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Abstract 

Compositional variables such as proportions by age group are commonly included as covariates 

in aggregate-level health research. Since these proportions sum to one and only contain relative 

information, directly including them as covariates violates the fundamental assumptions made 

in linear regression analysis. We explain the compositional nature of such data and, using 

practice-level elective admissions rates in England as an example outcome variable, 

demonstrate the consequences of directly using proportions in regressions. We also provide an 

overview of compositional data analysis (CoDA) techniques with a focus on isometric log-ratio 

(ILR) transformation. Applying ILR to our example data shows that the regression results can 

differ significantly from those obtained using raw proportions. Health economists should apply 

appropriate CoDA methods when using compositional data in their research. 
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Introduction 

Compositional variables are variables that sum to a constant. For example, the proportion of patients in different 

age bands (which sum to 1), or the time spent on different activities during a day (which sum to 24 hours). The 

components of compositional data are mutually exclusive and exhaustive. Compositional variables are singular 

as there exists a perfect linear relationship between the parts. As a result, compositional variables only contain 

relative information contained in the ratios between the parts, instead of absolute information. The sum of the 

compositions can therefore be chosen arbitrarily. For example, proportions ( ∑ 𝑥𝑖
𝐷
𝑖=1 = 1 , where x are the 

components or parts and 𝐷 is the total number of parts) can be changed into percentage points (∑ 𝑥𝑖
𝐷
𝑖=1 = 100) in 

regression analysis. Another key property of compositional variables is co-dependence: it is impossible to change 

one of the components without changing at least one other because of the constant sum restriction.  

 

Since compositional variables are by definition co-dependent and finite, applying any statistical methods that use 

the covariance or correlation matrix of the variables to such compositional data without considering the special 

geometrical properties is inappropriate (Pawlowsky-Glahn and Egozcue, 2006). Mathematically speaking, 

standard statistical techniques are developed for data in the real space, following Euclidean geometry, while 

compositional data exist in the simplex space following the Aitchison geometry (Aitchison, 1982). Compositional 

variables x of 𝐷 mutually exclusive and exhaustive parts that sum to 𝐶 have the following simplex sample space 

𝑆𝐷:  

𝑆𝐷 = {x = (𝑥1, … , 𝑥𝑑)′, 𝑥𝑖 > 0, ∑ 𝑥𝑖

𝐷

𝑖=1

= 𝐶}. 

 

Conventional techniques including linear regression analysis which require multivariate normality and limited 

multicollinearity of variables should not be applied to the raw form of compositional data because compositional 

data violate the basic assumptions made by these techniques, e.g., the variables should be free to vary in the real 

space (Pawlowsky-Glahn and Egozcue, 2006). Such practice can produce misleading results, showing spurious 

effects or obscuring genuine effects, and the estimated coefficients of non-compositional covariates in the model 

are also affected, producing biased estimates (Pearson, 1897; Vistelius and Sarmanov, 1961; Filzmoser et al., 

2018).  

 

The interpretation of the estimated coefficients on compositional variables included in their raw form is also 

problematic. The standard interpretation of regression coefficients is the effect of a one-unit increase of the 

variable of interest while holding the values of all other variables constant, which is impossible for compositional 

variables. The issues outlined above apply to the inclusion of compositional variables in regression models even 

when these are only included as “control” variables, since the estimated coefficients of other non-compositional 

covariates are nevertheless impacted, regardless of whether the coefficients on the compositional variables are to 

be interpreted.  

 

Problems with compositional data analysis were first highlighted formally in the 1960s (Chayes, 1960; Chayes, 

1962), and Rock (1988) provides a comprehensive description of six problems of applying conventional statistic 

methods to compositional data. These issues were mostly neglected due to the absence of feasible solutions, until 
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1982 when Aitchison created Aitchison geometry for the simplex space and proposed log-contrast methods, 

additive log-ratio (alr) and centred log-ratio (clr) transformations, to allow meaningful regression analysis of 

compositions by transforming them into coordinates in the standard real space (Aitchison, 1982). Most of the 

progress in the statistical analysis of compositional data achieved in the last three decades are based on Aitchison’s 

contribution. Log-ratio transformations are now applied as standard practice in studies of geology (Buccianti et 

al., 2006), chemistry (Arnold et al., 2020), microbiome (Gloor et al., 2017), and epidemiology (Mert et al., 2018), 

where the compositional variables are often the main variables of interest. However, such techniques are not 

common practice in health economics research. 

