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1 INTRODUCTION

1 Introduction

The question of how health (dis)investments affect health in older age is difficult to answer due

to the problem of dynamic selection—non-random mortality and sample attrition that causes

composition shifts in the distribution of health over the age profile. For example, because

cigarette smoking causes premature mortality, it truncates the distribution of health, which

generates bias because surviving smokers are relatively healthy. Because of dynamic selection,

and because health itself is often difficult to measure, much of the economics literature focuses

on either inputs to the health production function, assuming they matter for health, or on

the determinants of mortality. This is surprising because the canonical Grossman (1972)

framework jointly models both the health production function and the selection equation that

dictates mortality. As that model makes clear, understanding the age profile of health has

important implications for quality-of-life calculations, optimal treatment patterns, retirement

planning, and a variety of other intertemporal problems.

In this paper, I study the dynamic selection problem in the context of cognitive health

and cognitive decline among older Americans. Cognitive decline leads to dementia, a socially

costly overarching condition that encompasses Alzheimer’s disease (Hurd et al., 2013). Between

2015 and 2017, 11.7% of older Americans reported subjective cognitive decline (Taylor et al.,

2018)—the admission of worsening memory and/or confusion — which likely understates its

prevalence, as recent evidence suggests that many older individuals are unaware of, or in denial

about, the state of their own cognition, especially with respect to financial decision-making

(Finke et al., 2017; Nicholas et al., 2021; Mazzonna & Peracchi, 2020; Ameriks et al., 2022).

Older workers, particularly women, face significant discrimination in hiring, which may be due

to statistical discrimination on the part of cognitive skills and abilities (Neumark et al., 2019).

Furthermore, the extent to which retirement causes cognitive decline has important policy

implications (Fitzpatrick & Moore, 2018; Eibich, 2015; Rose, 2020). While the determinants

of cognitive skill formation (which investments produce skills and when) in young children

have been studied (Cunha & Heckman, 2008; Cunha et al., 2010; Agostinelli & Wiswall, 2020;

Attanasio et al., 2020; Caucutt & Lochner, 2020), there is comparatively little work on the

determinants of natural cognitive skill decline, partly because dynamic selection makes the
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1 INTRODUCTION

problem more difficult.1 Understanding cognitive health, its decline, and the determinants of

its age profile in later life are important in an aging society.

To address the selection problem, I formulate a simple Grossman model of health invest-

ment, cognitive and general health, and mortality. The model reveals that bias in the effect

of a health investment or exogenous characteristic on health that is caused by dynamic selec-

tion depends on both the correlation between cognitive and general health and the correlation

between the health investment or exogenous characteristic and sample exit. The solution to

the model yields dynamic investment demand, health outcome, and selective mortality equa-

tions, and I estimate these dynamic empirical equations jointly using novel (to the economics

literature) longitudinal data from the National Health and Aging Trends Study (NHATS).2

The intuition is to jointly estimate theoretically founded dynamic equations and to flexibly

allow for correlation across equations in the error structure. Doing so allows me to simulate

the model under counterfactual scenarios that vary health (dis)investments and exogenous

characteristics. Because mortality and attrition are explicitly modeled, simulating the model

allows me to characterize the marginal individual and document the bias created by dynamic

selection.

I consider three individual characteristics that may affect the age profile of cognitive decline.

First, “cognitive reserve” theory (Stern, 2002), which stipulates that education builds reserve

that buffers against age-related pathology, was developed, in part, because of epidemiological

evidence that the age profiles of cognitive decline across education are different in levels but

not slopes (Chapko et al., 2018; Lovden et al., 2020). The economic model of this paper shows

that dynamic selection may mask differently sloped age profiles of cognitive health, especially

if the well-known gradient between education and expected longevity (Lleras-Muney, 2005;

Meara et al., 2008; Buckles et al., 2016; Savelyev, 2022; Lleras-Muney et al., 2022) implies that

surviving individuals of lower educational attainment are relatively healthy. Second, I study

the White/Black gap in cognitive health. A growing literature recognizes the significantly

higher rates of dementia diagnoses for Blacks relative to Whites (Kornblith et al., 2022; Yeo,

2022), which may understate differences in cognitive health if Blacks are less likely to receive
1There is a recent literature on skill decline following unemployment (Dinerstein et al., 2022)
2See (Cameron & Heckman, 1998; Mroz, 1999; Darden, 2021) for similar empirical models.
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1 INTRODUCTION

a dementia diagnosis conditional on a given cognitive health level (Lin et al., 2021). As with

education, Castora-Binkley et al. (2013) finds level, but not slope, differences in cognitive

decline by race. Finally, I consider differences in cognitive health by smoking behavior, for

which there is significant medical evidence that the vascular effects of smoking may accelerate

cognitive decline (Peters et al., 2008; Qiu et al., 2009; Corley et al., 2012; Weuve et al., 2012;

Durazzo et al., 2014; Baumgart et al., 2015).

In each case – education, race, and smoking – theory suggests that cross-sectional com-

parisons between groups should be biased because of dynamic selection as each individual

characteristic is linked with mortality and because cognitive and physical health are positively

correlated. Indeed, in NHATS data, pooled regressions of word recall scores (i.e., cross-sectional

comparisons) suggest that this measure of cognitive health is 8.6% higher for college educated

relative to non-college educated respondents; 8.1% lower for Black relative to White respon-

dents; and 2% lower for current cigarette smokers relative to never-smokers. However, simu-

lation of the theoretically founded empirical model suggests that these differences are 17.4%,

18.2%, and 4%.3 I simulate that the marginal person—one who left the sample via death or

attrition because of the respective characteristic—has significantly lower-than-average cogni-

tive scores at a relatively young ages (50s and 60s). As a result, in the context of education

and race, their importance in shaping cognitive decline grows in age, which is counter to the

theory of cognitive reserve.

