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Abstract

By detecting asymptomatic risk factors, such as hypertension, population-based
screening can prevent disease but also induce use of low-value healthcare by false
positives. Using data on individuals aged 40+ in rural South Africa and a
multidimensional regression discontinuity design, we estimate effects of clinical referral of
those with measured blood pressure (BP) above diagnostic thresholds for hypertension.
Referral increases hypertension treatment but has no effect on BP after four years, on
average. However, for screens that are less likely to be false positives—based on time of
day and air temperature at BP measurement—we estimate that referral reduces mean
systolic BP by 5 mm Hg (3.6%) and raises the probability of achieving BP control by 22
percentage points (44%). These results demonstrate the potential for false positives to
lower the average effect of screening.
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1 Introduction

Almost 1.3 billion people around the globe suffer from hypertension (Zhou et al., 2021b).

Around 8.5 million deaths per year are attributed to the condition (Zhou et al., 2021a),

which is the principal risk factor for cardiovascular disease (CVD) (Stanaway et al., 2018)—

the largest contributor to the global burden of disease (Vos et al., 2020). The CVD burden is

largest, and still rising, in low- and middle-income countries (LMICs), which have particularly

low rates of diagnosis, treatment, and control of hypertension (Gómez-Olivé et al., 2017;

Zhou et al., 2021b). Among Sub-Saharan Africans living with hypertension, which is often

asymptomatic, only 48% of women and 34% of men are diagnosed, only 29% of women

and 22% of men are treated, and only 13% of women and 9% of men have controlled blood

pressure (Zhou et al., 2021b). Improving the diagnosis and management of hypertension is of

first order importance to global health, with the potential to generate substantial economic

benefits (Olsen et al., 2016). We evaluate the effectiveness of population-based screening

for hypertension in South Africa, where prevalence is among the highest in the world (Zhou

et al., 2021b).

Screening for hypertension requires no more than blood pressure (BP) measurement, and

so is feasible in the community (population-based) at relatively low cost. If people respond

to the information provided through screening, then healthcare costs may rise immediately,

due to follow-up clinical assessment and prescribed medication, but lifetime costs may fall,

due to early detection of disease risk and avoidance of complications from hypertension.

There are a number of threats to this positive scenario. First, those screened to be at risk

for hypertension may not visit a clinic for formal diagnosis. Second, false positives raise

healthcare utilisation and short-run costs without reducing long-run costs through disease

avoidance. Third, clinicians may fail to diagnose, counsel, and medicate asymptomatic

patients who present with no more than a one-time high BP reading at screening. Fourth,
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antihypertensive medicines may be unavailable, unaffordable, or imperfectly adhered to.

Cost-effectiveness of population-based hypertension screening is not yet established (Schmidt

et al., 2020).

Measurement of BP of survey respondents and referral of those with high BP for clinical

assessment mimics population-based screening. Like others (Chen et al., 2019; Ciancio et al.,

2021; Pedron et al., 2022; Sudharsanan et al., 2020; Zhao et al., 2013), we take advantage

of this similarity to estimate effects of referral on BP, as well as diagnosis and treatment,

four years after BP measurement in a survey of people aged 40 years and older in a rural

province of South Africa (Gómez-Olivé et al., 2018). Applying this general empirical strategy

in Malawi, Ciancio et al. (2021) estimate that referral raises the probability of hypertension

diagnosis by 20 percentage points (pp) and of BP control by 22 pp. This gives grounds for

optimism about the effectiveness of population-based hypertension screening in Sub-Saharan

Africa (SSA). However, the Malawi study referred people at BP thresholds (systolic/diastolic

≥ 160/110 mm Hg) that are considerably higher than those (140/90) used in screening

programmes to refer at-risk cases and in clinical settings to diagnose hypertension. It remains

to be seen whether, in SSA, it is effective to undertake population-based screening using the

conventional 140/90 BP thresholds that can be expected to generate many more referrals

and false positives. At these thresholds, 82% of cases initially identified as potentially

hypertensive turned out false positives in a US study (Handler et al., 2015).

Over time, relaxation of criteria used to diagnose chronic conditions, such as hypertension,

diabetes and hyperlipidemia, has shifted the marginal diagnosed patient down the biomarker

distribution (Alalouf et al., 2023; Whelton et al., 2018b). Given within individual variation

in any biomarker, screening for a condition at the threshold used for diagnosis inevitably

produces false positives, as well as false negatives. In Japan, screening at the blood sugar

threshold used to diagnose diabetes (after multiple measures) has been found not to be cost-

effective (Iizuka et al., 2021). In more constrained health systems, there is an even higher
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opportunity cost of screening at the threshold used for diagnosis and so potentially referring

a high proportion of the population to primary care clinics that are less than adequately

equipped to manage chronic disease.

We use systematic variation in BP with time of day and air temperature (Brook et al.,

2011; O’Brien et al., 2018; Whelton et al., 2018a) to distinguish between survey respondents

with higher and lower likelihoods of being false positives when screened for hypertension at

the 140/90 thresholds. We find that referral at these thresholds is effective in reducing BP

only for those who are less likely to be false positives because their BP was measured around

the middle of the day (12-3pm) or at higher temperatures (≥ 80oF ).

We estimate effects by comparing outcomes on either side of a BP threshold at which

a referral letter is issued to a survey respondent. With one exception (Pedron et al.,

2022), other evaluations of hypertension screening that use this empirical strategy deploy a

unidimensional regression discontinuity design (RDD) (Chen et al., 2019; Ciancio et al., 2021;

Dai et al., 2022; Rodriguez-Lesmes, 2021; Sudharsanan et al., 2020; Zhao et al., 2013). One

limitation of this approach is that it estimates a local effect around one or each of the systolic

BP (SBP) and diastolic BP (DBP) thresholds. Neither effect corresponds to the effect of

screening as implemented, which involves using both BP measures simultaneously. Another

limitation is that to maintain plausibility of the identification assumption of continuity of

the outcome through each threshold under the no-treatment counterfactual, observations

that are treated by crossing the other threshold must be dropped. This further compromises

external validity and leads to a loss of power.

We use both BP measures and thresholds simultaneously. The only other study to have

done this combines the two measures into one running variable (Pedron et al., 2022), which

has three limitations. First, the outcome is constrained to change with the running variable in

the same way irrespective of whether that variable changes because of SBP or DBP. Second,

the effect at the SBP threshold is not allowed to depend on the level of DBP, and vice versa.
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Third, any difference in the effects of being referred because each of SBP and DBP crosses

the respective threshold is not revealed. We overcome these limitations with semi-parametric

multidimensional RDD (MRDD) (Papay et al., 2011; Reardon and Robinson, 2012; Wong

et al., 2013). This estimates an effect that is specific to each threshold but also combines

the two effects into a weighted average along the frontier formed by the two thresholds.

Moreover, this approach allows us to estimate heterogeneity of the treatment effects along

a specific treatment frontier. As far as we know, this is the first application of MRDD in

health economics, and one of the few in any field.

For the full population (aged 40+), we find no evidence that referral reduces BP four years

later. Estimated effects on reported hypertension diagnosis and treatment are consistently

positive, but they are imprecise and not close to conventional levels of significance. These

findings hold when we stratify by sex, age, and proximity to health facilities. Stratifying

by the likelihood of obtaining a BP measurement that is a false positive for hypertension,

we find effects only for those with a lower likelihood. For this group, our MRDD estimates

indicate that a referral lowers mean SBP by around 5 mm Hg (3.6%, p-value = 0.084) and

raises the probability of achieving controlled BP by 22 pp (44%, p-value = 0.013). While our

MRDD estimate of the effect on mean DBP is smaller in magnitude (-2.9 mm Hg) and not

significant (p-value = 0.129), we estimate a 4.8 mm Hg (5.7%, p-value = 0.089) reduction in

this outcome using an alternative estimator that combines the two BP measures into a single

running variable. For the same group, we estimate that referral increases the probability of

hypertension diagnosis by 12.2 pp (28.3%, p-value = 0.243) and of current hypertension

treatment by 15.5 pp (55.8%, p-value = 0.119). These estimates suggest that the null effects

estimated for the full population are due to the ineffectiveness of referring those with a high

likelihood of giving a false positive measurement.

A Cochrane Review of evidence on the effectiveness of hypertension screening failed to

find any studies that met the inclusion criteria (Schmidt et al., 2020). The evidence that
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exists is mixed. In Germany, a referral issued to survey respondents above the 140/90 BP

thresholds had no effect on each of hypertension diagnosis, behaviour (smoking, alcohol,

physical exercise, and body mass index (BMI)), and BP over an average follow-up of 8 years

during the 1990s, and there was no effect on CVD mortality or morbidity over 17 years

(Pedron et al., 2022). In the US, a warning of high BP issued to Health and Retirement

Study (HRS) respondents not previously diagnosed with hypertension is estimated to have

raised the probability of hypertension diagnosis and medication by 17 pp (Edwards, 2018).

However, such a diagnosis is estimated to have little or no effect on diet (Hut and Oster,

2022; Slade and Kim, 2014). In the UK, advice to consult a family doctor following a

survey measurement of BP above 140/85 caused an increase in hypertension diagnosis and

medication after two years but had no significant effects on these outcomes or on BP after

four years (Rodriguez-Lesmes, 2021).

Evidence from LMICs is somewhat more positive. Besides the estimates from Malawi of

large effects on diagnosis and BP of referral at high BP thresholds (Ciancio et al., 2021), there

is evidence from China and South Africa of more modest effects on health behaviours and

BP (Chen et al., 2019; Dai et al., 2022; Sudharsanan et al., 2020; Zhao et al., 2013). Using a

unidimensional RDD, Zhao et al. (2013) estimate that crossing the SBP threshold of 140 mm

Hg has no effect on the probability of being diagnosed with hypertension but improves diet

in China.1 Another Chinese study uses unidimensional RDD to estimate that crossing the

SBP = 140 threshold, and so receiving advice to seek hypertension care and change health

behaviours, caused a reduction in SBP two years later of 6.3-8.3 mm Hg (Chen et al., 2019).

There is no significant effect on DBP. The study lacks power to precisely estimate effects on
1In this study, survey respondents were told their BP measurements but were not systematically issued

with a warning or referral at any particular threshold. Zhao et al. (2013) presume that the SBP = 140
threshold is sufficiently well known, such that information on BP level would imply a warning about high
BP. Similarly, Iizuka et al. (2021) use unidimensional RDD to estimate effects of warnings about pre-diabetes
and diabetes, despite the fasting blood sugar thresholds at which warnings were given not necessarily being
the same across all observations.
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behaviours, although the point estimates suggest that there may have been effects on weight

loss, smoking, alcohol consumption, and physical exercise, but not diet. A third Chinese

study finds that a hypertension diagnosis due to SBP above the 140 threshold caused a

reduction in fat intake and an increased likelihood of quitting smoking (Dai et al., 2022).

Hypertension diagnosis due to DBP ≥ 90 had no such effects. Previous evidence from South

Africa suggests that crossing the SBP = 140 threshold, which triggered a warning of high

BP and its health consequences along with advice to seek care, reduced SBP by 4.7 mm Hg

for women but had no effect for men, and there was no effect on DBP (Sudharsanan et al.,

2020). Both this study and Chen et al. (2019) use the SBP threshold to estimate the effect

on SBP and the DBP threshold to estimate the effect on DBP. There is no obvious reason

for this since the treatment—a warning and advice to seek care—is the same irrespective of

which threshold is crossed.

We use MRDD to contribute evidence on the effectiveness of population-based

hypertension screening that does not suffer from the limitations of estimates previously

obtained either with unidimensional RDD or by combining the two BP measures into one

running variable. Using MRDD allows us to estimate more effects—at each threshold and

along the frontier of the two—with greater flexibility and power. Our second contribution is

to deliver evidence of false positives lowering the average effect of population-based screening

at the BP threshold used for hypertension diagnosis.