 

In this paper we aim to demonstrate the properties of compositional data in the context of health economics, using 

the elective hospital admission rate of the population at the GP practice level as an example outcome variable and 

proportions of GP practice’s registered patients in different age groups as explanatory variables. The proportions 

of patients in different age groups are often included as covariates in aggregate level health research to describe 

the age structure of the unit of analysis, such as a geographical region or a healthcare organization. Since the age 

proportions have a fixed and constant sum constraint of 1 or 100 percentage points for all units, i.e., ∑ 𝑝𝑟𝑜𝑝𝑖
𝑑
𝑖=1 =

1, where 𝑑 is the number of age bands, they are compositional data. Many other variables of compositional nature 

may be of interest to health economists, such as the proportion of budget spent on healthcare, and time spent on 

different activities during a day (e.g. Drastichová  and Filzmoser, 2020; Urwin et al., 2023).  

 

This paper aims to raise awareness of the issues of using variables of compositional nature in linear regression 

models, as is typically used in heath economics. We first demonstrate the consequences of directly using 

percentages as explanatory variables in linear regression models, but the issues also exist for other models 

developed for real data, linear or nonlinear. We then introduce basic compositional data analysis (CoDA) methods 

and demonstrate the procedures of applying isometric log-ratio (ilr) transformation to the age proportions data. 

Finally, we compare the regression results obtained with and without the transformation.  

 

Data 

We obtained the dataset used in Gibson et al. (2022) from its authors. It contains 2019 annual data on elective 

hospital admissions amongst the populations of patients registered at 6,212 GP practices in England, taken from 

the Hospital Episode Statistics (HES) database, and registered patient and workforce data from the NHS Digital 

GP Workforce Dataset (NHS Digital, 2023b). The dataset contains the numbers of registered patients at each 

general practice in seven different age groups. For clarity and convenience of visual demonstration in our example, 

we merged the population counts into three age groups: 0-14, 15-64, and 65+, but the issues we demonstrate apply 

to all compositional data regardless of the number of parts. The proportion of patients in each age group is 

calculated as the number of patients in that age group divided by the total number of registered patients of the 

practice, and these are expressed as percentage points. The sample space of the age proportion data is the simplex:  

𝒮3 = {𝑃 = (𝑝𝑟𝑜𝑝0-14, 𝑝𝑟𝑜𝑝15-64, 𝑝𝑟𝑜𝑝65+), 𝑝𝑟𝑜𝑝𝑖 > 0, ∑ 𝑝𝑟𝑜𝑝𝑖

3

𝑖=1

= 100%} . 
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The number of annual elective hospital admissions per registered patient is used as the outcome variable. As well 

as the compositional age variables, we include the following variables as covariates in the model: 

- Deprivation: income deprivation of the area in which a practices’ registered population resides, 

weighted according to the Lower-layer Super Output Areas (LSOA) of each registered patient. The 

deprivation scores for each LSOA are taken from the English indices of deprivation 2019. 

- Rural location: a binary indicator of practice rurality from the NHS Payments to Practices datasets 

(2020). 

- Access: practice-level measure of average time since last seen a GP, calculated using GP Patient 

Survey results and methods described in Gibson et al. (2022). 

Descriptive statistics 

Due to the special geometric properties discussed in the Introduction section, standard measures that rely on 

Euclidean geometry, including arithmetic mean, variance, standard deviation, and covariance, should not be 

applied to compositional data. The most appropriate measures of central tendency, spread, and codependence will 

differ depending upon the characteristics of the data, but meaningful measures of compositional data should satisfy 

scaling invariance, perturbation invariance, permutation invariance, and subcompositional coherence (Aitchison, 

1982; Van den Boogaart and Tolosana-Delgado, 2013).  

 

To measure the central tendency of our example data, a composition that best represents the centre of the 

proportions, the compositional geometric mean, can be obtained by first calculating the geometric mean of the 

proportions, then dividing by the sum of the three geometric means (Chastin and Palarea-Albaladejo, 2015). For 

example, the geometric mean of the proportion of patients aged 0-14 among all practices is: 

𝑔0-14 = √∏ 𝑝𝑟𝑜𝑝0-14, 𝑖

6212

𝑖=1

6212

 

where 𝑖 is the practice. This can also be expressed as: 