Emphasizing the distinction between the outcome of interest (i.e., cognitive health) and

the mechanism driving selection (i.e., general health) differentiates this paper from the labor

economics and econometrics literature on incidental truncation and selection (Hausman &

Wise, 1979; Verbeek & Nijman, 1992; Kyriazidou, 1997; Lillard & Panis, 1998; Zabel, 1998;

Ziliak & Kniesner, 1998; Kyriazidou, 2001), whose solution has settled on inverse probability

weighting (IPW) (Wooldridge, 2002).4 In IPW estimation, one estimates a selection equation

via a probit model as a function of initial wave characteristics and uses the resulting predicted
3The results in HRS data are similar. Word recall scores are a standard proxy for underlying latent

cognitive skills and health (Mazzonna & Peracchi, 2020), but in principle a dynamic factor model could be
employed (Cunha et al., 2010; Agostinelli & Wiswall, 2020). Because the focus of this paper is dynamic
selection, I leave a more general treatment of cognitive skills/health for future work.

4In the epidemiology literature, dynamic selection is sometimes referred to as survivorship bias. See
Czeisler et al. (2021) for an example of survivorship bias generated by longitudinal panel attrition in the
context of mental health and COVID-19.

3



1 INTRODUCTION

probabilities to weight the structural outcome equation of interest. The key difference in my

approach is to jointly estimate equations for the outcome of interest (i.e., cognitive health)

and general health, along with equations for health investment and sample exit. Unlike IPW,

the log-likelihood function is non-additive within individuals and correlation in the joint dis-

tribution of unobserved heterogeneity is captured in a semi-parametric way via the discrete

factor method (Heckman & Singer, 1984; Wooldridge, 2002). Allowing for individual-level

heterogeneity proves to really matter, as my simulation results are significantly larger than a)

estimating the system separately, and thus not allowing for correlation across equations; and

b) in the case of both education and the Black/White gap, results generated from an IPW

estimator. While the notion of dynamic selection is separate from the endogeneity of health in-

vestment, flexibly modeling a dynamic system of equations lends itself to traditional solutions

for endogeneity, including instrumental variables and dynamic panel data methods.

This paper also connects to the literature on cognitive skill formation and education. In

seminal work, Cameron & Heckman (1998) discuss the potential for dynamic selection as-

sociated with modeling determinants (parental investments) of the probability of a student

transiting to the next grade level. In that case, as students increasingly leave school over the

age profile, the remaining students, and their parents, are selected. The authors find support

for dynamic selection as an explanation for the finding that parental investments are less im-

portant at higher grades. They use a similar system estimator with unobserved heterogeneity

and conclude that “research reporting piecemeal estimates of the schooling process tends to

understate the true effects of family background on educational attainment as measured by the

coefficients of (separate) logistic transition probabilities.” By connecting empirical work with

a rational decision-making framework (Grossman, 1972), this paper continues in the spirit of

Cameron & Heckman (1998), yet applying this approach to investigate dynamic selection in

the context of health and health investment is unique (Contoyannis et al., 2004; Jones et al.,

2006).

The dynamic system of equations estimator is flexible, and its potential application to other

dynamic selection problems is significant. For example, there exists a long running debate about

the effects of health insurance on health (Card et al., 2009; Polsky et al., 2009; McWilliams

et al., 2010; Polsky et al., 2010; Miller et al., 2021). In the context of Medicare, if the absence
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of health insurance causes premature mortality as the uninsured approach age 65, then those

gaining Medicare insurance at 65 will be relatively healthy. Similarly, dynamic selection may

be important in the large literature on the health effects of retirement (Fitzpatrick & Moore,

2018; Eibich, 2015; Rose, 2020). Finally, in descriptive work, Darden & Kaestner (2022) study

the effects of cigarette smoking on medical care expenditures using linked National Health

Interview Survey/Medicare claims data. That paper shows that cross-sectional comparisons

of smokers and non-smokers over the age profile may dramatically understate the effects of

smoking on medical care expenditures at a given age, but other determinants of medical care

expenditures may suffer from similar dynamic selection problems.

The rest of the paper proceeds as follows. In Section 2, I provide a simple Grossman-

type framework that characterizes the selection problem. The model neatly emits estimating

equations that can be taken to data, and Section 3 explains how to estimate the model via

full-information maximum likelihood. Section 4 presents summary statistics from both the

NHATS and the HRS. The section also demonstrates suggestive evidence of dynamic selection,

and it documents how data are cleaned to feed into the dynamic empirical model. Section

5 presents estimates of the dynamic system of equations model along with simulation results

on model fit and the average treatment effect on the treated estimates. Section 6 provides a

discussion and concludes.

2 Theory

In this section I formalize a theory of cognitive decline and its determinants. The theory builds

from a stylized Grossman (1972) model of health production in that it captures endogenous

investments in health, the evolution of health over the life cycle, and the endogenous nature of

death. I partition health into general health, which, as in Grossman (1972), determines death

when health falls below a given value, and cognitive health, which is potentially correlated

with general health and is valuable in a consumption sense. A richer model would include an

investment rationale for cognitive health, but such a rationale is not needed to demonstrate the

importance of dynamic selection.5 The object of interest is the impact of a given investment
5Halliday et al. (2019) suggest health is predominantly a consumption good after the age of 62 and that

a consumption motive for health investment is needed to explain the increase in health care expenditures
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2 THEORY

on the age profile of cognitive health. The model demonstrates how selective death causes an

identification problem when comparing cognitive health across individuals with different levels

of investment. At a given age, mean cognitive health is conditional on having survived to that

age, and different patterns of investment generate different compositions of both cognitive and

general health. The model demonstrates that the degree of dynamic selection depends on the

correlation between cognitive and general health and on the extent to which (dis)investment

causes changes in general health.

The model is of a cohort of individuals over the age profile. At age a, an individual observes

their state vector, which includes health partitioned into general healthHa and cognitive health

Ca. Conditional on these health values, the individual selects the optimal level of a vector of

health investments Ia, the components of which may be specific to general and/or cognitive

health. Conditional on these investments and the individual’s state, general and cognitive

health evolve to their age a + 1 values. The individual survives (ωa+1 = 0) to age a + 1

if Ha+1 > H, and their optimization problem can be represented by the familiar Bellman

equation:

V (Ha, Ca) = max
Ia

[
U(Xa, Ia;Ca, Ha) + βP (Ha+1 > H)EV (Ha+1, Ca+1

)]
, (1)

where the expectation operator is taken over future general and cognitive health shocks.