Beyond these additions to evidence on the effectiveness of population-based hypertension

screening, we contribute to a broader evidence base on behavioural response to health

information. Increasingly popular prevention and wellness programmes presume that health

behaviour, and so healthcare costs, respond to information on disease risk. And yet, evidence

from high-income countries points to muted and short-lived responses of behaviour and

biomarkers to diagnoses of diabetes (Alalouf et al., 2023; Gaggero et al., 2022; Iizuka et al.,

2021; Kim et al., 2019; Oster, 2018; Slade, 2012), hyperlipidemia (Carrera et al., 2020; Kim
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et al., 2019), and overweight (Almond et al., 2016; Cook, 2019; Kim et al., 2019). In Japan,

being informed of having an above-threshold biomarker for liver disease was found to reduce

alcohol consumption, increase spending on diagnostic tests, and induce weight loss (Zhao

et al., 2023). In LMICs, information has been shown to impact health behaviour provided it

is comprehensive, credible, and delivered to people who are sufficiently educated to process

it (Dupas, 2011; Prina and Royer, 2014; Thornton, 2008). We show that in a low-income,

rural setting with high prevalence of hypertension, information on hypertension risk induces

change in behaviour and medication sufficient to lower BP only among those less likely to

be false positives.

2 Data

2.1 Setting

Like other countries in SSA, South Africa has high prevalence and low awareness of

hypertension (Mills et al., 2016; Murray et al., 2020). It is estimated that, in 2016, almost

half (45-48%) of South African adults were hypertensive (Kandala et al., 2021; Peer et al.,

2021). Of those with hypertension, only 18% of men and 29% of women were aware of

their condition. The percentage of those diagnosed with hypertension who were treated has

increased substantially, to reach 85% of men and 82% of women in 2016 (Peer et al., 2021).

However, only 26% of men and 30% of women who were treated had controlled BP (Peer

et al., 2021).

We use data from the first two waves of the Health and Ageing in Africa: A Longitudinal

Study of an Indepth Community (HAALSI). This is a sister of the Health and Retirement

Study (HRS). It follows a cohort of individuals aged 40 years and older living in the Agincourt

Health and Demographic Surveillance Site (Kahn et al., 2012). This is a rural location
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in northeast South Africa covering 420 squared kilometers (km), with 31 villages and a

predominantly poor population of slightly more than 100,000 people. Life expectancy was

64.4 years for females and 55.7 years for males in 2009 (Kahn et al., 2012). Hypertension

prevalence is similar to the South African average (Jardim et al., 2017) and substantially

higher than in other SSA countries (Gómez-Olivé et al., 2017).

One health centre and six clinics are located within the Agincourt surveillance site, and

three district hospitals are located 25-60km from the site area. The Integrated Chronic

Diseases Management model (Department of Health, 2010) requires that a nurse assess the

medical needs, and measure the BP, of anyone attending one of these facilities (Ameh et al.,

2017; Chang et al., 2019; Mahomed and Asmall, 2015; Mahomed et al., 2014). Patients with

a high BP reading on one occasion should be entered into the system as hypertensive referred

to a physician for prescription of medication and lifestyle advice, with the aim of bringing

BP below 140/90. While all facilities are expected to have sufficient manpower and stocks to

provide hypertension therapy, the care provided can be suboptimal due to non-operational

equipment, staff shortages, and erratic supply of drugs (Ameh, 2020; Connor et al., 2006;

Limbani et al., 2019). However, in the last decade, there have been substantial improvements,

particularly with respect to hypertension awareness and the proportion of those with the

condition under treatment and receiving appropriate management (Abrahams-Gessel et al.,

2023; Ferro et al., 2022; Houle et al., 2021).

2.2 Sample

HAALSI collects data on a representative sample of the population of 12,875 permanent

residents of the surveillance site aged 40 and older at the 2013 census. A sample of

6,281 individuals were randomly selected, 391 of which were ineligible due to death or

out-migration, leaving 5,890 potential respondents. Of these, 5,059 (85.9%) participated
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in the first wave between November 2014 and November 2015. In each selected household,

all members aged 40+ were included in the sample. Spouses younger than 40 were not

included. In the second wave, conducted between October 2018 and November 2019, 82.6%

of the initial sample was contacted and interviewed (Gómez-Olivé et al., 2018). Attrition is

not associated with receipt of referral letter for elevated BP at baseline (Appendix A Table

A1).

In each wave, prior to measurement of BP, each respondent was asked if they (a) had ever

had their BP measured by a doctor, nurse, or other healthcare worker, (b) had ever been

told by a doctor, nurse, or other healthcare worker that they have high BP or hypertension,

(c) have been newly-diagnosed with high BP in the last 12 months, (d) had ever received any

type of prescribed treatment for high BP, (e) are currently receiving any type of prescribed

treatment for high BP, and, finally, (f) are currently taking any herbal or traditional remedy

for high BP. BP was measured according to the HRS protocol. After a five-minute rest, a

trained enumerator used an Omron BP Monitor applied to the left arm to measure BP three

times in intervals of two minutes. If the first measurement was above 140/90, the wait was

extended to 5 minutes. For each measurement, the enumerator recorded SBP, DBP, pulse,

time of the day, and reason for any failure to obtain a reading.

The analysis sample consists of 3,304 respondents for whom we have valid BP

measurements for both waves. A majority (56%) of the sample is female and the average

age at baseline is about 62 years (Table 1).

2.3 Intervention

In each wave, enumerators were trained and instructed to give a respondent a clinic referral

letter for high BP if SBP was at least 140 mm Hg or DBP was at least 90 mm Hg on either the

second or the third measurement. A referral letter could also issued if rapid tests indicated a
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potential problem with blood glucose, cholesterol, or haemoglobin. The enumerator gave the

referral letter at the end of the interview if any criterion was fulfilled. If referral was for high

BP, the enumerator explained to the respondent that their BP was high and that they should

go to a (non-specified) clinic with the letter for further evaluation. The letter indicated which

risk factor was observed but did not give the exact measurement. It included the contact

information of the study manager.2 The data do not record whether each respondent who

satisfied the criteria was given a referral letter. We assume that all enumerators followed

the study protocol and so identify respondents with SBP ⩾ 140 or DBP ⩾ 90 on either the

second or third measurement in the first wave (baseline) as treated. If there are enumerators

who did not follow the protocol, then we are estimating the intention-to-treat effect for a

BP screening programme design consistent with that protocol.

On presentation at a clinic with a referral letter, a nurse would measure a respondent’s BP,

register them as hypertensive if it was high, and refer them to a doctor for treatment/advice.

2.4 Outcomes

Primary outcomes are mean SBP and mean DBP calculated from the last two of the three BP

measurements taken in the second wave (follow-up) and an indicator of hypertension derived

from those measurements, 1(mean SBP ⩾ 140 ∨mean DBP ⩾ 90). Secondary outcomes are

intermediate between the issue of a referral letter at baseline and any effect on the primary

outcomes at follow-up. They are indicators constructed from follow-up self-reports of (a) ever

having been diagnosed with hypertension, (b) ever been treated for hypertension, and

(c) currently taking treatment for hypertension.3

2See Appendix A Figure A1. From the second wave, respondents received an information sheet with all
their biomarker measurements. This document did not include any referral to a clinic. Separate referral
letters were issued to those who fulfilled any criterion, as in the first wave.

3Reporting of hypertension diagnosis and treatment is conditional on previously reporting ever having
had BP measured. Mistaken responses to the question about BP measurement will add noise to the reports
of diagnosis and treatment. Moreover, there appear to be inconsistencies in these BP-related self-reports
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2.5 Descriptives

Figure 1 shows a scatter plot of the maximum of the last two DBP measurements at baseline

against the maximum of the last two SBP measurements at baseline. Respondents with a

maximum DBP at least 90 or a maximum SBP at least 140 received a referral letter for

high BP (according to the protocol). Colours distinguish those who were referred because

of (a) DBP only (green), (b) SBP only (blue), and (c) both DBP and SBP (red) from those

who were not referred (grey).

Table 1 shows that around one half (50.6%) of the analysis sample received a referral

letter at baseline because of high BP. Less than one third (30.3%) had a maximum DBP at

or above the 90 mm Hg threshold that was sufficient to qualify for referral (green and red dots

in Figure 1). A larger percentage (46.5%) had a maximum SBP at or above the respective

140 mm Hg threshold (blue and red dots in Figure 1). On the basis of mean SBP and DBP

compared with the respective threshold, 44.3% would be categorized as hypertensive. This

probably overestimates hypertension prevalence since a clinical diagnosis would be made on

the basis of repeated measurements on multiple occasions. Nonetheless, it is close to the

(single-occasion) survey-based prevalence estimate (45-48%) for all of South Africa (Kandala

et al., 2021; Peer et al., 2021), and confirms that hypertension is extremely common in the

population over 40 years in the study setting.

The middle panel of Table 1 shows means of the outcomes at follow-up. Mean SBP and

DBP was 128.4 mm Hg and 79.6 mm Hg, respectively. On the basis of these measurements,

29.6% of the sample would be categorised as hypertensive at follow-up. This is a substantial

decrease in prevalence from the baseline estimate. One explanation is a general increase in

across waves. About 14% (N = 324) of the respondents who reported ever having had their BP measured by
a medical professional in Wave 1 reported that it was not the case in Wave 2. Among those who reported
having ever been diagnosed with hypertension in Wave 1, 29.5% (N = 413) of them said that it was not the
case in Wave 2. In view of this measurement error, we consider these outcomes as secondary and focus on
those that are objectively measured and not self-reported.
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Figure 1: Scatter of maximum systolic BP and diastolic BP at baseline
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Notes: N = 3,304. The x-axis (y-axis) shows maximum SBP (DBP) from last two measurements
at baseline. Blue, green, and red dots identify respondents who received a referral letter at baseline
because their SBP only, DBP only, and both SBP and DBP were above the respective thresholds
(SBP = 140 mm Hg, DBP = 90 mm Hg). Grey dots identify responds who did not receive a
referral letter at baseline.

diagnosis and treatment (Abrahams-Gessel et al., 2023; Ferro et al., 2022; Houle et al., 2021).

Among those who reported at baseline that they had never been told they had high BP,

around one fifth (381/1900) reported at follow-up being told they have high BP. Moreover,

among those who reported never having received treatment for high BP at baseline, around

16% (359/2196) reported that they had been treated at follow-up.
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Table 1: Sample descriptives

Mean Std. dev. N

Baseline
Mean SBP 137.577 22.699 3304
Mean DBP 82.068 12.280 3304
1(Max DBP ⩾ 90) 0.303 0.460 3304
1(Max SBP ⩾ 140) 0.465 0.499 3304
Referral = 1(Max DBP ⩾ 90 ∨Max SBP ⩾ 140) 0.506 0.500 3304
Hypertensive = 1(Mean DBP ⩾ 90 ∨Mean SBP ⩾ 140) 0.443 0.497 3304
Outcomes (at follow-up)
Mean SBP 128.410 20.179 3304
Mean DBP 79.596 11.497 3304
Hypertensive = 1(Mean DBP ⩾ 90 ∨Mean SBP ⩾ 140) 0.296 0.456 3304
Ever told have high BP 0.413 0.492 3296
Ever treated for high BP 0.354 0.478 3296
Currently treated for high BP 0.317 0.466 3295
Controls (at baseline)
Female 0.559 0.497 3304
Age (years) 61.638 12.534 3281

Notes: SBP and DBP are systolic and diastolic blood pressure, respectively. Max SBP (DBP)
represents the maximum and Mean SBP (DBP) is the mean from the last two of three measurements.
1(.) is the indicator function. Main analysis sample consists of 3,304 individuals with non-missing
SBP and DBP at baseline and follow-up. Sample sizes are smaller for some variables because of
missing values.

2.6 False positives

Separation of true positives from false positives would require that all respondents given

a referral letter at baseline undergo diagnostic testing for hypertension at a clinic and

observation of the results. In the absence of such data, we use systematic variation in

BP with time of day (O’Brien et al., 2018) and outdoor air temperature (Barnett et al.,

2007; Brook et al., 2011) to categorize respondents by the likelihood of BP measurement at

baseline giving a false positive indication of hypertension. BP tends to increase in the

late afternoon (Bhalotra et al., 2020; Kawano, 2011; Mancia et al., 1983) and at lower

temperatures (Alpérovitch et al., 2009; Barnett et al., 2007; Bhalotra et al., 2020; Modesti,

13



2013). In the sample, average BP is close to the hypertension thresholds (mean SBP=137.6

and mean DBP=82.1 at baseline—see Table 1). Hence, even small perturbations in BP

caused by time of day and temperature could result in misclassification and a high rate of

false positives.4

The time of each interview is recorded. We obtain air temperature data from the

Terrestrial Hydrology Research Group at Princeton University.5 We use gridded 3-hourly

data points (0.5 by 0.5 degrees, which corresponds roughly to 27km by 27km) that we match

to each respondent’s household location and time of interview.