𝑔0-14 = 𝑒
∑ ln 𝑝𝑟𝑜𝑝0-14,𝑖

6212
𝑖=1

6212  

i.e., the logarithm of the geometric mean is simply the arithmetic mean of the logged numbers. Then, the 

compositional geometric mean of the youngest age group, age 0-14, is:  

𝑝𝑟𝑜𝑝0-14̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
𝑔0-14

𝑔0-14 + 𝑔15-64 + 𝑔65+

=
16.76

16.76 + 64.77 + 15.94
= 0.1719 

The compositional geometric mean vector of our dataset is (0.1719, 0.6645, 0.1635), representing the “centre” 

of the distribution of age proportions of the practices. This can be obtained using the mean.acomp(x) function 

in R package ‘compositions’ (van den Boogaart et al., 2013). 

 

The dispersion of compositions can be measured by its metric variance, or total variance (Pawlowsky-Glahn and 

Egozcue, 2001), defined as the (degree of freedom corrected) average squared distance of the composition to its 

centre. In our example, the metric variance of the proportions is calculated using the mvar(x) function in R 

package ‘compositions’ as 

mvar(𝑝𝑟𝑜𝑝0-14, 𝑝𝑟𝑜𝑝15-64, 𝑝𝑟𝑜𝑝65+) =
1

3 − 1
∑ 𝑑2(𝑝𝑟𝑜𝑝𝑖 , 𝑝𝑟𝑜𝑝̅̅ ̅̅ ̅̅ ̅)

3

𝑖=1

= 0.2771 
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The covariance matrix of the proportions cannot be used as a measure of co-dependence because the covariances 

are spurious as a result of the constant sum constraint. However, a variation matrix can be constructed by 

calculating the variances of log-ratios between each pair of proportions, i.e., 𝑉𝑎𝑟(ln
𝑥𝑖

𝑥𝑗
) (Aitchison, 1982). The 

variation matrix can be estimated using the variation(x) function in R package ‘compositions’ and is 

shown in Table 1. Each element of the matrix 𝜏𝑘𝑗 is estimated by:  

𝜏̂𝑘𝑗 =
1

6212 − 1
∑ ln2

𝑥𝑖𝑘

𝑥𝑖𝑗

− ln2
𝑥̅𝑘

𝑥̅𝑗

6212

𝑖=1

 

The closer this number is to zero, the higher the level of co-dependence between the two variables. Table 1 shows 

that the co-dependence between proportions of 0-14 and 15-64 is much stronger than that between children and 

older people (0-14 and 65+).  

Table 1 Variation matrix of proportions of patients in three age groups 

 Prop 0to14 Prop 15to64 Prop 65+ 

Prop 0to14 0 0.1005 0.3545 

Prop 15to64 0.1005 0 0.3762 

Prop 65+ 0.3545 0.3762 0 

 

Compositional graphics 

Because the compositional variables are co-dependent, conventional visual representations of data can be highly 

misleading. For example, Figure 1 plots the elective hospital admission rates and the percentage of patients in 

each of the three age groups. The figure suggests that practices with higher proportions of patients aged 65 years 

and over tend to have higher admission rates, and practices with higher proportions of patients aged 15-64 years 

tend to have lower elective admission rates. Whilst these results appear sensible, this way of presenting the 

proportions ignores the fact that any changes in one of the plots would necessarily be accompanied by changes of 

the same total amount in the other plots. This is more obvious when we plot the proportions against each other, as 

shown in Figure 2. 

 

Figure 1 Elective admission rate vs proportions of patients in three age groups  
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Figure 2 Percentage of patients 65+ and 0-14 against percentage of patients 15-64 

 

Since the sample space of the proportions of patients in the three age groups is the 𝑆3 simplex space, depicted by 

the shaded two-dimensional triangle plane in a three-dimensional space as shown in Figure 3, it is possible to plot 

the proportions on this triangle with each side annotated by one of the axes. This results in a ternary diagram 

(Figure 4), which emphasizes the fact that age proportions are co-dependent, and one proportion cannot change 

without also changing at least one of the other proportions. The plot on the left of Figure 4 is on the full 0 to 100 

percentage points scale, and the plot on the right zooms in to show more details. The ternary diagram is arguably 

the most intuitive and straightforward way to show the compositions of three parts in their raw form. To visually 

represent compositions of more than three parts, compositional biplots, scatterplots of log-ratios, and sequences 

of bar plots are sensible options, although they are not as intuitive as the ternary plots (Aitchison, 2008; Van den 

Boogaart and Tolosana-Delgado, 2013).  