In this model, utility is defined over general consumption Xa and investment Ia, which

enters directly because some investments generate utility in unique ways (e.g., smoking and

addiction). Both general health and cognitive health are allowed to shift the marginal utilities

of consumption and investment (Finkelstein et al., 2012). Direct utility is constrained by

a standard static budget constraint without borrowing or saving: Xa = Wa − paIa, where

income is given as Wa and pa is the relevant investment price vector at age a. The second part

of Equation 1 captures the present discounted expected value of life conditional on survival,

where the probability of survival is dependent on health. The evolution equations for general

later in life.
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and cognitive health are given, respectively, as follows:

Ha+1 =
(

1 − dh(Ia, a+ 1)
)
Ha + ϵH

a+1, (2)

and

Ca+1 =
(

1 − dc(Ia, a+ 1)
)
Ca + ϵC

a+1. (3)

The investment vector potentially shifts the respective rates of depreciation d. on each form of

health.6 Depreciation is also a function of age, which captures natural aging and guarantees

“optimal” death. Optimal health investment solves the familiar first-order condition in which

the marginal benefit of investment equals the marginal cost. Included in the first-order condi-

tion is the change in both the probability of survival conditional on a given expected value of

life and the change in the expected value of life conditional on a given probability of survival.

Thus, both dh
Ia

and dc
Ia

are of empirical interest.

The main goal of this paper is to produce better estimates of dc
Ia

, the change in the rate of

depreciation of cognitive health for a change in health investment, across the age profile. For

simplicity, consider a scalar and binary investment such that I ∈ {0, 1}. According to the tim-

ing of the model, the comparison that sheds light on dc
I=1 −dc

I=0 is between the cognitive health

at age a + 1 with and without investment (i.e., Ca+1|Ia=1- Ca+1|Ia=0), which nicely resembles

the potential outcomes framework. However, the model makes clear that any comparison of

cognitive health across investment groups at age a+1 requires individuals to survive to age a+1

such that Ca+1 can be observed. To build intuition about the role of dynamic selection, I focus

on the ϵ ∈ {ϵh
a+1, ϵ

c
a+1} terms, which generate individual-level heterogeneity in their respective

health types. For the theoretical presentation of the model, I assume that the joint distribution

of ϵ is bivariate normal, with zero mean and correlation coefficient ρ. Under this assumption,

the problem is one of incidental truncation (Greene & Zhang, 2003), and the difference in mean

cognitive health at age a+ 1 between those with Ia = 1 and Ia = 0 is given as

E(Ca+1|Ha+1 > H, Ia = 1) − E(Ca+1|Ha+1 > H, Ia = 0)︸ ︷︷ ︸
Difference in Means at Age a + 1

=
(
µc,I=1 − µc,I=0

)
︸ ︷︷ ︸

ATT

+ ρσc

( ϕ(α)
1 − Φ(α) − ϕ(γ)

1 − Φ(γ)

)
︸ ︷︷ ︸

Dynamic Selection Effect

.

(4)
6I abstract away from questions regarding competing risk mechanisms with disease-specific investments.

In this model, it is sufficient to think of investment as potentially having an impact on each form of health.
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The left-hand side of the equation is the difference in the expected cognitive health condi-

tional on survival across investment categories, which is observable in both cross-sectional

and longitudinal data of cognitive health and investment. The right-hand side includes the

average treatment effect on the treated (ATT) of investment on cognitive health at age a(
µc,I=1 − µc,I=0

)
and the dynamic selection effect, where ρ is the correlation between general

and cognitive health, σc is the standard deviation of cognitive health, and the remaining term

is the difference in the inverse Mills ratios across investment groups relative to the threshold

for death. Here, α = H−µH,I=1
σH

and γ = H−µH,I=0
σH

. While this difference is in “units” of health,

the ρσc term coverts it to cognitive health units.

The model, and Equation 4 in particular, identifies a number of challenges for empirical

work. First, at a given age, cross-sectional comparisons of cognitive health across different

levels of investment will be confounded by dynamic selection if cognitive health and general

health are correlated (i.e., ρ ̸= 0) and if investment has a non-zero effect on mortality (i.e.,

dh
I ̸= 0). Second, while the dynamic selection effect is intuitive, its importance will vary

over the age profile. The difference in the inverse Mills ratio reveals the magnitude of the

margin of death due to investment, which depends on the means of health at different levels of

investment. For example, the smoking literature suggests that the survival curves of smokers

and non-smokers are roughly identical up to age 50, at which point they depart significantly

(Doll et al., 2004; Darden et al., 2018). Thus, we should not expect the impact of smoking on

cognitive health to be affected by dynamic selection (as implied by death) before age 50. As

mean health declines naturally (due to aging), and as smoking causes premature mortality, the

dynamic selective effect grows in importance to the extent that cognitive and general health

are correlated. Particularly in the case of smoking, the dynamic effect of health on investment

highlights the importance of modeling investment dynamics jointly with health dynamics.

The comparison in Equation 4 is not limited to endogenous health investment. In fact,

similar comparisons can be made on the basis of any individual characteristic (i.e., exogenous or

pre-determined characteristics), including those that are time invariant. Because the difference

in means on the left side of Equation 4 is at a given age, the dynamic selection bias results from

a cross-sectional comparison that is conditional on a dynamic process (i.e., health). Thus,

researchers studying cross-sectional data cannot solve the selection problem because such data
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3 ECONOMETRICS

do not reveal information on the path that led to being observed at a given age. However,

longitudinal data are also problematic because, in addition to dynamic selection generated

by death, attrition from longitudinal panels generates a second source of dynamic selection.

Furthermore, with the exception of life-cycle longitudinal studies (e.g., the Framingham Heart

Study), longitudinal surveys will suffer from an initial conditions problem. In what follows, I

present an empirical model that is consistent with the theoretical model presented above and

one that may be estimated with standard (i.e., NHATS and HRS) longitudinal surveys.