There is substantial variation in both the time of interview and temperature (Appendix

A Figure A2). Figure 2 shows BP variation with each of these factors that is similar to the

evidence cited above. Each sub-figure plots predicted SBP or DBP against time of interview

or air temperature. Predictions are obtained from a linear regression of the mean BP of

the last two measurements on a third order polynomial of each of time of interview and

temperature, plus year and month fixed effects. Both mean SBP and DBP fall slightly from

late morning until early afternoon, and then rise. Both types of BP fall as temperature

rises. For the average individual, whether the point or interval estimate of expected SBP or

DBP lies above the respective hypertension threshold at which a referral letter was issued

depends on the time of the interview. For SBP, the interval estimate of the expected value

for the average individual lies above the threshold at low temperatures, but not at high

temperatures. There is also a strong association between DBP and temperature. However,

because the average DBP is some distance below the 90 mm Hg threshold, the covariation

with temperature is never sufficient for even the interval estimate of the expected value of
4SBP is more variable than DBP (Musini and Wright, 2009), and there is likely to be a higher proportion

of false positives above the SBP threshold than there is above the DBP threshold. There is discussion about
whether higher BP variability, conditional on BP level, is an independent risk factor for CVD (Ebinger et al.,
2022; Parati et al., 2018; Schutte et al., 2022).

5http://hydrology.princeton.edu/data/pgf/v3/. For additional details on how the data are
constructed, including the bias correction and downscaling methodology, see Sheffield et al. (2006).
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Figure 2: BP variation by time of interview and air temperature at baseline

(a) Mean SBP by time of interview
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(b) Mean SBP by air temperature
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(c) Mean DBP by time of interview
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(d) Mean DBP by air temperature
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Notes: Predicted mean BP (SBP or DBP) against time of interview and air temperature (Fahrenheit).
Predictions obtained from a linear regression of each mean BP measure on a third order polynomial of
each of time of interview and air temperature, plus year and month fixed effects. Dashed lines show
95% confidence intervals around estimate of expected value. Horizontal lines indicate thresholds at
which a referral letter is issued.

DBP for the average individual to cross the threshold. For individuals with above average

BP risk factors, the strong DBP-temperature correlation may well be sufficient for expected

DBP to be above 90 mm Hg at low temperatures but not at high temperatures.

The association between the predicted probability of receiving a referral letter (by crossing

either the SBP = 140 mm Hg or the DBP = 90 mm Hg threshold) and each of time of day

and air temperature (Appendix A Figure A3) is very similar to the respective association
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shown in Figure 2.

We categorise respondents as more likely to give a false positive indication of hypertension

if their BP was measured at baseline (a) before noon and after 3pm, and (b) when the outside

air temperature was below 80 degrees Fahrenheit. Measurements taken at other times and

temperatures are considered less likely to lead to a false positive. Since BP tends to be lower

in the early afternoon and at temperatures above 80o Fahrenheit, if in these environmental

conditions BP is above one of the hypertension thresholds, it is less likely to be a false positive.

We expect a referral letter to be more effective—raising the probability of being diagnosed

with hypertension and being prescribed antihypertensives, and reducing BP—when issued

to a respondent who is less likely to be a false positive.6

3 Empirical Strategy

We use a regression discontinuity design (RDD) to estimate effects on follow-up outcomes

of receiving a referral letter at baseline because of BP measurements that lie at or above

thresholds. The general identification assumption is that respondents in a narrow bandwidth

around a threshold are sufficiently similar in observed and unobserved characteristics such

that an outcome would evolve smoothly and continuously through the threshold if no referral

letters were issued. Any discontinuity in the outcome at the threshold can then be attributed

to the causal effect of receiving a referral, which is triggered by BP crossing the threshold. For

each outcome, we estimate various treatment effects, each relying on a distinct assumption
6The analysis reported in Appendix A Table A2 confirms that receipt of a referral letter at baseline does

not have any causal effect on the time of interview or the probability of being more (or less) likely to be false
positive at follow-up. This suggests our estimates are not confounded by sorting along these two dimensions.
Moreover, there appears to be only marginal differences in observable characteristics between the two groups.
The normalized (standardized) differences in sex, age, and distance to the nearest clinic between those who
are less and more likely to be false positive are 0.0585 (0.0827), 0.0289 (0.0410), and -0.0326 (-0.0461),
respectively. Each is well below the threshold 0.1 (0.25) often taken as indicative of imbalance between
groups (Austin, 2009; Imbens and Rubin, 2015; Imbens and Wooldridge, 2009).
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and sample selection, that differ in the BP threshold used—systolic, diastolic, or both.

We observe respondents (i = 1,2, .., n) whose BP was measured three times (t = 1,2,3)

at baseline. For each respondent, we have three measurements each of SBP (sti) and DBP

(dti). A referral letter—the treatment (T )—was given to a respondent if the maximum

of the last two SBP measurements was at least 140 mm Hg or the maximum of the last

two DBP measurements was at least 90 mm Hg: Ti = 1(smax
i ⩾ 140 ∨ dmax

i ⩾ 90), where

xmax
i =max (x2i, x3i), x ∈ {s, d}.

3.1 Unidimensional RDD

As far as we know, all previous RDD evaluations of hypertension screening, except one

(Pedron et al., 2022), estimate treatment effects either at only one threshold or separately at

the systolic and diastolic thresholds using unidimensional RDD (Chen et al., 2019; Ciancio

et al., 2021; Dai et al., 2022; Rodriguez-Lesmes, 2021; Sudharsanan et al., 2020; Zhao et al.,

2013). This is one of the strategies we adopt. It is feasible because BP crossing at least

one of the thresholds is sufficient for deterministic assignment to treatment—receipt of a

referral letter. To ensure that treatment status (but nothing else) differs on each side of

the respective threshold, respondents who cross the other threshold must be excluded from

the sample used for unidimensional RDD. Exclusion extends to respondents who cross both

thresholds since otherwise the continuity assumption that is critical to identification would

be implausible. Hence, the respondents used for unidimensional RDD are a subset of those

around the respective threshold. The effect of receiving a referral solely because SBP crosses

the 140 mm Hg threshold, τs, is estimated along the frontier defined by that threshold and

below the DBP threshold, Fs = (smax = 140, dmax < 90) (Appendix Figure A4). The respective

effect of a referral that is triggered only by DBP crossing its threshold value, τd, is estimated

along the respective diastolic frontier, Fd = (dmax = 90, smax < 140) (Appendix Figure A4).
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These effects are defined as follows:

τx = limxmax
i ↓cxE[Yi(1) ∣ xmax

i ] − limxmax
i ↑cxE[Yi(0) ∣ xmax

i ]

= E[Y1i − Y0i ∣ xmax
i = cx] (1)

where Y1i and Y0i are potential outcomes with and without treatment, respectively, and

cx ∈ {cs, cd} = {140,90} is the relevant threshold.

We estimate these effects non-parametrically. For the main estimates, we use local linear

regression and triangular weights determined by kernel functions centered at the threshold to

put more weights on observations closer to it. We assess robustness to using local quadratic

regression and uniform weights. We use the Mean Square Error (MSE) optimal bandwidth

selector to set the bandwidths that can differ on each side of the threshold (Calonico et al.,

2014a,b, 2015). We estimate standard errors using the heteroskedasticity-robust plug-in

residuals variance estimator (Calonico et al., 2017; Kolesár and Rothe, 2018).

With this approach, there is a substantial loss of information and power resulting from the

exclusion of a considerable number of observations from each unidimensional RDD. Moreover,

the effects identified are frontier-specific and do not correspond to the overall average effect

on those referred on the basis of their SBP or DBP. We deal with both limitations with two

alternative strategies that make use of the change in treatment status at both thresholds

simultaneously and so use observations in the four quadrants of Figure 1.

3.2 Binding-score RDD

Binding-score RDD (Reardon and Robinson, 2012) is a centering approach (Wong et al.,

2013) that reduces the dimensions over which treatment is determined from two to one by

creating a single running variable from the two assignment variables, smax
i and dmax

i . This

has previously been used to evaluate hypertension screening in Germany (Pedron et al.,
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2022). It is particularly appealing for this purpose because smax
i and dmax

i are in the same

measurement units (mm Hg), which facilitates interpretation of the meaning and magnitude

of the estimated effects.

First, we center each assignment variable on its respective threshold: x̃max
i = xmax

i − cx.

Then, we standardize each centered variable on its standard deviation (sdx) to adjust for

differences in the scales of the two measures: x̃std
i = x̃

max
i /sdx. Figure 3 shows a scatterplot

of the two centered and standardized variables—d̃stdi against s̃stdi . A 45-degree line comes

close to cutting the cloud of observations in two. Standardization appears to ensure that a

1-unit deviation from one frontier has similar “intensity” as a 1-unit deviation from the other

frontier.

Figure 3: Scatter of centered and standardized maximum diastolic BP and
systolic BP at baseline
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Notes: N = 3,304. The x-axis and y-axis show centered and standardized maximum systolic BP (s̃stdi )
and diastolic BP (d̃stdi ), respectively. Maximums from last two BP measurements at baseline are used.
See text for further definitions. Blue, green, and red dots identify respondents who received a referral
letter due to systolic BP, diastolic BP, and both above thresholds, respectively. Grey dots identify
respondent who did not received a referral letter.
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Next, we calculate the maximum centered distance from the two thresholds, ri =

max(s̃stdi , d̃stdi ). This binding score determines treatment status: Ti = 1(ri ⩾ 0). We then use

ri as the single running variable in a unidimensional RDD to estimate the effect of a referral

that is local to the frontier that runs along and connects the SBP and DBP thresholds. That

is,

τr = limri↓0E[Y1i ∣ ri] − limri↑0E[Y0i ∣ ri]

= E[Y1i − Y0i ∣ ri = 0] (2)

While still a local average effect, this parameter is not as local as the effects obtained from

unidimensional RDD applied around each of the systolic and diastolic thresholds separately.

It is an overall average treatment effect at the frontier running along the two thresholds. By

using observations from all four quadrants defined by the thresholds (Figure 3), including

those who are treated because both their SBP and DBP are above the respective thresholds,

there is a gain in power, as well as external validity, compared with the unidimensional

approach.

To implement the binding-score approach, we choose the same estimator (local linear

regression), kernel function, optimal bandwidths, and standard error estimator as for

unidimensional RDD.

3.3 Multidimensional RDD

Derivation of a single running variable from SBP and DBP has some disadvantages. First, it

requires that standardization deals with differences in scale, such that a unit change in the

running variable has the same consequence for the outcome irrespective of whether it arises

from a change in SBP or DBP. Second, it does not capture any difference that may exist

between effects of crossing the SBP threshold and the DBP threshold. Third, it assumes

that the effect at the SBP threshold is constant irrespective of DBP, and vice versa. We
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relax these restrictions with a semi-parametric multidimensional RDD (MRDD) approach

that involves parametric estimation of discontinuities in the outcome response surface at

frontiers determined by the two thresholds and non-parametric estimation of weights that

are used to combine the frontier-specific effects into an overall average effect (Papay et al.,

2011; Reardon and Robinson, 2012; Wong et al., 2013). We are not aware of any other

application of a MRDD in health economics.7

We use MRDD to estimate the average treatment effect of the referral letter at the frontier

F = Fs ∪ Fd = {(s̃stdi = 0, d̃stdi < 0) ∪ (s̃stdi < 0, d̃stdi = 0)} (Figure 4), as well as effects at Fd and

Fs separately.