 

Figure 3 sample space of the three proportions 
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Figure 4 Ternary plot of practice age group proportions on different scales 

 

Linear regression with age proportions 

The plots in Figure 1 appear to show linear relationships between proportions (expressed as percentage points) of 

certain age groups and the elective hospital admission rate. However, directly using these age proportions as 

explanatory variables in a linear regression model may produce misleading results. To show this, we regress the 

elective hospital admission rate against the three proportions. Since the proportions sum to 100%, including all 

three in the model causes perfect singularity and statistical software such as R and Stata would arbitrarily omit 

one of the variables. Due to the constant sum constraint, any pair of two proportions contain the exact same 

information as contained by all three proportions. Running three versions of the following model: 

 

Elective admission rate = 𝛽0 + 𝛽1𝑝𝑟𝑜𝑝0−14 + 𝛽2𝑝𝑟𝑜𝑝15−64 + 𝛽3𝑝𝑟𝑜𝑝65+ + 𝑒   

 

by omitting one of the proportions each time, the 𝑅2 of each model would be exactly the same, as shown in Table 

2. Practices with lower than 1% of registered patients in any of the three age groups are considered outliers and 

removed from the dataset as they may suffer from data quality issue, leaving 6,190 GP practices in our main 

analysis sample.   

 

Three regression results are shown in Table 2, each omitting one of the proportions. Notice that the coefficient of 

𝑝𝑟𝑜𝑝65+ in model (1) is the same as that of 𝑝𝑟𝑜𝑝15−64 in model (2), the coefficient of  𝑝𝑟𝑜𝑝0−14 in (2) is the same 

as 𝑝𝑟𝑜𝑝65+ in (3), and the coefficient of 𝑝𝑟𝑜𝑝15−64 in model (3) is the same as that of 𝑝𝑟𝑜𝑝0−14 in model (1), 

only with opposite signs in each case. The coefficients within each of these pairs also display identical standard 

errors.  
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Table 2 Regression of the elective admission rate on each pair of age group proportions 

 (1) (2) (3) 

(Intercept) 0.0874*** 0.4799*** 0.1133*** 

 (0.0044) (0.0070) (0.0144) 

prop65plus 0.0039***  0.0036*** 

 (0.0001)  (0.0002) 

prop0to14 0.0003 -0.0036***  

 (0.0002) (0.0002)  

prop15to64  -0.0039*** -0.0003 

  (0.0001) (0.0002) 

Num.Obs. 6190 6190 6190 

R2 0.254 0.254 0.254 

R2 Adj. 0.253 0.253 0.253 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

This phenomenon occurs because any of the three variables can be expressed as 100 minus the other two. For 

example, using model (1) from Table 2 as the benchmark, and substituting 𝑝𝑟𝑜𝑝65+ with (100 − 𝑝𝑟𝑜𝑝0-14 −

𝑝𝑟𝑜𝑝15-64), the model can be rewritten as  

Elective admission rate = 0.0003𝑝𝑟𝑜𝑝0-14 + 0.0039𝑝𝑟𝑜𝑝65+ 

= 0.0003𝑝𝑟𝑜𝑝0-14 + 0.0039(100 − 𝑝𝑟𝑜𝑝0-14 − 𝑝𝑟𝑜𝑝15-64) 

= (0.0003 − 0.0039)𝑝𝑟𝑜𝑝0-14 − 0.0039𝑝𝑟𝑜𝑝15-64  

= −0.0036𝑝𝑟𝑜𝑝0-14 − 0.0039𝑝𝑟𝑜𝑝15-64 

which gives the coefficients in model (2). Similar linear relations can also be observed when there are more than 

three compositions. Neither the significance nor the magnitude of the estimated coefficients of different pairs of 

proportions, which contain the exact same information, is consistent. The coefficients do not represent the ceteris 

paribus effects of the proportions on the outcome variable, as it is impossible to change any one proportion without 

simultaneously changing at least one other proportion. They are therefore meaningless, and it would be incorrect 

to interpret these coefficients in any way (Hron et al., 2012). 

 

If the age proportions are not the variables of interest but are simply used to control for the age structure in a larger 

model, the estimated coefficients on any other covariates would be the same regardless of which age proportion 

category is omitted, and the model fit would also be unaffected by the decision over which age category to omit. 

However, the estimated coefficients on these other covariates would be biased because the raw form of the 

proportion of patients in each age group does not properly account for age structure in a linear regression. 

