0020 Symmetric Normal 0.2050
Skewed Normal 0.0170 0.9360 Skewed Normal 0.3070 0.3700
Symmetric t 0.0000 0.0260 0.0110 Symmetric t 0.0370 0.0330 0.4010
Skewed t 0.0370 0.3410 0.4330 0.2630 Skewed t 0.0650 0.0330 0.5730 0.2000
Prudent drinking Observed Symmetric Skewed Symmetric Skewed t Exercise Observed Symmetric Skewed Symmetric Skewed t
Normal Normal t Normal Normal t
Observed Observed
Symmetric Normal 0.1240 Symmetric Normal 0.2600
Skewed Normal 0.1210 0.8880 Skewed Normal 0.0020 0.0040
Symmetric t 0.0210 0.0970 0.1080 Symmetric t 0.0010 0.1340 0.0060
Skewed t 0.2770 0.8600 0.8280 0.0870 Skewed t 0.0650 0.4010 0.0480 0.1640

Table 7. p-values from Kolmogorov-Smirnoff tests for differences between distributions

(shaded cells <-> p < 0.5 represents a statistically significant difference at 5% level of significance).
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Observed data

non-

sleeping

prudent

mortality SAH breakfast  not obese - exerciser
smoker well drinker
mortality 1
SAH -0.3998 1
breakfast 0.4034 0.3042 1
not obese 0.0250 0.4407 0.1760 1
hon- 0.1859 0.4328 0.7514 0.2379 1
smoker
\j}gﬁp'”g -0.5175 0.4960 0.0754 0.2065 0.0868 1
Eiﬁdkeerr‘t 01828  -0.1405  0.4127 -0.4740  0.4787 -0.0668 1
exerciser -0.8008 0.6135 -0.1200 0.2832 -0.0425 0.5432 -0.3273 1
Symmetric Normal distribution
mortality SAH breakfast  not obese non- sleeping pn_Jdent exerciser
smoker well drinker
mortality 1
SAH -0.4076 1
breakfast 0.4567 0.2373 1
not obese 0.0039 0.5376 0.1522 1
non-
smoker 0.1667 0.4443 0.7358 0.2385 1
igﬁp'”g -0.4915 0.4533 0.0365 0.2467 0.0715 1
Eiﬁdkeerr‘t 01898  -0.1877 04238  -0.4921  0.4579 -0.0693 1
exerciser -0.8066 0.5941 -0.1535 0.2966 -0.0125 0.5127 -0.3186 1
Skewed Normal distribution
mortality SAH breakfast  not obese non- sleeping prL_Jdent exerciser
smoker well drinker
mortality 1
SAH -0.4511 1
breakfast 0.3890 0.2308 1
not obese -0.0220 0.4138 0.1149 1
non-
smoker 0.1648 0.3879 0.7429 0.1698 1
\ﬂgﬁp'”g -0.5404 0.4806 0.0782 0.2123 0.0988 1
E:;dkeerr‘t 0.1822 -0.1180  0.4288  -0.5201  0.5056 -0.0353 1
exerciser -0.8117 0.6221 -0.1452 0.3045 -0.0538 0.5348 -0.3314 1

Table 8. Correlation matrices from the joint distribution
(bold cells are significant at 5%).
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Symmetric t distribution

mortality SAH breakfast  not obese non- sleeping pn.]dem exerciser
smoker well drinker
mortality 1
SAH -0.4099 1
breakfast 0.4506 0.2726 1
not obese 0.0137 0.3997 0.1461 1
non- 0.2360 0.4120 0.7695 0.2018 1
smoker
j\ﬁﬁp'”g -0.5503 0.4833 -0.0110 0.1848 0.0284 1
g:i‘:]dkz’:t 0.1930 -0.0945 0.4329 -0.4870 0.4901 0.0571 1
exerciser  -0.8139 0.6060 -0.1820 0.2563 -0.0987 0.5562 -0.3217 1
Skewed t distribution
mortality SAH breakfast  not obese non- sleeping pn.]dem exerciser
smoker well drinker
mortality 1
SAH -0.4247 1
breakfast 0.4281 0.2801 1
not obese 0.0004 0.4973 0.1840 1
non- 0.1683 0.4287 0.7431 0.2248 1
smoker
j\ﬁﬁp'”g -0.5201 0.4595 0.0193 0.2149 0.0533 1
g:i‘:]dkz’:t 0.2180 -0.2013 0.3989 -0.4901 0.4495 -0.0968 1
exerciser  -0.8145 0.6204 -0.1685 0.3158 -0.0404 0.5279 -0.3686 1

Table 8(Cont). Correlation matrices from the joint distribution

(bold cells are significant at 5%).
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Figure 1. Relating inverse functions to random variables.
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Figure 9. Marginal effects and t-statistics for Exercising (all models).
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