The average treatment effect at the frontier F , τm = E[Y1i − Y0i ∣ (s̃stdi , d̃stdi ) ∈ F ], is a

weighted average of the treatment effects at the frontiers Fs and Fd:

τm = E[gi ∣ (s̃stdi , d̃stdi ) ∈ F ] = ωsE[gi ∣ s̃stdi ∈ Fs] + ωdE[gi ∣ d̃stdi ∈ Fd]

= ωsτs + ωdτd , (3)

where gi = Y1i − Y0i, and ωs and ωd are probabilities of observing a treated unit on the Fs

and Fd frontiers, respectively (Wong et al., 2013). These weights are determined by the joint

density of the two assignment variables, f(s̃stdi , d̃stdi ) (Appendix B).

We derive the treatment effects τs and τd, which are average effects at the respective
7Dell (2010) uses MRDD to estimate effects of forced mining labour on child stunting, as well as on

household consumption that is the focus of that study. She does not deploy the MRDD strategy we use. In
part, this is due to an important difference in the nature of treatment assignment. In Dell (2010), treatment
is determined by a necessary and sufficient condition on two assignment variables (longitude and latitude).
In our case, treatment is determined by a sufficient condition on SBP or another sufficient condition on DBP.
One approach Dell (2010) uses is binding-score RDD, which reduces assignment by longitude and latitude
to assignment by distance from a location. There are a few MRDD applications in education (Heller and
Slungaard Mumma, 2019; Jepsen et al., 2017).
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Figure 4: MRDD estimation frontier and sample selection window

F = Fs U Fd
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Notes: N = 3,304. The x-axis and y-axis show centered and standardized maximum systolic BP (s̃stdi )
and diastolic BP (d̃stdi ), respectively. Maximums from last two BP measurements at baseline. Blue,
green, and red dots identify respondents who received a referral letter due to systolic BP, diastolic BP,
and both above thresholds, respectively. Grey dots identify respondents who were not referred. MRDD
analysis is restricted to observations that are 0.7 standard deviation from the smax

i threshold and the
dmax
i threshold. These observations are within the small black rectangle. F shows the treatment

frontier defined by both the systolic BP (Fs) and the diastolic BP (Fd) frontiers.

frontiers and would be the targets of estimation with separate unidimensional RDD, as

τx =
∫
z̃stdi <0

gi(x̃std
i = 0, z̃stdi )f(x̃std

i = 0, z̃stdi )dz̃stdi

∫
z̃stdi <0

f(x̃std
i = 0, z̃stdi )dz̃stdi

=
∫
z̃stdi <0

gi(x̃std
i = 0, z̃stdi )f(z̃stdi ∣ x̃std

i = 0)dz̃stdi

∫
z̃stdi <0

f(z̃stdi ∣ x̃std
i = 0)dz̃stdi

, (4)

where, as above, x ∈ {s, d} and z = d if x = s and vice versa, and gi(x̃std
i = 0, z̃stdi ) = Y1i(x̃std

i =

0, z̃stdi ) −Y0i(x̃std
i = 0, z̃stdi ) is the difference in the potential outcomes that are now explicitly

allowed to depend on the values of the assignment variables. The second line of eq.(4) follows
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from writing the joint density, f (x̃std
i = 0, z̃stdi ), as the product of the conditional density,

f (z̃stdi ∣ x̃std
i = 0), and the marginal density, and cancelling the latter from the numerator

and denominator.

We use the non-parametric bivariate kernel density estimator and numerical integration

to estimate τx with x ∈ {s, d}, and so the weights, ωs and ωd (Wong et al., 2013)

(Appendix B). We parametrically estimate the outcome response surfaces, gi(x̃std
i , z̃stdi ), and

the discontinuities in them at gi(x̃std
i = 0, z̃stdi ), with the following regression of the observed

outcome (yi):

yi = α + γ1s̃stdi + γ2d̃stdi + β11SD + β21S × d̃stdi + β31S × d̃stdi × s̃stdi (5)

+ β41D × s̃stdi + β51D × d̃stdi × s̃stdi +X ′iδ + ϵi ,

where 1SD = 1(s̃stdi ⩾ 0 ∨ d̃stdi ⩾ 0), 1S = 1(s̃stdi ⩾ 0 ∧ d̃stdi < 0), 1D = 1(s̃stdi < 0 ∧ d̃stdi ⩾ 0),

and Xi is a vector of exogenous and predetermined covariates that includes age (years) and

sex. Although these controls are not necessary for identification, they potentially increase

precision.

The discontinuities in the expected outcome at the two frontiers are as follows (Appendix

B)8:

g(s̃stdi = 0, d̃stdi ) = E(Yi ∣ 1S = 1,1D = 0, s̃stdi = 0, d̃stdi ) −E(Yi ∣ 1S = 0,1D = 0, s̃stdi = 0, d̃stdi )

= β1 + β2d̃
std
i , (6)

g(s̃stdi , d̃stdi = 0) = E(Yi ∣ 1S = 0,1D = 1, s̃stdi , d̃stdi = 0) −E(Yi ∣ 1S = 0,1D = 0, s̃stdi , d̃stdi = 0)

= β1 + β4s̃
std
i . (7)

From equations (6) and (7), it is clear that the specification allows (a) the discontinuities
8In the first line of eq.(6), there may appear to be a contradiction in the term that is subtracted since

the expectation is taken at s̃stdi = 0 while 1S = 0. This term should be thought of as the expected outcome
without treatment if the (SBP) assignment variable were to be extremely close to crossing the treatment
threshold. In any case, the effect of the level of the assignment variable cancels out from the two terms of
the subtraction whatever the level is. The same reasoning applies to the interpretation of eq.(7).
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at the two frontiers to differ, and (b) each discontinuity to be heterogeneous along the

respective frontier—the outcome shift at the SBP frontier can depend on DBP, and

vice-versa. For a small µ > 0, the specification restricts the discontinuities from the point

(s̃stdi = 0 − µ, d̃stdi = 0 − µ) to the points (s̃stdi = 0, d̃stdi = 0), (s̃stdi = 0 − µ, d̃stdi = 0), and

(s̃stdi = 0, d̃stdi = 0 − µ) to be identical and equal to β1. Imposition of this restriction make

sense because the treatment is the same—receipt of a referral letter—along the two frontiers.

To estimate the response surface, we use observations within 0.7 of a standard deviation

of each assignment variable from the respective threshold—those within the small black

rectangle at the intersection of the two thresholds in Figure 4. We use this selection because

0.7 of a standard deviation roughly corresponds to the average size of the bandwidths

optimally derived for the binding-score RDD. This facilitates comparison of the estimates

obtained with the two approaches. Moreover, the selection ensures an approximately

equal number of observations in all four quadrants defined by the intersection of the two

thresholds. Limiting estimation to a narrow boundary around the intersection makes

the linear specification more plausible. We show robustness to imposing other sample

restrictions.

We feed the regression estimates of the outcome response surface discontinuities—eq.(6)

and eq.(7)—into eq.(4), along with the kernel estimates of the conditional densities, and use

numerical integration to obtain estimates of the two frontier-specific treatment effects, τs

and τd. We then combine these with the non-parametric estimates of the weights, ωs and

ωd, in eq.(3) to get an estimate of the overall average effect of a referral letter along the

treatment frontier, F . We use a bootstrap (1000 replications) over the whole procedure to

estimate standard errors.
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3.4 Tests of identification assumption

All three empirical strategies rely on the assumption of no sorting around the thresholds.

That is, respondents cannot manipulate receipt of a referral letter through their BP

measurements. This is highly plausible given the nature of that measurement and the lack of

incentive for either the respondent or the survey enumerator to adjust the measure recorded.

Nonetheless, we assess the validity of the assumption by examining histograms of the SBP

and DBP assignment variables and conducting density tests (McCrary, 2008). This reveals

no graphical evidence of heaping of the densities at the thresholds and no statistical evidence

of sorting around them (Appendix A Figure A5). A heat plot of the joint density of SBP

and DBP also gives no evidence that suggests any manipulation of recorded BP (Appendix

A Figure A6). Furthermore, MRDD, binding-score RDD, and unidimensional RDD all show

no discontinuity in age or sex at the thresholds (Appendix A Table A3).

4 Results

4.1 Main estimates

Figure 5 shows that there are no clear discontinuities in the primary outcomes—mean SBP,

mean DBP, and the probability of being hypertensive, all at follow-up—at the BP thresholds

for receipt of a referral letter at baseline. In each binding-score RDD plot (left), a referral

is received when the single running variable (ri)—derived from baseline SBP and DBP—is

non-negative. In each MRDD plot (right), a referral is received when either the SBP running

variable on the x-axis (s̃stdi ) or the DBP running variable on the y-axis (d̃stdi ) is non-negative.

The (mean) outcome is on the y-axis in each binding-score RDD plot and the z-axis of each

MRDD plot.
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Figure 5: Discontinuity plots for primary outcomes
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Notes: Plots of average outcomes conditional on the running variable(s). Outcomes are defined in
Table 1. Non-negative values of the running variable(s) indicate observations that receive a referral
letter. For binding-score RDD, on the x-axis is the running variable ri =max (s̃stdi , d̃stdi ). For these
plots, we use local linear regression, triangular kernels, and the MSE optimal bandwidth selector.
Each dot is the mean of the respective outcome in a given bin. We use optimal bins obtained with
variance evenly-spaced method using spacing estimators (Calonico et al., 2014a,b, 2015, 2017). For
MRDD, running variables on x-axis and y-axis are s̃stdi and d̃stdi , respectively. For MRDD plots,
each point on grid represents the predicted value from estimates of eq.(5) at the respective values
of the running variables. Predicted values are computed for each 0.1 increment in the two running
variables. In all plots, we control for sex and age.
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Estimates in the top panel of Table 2 confirm that there is no significant effect of a

referral letter on any of the primary outcomes. The binding-score RDD point estimates in

column 1 are positive for the effect on SBP and negative for DBP and the probability of being

hypertensive. None of these estimates approaches a conventional level of significance. MRDD

point estimates of average effects at the combined systolic-diastolic frontier (F = Fs ∪ Fd)

are all negative for the primary outcomes (column 3). Each is smaller in magnitude than

the respective binding-score RDD estimate. Again, none is remotely significant. MRDD

point estimates differ at the two frontiers (columns 4 and 5). But disaggregation does not

reveal any significant estimate of an effect on a primary outcome. Estimates of the weights

(ωs and ωd), shown in the bottom row of the table, reveal that an estimated effect at the

systolic frontier accounts for around 70% of the MRDD estimate of the average effect at the

combined frontier. The remainder is the contribution of the estimated effect at the diastolic

frontier.

The second panel of Table 2 shows estimated effects on secondary outcomes.9 Notably,

all estimates from both estimators are positive, which suggests that receipt of a referral letter

may have been effective in raising the probability of hypertension diagnosis and treatment.

The MRDD estimates of average effects at the combined frontier are larger and, despite

reliance on a smaller estimation sample, as precise as the respective binding-score RDD

estimates. The MRDD estimates of effects on hypertension treatment at the combined

and systolic frontiers are marginally significant (p-value < 0.1). These estimates indicate

that referral increases the probabilities of ever having been treated for hypertension and of

receiving treatment at the time of the follow-up survey by 9 pp and 10 pp, respectively.

The estimated effect on ever being treated is larger at the systolic frontier than it is at the

diastolic frontier, although the estimates at the two frontiers do not differ significantly.