Including only one of the proportions as an explanatory variable would also result in incorrect estimates as this is 

essentially the same as having two proportions but arbitrarily omitting one from the model, which does not solve 
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the non-linearity issue. As in 3 or more-part cases, the proportion of one of the two parts does not carry absolute 

information and using it would still violates the assumptions. 

 

Note that the problem here is fundamentally different from the so-called “dummy variable trap”, i.e., including 𝑛 

dummy variables in the model to represent 𝑛 mutually exclusive and exhaustive categories, which causes perfect 

collinearity (Wooldridge, 2015). To address the perfect collinearity issue in that instance one simply needs to omit 

one of the categories, the benchmark, and include only 𝑛 − 1 dummy variables. The coefficients of these dummy 

variables then represent the differences in the intercept of each group compared to that of the benchmark group, 

which always has an (omitted) dummy of 1. All other dummies can be zero and changing any one of them from 

0 to 1 does not require the change of another dummy. This is not the case for compositional variables because any 

change to one of the components is necessarily accompanied by opposite changes of equal total value in the other 

components, i.e., 

Δ𝑥𝑗 = − ∑ Δ𝑥𝑖

𝐷

𝑖=1,𝑖≠𝑗

. 

More importantly, the issues with using compositional variables in regressions does not stem from collinearity, 

but instead from the fact that they are co-dependent and only carry relative information.  

 

Isometric log-ratio (ilr) transformation 

Although the raw form of compositional data should not be used in traditional regression analysis, there are several 

ways to transform the compositions based on their log-ratios to allow for conventional statistical methods 

(Filzmoser et al, 2018). The pairwise ratios of our example dataset are displayed as boxplots in Figure 5.  

 

Figure 5 boxplots of pairwise log-ratios  
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Outliers with any of the three proportions lower than 1% are removed, as they lead to extremely high or low log-

ratios and change the scale of the boxplots. Each boxplot shows the spread of the ratio between the corresponding 

two variables. The boxplots are put in the three-by-three table of plots to emphasize that they are “pairwise” but 

individual boxplot can be interpreted as usual. For example, the bottom left corner shows the spread of 
𝑝𝑟𝑜𝑝0-14

𝑝𝑟𝑜𝑝65+
. 

Note that observations with the lowest pair-wise ratios do not necessarily have the lowest numerator proportions 

or highest denominator proportions.  

  

The transformation method used in this paper is isometric log-ratio transformation, first introduced in Egozcue et 

al (2003). The key property of isometric log-ratio transformation is that it maps the data of 𝑑 proportions from the 

simplex space 𝒮𝑑  to the real space of (𝑑 − 1) dimensions, ℛ𝑑−1, keeping the relative positions between data 

points (Chastin and Palarea-Albaladejo, 2015). Other log-ratio methods such as additive log-ratio (alr) or centred 

log-ratio (clr) transformation can also achieve the same purpose, i.e., transforming the proportions to the Euclidean 

space in which linear regression in based. In general, isometric log-ratio has arguably the most desirable properties 

because the use of additive log-ratio does not preserve distances between data points due to its additive nature, 

while centred log-ratio transformed data are perfect collinear and require extra procedures to be used in linear 

regression (Aitchison, 1986; Hron et al., 2012; Pawlowsky-Glahn et al, 2015). Note that the log-ratio 

transformations are not the same as the logarithmic transformation (𝑧𝑖 = ln 𝑥𝑖 , 𝑖 = 1, … , 𝑑), which in this case 

does nothing but to change the original constraint to an equivalent ∑ 𝑒𝑧𝑖𝑑
𝑖=1 = 1.  

 

There are technically an infinite number of transformations that create isometry between the simplex and real 

space. A particularly versatile isometric transformation that can be used in different contexts is defined as follows 

(Egozcue et al, 2003; Hron et al., 2012): 

𝑧𝑖 = √
𝑑 − 𝑖

𝑑 − 𝑖 + 1
⋅ ln

𝑥𝑖

√Π𝑗=𝑖+1
𝑑 𝑥𝑗

𝑑−𝑖
, 𝑖 = 1, … , 𝑑 − 1. (1) 

Applying it to our example, we can obtain: 

𝑧1 = √
3 − 1

3 − 1 + 1
⋅ ln

𝑝𝑟𝑜𝑝0-14

√𝑝𝑟𝑜𝑝15-64 ⋅ 𝑝𝑟𝑜𝑝65+
3−1

(2) 

= √
2

3
ln

𝑝𝑟𝑜𝑝0-14

√𝑝𝑟𝑜𝑝15-64 ⋅ 𝑝𝑟𝑜𝑝65+

; 

𝑧2 = √
3 − 2

3 − 2 + 1
⋅ ln

𝑝𝑟𝑜𝑝15-64

𝑝𝑟𝑜𝑝65+

 (3) 

= √
1

2
ln

𝑝𝑟𝑜𝑝15-64

𝑝𝑟𝑜𝑝65+

. 