3 Econometrics

I propose a “quasi-structural” empirical approach that approximates the model presented

above. In principle, the solution to the theoretical model yields demand (for investments)

and outcome (health) equations. My strategy is to structure longitudinal data on cognitive

health, general health, and health investments according to the model timing and to estimate

these equations jointly while allowing for flexible correlation in the joint distribution of the

error structure governing each equation. Because most longitudinal data of individuals over

time include significant variation in age at the initial wave, I change notation in the empiri-

cal model to t, to indicate wave, although I argue that long panels of individuals over time,

with variation in initial ages, may sufficiently capture the age profile. For each equation, I

decompose the error structure into a permanent component and an i.i.d. term, and I allow

the permanent components to be correlated across equations. Rather than assuming joint

normality of the permanent components, I discretize their joint distribution and estimate mass

points that are allowed to differ by equation. The error structure is designed to allow for types

of individuals with certain, permanent patterns. I close the empirical model by allowing the

initial conditions—initial wave cognitive and general health and health investments—to affect

the probability of each type.

The solution of the dynamic model yields a demand equation for health investment:

Iit = f(Iit−1, Hit, Cit, Zit, ν
I
it), (5)

9



3 ECONOMETRICS

where investment demand Iit for individual i at panel wave t is a function of lagged investment

Iit−1; an individual’s health state, Hit and Cit; exogenous characteristics Zit; and unobserved,

individual-level heterogeneity νit. Next, as a function of investment Iit, both general and

cognitive health evolve:

hit+1 = h(hit, Iit, Cit, Zit, ν
H
it ), (6)

and

cit+1 = h(hit, Iit, Cit, Zit, ν
C
it ). (7)

And, finally, the binary selection equation dictates the probability that individual i exits as a

function of both investment and health:

P (ωit+1 = 1) = f(Iit, Hit+1, Cit+1, Zit) + νω
it. (8)

In practice, I separate Equation 8 into separate equations for sample exit due to attrition and

death.

As noted in Cameron & Heckman (1998), the non-linear nature of Equation 8 places signif-

icant emphasis on the distributional assumption made on ν, and joint estimation of Equations

5–8 is feasible only after making assumptions about the error structure {νI , νC , νH , νω}. To

proceed, I decompose the structure of unobserved heterogeneity,

ν .
it = µ.

it + ϵ.
it, (9)

and I assume that µ.
it = µ.

i in all equations such that µ represents time-invariant unobserved

heterogeneity. Rather than making a parametric assumption on the joint distribution of the

µ terms, I propose a discrete factor approach (Heckman & Singer, 1984), which uses a step

function to approximate the joint distribution. This discrete factor random effects (DFRE)

method allows for K unobserved types of individuals, where the researcher estimates both the

points of support and the associated probabilities. The idea is to let µ.
i take one of K values

{µ.
i1, . . . , µ

.
iK} in each of the equations in the model. The probabilities of each type can be

estimated subject to the normalization that µI
i1 = µC

i1 = µH
i1 = µω

i1 = 0. For example, if

within-individual patterns in the data are consistent with a fraction of individuals for whom

10



3 ECONOMETRICS

a certain type of health investment is uncommon and excess mortality is common, then that

type may yield a significantly negative value of µI
ik and a significantly positive value of µω

ik.

In general, selective exits from a sample will cause µi and exogenous characteristicsZit to be

correlated over time because, for example, high values of µmay compensate for low values of Z

in the mortality equation. The assumption that is needed is that µi and the initial condition of

Zt (i.e.,Zt=ic) are uncorrelated conditional on the endogenous variables at the initial condition.

Following Keane & Wolpin (1997), one can model the probability of a given type k as a function

of initial conditions with a logit specification:

τk = ln
(
P (µi = µk)
P (µi = µ1)

)
= ψk

0 + ψk
1Ii,t=ic + ψk

2Hi,t=ic + ψk
3Ci,t=ic, (10)

where t = ic represents the initial wave from which the model occurs. In practice, because

individuals enter typically enter longitudinal surveys at different ages, Equation 10 can be

augmented to allow the initial age at the first wave of a panel to potentially affect the probability

of each type.

To formulate a likelihood function, assumptions are required on the ϵ terms. For simplicity,

and recognizing that the joint distribution of µ already captures cross-equation heterogeneity,

I assume that both ϵH
it and ϵC

it are i.i.d. across equations and time and normally distributed.

Furthermore, I consider a scalar, binary health investment such that I ∈ {0, 1}. Under these

assumptions, the resulting likelihood function contribution from individual i is

Li(Θ) =
K∑

k=1
τk

{
T (i)∏

t=ic+1

{ 1∏
I=0

P (It = I|µI
ik)1[It=I]ϕ(ht − (ĥt|µH

ik))ϕ(ct − (ĉt|µC
ik))

1∏
ω=0

P (ωt = ω|µω
ik)1[ωt=ω]

}}
.

(11)

Equation 11 says that the likelihood contribution from individual i, as a function of the param-

eters to be estimated, Θ, is the weighted sum of likelihood contributions over the K discrete

mass points, with weights given in Equation 10, where each probability or density is conditional

on type µik. Notice that the time horizon, T (i) is dependent on individual i in the age product.

The log-likelihood function can then be calculated over individuals: L = ∑n
i=1 ln(Li(Θ)).

11
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3.1 Identification

Equation 4 highlights the identification problem with cross-sectional comparisons on the basis

of health investments - the average treatment effect on the treated is confounded by the dynamic

selection effect. The standard approach taken in the economics literature is to estimate some

variant of Equation 7 in a single-equation model of the outcome of interest. The standard

parameterization of this regression is:

Cit+1 = α0 + α1Cit + α2Iit + α3Hit + α4Zit + ϵit, (12)

where researchers study within-individual variation (either through individual fixed effects or

through a dynamic model as presented here).

Wooldridge (2002) proposes a solution to the dynamic selection problem in which the

researcher first estimates the probability of sample exit at each wave as a function of initial wave

observable characteristics. The probabilities generated from this first stage probit equation

then form weights for observations entering the structural outcome equation of interest (i.e.

Equation 12). The inverse probability weighting (IPW) estimator is quite flexible and widely

used. However, it is inconsistent with the theory in Section 2 in that it ignores correlation

between the outcome of interest and the mechanism behind sample exits, in this case, the

correlation between cognitive and general health, ρ. Theory suggests that Hit is endogenous

in the model of cognitive health and cognitive health investments, so controlling for Hit while

not explicitly modeling its dynamics and failing to allow for correlation between general health

and cognitive health may generate biased estimates of the relationship between Iit and Cit+1.