When we use an alternative parametric specification of the outcome response surfaces,
9Corresponding discontinuity plots are in Appendix C Figure C1.
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Table 2: Effects of a referral letter on outcomes

Binding-score RDD MRDD
Combined
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6)

Primary outcomes

Mean systolic BP 1.541 1566 -0.530 -0.265 -1.153 945
(2.164) (1.819) (2.021) (2.603)

Mean diastolic BP -1.380 1568 -0.316 -0.391 -0.144 945
(1.535) (1.050) (1.132) (1.674)

Hypertensive -0.025 1537 -0.007 -0.017 0.015 945
(0.060) (0.053) (0.059) (0.076)

Secondary outcomes

Ever told have high BP 0.043 2073 0.081 0.097 0.045 943
(0.052) (0.054) (0.062) (0.077)

Ever treated for high BP 0.045 1995 0.089∗ 0.100∗ 0.062 943
(0.053) (0.052) (0.059) (0.075)

Currently treated for high BP 0.046 1813 0.100∗∗ 0.099∗ 0.102 943
(0.055) (0.050) (0.058) (0.071)

Estimated weights (ωs and ωd) 0.698 0.302

Note: See Table 1 for definitions of outcomes. Binding-score RDD estimates of eq.(2) obtained from
local linear regression, with triangular kernels and optimal bandwidths on each side of the threshold using
the MSE optimal bandwidth selector. MRDD estimates obtained from linear regression estimates of the
outcome response surface, eq.(5) and bivariate kernel estimates of the conditional densities and weights
that are combined with the outcome response estimates using eq.(4) and, for column (3), (3). Standard
errors in parentheses are bootstrapped (1000 repetitions) for MRDD and heteroscedasticity-robust for
binding-score RDD. N is the effective number of observations used in estimation. All estimates are from
specifications that control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

MRDD estimates continue to indicate null effects on primary outcomes and, even more than

before, positive effects on secondary outcomes (Appendix C Table C2).10 To produce the

main MRDD estimates, we include observations within 0.7 of a standard deviation (SD)

of each running variable from the respective threshold. When we widen this interval by

including those up to 1 SD below the diastolic threshold, we continue to get estimates of

null effects on the primary outcomes, while the positive estimated effects on the secondary
10 The alternative specification is

yi = α + γ1s̃stdi + γ2d̃stdi + β11SD + β21S × d̃stdi + β31D × s̃stdi + β41SD × d̃stdi × s̃stdi +X ′iδ + ϵi .
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outcomes get smaller in magnitude and weaken in significance (Appendix C Table C2).11

Full sample estimates of null effects on primary outcomes do not hide significant effects

in sub-populations defined by sex, age (below/above 60 years), and distance from the nearest

health facility (below/above median) (Appendix C Tables C3, C4, C5, and C6).12 MRDD

estimates of effects on secondary outcomes are generally larger and more precise for females

and older people (Appendix C Tables C4 and C5). These estimates indicate large and

significant effects on secondary outcomes for those living closer to health facilities, which

is as expected (Appendix C Table C6). However, positive and significant effects in this

sub-population are not obtained with binding-score RDD.

Unidimensional RDD at each of the systolic and diastolic thresholds separately also gives

null effects on the primary outcomes (Appendix C Table C7). At the diastolic threshold,

there are positive and significant effects on secondary outcomes.

4.2 Heterogeneity by false positive likelihood

For respondents who are more likely to be false positives, there is no clear evidence of

discontinuities in primary outcomes at the thresholds for receipt of a referral letter (Figure

6).13 The estimates in the top panel of Table 3 confirm that there is no significant negative

effect on any of these outcomes using this sample. In fact, binding-score RDD gives

counterintuitive positive and significant effects on mean SBP and the probability of being

above the hypertension thresholds at follow-up. One possible explanation is that if false
11This sample selection is shown by the black rectangle in Appendix A Figure A7. Since relatively few

individuals are treated only because their DBP is above the respective threshold (green dots in Figures 4
and A7), if we were to widen the window to also include observations 1 SD below the SBP frontier and/or
1 SD above the DBP frontier, it would be difficult to consistently and convincingly estimate the response
surface of all quadrants of Figure A7.

12The binding-score RDD estimator gives a counter intuitive positive and significant effect on SBP of those
located above the median distance from a health facility. However, this is not confirmed by the respective
MRDD estimate and the binding-score RDD point estimate on DBP is negative for this sub-population.

13Appendix C Figure C2 in the Appendix shows corresponding graphs for the secondary outcomes.

29



positives do indeed comprise a large proportion of the sub-sample used to obtain these

estimates, then many in the sample may have relaxed their health behavior, contributing

to a rise in BP, on learning that they are not hypertensive after all. However, this may

read too much into the estimates since the respective MRDD estimates are not significantly

positive. The estimated effects on all the secondary outcomes are positive, but none is

remotely significant.

Figure 7 shows discontinuity plots obtained from respondents who are considered less

likely to be false positives. Both the binding-score RDD and MRDD approaches reveal drops

in the three primary outcomes at the BP frontiers where a referral letter was issued. From

the MRDD plots, it appears that the effects are relatively constant along the systolic frontier,

whereas the discontinuity along the diastolic frontier decreases as systolic BP increases (Panel

B).14

The estimates in Table 4 confirm that receipt of a referral letter at baseline appears to

have lowered the BP of individuals who are less likely to have been false positives. The

MRDD estimates indicates a referral reduced mean systolic BP by about 5 mm Hg (p-

value=0.084), or 3.6% of the baseline mean for this sample. This effect appears to mainly

come from the effect of referral as a result of crossing the systolic frontier (-6.5 mm Hg,

p-value=0.012). The binding-score RDD estimate of the effect on systolic BP is smaller in

magnitude and not statistically significant. The magnitudes and significance of the estimates

of effects on diastolic BP that are obtained from the two estimators are reversed. Binding-

score RDD indicates a reduction of about 4.8 mm Hg in DBP, while the MRDD gives a

smaller and not significant estimate. The two estimators both estimate a significant reduction

of about 22-24 pp in the probability of being hypertensive at follow-up (p-values = 0.013

(MRDD) and 0.043 (Binding-score)). This is around 44-48% of the mean prevalence of

hypertension in this sample at baseline.

14See Appendix C Figure C3 for corresponding graphs for the secondary outcomes.
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Figure 6: Discontinuity plots for primary outcomes – high false positive
likelihood
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Notes: Plots as for Figure 5 (see notes to that figure) except here we use only respondents for
whom, at baseline, (a) time of interview was < 12 noon or > 3pm or (b) outdoor air temperature
< 80o Fahrenheit.
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Table 3: Effects of a referral letter on outcomes – high false positive likelihood

Binding-score RDD MRDD
Combined
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6)

Primary outcomes

Mean systolic BP 5.000∗∗ 1089 2.159 3.106 -0.164 622
(2.535) (2.315) (2.613) (3.312)

Mean diastolic BP 0.565 1140 1.096 0.809 1.798 622
(1.579) (1.292) (1.388) (2.066)

Hypertensive 0.114∗ 1133 0.102 0.104 0.096 622
(0.065) (0.064) (0.073) (0.092)

Secondary outcomes

Ever told have high BP 0.036 1307 0.051 0.069 0.006 622
(0.065) (0.064) (0.076) (0.084)

Ever treated for high BP 0.053 1319 0.089 0.094 0.077 622
(0.063) (0.062) (0.074) (0.082)

Currently treated for high BP 0.047 1176 0.086 0.085 0.088 622
(0.067) (0.060) (0.073) (0.081)

Note: As Table 2 (see notes to that table), except here we use only respondents for whom, at baseline,
(a) time of interview < 12 noon or > 3pm or (b) outdoor air temperature < 80o Fahrenheit.
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Figure 7: Discontinuity plots for primary outcomes – low false positive
likelihood

A) Mean systolic BP
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Notes: Plots as for Figure 5 (see notes to that figure) except here we use only respondents for
whom, at baseline, (a) time of interview was ≥ 12 noon and ≤ 3pm and (b) outdoor air temperature
≥ 80o Fahrenheit.
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Table 4: Effects of a referral letter on outcomes – low false positive likelihood

Binding-score RDD MRDD
Combined
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6)

Primary outcomes

Mean systolic BP -3.802 536 -4.988∗ -6.488∗∗ -1.755 299
(3.750) (2.890) (3.274) (4.446)

Mean diastolic BP -4.795∗ 475 -2.878 -2.582 -3.518 299
(2.818) (1.897) (2.150) (3.162)

Hypertensive -0.242∗∗ 466 -0.220∗∗ -0.239∗∗ -0.181 299
(0.121) (0.089) (0.096) (0.149)

Secondary outcomes

Ever told have high BP 0.053 633 0.122 0.128 0.111 297
(0.098) (0.105) (0.125) (0.158)

Ever treated for high BP 0.058 632 0.097 0.125 0.037 297
(0.094) (0.101) (0.121) (0.155)

Currently treated for high BP 0.073 639 0.155 0.145 0.176 297
(0.091) (0.099) (0.119) (0.151)

Note: As Table 2 (see notes to that table), except here use only respondents for whom, at baseline,
(a) time of interview was ≥ 12 noon and ≤ 3pm and (b) outdoor air temperature ≥ 80o Fahrenheit.

The MRDD estimate reveals that, again, most of this effect on hypertension comes from

referral as a result of crossing the systolic frontier (β = −0.239, p-value= 0.013). These

estimates are very similar to the estimate of a drop of 22 pp in the probability of being

hypertensive caused by referral due to crossing a higher systolic BP threshold of 160 mm Hg

in Malawi (Ciancio et al., 2021).

The estimated effects on the secondary outcomes that are obtained using respondents

who are less likely to be false positives are consistently positive, larger at the systolic frontier

(using MRDD) and larger using MRDD than binding-score RDD (Table 4). However, none

of these estimates is statistically significant at conventional levels.

The magnitudes of the MRDD estimates obtained from both samples—those more and

less likely to be false positives—are robust to using an alternative specification of the

outcome response surfaces (Appendix C Tables C8 and C9)15 and to widening the windows
15See specification reported in footnote 10
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of observations around the frontier (Appendix C Tables C10 and C11). In both robustness

checks, significance of the estimated effect on mean systolic BP falls below conventional levels,

but the reduction in the probability of being hypertensive remains statistically significant.

5 Conclusion

We find that referral for clinical assessment after a measurement of blood pressure (BP) that

is above the thresholds used to diagnose hypertension, as would happen in a population-

based screening programme, does not lower BP averaged over all those screened. Referral

does appear to raise the likelihood of being treated for hypertension, and possibly of being

diagnosed, although the point estimate of the latter effect is not significant at conventional

levels. The lack of effect on BP despite the increase in hypertension treatment suggests

that average treatment effectiveness may be muted by treatment of false positives, although

imperfect treatment adherence could also explain this finding. When we limit attention

to baseline BP measurements that are not taken at times of the day and temperatures

associated with higher BP, and so are less likely to generate false positives, we find clear

evidence that referral reduces mean BP and substantially increases the likelihood of having

controlled BP. The magnitude of the estimated effect on BP control is very close to the

estimate obtained in another low-income, rural setting in Sub-Saharan Africa with high

prevalence of hypertension, and where referral was made at BP thresholds above those used

for diagnosis (Ciancio et al., 2021).

While raising the BP thresholds at which screened cases are referred for clinical

assessment is likely to increase the average effect of a programme, it is not necessarily

an optimal policy. It would reduce false positives but raise false negatives. The optimal

threshold depends on the relative cost of each type of error (Phelps and Mushlin, 1988).

This study does not deliver evidence on these costs, and so we cannot draw conclusions
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about the optimal threshold. We can infer that a null average effect of screening may hide a

positive effect among those less likely to be false positives. It would be a mistake to conclude

that a programme is not (cost-)effective because it does not reduce a risk factor on average.

If it were to reduce the risks of some of those screened, then it may be cost-effective if the

benefits to this group are large relative to programme costs.

While raising a BP screening threshold would reduce false positives at the cost of

increasing false negatives, organising a programme to avoid screening for hypertension at

times of day and temperatures associated with higher BP could reduce the first type of error

without increasing the second. Costs arising from interruptions to testing would need to be

set against the benefits of reducing false positives. But this cost-benefit analysis would be

relatively straightforward.

Our findings of a null average effect in the full population and positive health effects

only for those who are less likely to be false positives are consistent with results from

other evaluations of screening for chronic disease. Iizuka et al. (2021) find that mandatory

health checkups in Japan improve health outcomes, and are cost-effective, only for high-risk

individuals. Kim et al. (2019) find that information provided through the Korean National

Health Screening Programme on risk of diabetes, obesity, and hyperlipidemia has limited

or no impact on healthcare utilisation and health behaviours at medium risk thresholds for

all three conditions and at high risk thresholds for obesity and hyperlipidemia. There are

impacts on those identified to be at high risk of diabetes, which is the only threshold at

which risk information is supplemented by active prompting to go for diagnostic testing and

treatment. Exposure to a general health screening programme in Austria is found to increase

healthcare costs in the short run, reduce them in the medium run, and have no impact in the

long run (Hackl et al., 2015). Costs increase overall without any effect on health, suggesting

that screening induces false positives to use healthcare.