The proportions represent relative information which depend entirely on the ratios between the parts. Since the 

log-ratios between 𝑝𝑟𝑜𝑝0-14  and the other two proportions both appear in (2), 𝑧1 contains the exact same 

information as 𝑝𝑟𝑜𝑝0-14. Similarly, 𝑧2 does not have the exact same information as 𝑝𝑟𝑜𝑝15-64 because 𝑝𝑟𝑜𝑝0-14 

does not appear in (3) and 𝑧2 only includes the ratio between 𝑝𝑟𝑜𝑝15-64 and the remaining proportion, 𝑝𝑟𝑜𝑝65+. 
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However, each 𝑧𝑖 uniquely represents the log-ratio of one pair of proportions, and this orthogonal projection from 

the simplex can guarantee consistency of distances and statistical analysis (Egozcue and Pawlowsky-Glahn, 2005). 

As shown by equation (1) , the order of the parts can be arbitrarily decided and the value or interpretation of 𝑧1 is 

not affected by the order of the remaining parts. The regression results are also robust to the choice of 𝑧1.  

 

Using the transformed variables, we can estimate the following model: 

Elective admission rate = 𝛾0 + 𝛾1𝑧1 + 𝛾2𝑧2 + 𝑒. (4) 

𝛾1 indicates how much the ratios between 𝑝𝑟𝑜𝑝0-14 and other proportions is associated with the admission rate. 

The significance level can be interpreted as usual, i.e., whether the proportion explains the variation in admission 

rate, but it does not imply any independent effect of 𝑝𝑟𝑜𝑝0-14 on the admission rate. The regression result is shown 

in Table 3. 

 

Table 3 Regression using raw and isometric log-transformed (ilr) data without covariates 

 Raw  ilr 

prop0to14 -0.0037*** z1 -0.0173*** 

 (0.0002)  (0.0033) 

prop15to64 -0.0039*** z2 0.0593*** 

 (0.0001)  (0.0013) 

(Intercept) 0.4799*** (Intercept) 0.2127*** 

 (0.0070)  (0.0034) 

N 6190 N 6190 

R2 0.254 R2 0.252 

R2 Adj. 0.253 R2 Adj. 0.252 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

From equation (4) we can only draw conclusions about 𝑝𝑟𝑜𝑝0-14 as 𝑧2 does not contain all of the ratios. To obtain 

the same information for 𝑝𝑟𝑜𝑝15-64 and 𝑝𝑟𝑜𝑝65+, we need to apply equation (1) to each of them and repeat the 

above process, as shown in Table 4. The permutation can be conducted manually or using R package 

“robCompositions” (Templ et al., 2011). The coefficients of 𝑧2’s in Table 4 should not be interpreted as they 

do not carry complete information. R functions such as “lmCoDaX” would report the estimators of the 𝑧1 in each 

column as the coefficients of each proportion. If we are only using the proportions as control variables for the age 

structure in a model such as:  

Elective admission rate = 𝜸𝒛 + 𝜷𝑿 + 𝑒 (5) 

where 𝑿 contains income deprivation index, binary indicator of rurality, and time since last seen a GP, then no 

permutation is required because the coefficients for the covariates and the intercept would be the same. Note that 
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we are only using this highly simplified model (5) to demonstrate the use of basic compositional data analysis 

techniques, and the coefficients in (5) inevitably suffer from omitted variable bias.  