Equations 5-11 provide a flexible way for researchers to model a wide variety of simultane-

ously chosen disease-specific and general health investments and subsequent health outcomes

while controlling for dynamic selection. While the traditional Grossman (1972) framework

focuses on endogenous health investments (e.g., medical care), the empirical model above can

easily illuminate the impacts of exogenous characteristics on health. In the case of education,

most research on the effect of education on health uses compulsory schooling laws for plausi-

bly exogenous variation in educational attainment, but they focus on mortality as the health

outcome (Lleras-Muney, 2005). Given the focus on cognitive health in later life, I assume that
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4 DATA

education is pre-determined conditional on the factor µ; and similarly, I assume that race is

exogenous. Under these assumptions the ATT in Equation 4 takes a causal interpretation.

Cigarette smoking is a natural endogenous health investment a la Grossman (1972), and I in-

clude tobacco control laws in the smoking equation as natural exclusion restrictions - variables

that only affect health outcomes through their effects on smoking behavior.

The system of dynamic equations model makes a number of simplifying assumptions. Most

notably, correlated unobserved heterogeneity is assumed to be time-invariant and separable

within each equation, and the time-varying shocks (i.e., the ϵ terms) are assumed to be i.i.d.

over equations and time. These assumptions preclude dynamic unobserved heterogeneity and

random coefficients. Additionally, all dynamics are assumed to work through one-period lags of

other endogenous variables, which precludes richer lag structures or other capital stocks (e.g.,

addictive capital in the case of smoking). These assumptions — on the structure of the empirical

model and the treatment of each individual characteristic — are maintained throughout the

paper. The idea is to contrast ubiquitous, single equation estimators (e.g., IPW), which make

equally strong assumptions, but which fail to account for the endogeneity of the selection

mechanism (i.e., general health), with a simple dynamic system of health investments, health,

and selective exits. Importantly, the empirical model is sufficiently flexible to relax these

assumptions, and, in the case that the relevant tradeoff does not include intertemporal tradeoffs,

the model allows for ex ante policy evaluation that is typically only possible in fully structural

models.

4 Data

This section presents summary statistics and institutional details from both the National

Health and Aging Trends Study (NHATS) and the Health and Retirement Study (HRS).

Both data sources are nationally representative, but they emphasize different time periods

and different parts of the age distribution. The NHATS sample, which began in 2011, is older

by roughly 10 years, on average, so while selection into the NHATS may generate more of an

initial conditions problem, it offers a much richer picture of individuals in their late 70s and

80s relative to the HRS. Meanwhile, because HRS waves are biennial (after 1996), 11 waves of

13
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HRS data allow me to study individuals for over 20 years, providing a richer view of dynamic

selection. Throughout the paper, I treat these data sources separately. Appendix Table 1

provides details on the sample construction for each panel.

The theory and empirical models presented above require consistently measured, contin-

uous representations of cognitive and general health. Cognitive ability and cognitive health

are not necessarily the same thing, but in clinical settings for the elderly, their measurement

is strikingly similar.7 In both data sources, respondents receive a cognitive skills assessment

exam in which one component was a word recall test. After hearing a panel of 10 words, an

individual was asked to recite as many words as they could remember (immediate recall); after

five minutes, they were asked again to recite as many words as they could remember (delayed

recall). Memory loss, particularly immediate recall, is a leading indicator of dementia and

cognitive decline, and such tests are widely used to evaluate cognitive health. In this paper, I

sum the immediate and delayed word recall scores to form a word recall measure that ranges

from 0 to 20 words. This measure has the appeal of being relatively continuous and easily

interpretable. A more general treatment of cognitive health would be to estimate the factor

structure of several measures as they relate to latent cognitive health (Cunha et al., 2010),

including observable measures of basic knowledge (e.g., correctly naming the President of the

United States). However, for the purposes of documenting dynamic selection in the deter-

minants of cognitive health and ability, word recall is sufficient. Similarly, I use the count of

chronic conditions that an individual reports at a given wave as a quasi-continuous measure of

general health.8

4.1 The National Health and Aging Trends Study

The NHATS began in 2011 as a nationally representative, longitudinal survey of Medicare

beneficiaries aged 65 or older. The initial sampling procedure drew from Medicare enrollment

files to produce a sample of 12,411 individuals, which over-sampled older and Black Americans.

Subjects proceeded to receive annual interviews going forward, with information on physical,
7National Institute on Aging defines dementia as the “loss of cognitive functioning - thinking, re-

membering, and reasoning - to such an extent that it interferes with a person’s daily life and activi-
ties.”https://www.nia.nih.gov/health/what-is-dementia.

8Appendix Table 2 lists the conditions that contribute to general health in each data source.
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mental, and emotional health, activities of daily living, the care environment, assets and so-

cioeconomic characteristics, and interactions with the medical system. Because respondents

were lost to attrition and death, in 2015, the sample was replenished to maintain the original

sample sizes by age and race.

I use nine waves (2011–2019) on the original 2011 cohort. Of the 12,411 sampled individuals

in 2011, 8,245 proceeded to complete wave 1. Of those 8,245, I consider a sample of 5,750 whose

records included complete information on cognitive health, physical health, education, race,

smoking behavior in all interviews in which the person remained alive and in the sample. The

data are geocoded such that I am able to merge state of residence-by-year information on local

area tobacco prices, consumption per capita, and tax revenue to the panel.9 The data provide

rich information on behavior and health at older ages of a recent cohort. To the best of my

knowledge, this paper is the first in the economics literature to study these data.10

4.2 Health and Retirement Study

The data from NHATS nicely complement the more widely used panel information from the

HRS, which is a household-level panel study that began in 1992 to address “important questions

about the challenges and opportunities of aging.” Like many researchers, I use data from the

RAND HRS Longitudinal File, which has standardized many of the HRS data items across

waves, including many of the derived variables such as cognitive health scores and chronic

health conditions. Before 1996, the word recall questions used to proxy for cognitive health

used 20-word panels. As a result, I use data starting in 1996, when HRS administered more

standard 10-word recall panels, from both HRS and Study of Assets and Health Dynamics

(AHEAD) cohorts for up to 11 waves through 2016. Respondents were interviewed every two

years. At the 1996 wave, I have information on 12,402 individuals in the RAND file, and I

consider longitudinal data on 11,262 of them, keeping those with complete records.11

9Local area characteristics on tobacco consumption and prices come from Orzechowski and Walker: The
Tax Burden, 2019.