The use of MRDD allows us to identify effects from variation in exposure to referral
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around both the systolic and diastolic BP thresholds simultaneously. This adds power and

external validity compared with previous evaluations of hypertension screening that have

adopted unidimensional RDD (with one exception), and so estimate an effect that is local to

one of the thresholds in the selected population that would not otherwise be referred because

the other threshold is not crossed. With MRDD, we also avoid restrictions that binding-

score RDD—used by the one evaluation that does not do unidimensional RDD—imposes as

a result of combining both BP measures into one running variable. The method also allows

us to estimate an effect at each threshold, as well as their weighted average effect. In addition

to heterogeneity across frontiers, MRDD makes it possible to uncover heterogeneity along a

specific treatment frontier.

Application of MRDD pays off. Estimates obtained from this design reveal that, among

those who are less likely to be false positives, the effects of crossing the diastolic BP frontier

on diastolic BP decrease as systolic BP increases, whereas the effects of the screening on the

probability of being hypertensive at follow-up are relatively constant along the two frontiers

(Figures 7 Panels B and C). Such heterogeneity in screening effects cannot be detected using

the point-estimation binding-score approach. MRDD gives estimates of effects on secondary

outcomes that are approximately twice as large and more statistically significant than the

corresponding binding-score RDD estimates. MRDD reveals that the negative effects on BP

for those less likely to be false positives are mainly driven by effects at the systolic frontier.

One limitation of this study is that we do not know if each referred respondent attended a

clinic, as advised. Consequently, we cannot assess the extent to which the null effect in the full

population is due to insufficient response of individuals to information or insufficient clinical

advice, diagnosis, and medication. Information may fail to generate health gains if it is not

accompanied by active encouragement for high risks to use healthcare and supply-side efforts

to deliver high-value care (Iizuka et al., 2021). A randomised experiment in the Philippines

found that going for a check-up at a clinic responsible for CVD risk screening increased the
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probabilities of having BP measured and receiving medical advice, but it did not increase

the likelihood diagnosis or medication of hypertension (Capuno et al., 2021). Kim et al.

(2019) argue that health effects of the information provided by screening programmes are

likely to be modest without follow-up supply-side interventions. There is evidence from the

UK that a diagnosis of hypertension reduces CVD morbidity, has a large negative effect on

smoking, and a smaller effect on improved diet (Bhalotra et al., 2020). Importantly, these

effects are obtained in the context of a primary healthcare system that incentivizes general

practitioners to actively manage chronic conditions.

A second limitation is that we cannot identify false positives, nor estimate the proportion

of false positives among those who are referred. We use systematic variation in BP with time

of day and temperature to categorise screens by the likelihood of generating a false positive.

This categorisation proves useful in revealing heterogeneity in the effects of referral. But it

does not allow calculation of a false positive rate that could be used, with other parameters,

to design the optimal screening programme (Phelps and Mushlin, 1988).

A third limitation is that our secondary outcomes (diagnosis and treatment) are self

reported and so are likely to contain measurement error that may explain why we consistently

obtain positive estimates that are only significant at conventional levels when using MRDD at

the combined systolic-diastolic frontier with the full sample. The positive but not statistically

significant effects obtained from other analyses, particularly that using the sample that is

likely to include a smaller proportion of false positives, may be due to imprecision arising

from a smaller sample combined with large measurement error.16

Notwithstanding these limitations, this study contributes needed evidence on the

effectiveness of population-based hypertension screening in LMICs. Using MRDD to estimate

the effect of screening as it is implemented through reference to systolic and diastolic BP

simultaneously, we show that a null average effect over the full target population results from
16See footnote 3.
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ineffective screens that are more likely to produce false positives offsetting a statistically and

clinically significant effect of screens that are less likely to give false positives. This evidence

can potentially be used to improve the design of hypertension screening programmes and so

slow the growing burden of cardiovascular disease in LMICs.
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APPENDICES

Appendix A Additional descriptives

Figure A1: Referral letter

                                                                                                                
P.O. Box 2, Acornhoek 1360, South Africa   
Telephone: +27 13 7955076 (Acornhoek) or +27 13 708 0003 (Agincourt) 
Fax: +27 13 7955076 (Acornhoek)  or +27 13 708 1540 (Agincourt) 
 
 
REFERAL TO THE CLINIC 
 
As part of the survey “Health and Aging in Africa: Longitudinal studies in INDEPTH 

communities – HI KURILE” that the MRC/Wits Agincourt Research Unit is currently 

running in the area, we have identified that ________________________________ 

_______________________ has a potential problem with his/her: 

a) Blood pressure 

 

 

b) Blood glucose 

 

 

c) Cholesterol 

 

 

d) Haemoglobin 

 

 

In case you need to contact us please do it using the following contacts: 

 

 

 

Field worker signature: ________________________________ 

Date |___|___|/|___|___|___|/|___|___|___|___| 
1 

 
1 HAALSI_referralclinicletter_V2_13032015.docx 
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Table A1: Effects of a referral letter on selection (missing at follow-up)

Binding-score RDD MRDD
Combined
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6)

Overall sample
Missing at follow-up 0.041 2467 -0.025 -0.054 0.035 1491

(0.048) (0.041) (0.047) (0.060)
More likely to be FP
Missing at follow-up -0.020 1752 0.013 0.006 0.029 990

(0.062) (0.051) (0.059) (0.070)
Less likely to be FP
Missing at follow-up 0.164∗ 657 -0.090 -0.140 0.027 460

(0.096) (0.077) (0.087) (0.116)

Note: “FP” stands for false positive. Binding-score RDD estimates of eq.(2) obtained from local
linear regression, with triangular kernels and optimal bandwidths on each side of the threshold
using the MSE optimal bandwidth selector. MRDD estimates obtained from linear regression
estimates of the outcome response surface, eq.(5) and bivariate kernel estimates of the conditional
densities and weights that are combined with the outcome response estimates using eq.(4) and,
for column (3), eq.(3). Outcome variable is a dichotomous variable that takes the value one if we
have complete blood pressure information about a respondent in Wave 1 but not in wave 2, and
zero otherwise. Standard errors in parentheses are bootstrapped (1000 repetitions) for MRDD and
heteroscedasticity-robust for binding-score RDD. N is the effective number of observations used in
estimation. All estimates are from specifications that control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

Figure A2: Distributions of time of day and air temperature at baseline
interview
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Notes: On left, x-axis shows hour since midnight at baseline interview. On right, x-axis shows outside
air temperature (in Fahrenheit) at baseline interview. Temperature data from http://hydrology.
princeton.edu/data/pgf/v3/. For additional details, including the bias correction and downscaling
methodology, see Sheffield et al. (2006). We use gridded 3-hourly data points (0.5 by 0.5 degrees, which
corresponds roughly to 27km by 27km) that we match to each individual’s household location and time
of interview. Sample sizes are N = 3,300 and N = 3,241 for the “Hours of the day” and “Temperature”
plots, respectively.
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Figure A3: Variation in the probability of receiving a referral letter by time of
interview and air temperature at baseline

(a) Referral letter because of SBP by
time of interview
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(b) Referral letter because of SBP by
air temperature
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(c) Referral letter because of DBP by
time of interview
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(d) Referral letter because of DBP by
air temperature
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Notes: Predicted probability of receiving a referral letter (because of SBP and DBP) against time of
interview and air temperature (in Fahrenheit). Predictions obtained from a linear regression of each
probability on a third order polynomial of each of time of interview and temperature, plus year and
month fixed effects. Dashed lines show 95% confidence intervals around estimated expected value.
Horizontal lines indicate mean probability in sample.
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Table A2: Effects of the referral letter received in 2014/2015 on time of interview
and probability of being more likely to be false positive at follow-up

Binding-score RDD MRDD
Combined
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6)

More likely to be FPa 0.067 1399 -0.038 -0.056 0.002 937
(0.080) (0.058) (0.066) (0.080)

Time of interview 0.114 1776 0.094 0.151 -0.037 937
(0.212) (0.181) (0.204) (0.253)

Note: a: based on time of interview only. “FP” stands for false positive. Outcome variables
are measured at follow-up. Binding-score RDD estimates of eq.(2) obtained from local linear
regression, with triangular kernels and optimal bandwidths on each side of the threshold using
the MSE optimal bandwidth selector. MRDD estimates obtained from linear regression estimates
of the outcome response surface, eq.(5) and bivariate kernel estimates of the conditional densities
and weights that are combined with the outcome response estimates using eq.(4) and, for column
(3), (3). Standard errors in parentheses are bootstrapped (1000 repetitions) for MRDD and
heteroscedasticity-robust for binding-score RDD. N is the effective number of observations used
in estimation. All estimates are from specifications that control for age and sex. ∗ p < 0.1, ∗∗
p < 0.05, ∗∗∗ p < 0.01.

Figure A4: Sample restrictions for unidimensional RDD

(a) Systolic frontier
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(b) Diastolic frontier
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Notes: N = 3,304. x-axis (y-axis) shows the maximum systolic (diastolic) blood pressure from the last
two measurements at baseline. Fs and Fd are the systolic BP and diastolic BP treatment frontiers,
respectively. Blue (green) dots identify respondents who received a referral card solely because their
systolic (diastolic) BP was at or above the threshold and their diastolic (systolic) BP was below the
respective threshold. Grey dots identify control group respondents who did not receive a referral letter.
Lighter grey dots identify those who got a referral letter because the other BP measure was also above
the respective threshold.
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Figure A5: Histograms and tests of threshold discontinuities in running
variables

A) Systolic blood pressure (max)

Histogram
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B) Diastolic blood pressure (max)
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Notes: Left panels show histograms of maximum systolic and diastolic blood pressure. Maximum over last
two measurements at baseline. Right panels show there is no statistically significant discontinuity in either
running variables at the respective threshold (140 mm Hg for SBP and 90 mm Hg for DBP). These RDD plots
are generated using third order polynomial, triangular weights, and a different optimal bandwidth on each
side of the threshold (based on the MSE of each density estimator separately) (Calonico et al., 2015, 2017,
2018; Cattaneo et al., 2018, 2020). Below each RDD plot is the bias-corrected t-statistic and corresponding
p-value for test of no discontinuity at the threshold (McCrary, 2008).
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Figure A6: Joint density of the running variables – heat plot

50
10

0
15

0
D

ia
st

ol
ic

 (m
ax

)

80 100 120 140 160 180 200 220 240
Systolic (max)

7-9
5-6
3-4
1-2

count

Notes: N = 3,304. x-axis (y-axis) shows maximum systolic (diastolic) blood pressure. Maximum is
over last two measurements at baseline. The red lines identify treatment assignment thresholds (140
mm Hg for systolic and 90 mm Hg for diastolic). Darker dot indicates a larger number of observations
(greater density) at that cell.
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Table A3: Tests for threshold discontinuities in predetermined variables – unidimensional RDD,
MRDD, and binding-score RDD

Unidimensional RDD MRDD Binding-score RDD
Systolic
frontier N Diastolic

frontier N Combined
frontier

Systolic
frontier

Diastolic
frontier N Combined

frontier N

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Female 0.111 1109 -0.079 764 -0.031 -0.034 -0.026 945 0.030 1730
(0.073) (0.100) (0.057) (0.064) (0.080) (0.064)

Age -2.375 1116 1.296 764 -0.547 -1.273 1.063 945 -1.927 1871
(1.673) (2.209) (1.170) (1.364) (1.613) (1.429)

Note: Unidimensional RDD and binding-score RDD estimates of eqs. (1) and (2), respectively, obtained from local
linear regression, with triangular kernels and optimal bandwidths on each side of the threshold using the MSE optimal
bandwidth selector. MRDD estimates obtained from linear regression estimates of the outcome response surface, eq.(5)
and bivariate kernel estimates of the conditional densities and weights that are combined with the outcome response
estimates using eq.(4) and, for column (5), (3). Standard errors in parentheses are bootstrapped (1000 repetitions) for
MRDD and heteroscedasticity-robust for unidimensional RDD and binding-score RDD. N is the effective number of
observations used in estimation. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure A7: MRDD estimation frontier with wider sample selection window
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Notes: The main MRDD estimates use observations within 0.7 of a standard deviation (SD) of the
centralized and standardized running variable from the respective frontier. This figure shows a wider
sample selection window that is used in the robustness analysis reported in Appendix C Table C2. The
window is extended to include observations up to 1 SD below the diastolic frontier. Otherwise, it is
the same as the window used for the main estimates.