 

Table 4 Permutated regression results using each proportion as the first component 

 𝑥1 = 𝑝𝑟𝑜𝑝0-14 𝑥1 = 𝑝𝑟𝑜𝑝15−65 𝑥1 = 𝑝𝑟𝑜𝑝65+ 

(Intercept) 0.1979*** 0.1979*** 0.1979*** 

 (0.0060) (0.0060) (0.0060) 

z1 -0.0065 -0.0573*** 0.0638*** 

 (0.0033) (0.0021) (0.0021) 

z2 0.0699*** -0.0406*** -0.0293*** 

 (0.0015) (0.0030) (0.0030) 

Income deprivation 0.1323*** 0.1323*** 0.1323*** 

 (0.0099) (0.0099) (0.0099) 

Rurality -0.0035* -0.0035* -0.0035* 

 (0.0017) (0.0017) (0.0017) 

Time since GP visit 
-0.0013 -0.0013 -0.0013 

(0.0009) (0.0009) (0.0009) 

Num.Obs. 6190 6190 6190 

R2 0.277 0.277 0.277 

R2 Adj. 0.276 0.276 0.276 

* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Note that the coefficients do not represent the effect of a unit change in the explanatory variables on the admission 

rate. Rather, the effects of age group proportions should be considered as effects of log-ratios between each group, 

which can be quantified using a change prediction matrix as shown in Table 5 (Chastin and Palarea-Albaladejo, 

2015). To calculate this matrix, we first apply inverse transformation to any pair of coefficients shown in Table 4 

to get a composition vector: 

𝑊 = 𝑖𝑙𝑟𝐼𝑛𝑣(−0.0065, 0.0699) = (0.3252, 0.3222, 0.3526). 

 

The off-diagonal elements of the matrix are calculated as 

𝑚𝑖,𝑗 = ln (
𝑤𝑖

𝑤𝑗

) /4𝑑2 

where 𝑑 is the number of parts which is equal to three in our data. This value represents how much the elective 

hospital admission rate reacts to a unit change of the log-ratio, i.e.,  ln (
𝑝𝑟𝑜𝑝𝑖

𝑝𝑟𝑜𝑝𝑗
). For example, column 1 row 3 of 
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Table 5 shows that if the log-ratio between 𝑝𝑟𝑜𝑝65+ and 𝑝𝑟𝑜𝑝0-14 increases by 1, equivalent to an increase in their 

ratio by the Euler's number 𝑒 ≈ 2.72,  

Δ ln (
𝑝𝑟𝑜𝑝65+

𝑝𝑟𝑜𝑝0-14

) = 1 ⇔ Δ
𝑝𝑟𝑜𝑝65+

𝑝𝑟𝑜𝑝0-14

= 𝑒 

the admission rate is estimated to decrease by 0.0011.  

Table 5 Change prediction matrix  

 prop0to14 prop15to64 prop65+ 

prop0to14 0 0.0003 0.0011 

prop15to64 -0.0003 0 0. 009 

prop65+ -0.0011 -0.0009 0 

 

Finally, we compare the fitted values of the model which uses the raw form of age group proportions and equation 

(5), which uses the isometric log-ratio transformations. It is important to note that both the values and the 

significance levels of the coefficients on the non-compositional variables of interest are different. The fitted values 

from these two models are plotted against the actual admission rates in Figure 6, and the difference between the 

fitted values is plotted against admission rates and the three age proportion variables in Figure 7. There appear to 

be a non-linear relationship between the difference and the proportions. 

 

In practice, the difference caused by transforming the compositional data, or rather, the difference caused by 

incorrectly applying traditional regression analysis to compositional data, will vary by situation. However, the 

only way to determine the magnitude of the impact is to apply the transformations and then compare. More 

substantial differences between results obtained using raw and isometric log-ratio transformed were found for 

datasets with higher variations in the ratios between parts (Gupta et al., 2018). They also found that “CoDA and 

standard analyses may lead to different conclusions, not only from a numeric or statistical viewpoint, but even in 

terms of the practical applications of study results”. 

 

 

Figure 6 Actual elective admission rates vs fitted values using raw and transformed proportions  
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Table 6 Regression using raw and ilr-transformed data with covariates 

 Raw  ilr 

(Intercept) 0.0797*** (intercept) 0.1979*** 

 (0.0066)  (0.0060) 

prop0to14 -0.0005*   

 (0.0002)   

prop15to64 0.0046***   

 (0.0001)   

Income deprivation 0.1341*** Income deprivation 0.1323*** 

 (0.0099)  (0.0099) 

Rurality -0.0096*** Rurality -0.0035* 

 (0.0017)  (0.0017) 

Time since GP visit -0.0016 Time since GP visit -0.0013 

 (0.0009)  (0.0009) 

  z1 -0.0065+ 

   (0.0033) 

  z2 0.0699*** 

   (0.0015) 