10More information is available at National Health and Aging Trends Study.
11See Appendix Table 1 for sample construction details.
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4.3 Sample Statistics

Table 1 provides initial wave (wave 1 in the case of the NHATS, wave 3 in the case of the HRS)

summary statistics for both the NHATS (2011) and the HRS (1996) samples. The top row of

Table 1 presents the mean of the summed (immediate and delayed) word recall tests at wave 1

for the overall sample of each data source as well as for college graduates, Blacks, and current

smokers. In general, HRS respondents have higher word recall scores overall (10.118 versus

8.140), and the patterns across data sources by education, race, and smoking status are similar

— those with a college degree have higher word recall scores while Blacks have significantly

lower word recall scores. Smokers have slightly higher word recall scores in both data sources,

which itself is suggestive of dynamic selection.

To help explain differences in cognitive ability, Table 1 also reports the number of “chronic

conditions” with which an individual has ever been diagnosed. Because different conditions

contribute to the chronic condition count in each data source, they are not directly comparable

across sources, but within each data source, college graduates have fewer chronic conditions

and Black respondents had more; smokers have more conditions in the NHATS and fewer in the

HRS, which again is suggestive of dynamic selection in that the smokers observed smoking at

later ages must be relatively healthy to have not experienced premature mortality. At wave 1,

8.2% of NHATS respondents reported currently smoking, while 44.3% of NHATS respondents

reported smoking in the past. Those statistics for the HRS (wave 3) are 17.0% and 25.3%,

respectively.

The percentages of Black respondents, which is coded as any participant who identifies as

“Black, non-Hispanic,” are 21% and 13.1% for the NHATS and the HRS, respectively. The

distributions of education are roughly similar between the two cohorts, with about 22.5% and

16.8% of respondents claiming a college degree or higher. The mean age in the NHATS sample

at wave 1 was 76.4, whereas the mean age in the HRS was 66.2, and given the length of the

panels and the variance in ages at wave 1, the differences in mean age make studying both the

NHATS and the HRS appealing to get a wider coverage of the age profile. In both samples,

roughly 58% of individuals are female.

Because the NHATS data include geocoded state of residence identifiers, I construct a mea-
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Table 1: Initial Wave Summary Statistics

NHATS HRS

Overall College Black Smoker Overall College Black Smoker

Word Recall Score 8.140 9.540 7.051 8.411 10.118 11.686 8.903 10.331

3.283 3.124 2.994 3.227 3.804 3.564 4.000 3.783

Chronic Conditions 2.503 2.196 2.614 2.532 1.520 1.205 1.796 1.465

1.555 1.442 1.522 1.687 1.291 1.130 1.328 1.342

Current Smoker 0.082 0.043 0.114 1.000 0.170 0.103 0.207 1.000

Former Smoker 0.443 0.457 0.402 0.000 0.253 0.311 0.256 0.000

Race

White 0.707 0.802 0.000 0.637 0.843 0.900 0.000 0.810

Black 0.210 0.139 1.000 0.291 0.131 0.069 1.000 0.159

Other 0.083 0.059 0.000 0.072 0.026 0.031 0.000 0.031

College Education 0.225 1.000 0.149 0.116 0.168 1.000 0.088 0.101

Age/100 0.764 0.756 0.753 0.726 0.662 0.647 0.651 0.622

Female 0.571 0.428 0.596 0.578 0.588 0.456 0.649 0.567

Nonmetro Residence 0.190 0.135 0.109 0.232

AHEAD 0.372 0.294 0.308 0.201

HRS 0.628 0.706 0.692 0.799

Obs. To Die 0.236 0.188 0.222 0.253 0.518 0.406 0.552 0.580

Obs. To Attrit 0.436 0.370 0.479 0.498 0.157 0.165 0.143 0.156

n 5,750 1,294 1,206 474 11,262 1889 1,474 1,913
Notes: The table presents initial wave (wave 1 in the NHATS, wave 3 in the HRS) summary statistics.
The NHATS data include information on 5,750 individuals. Data labeled HRS are in fact the combined
HRS and AHEAD cohorts, and they include information on 11,262 individuals. The HRS data were
recorded in 1996, and the NHATS data were recorded in 2011.
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sure of rurality based on rural-urban continuum codes. Roughly 19% of NHATS respondents

lived in an area that was neither classified as metropolitan or metropolitan adjacent.12 In ad-

dition, 62.8% of the HRS sample come from the main HRS survey, while the remaining 37.2%

come from the AHEAD sample. Finally, Table 1 also hints at the potential for dynamic selec-

tion. Of all NHATS participants, 23.6% are observed to die over the ensuing nine waves, and

43.6% are observed to leave the sample through attrition. In the HRS, those percentages are

51.8% and 15.7%, respectively, and they make clear that sample compositions may potentially

shift dramatically over time.

The theory in Section 2 says that cross-sectional comparisons of cognitive health at a

given age reflect the ATT of a health investment or exogenous characteristic plus the dynamic

selection effect. To investigate the left-hand side of Equation 4, Figure 1 presents the age

profile of cognitive health overall and for those with a college education, Blacks, and smokers

from each data source. In both NHATS and HRS data, word recall declines in age both overall

and in each subgroup. Overall mean word recall falls from age 69 to age 90 by roughly 30-

40%, and furthermore, with the exception of older Blacks and Smokers in the NHATS data,

the age profiles are relatively parallel for the college educated, Black, and smoker groups,

especially in the HRS. Figure 1 demonstrates the problem with cross-sectional comparisons

over the age profile: in addition to the effects of individual characteristics on cognitive health,

the health composition of the samples are potentially changing through non-random selective

exits. Furthermore, in the case of smoking, smoking behavior itself is changing, often through

non-random smoking cessation due to health changes.13 Indeed, the literature has emphasized

the dynamic nature of smoking and health, where both smoking affects health and health

affects smoking (Arcidiacono et al., 2007; Darden, 2017).