53



Appendix B Details of estimators

Weights

The weights in eq.(3) are defined as follows (Wong et al., 2013):

ωs =
∫
d̃std
i <0

f(s̃stdi = 0, d̃stdi )dd̃stdi

∫
d̃std
i <0

f(s̃stdi = 0, d̃stdi )dd̃stdi + ∫
s̃stdi <0

f(s̃stdi , d̃stdi = 0)ds̃stdi

,

ωd =
∫
s̃stdi <0

f(s̃stdi , d̃stdi = 0)ds̃stdi

∫
d̃std
i <0

f(s̃stdi = 0, d̃stdi )dd̃stdi + ∫
s̃stdi <0

f(s̃stdi , d̃stdi = 0)ds̃stdi

,

where f(s̃stdi , d̃stdi ) is the joint density of the assignment variables s̃stdi and d̃stdi .

Write each joint density as the product of the conditional and marginal densities,

f(s̃stdi = 0, d̃stdi ) = f(d̃stdi ∣ s̃stdi = 0) × fS(s̃stdi = 0) ,

f(s̃stdi , d̃stdi = 0) = f(s̃stdi ∣ d̃stdi = 0) × fD(d̃stdi = 0).

Define,

A = ∫
d̃std
i <0

f(d̃stdi ∣ s̃stdi = 0)dd̃stdi × fS(s̃stdi = 0) ,

B = ∫
s̃stdi <0

f(s̃stdi ∣ d̃stdi = 0)ds̃stdi × fD(d̃stdi = 0).

Then, ωs = A
A+B

and ωd = B
A+B

. We estimate these weights with the bivariate kernel density estimator and

numerical integration (Wong et al., 2013).
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Discontinuities in outcome response surface

Given the specification of the outcome regression eq.(5), the expected outcomes when treated by crossing

the systolic and diastolic frontiers are given by equations (B1) and (B2), respectively.

E(Yi ∣ 1S = 1,1D = 0, s̃stdi , d̃stdi ) = α + γ1s̃stdi + γ2d̃stdi

+ β1 + β2d̃
std
i + β3d̃

std
i × s̃stdi +X ′iδ (B1)

E(Yi ∣ 1S = 0,1D = 1, s̃stdi , d̃stdi ) = α + γ1s̃stdi + γ2d̃stdi

+ β1 + β4s̃
std
i + β5d̃

std
i × s̃stdi +X ′iδ (B2)

The expected outcome response surface for the control group that is below both frontiers is given by:

E(Yi ∣ 1S = 0,1D = 0, s̃stdi , d̃stdi ) = α + γ1s̃stdi + γ2d̃stdi +X ′iδ (B3)

The difference between eq.(B1) and eq.(B3) evaluated at the systolic frontier Fs = (smax
i = 140, dmax

i <

90) = (s̃stdi = 0, d̃stdi < 0) gives the outcome surface discontinuity at that frontier, eq.(6). Similarly, the

difference between eq.(B2) and eq.(B3) evaluated at the diastolic frontier Fd = (smax
i < 140, dmax

i = 90)

= (s̃stdi < 0, d̃stdi = 0) gives eq.(7).
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Appendix C Additional results
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Figure C1: Discontinuity plots for secondary outcomes
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C) Currently treated for high BP
Binding-score RDD
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Notes: Plots of average outcomes conditional on the running variable(s). Outcomes are defined in
Table 1. Non-negative values of the running variable(s) indicate observations that receive a referral
letter. For binding-score RDD, on the x-axis is the running variable, ri =max (s̃stdi , d̃stdi ). For these
plots, we use local linear regression, triangular kernels, and the MSE optimal bandwidth selector.
Each dot is the mean of the respective outcome in a given bin. We use optimal bins obtained with
variance evenly-spaced method using spacing estimators (Calonico et al., 2014a,b, 2015, 2017). For
MRDD, running variables on x-axis and y-axis are s̃stdi and d̃stdi , respectively. For MRDD plots,
each point on the grid represents the predicted value from estimates of eq.(5) at the respective
values of the running variables. Predicted values are computed for each 0.1 increment in the two
running variables. In all plots, we control for sex and age.
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Figure C2: Discontinuity plots for secondary outcomes using
respondents more likely to be false positives
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Notes: Sample restricted to respondents with high likelihood of being false positives for hypertension
at baseline on the basis of time of day and air temperature when BP was measured. Plots of average
outcomes conditional on the running variable(s). Outcomes are defined in Table 1. Non-negative
values of the running variable(s) indicate observations that receive a referral letter. For binding-
score RDD, on the x-axis is the running variable, ri =max (s̃stdi , d̃stdi ). For these plots, we use local
linear regression, triangular kernels, and the MSE optimal bandwidth selector. Each dot is the
mean of the respective outcome in a given bin. We use optimal bins obtained with variance evenly-
spaced method using spacing estimators (Calonico et al., 2014a,b, 2015, 2017). For MRDD, running
variables on x-axis and y-axis are s̃stdi and d̃stdi , respectively. For MRDD plots, each point on the
grid represents the predicted value from estimates of eq.(5) at the respective values of the running
variables. Predicted values are computed for each 0.1 increment in the two running variables. In
all plots, we control for sex and age. 58



Figure C3: Discontinuity plots for secondary outcomes using
respondents less likely to be false positives
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Notes: Sample restricted to respondents with low likelihood of being false positives for hypertension
at baseline on the basis of time of day and air temperature when BP was measured. Plots of average
outcomes conditional on the running variable(s). Outcomes are defined in Table 1. Non-negative
values of the running variable(s) indicate observations that receive a referral letter. For binding-
score RDD, on the x-axis is the running variable, ri =max (s̃stdi , d̃stdi ). For these plots, we use local
linear regression, triangular kernels, and the MSE optimal bandwidth selector. Each dot is the
mean of the respective outcome in a given bin. We use optimal bins obtained with variance evenly-
spaced method using spacing estimators (Calonico et al., 2014a,b, 2015, 2017). For MRDD, running
variables on x-axis and y-axis are sstdi,c and dstdi,c , respectively. For MRDD plots, each point on the
grid represents the predicted value from estimates of eq.(5) at the respective values of the running
variables. Predicted values are computed for each 0.1 increment in the two running variables. In
all plots, we control for sex and age. 59



Table C1: Binding-score RDD estimates of effects of a referral letter - robustness

Alternative specifications Sample restrictions
Treatment group if

Local
quadratic

Uniform
weights

Above both
thresholds

No mean
below threshold

Not already
diagnosed

Combined
frontier N Combined

frontier N Combined
frontier N Combined

frontier N Combined
frontier N

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Primary outcomes

Mean systolic BP 1.667 2131 1.781 1078 4.145 826 2.214 1281 2.847 1058
(2.460) (2.409) (4.802) (2.697) (2.354)

Mean diastolic BP -1.496 2145 -1.615 1109 1.332 738 -1.781 1247 -1.377 1007
(1.562) (1.562) (2.600) (1.712) (1.579)

Hypertensive -0.040 2101 -0.004 1289 0.003 861 -0.003 1240 0.013 1115
(0.076) (0.056) (0.120) (0.076) (0.064)

Secondary outcomes

Ever told have high BP 0.046 2342 0.059 1378 -0.042 1165 0.028 1775 0.032 1082
(0.072) (0.060) (0.108) (0.064) (0.060)

Ever treated for high BP 0.058 2310 0.054 1337 0.019 1056 0.042 1696 0.040 1089
(0.067) (0.058) (0.103) (0.063) (0.051)

Currently treated for high BP 0.060 2290 0.048 1275 -0.029 1023 0.013 1699 0.007 1060
(0.065) (0.057) (0.098) (0.062) (0.051)

Note: See Table 1 for definitions of outcomes. Our main binding-score RDD estimates reported in Table 2 are obtained from local linear
regression with triangular kernel weights. Column 1 shows estimates from local quadratic regression. Columns 3 shows estimates with uniform
weights. The remaining columns show estimates from samples that (a) restrict treated individuals to those who were at or above both the SBP
and the DBP thresholds for receipt of a referral letter at baseline (column 5), (b) exclude treated individuals who had a mean SBP or mean
DBP below the respective threshold at baseline (column 7), and (c) exclude individuals who reported already ever having been diagnosed
with high BP at baseline (column 9). All estimates obtained using optimal bandwidths on each side of the threshold using the MSE optimal
bandwidth selector. Heteroscedasticity-robust standard errors in parentheses. N is the effective number of observations used in estimation.
All estimates are from specifications that control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01∗
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Table C2: MRDD estimates of effects of a referral letter – robustness

Alternative specification
of response surface Wider interval around frontier

Combined
frontier

Systolic
frontier

Diastolic
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6) (7) (8)

Primary outcomes

Mean systolic BP -0.484 -0.037 -1.517 945 0.787 1.183 -0.532 1238
(1.855) (2.041) (2.493) (1.654) (1.827) (2.539)

Mean diastolic BP -0.603 -0.562 -0.699 945 -0.172 -0.231 0.025 1238
(1.066) (1.152) (1.609) (0.955) (1.014) (1.636)

Hypertensive -0.018 -0.017 -0.020 945 0.027 0.025 0.033 1238
(0.055) (0.061) (0.074) (0.046) (0.051) (0.070)

Secondary outcomes

Ever told have high BP 0.107∗ 0.105∗ 0.110 943 0.020 0.011 0.053 1235
(0.056) (0.063) (0.074) (0.048) (0.053) (0.073)

Ever treated for high BP 0.104∗ 0.106∗ 0.099 943 0.026 0.016 0.058 1235
(0.053) (0.060) (0.071) (0.046) (0.051) (0.069)

Currently treated for high BP 0.116∗∗ 0.108∗ 0.134∗∗ 943 0.031 0.009 0.102 1234
(0.051) (0.059) (0.068) (0.045) (0.051) (0.067)

Note: Main MRDD estimates reported in Table 2 use specification of the outcome response surface given by eq.(5) and
observations within 0.7 of a standard deviation (SD) of each centered and standardized running variable from the respective
threshold. Columns (1)-(3) show estimates using the specification of the response surface given in footnote 10. Columns (5)-(7)
show estimates using the main estimate observations plus those up to 1 SD below the diastolic threshold. Bootstrapped (1000
repetitions) standard errors in parentheses. N is the effective number of observations used for estimation. All specifications
control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C3: Binding-score RDD estimates of effects of a referral letter - heterogeneity

Sex Age Distance to health facility
Female Male < 60 years ≥ 60 years < Median ≥ Median

Combined
frontier N Combined

frontier N Combined
frontier N Combined

frontier N Combined
frontier N Combined

frontier N

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Primary outcomes

Mean systolic BP 0.917 1020 2.964 680 -1.169 672 4.897 833 -2.501 854 6.079∗∗ 850
(2.692) (3.257) (2.772) (3.158) (3.119) (2.738)

Mean diastolic BP -0.250 938 -1.790 617 -2.311 624 -0.997 706 -0.388 859 -2.225 751
(1.804) (2.343) (1.824) (2.278) (1.910) (2.103)

Hypertensive -0.013 1057 -0.007 659 -0.018 800 0.023 678 -0.004 918 0.003 765
(0.068) (0.102) (0.074) (0.092) (0.076) (0.084)

Secondary outcomes

Ever told have high BP 0.054 1166 0.032 889 0.092 857 -0.028 1028 0.050 887 0.033 880
(0.072) (0.075) (0.073) (0.086) (0.084) (0.080)

Ever treated for high BP 0.057 1174 0.006 790 0.120∗ 811 -0.046 949 0.073 834 0.013 880
(0.070) (0.076) (0.069) (0.091) (0.084) (0.080)

Currently treated for high BP 0.065 1165 -0.033 747 0.095 889 -0.039 948 0.117 778 0.004 955
(0.070) (0.080) (0.066) (0.093) (0.082) (0.072)