Num.Obs. 6190  6190 

R2 0.284  0.277 

R2 Adj. 0.283  0.276 

* p < 0.05, ** p < 0.01, *** p < 0.001  
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Figure 7 Differences in fitted values of models using transformed and raw proportion data  

 

Composition of two parts 

In this section we show that the issues discussed above also apply to compositions of two parts, and including 

only one in the linear regression does not produce reliable results as this approach does not address the 

codependence between the included and omitted variables caused by the constant sum.  Using the same data, we 

now merge 𝑝𝑟𝑜𝑝0−14 and 𝑝𝑟𝑜𝑝15−64 into 𝑝𝑟𝑜𝑝𝑢𝑛𝑑𝑒𝑟65. Then we repeat the steps above to compare the regression 

estimated using raw and ilr-transformed data, with the inclusion of the control variables. The results are shown in 

Table 7. After applying the transformation, the coefficient of rurality is no longer significant. The fitted values 

from are plotted against the actual elective admission rates in Figure 8, and the difference between the fitted values 

is plotted against admission rates and the 2 age group proportions (under 65, 65 and above) in Figure 8. As in the 

three-part case, there appears to be a non-linear relationship between the difference and the proportions.  
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Table 7 Regression using raw and ilr-transformed data with 1 proportion and covariates 

 Raw  ilr 

(Intercept) 0.5411*** (intercept) 0.2402*** 

 (0.0096)  (0.0054) 

under65 -0.0047***   

 (0.0001)   

  z1 0.0783*** 

   (0.0017) 

Income deprivation 0.1274*** Income deprivation 0.1167*** 

 (0.0095)  (0.0095) 

Rurality -0.0098*** Rurality -0.0031 

 (0.0017)  (0.0017) 

Time since GP visit -0.0014 Time since GP visit -0.0008 

 (0.0009)  (0.0009) 

Num.Obs. 6190  6190 

R2 0.283  0.274 

R2 Adj. 0.282  0.273 

* p < 0.05, ** p < 0.01, *** p < 0.001  

 

 

Figure 7 Actual elective admission rates vs fitted values using raw and transformed proportion of under 65  
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Figure 8 Differences in fitted values of models with one proportion, raw and transformed (four outliers with 

admission rate over 0.4 are removed)  

 

Discussion 

Compositional variables have special geometric properties, and applying standard statistical methods including 

regression analysis to the raw form of compositional data can produce misleading results. While compositional 

data analysis (CoDA) methods have been adopted in many research areas (Chastin et al, 2015; Greenacre, 2018; 

Mert et al., 2018), they are rarely seen in health economic research. This paper uses age group proportions as an 

example compositional variable to illustrate issues with compositional data analysis using traditional statistical 

techniques and provides a brief guide to basic CoDA methods, which can be applied to a wide range of variables 

that may be of interest to health economists, such as healthcare staff ratios and the proportion of resources 

allocated to health-related goods or activities.  

 

While some of these variables, e.g., age proportions or racial composition, are often used as controls instead of 

being the primary variables of interest, health economists should nevertheless be aware that proportions follow 

different geometry to which conventional statistical methods are not suited. Directly using proportions in linear 

regression models does not properly account for their overall effect on the outcome, and the regression coefficients 

of the other variables in the model would also not be reliable as a result of their inclusion. Any basic log-ratio 

transformation is sufficient to avoid the issues. 

 

The transformations do not necessarily lead to a higher 𝑅2 of the regression model but implementing them reduces 

the risk of observing spurious effects and ensures robustness. Researchers should be cautious analysing data of 

compositional nature and use appropriate CoDA methods, otherwise it is better to avoid the use of compositional 
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data altogether. Analysing the absolute numbers underlying the proportions (e.g. number of patients in each age 

band) is an option if available, although they would often be highly correlated with the counts of other variables, 

(e.g. the number of medical staff in the area). Using the underlying counts is not an option for variables such as 

proportion of time spent on different activity during a day, as the raw values also have a constant sum.  

 

A variety of R packages have been developed in recent years to allow convenient application of compositional 

data transformations and to provide sensible interpretations (Filzmoser et al., 2018; Quinn et al., 2017). We are 

currently working on developing an equivalent Stata package. As this paper only aims to introduce the concept of 

compositional data and explain some basic analyses, the existence of irregular data including zeroes and outliers 

is not discussed, however it is covered in many texts (Pawlowsky-Glahn and Buccianti, 2011; Van den Boogaart 

and Tolosana-Delgado, 2013).   
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