One way to see the importance of dynamic selection is through Figure 2. In each figure,

word recall is plotted over the age profile by the highest age of observation. For example, at

age 81, the subset of the sample who live to at least age 90, as shown by the red line, has a

mean word recall score that is 1.5 to 2 words higher than the mean word recall score for the
12The “Non-Metro” indicator here includes RUC codes 5, 7, and 9. Darden (2021) uses a similar rural

definition in studying rural/urban smoking disparities.
13Darden & Kaestner (2022) use panel data on medical expenditures to demonstrate how cross-sectional

comparisons understate the impact of smoking on health care usage, but their study only has a snapshot of
smoking behavior and cannot decompose the effects of smoking cessation.
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Figure 1: Age Profile of Cognitive Health by Smoking and Race.

a.NHATS b. HRS

Notes: The figures present the age profile of cognitive health (as measured by the sum of immediate
and delayed word recall) both overall (Black solid line) and for college graduates (blue dashed
line), Black respondents (red dotted line), and current smokers (green dashed line). Person/wave
observations are 28,429 and 76,831 in the NHATS and the HRS, respectively.

subset of individuals who live to be at least 81, as shown by the blue line.14 At a given age,

the vertical distance between these lines makes clear that the sample composition of cognitive

health changes through selective exits, and it demonstrates that the magnitude of the selection

is not constant in age.

In Equation 4, the dynamic selection effect is the product of the correlation between general

and cognitive health (i.e., ρ) and a term that depends on how the individual characteristic of

interest affects general health. To investigate the correlation between physical and cognitive

health, Figure 3 presents bar charts of word recall scores by the count of chronic health con-

ditions for the NHATS and the HRS samples. The red lines represent the 95% confidence

intervals for each count. In both data sources, there is a clear negative gradient between phys-

ical and cognitive health. For example, in the NHATS sample, word recall is one full word

lower for individuals with four chronic health conditions relative to zero. Similar results exist

in the HRS sample, and in all cases the confidence intervals reveal statistical differences across

chronic health counts.

The second piece of the dynamic selection effect is the role of investments or characteristics

on sample exit. Figure 4 presents a series of Kaplan-Meier survival curves, where survival is
14Confidence bands are omitted from the graph for clarity. Appendix Table 3 provides 95% confidence

intervals for each age.
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Figure 2: Age Profile of Cognitive Health by Highest Age of Observation.

a. National Health and Aging Trends Study b. Health and Retirement Study

Notes: Each figure presents the age profile of the sum of immediate and delayed recall word scores
for different maximum ages of observation. For example, the line labeled “81” in Figure 2a shows
the observed age profile of word recall for NHATS respondents who lived to at least age 81. For
a given age, the vertical distance between lines is suggestive of dynamic selection. The NHATS
sample are of individuals over up to 9 years, and the HRS sample are of individuals over up
to 21 years. Appendix Table 3 provides 95% confidence intervals for each figure. Person/wave
observations are 28,429 and 76,831 for the NHATS and the HRS, respectively.

Figure 3: Cognitive Health by the Count of Chronic Health Conditions

a. NHATS b. HRS

Notes: The figures present the sum of word recall scores by the count of chronic health conditions
in the NHATS and the HRS. Person/wave observations are 28,429 and 76,831 in the NHATS and
the HRS, respectively.

defined as participation in the sample such that a person does not die or leave through attrition.

Figures 4a and 4b show the Kaplan-Meier survival curves for those with and without a college

education in the NHATS and HRS, respectively, where a small gap in sample participation

opens by the early seventies. Figures 4c and 4d show similarly small gaps between Blacks and
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Whites/Other groups in the two data sets. Unsurprisingly, Figures 4e and 4f show much larger

participation gaps between current smokers and non-smokers.15

15One concern is that, by focusing on the age profile with longitudinal data for 10 to 20 years, cohort
effects may generate differential survival patterns. I find similar survival pictures over the wave profile,
which suggests that gaps between groups are real.
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Figure 4: Kaplan-Meier Survival Curves by Education, Race, and Smoking Status

a. NHATS: Education b. HRS: Education

c. NHATS: Race d. HRS: Race

e. NHATS: Smoking f. HRS: Smoking

Notes: Figures 4a and 4b show the Kaplan-Meier survival curves for college graduates and non-
college graduates. Figures 4c and 4d show similar curves for White/other respondents and Black
respondents. Figures 4e and 4f show survival curves for smokers and non-smokers. In all cases,
survival is defined as remaining alive and actively participating (i.e., not leaving through attrition)
in the sample. Person/wave observations are 28,429 and 76,831 in the NHATS and the HRS,
respectively.

What can be inferred from Figures 1, 3, and 4? First, Figure 1 provides suggestive evidence
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that education, race, and smoking are important factors in cognitive decline, but only in levels

— the rate of decline is similar across subgroups, producing parallel age profiles. Second, the

combination of results in Figures 3 and 4 suggest that the level differences in cognitive health

by education, race, and smoking are potentially understated. Physical and cognitive health are

positively correlated (Figure 3), and all three characteristics are related to sample participation

probabilities(Figure 4). Finally, the dynamic selection effect is potentially not constant across

the age profile. For example, Figure 4 suggests that the White/Black survival gap changes at

older ages. To the extent that the correlation between physical and cognitive health changes

over time, we would expect the bias induced by dynamic selection to change. In the follow-

ing section, I present results from simple cross-sectional comparisons; the inverse probability

weighting estimator; and my preferred discrete factor random effects system estimator.

5 Results

This section starts by presenting estimates from Equation 12, the single equation dynamic

OLS estimator. I contrast results with and without inverse probability weights derived from

a separately estimated selection equation. The remainder of the section describes the imple-

mentation, estimation, and simulation of the discrete factor random effects system estimator.

5.1 Regression Modeling

The first two columns in Table 2 report selected estimates of the parameters in Equation 12 for

each data source, estimated on data from all waves except for the initial wave. In the NHATS,

the mean, regression adjusted, difference in word recall scores between college graduates and

those with less than a college education is 0.7 words. Relative to the initial wave mean of 8.14

words, this difference is roughly 8.6%. Relative to White respondents, Black respondents mean

word recall score was 0.666 words lower, or roughly 8.2% lower. The mean difference between

current smokers and non-smokers is -0.162 words, or 2% lower. In the HRS, the difference

in mean word scores for college graduates is 0.828 words, or 8.2%; the White/Black gap is

0.776 words, or 7.7%; and the Smoking gap is 0.111 words, or 1.1%. In both NHATS and

HRS, the education and race differences are statistically significant at all conventional levels
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of significance, whereas the smoking results are marginally statistically significant.