Note: See Table 1 for definitions of outcomes. Columns 9 and 11 show estimates for individuals located below and above the median distance to the nearest
health facility, respectively. As for main binding-score RDD estimates reported in Table 2, we use local linear regression with triangular kernel weights and
optimal bandwidths on each side of the threshold using the MSE optimal bandwidth selector. Heteroscedasticity-robust standard errors in parentheses. N is
the effective number of observations used in estimation. All estimates are from specifications that control for age and sex, except in columns 1) and 2) where
sex is omitted. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01∗
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Table C4: MRDD estimates of effects of a referral letter by sex

Sex
Female Male

Combined
frontier

Systolic
frontier

Diastolic
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6) (7) (8)

Primary outcomes

Mean systolic BP -0.911 -1.258 -0.247 538 1.260 2.475 -2.598 407
(2.422) (2.704) (3.491) (2.771) (3.025) (3.868)

Mean diastolic BP 0.734 0.311 1.544 538 -0.878 -0.326 -2.635 407
(1.378) (1.436) (2.299) (1.733) (1.849) (2.708)

Hypertensive -0.039 -0.081 0.040 538 0.074 0.104 -0.024 407
(0.065) (0.070) (0.103) (0.088) (0.103) (0.111)

Secondary outcomes

Ever told hypertension 0.114 0.108 0.125 536 0.038 0.073 -0.074 407
(0.072) (0.083) (0.106) (0.083) (0.096) (0.104)

Ever treated for hypertension 0.087 0.079 0.102 536 0.084 0.109 0.006 407
(0.070) (0.082) (0.101) (0.073) (0.085) (0.090)

Currently treated for hypertension 0.141∗∗ 0.123 0.177∗ 536 0.043 0.059 -0.008 407
(0.070) (0.082) (0.102) (0.070) (0.082) (0.090)

Note: See Table 1 for definitions of outcomes. MRDD estimates obtained from linear regression estimates of the outcome response
surface, eq.(5) and bivariate kernel estimates of the conditional densities and weights that are combined with the outcome response
estimates using eq.(4) and, for columns (1) and (5), eq.(3). Columns 1-3 and 5-7 show estimates for females and males, respectively.
Standard errors in parentheses are bootstrapped (1000 repetitions) for MRDD. N is the effective number of observations used in
estimation. All estimates are from specifications that control for age. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table C5: MRDD estimates of effects of a referral letter by age group (below or above 60)

Age
Age ≥ 60 Age < 60

Combined
frontier

Systolic
frontier

Diastolic
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6) (7) (8)

Primary outcomes

Mean systolic BP -1.870 -2.948 1.084 382 0.463 2.104 -1.946 563
(3.250) (3.361) (6.179) (2.283) (2.542) (2.914)

Mean diastolic BP -0.649 -0.779 -0.291 382 0.033 0.000 0.082 563
(1.845) (1.796) (3.964) (1.369) (1.467) (1.946)

Hypertensive -0.056 -0.105 0.080 382 0.033 0.049 0.010 563
(0.089) (0.093) (0.168) (0.065) (0.076) (0.088)

Secondary outcomes

Ever told hypertension 0.097 0.111 0.058 380 0.063 0.073 0.050 563
(0.088) (0.094) (0.151) (0.068) (0.082) (0.091)

Ever treated for hypertension 0.120 0.104 0.165 380 0.066 0.086 0.038 563
(0.088) (0.097) (0.145) (0.063) (0.076 (0.084)

Currently treated for hypertension 0.117 0.081 0.217 380 0.089 0.099 0.073 563
(0.087) (0.096) (0.146) (0.061) (0.073) (0.080)

Note: See Table 1 for definitions of outcomes. MRDD estimates obtained from linear regression estimates of the outcome response
surface, eq.(5) and bivariate kernel estimates of the conditional densities and weights that are combined with the outcome response
estimates using eq.(4) and, for columns (1) and (5), eq.(3). Columns 1-3 and 5-7 shows estimates for individuals older than 60 and
younger than 60, respectively. Standard errors in parentheses are bootstrapped (1000 repetitions) for MRDD. N is the effective
number of observations used in estimation. All estimates are from specifications that control for sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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Table C6: MRDD estimates of effects of a referral letter by distance to nearest health facility

Distance to nearest health facility
< Median ≥ Median

Combined
frontier

Systolic
frontier

Diastolic
frontier N Combined

frontier
Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4) (5) (6) (7) (8)

Primary outcomes

Mean systolic BP -3.588 -2.885 -4.960 441 3.723 2.524 5.948 487
(2.685) (3.001) (3.381) (2.447) (2.711) (3.982)

Mean diastolic BP -0.878 -0.394 -1.822 441 0.927 -0.405 3.400 487
(1.563) (1.627) (2.261) (1.464) (1.595) (2.702)

Hypertensive -0.050 -0.062 -0.026 441 0.072 0.053 0.109 487
(0.075) (0.081) (0.102) (0.074) (0.086) (0.122)

Secondary outcomes

Ever told hypertension 0.144∗ 0.180∗ 0.073 440 0.039 0.025 0.065 486
(0.081) (0.096) (0.102) (0.074) (0.089) (0.109)

Ever treated for hypertension 0.192∗∗ 0.226∗∗ 0.125 440 0.017 -0.015 0.075 486
(0.077) (0.091) (0.097) (0.073) (0.086) (0.112)

Currently treated for hypertension 0.203∗∗∗ 0.222∗∗ 0.165∗ 440 0.036 -0.011 0.124 486
(0.076) (0.090) (0.093) (0.071) (0.083) (0.112)

Note: See Table 1 for definitions of outcomes. MRDD estimates obtained from linear regression estimates of the outcome response
surface, eq.(5) and bivariate kernel estimates of the conditional densities and weights that are combined with the outcome response
estimates using eq.(4) and, for columns (1) and (5), eq.(3). Columns 1-3 and 5-7 show estimates for individuals located below
and above the median distance to the nearest health facility, respectively. Standard errors in parentheses are bootstrapped (1000
repetitions) for MRDD. N is the effective number of observations used in estimation. All estimates are from specifications that
control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table C7: Unidimensional RDD estimates of effects of a referral
letter on outcomes

Systolic frontier Diastolic frontier
Effect N Effect N
(1) (2) (3) (4)

Primary outcomes

Mean systolic BP 0.532 1034 2.564 764
(2.374) (3.599)

Mean diastolic BP -2.388 801 -1.088 685
(1.620) (2.375)

Hypertensive -0.028 1073 0.051 600
(0.066) (0.096)

Secondary outcomes

Ever told hypertension -0.004 1239 0.170∗ 523
(0.065) (0.101)

Ever treated for hypertension 0.017 1188 0.204∗∗ 405
(0.065) (0.102)

Currently treated for hypertension 0.022 1162 0.168∗ 528
(0.065) (0.096)

Note: See Table 1 for definitions of outcomes. Unidimensional RDD estimates of
eq.(1) obtained from local linear regression, with triangular kernels and optimal
bandwidths on each side of the threshold using the MSE optimal bandwidth
selector. Standard errors in parentheses are heteroscedasticity-robust. N is
the effective number of observations used in estimation. All estimates are from
specifications that control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table C8: MRDD estimates of effects of a referral letter using a
different specification for estimating the response surfaces – see footnote
10 – with respondents more likely to be false positives

MRDD
Combined
frontier

Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4)

Primary outcomes

Mean systolic BP 1.982 3.132 -0.839 622
(2.413) (2.632) (3.247)

Mean diastolic BP 0.702 0.642 0.850 622
(1.322) (1.390) (1.985)

Hypertensive 0.091 0.104 0.060 622
(0.067) (0.075) (0.089)

Secondary outcomes

Ever told hypertension 0.085 0.085 0.085 622
(0.067) (0.077) (0.085)

Ever treated for hypertension 0.115∗ 0.112 0.121 622
(0.064) (0.074) (0.081)

Currently treated for hypertension 0.112∗ 0.103 0.134∗ 622
(0.063) (0.074) (0.079)

Note: See Table 1 for definitions of outcomes. Main MRDD estimates using
respondents more likely to be false positives and reported in Table 3 use specification
of the outcome response surface given by eq.(5). Columns (1)-(3) show estimates
using the specification of the response surface given in footnote 10. Bootstrapped
(1000 repetitions) standard errors in parentheses. N is the effective number of
observations used for estimation. All specifications control for age and sex. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table C9: MRDD estimates of effects of a referral letter using a
different specification for estimating the response surfaces – see footnote
10 – with respondents less likely to be false positives

MRDD
Combined
frontier

Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4)

Primary outcomes

Mean systolic BP -4.016 -5.486 -0.847 299
(2.857) (3.358) (4.180)

Mean diastolic BP -2.636 -2.223 -3.528 299
(2.008) (2.303) (3.184)

Hypertensive -0.215∗∗ -0.217∗∗ -0.213 299
(0.093) (0.103) (0.143)

Secondary outcomes

Ever told hypertension 0.132 0.134 0.129 297
(0.107) (0.126) (0.145)

Ever treated for hypertension 0.091 0.109 0.053 297
(0.101) (0.119) (0.141)

Currently treated for hypertension 0.132 0.112 0.177 297
(0.100) (0.117) (0.138)

Note: See Table 1 for definitions of outcomes. Main MRDD estimates using
respondents less likely to be false positives and reported in Table 4 use specification of
the outcome response surface given by eq.(5). Columns (1)-(3) show estimates using
the specification of the response surface given in footnote 10. Bootstrapped (1000
repetitions) standard errors in parentheses. N is the effective number of observations
used for estimation. All specifications control for age and sex. ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table C10: MRDD estimates of effects of a referral letter with
respondents more likely to be false positives using a wider interval around
the diastolic frontier

MRDD
Combined
frontier

Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4)

Primary outcomes

Mean systolic BP 3.737∗ 4.435∗ 0.768 816
(2.105) (2.310) (3.250)

Mean diastolic BP 0.725 0.373 2.225 816
(1.183) (1.275) (2.048)

Hypertensive 0.116∗∗ 0.113∗ 0.130∗ 816
(0.058) (0.064) (0.090)

Secondary outcomes

Ever told hypertension 0.008 0.005 0.024 816
(0.060) (0.067) (0.084)

Ever treated for hypertension 0.017 0.000 0.092 816
(0.057) (0.064) (0.081)

Currently treated for hypertension 0.011 -0.012 0.107 815
(0.056) (0.063) (0.081)

Note: See Table 1 for definitions of outcomes. Main MRDD estimates using
respondents more likely to be false positives and reported in Table 3 use observations
within 0.7 of a standard deviation (SD) of each centered and standardized running
variable from the respective threshold. Columns (1)-(3) show estimates using the
main estimate observations plus those up to 1 SD below the diastolic threshold.
Bootstrapped (1000 repetitions) standard errors in parentheses. N is the effective
number of observations used for estimation. All specifications control for age and
sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table C11: MRDD estimates of effects of a referral letter with
respondents less likely to be false positives using a wider interval around
the diastolic frontier

MRDD
Combined
frontier

Systolic
frontier

Diastolic
frontier N

(1) (2) (3) (4)

Primary outcomes

Mean systolic BP -3.262 -3.659 -2.292 393
(2.744) (3.128) (3.899)

Mean diastolic BP -1.818 -0.952 -3.937 393
(1.617) (1.696) (2.843)

Hypertensive -0.145∗ -0.123 -0.199 393
(0.082) (0.089) (0.142)

Secondary outcomes

Ever told hypertension 0.000 -0.037 0.091 390
(0.093) (0.102) (0.156)

Ever treated for hypertension 0.000 0.006 -0.014 390
(0.094) (0.101) (0.160)

Currently treated for hypertension 0.050 0.019 0.126 390
(0.090) (0.098) (0.151)

Note: See Table 1 for definitions of outcomes. Main MRDD estimates using
respondents less likely to be false positives and reported in Table 4 use observations
within 0.7 of a standard deviation (SD) of each centered and standardized running
variable from the respective threshold. Columns (1)-(3) show estimates using the
main estimate observations plus those up to 1 SD below the diastolic threshold.
Bootstrapped (1000 repetitions) standard errors in parentheses. N is the effective
number of observations used for estimation. All specifications control for age and
sex. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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