An early test for the presence of dynamic selection comes from Verbeek & Nijman (1992),

who proposed to re-estimate the OLS model with a control for the number of waves completed.

The null hypothesis that the parameter on this variable is zero is consistent with there being no

differences in mean word recall scores for those individuals with more frequent contributions

to the likelihood function. In both NHATS and HRS, the p-value on this test is 0.000, which,

consistent with Figure 2, provides evidence that those exiting the sample earlier are not random.

To investigate, I estimate the inverse probability estimator of Wooldridge (2002), in which the

researcher estimates a probit model of sample exit in waves t ∈ {2, . . . , T} as a function of

initial wave t = 1 characteristics, and then uses the resulting predicted probabilities of sample

exit as weights in the structural equation of interest. Identification comes from a “selection

on observables” argument: conditional on observable characteristics in wave 1, sample exit

is as good as “ignorable” in the structural equation. Table 2 presents estimates of the key α

parameters from Equation 12 while weighting by the inverse of the predicted probability of

sample exit in each wave generated from a probit model.16

The table shows that the inverse probability weights make little difference relative to the

dynamic OLS model in either sample for education or race. In the NHATS, the White/Black

gap increases in magnitude by 0.1 words while the smoking gap falls in magnitude by 0.05

words. The smoking gap, which was marginally statistically significant is no long statistically

significant at normal significance thresholds. In the HRS, the college gap falls in magnitude by

0.1 words while the smoking gap increases in magnitude by 0.1 words. In neither NHATS nor

HRS do the results with IPW move in uniform directions relative to the OLS estimates.

The IPW is limited in two ways. First, and most importantly, the IPW does not jointly

model general health. Initial wave general health (i.e., Hit=1) influences the probability of

selective exits later in the panel, and I have controlled for general health in the structural

cognitive health equation, but there is no feedback from general health to cognitive health.

Furthermore, in the absence of directly modeling general health, there is no correlation be-

tween determinants of general health and the determinants of cognitive health. Yet the theory

suggests that this correlation helps to determine the sign of the dynamic selection bias. Second,
16See Appendix Table 4 for probit estimates.
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Table 2: Cognitive Scores on Education, Race, and Smoking Behavior.

OLS IPW DFRE

NHATS n = 22,679 Person/Wave Est. St. Err. Est. St. Err. Est. St. Err.

College 0.700 0.035 0.708 0.042 1.419 0.059

Black -0.666 0.041 -0.766 0.050 -1.484 0.057

Current Smoker -0.162 0.078 -0.116 0.086 -0.340 0.101

HRS n = 65,569 Person/Wave

College 0.828 0.035 0.732 0.036 -1.304 0.044

Black -0.776 0.041 -0.754 0.068 1.345 0.047

Current Smoker -0.111 0.044 -0.217 0.049 -0.175 0.043
Notes: The first two columns of the results report selected parameter estimates and
standard errors from Equation 12. The last two columns report selected results from
the inverse probability weighting estimator. The top panel reflects data from NHATS
waves 2–9, and the bottom panel reflects data from HRS waves 2–11. All standard
errors are clustered at the individual level. The p-values for the Verbeek & Nijman
(1992) test on the coefficient on the number of completed waves are 0.000 for both
samples. Person/wave observations are 22,679 and 65,569 in the NHATS and the
HRS, respectively, which reflect the same sample above except for the initial wave,
which is dropped to accommodate the dynamic model.

in the case of smoking, the IPW estimator offers no model of smoking behavior, which is itself

clearly dynamic and subject to unobserved factors that shift prevalence. In fact, the dynamics

of quitting are closely related to the dynamics of health as poor health often precedes smoking

cessation.17 The dynamic system of equations in Section 2 addresses these points, in addition

to allowing for theoretically grounded counterfactual simulations. In the following subsection,

I explain how I apply that estimator to both the NHATS and the HRS data.

5.2 Dynamic System Estimator

Applying the dynamic system estimator from Section 2 requires several assumptions and mea-

surement decisions. To begin, consider the unobserved type equation (Equation 10) as a

function of initial wave endogenous variables. The idea is to allow initial wave endogenous

variables to shift the type probabilities such that these types reflect the endogenous histories

leading to participation in a panel study. In this context, I include time-varying endogenous

variables such as initial wave smoking, general health, and cognitive health. I also include an
17In the case of older individuals, virtually all smokers have a long history of smoking—there is little to

no smoking initiation in this group.
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indicator for former smoking (i.e., those with a smoking history but who have quit by the initial

wave). Finally, given the focus on selection, the age that someone arrives at the panel is itself

endogenous. Thus, I specify the probability that individual i is of type k as

τk = ln
(
P (µi = µk)
P (µi = µ1)

)
= ψk

0 + ψk
1Si1 + ψk

2Fi1 + ψk
3Hi1 + ψk

4Ci1 + ψk
5Agei1. (13)

Initial wave observed heterogeneity affects the probability of each unobserved type as in

Equation 13. To implement the empirical model in waves 2 through 9 (in the case of the

NHATS) or 11 (in the case of the HRS), the model proceeds as outlined in Section 2. I treat

smoking behavior as a per-period endogenous health investment modeled as a function of

existing health, lagged smoking behavior, and exogenous characteristics Zit. For individuals

who quit smoking during the panel, an indicator for former smoker turns on, and for individuals

who relapse, the former smoker indicator turns off. In each data source, smoking is measured as

recent smoking behavior prior to the interview wave, so I structure wave t smoking as affecting

cognitive health as measured immediately at wave t. General health Hit is the sum of chronic

conditions up to period t, so I assume that general health at t affects smoking behavior Sit,

both of which shift cognitive health at t. Sample exits occur both from mortality and from

attrition, and in practice, I models these types of exits separately as a function health and

smoking and exogenous variables. Both education and race enter directly in all equations of

the model. I treat race as an exogenous variable. In the case of education, the assumption

is that the level of educational attainment is pre-determined relative to the time frame of the

model and, conditional on µ and other characteristics in Zit, exogenous.

In NHATS and HRS samples, I estimate parameters that dictate smoking behavior, cog-

nitive health, general health, mortality, and attrition jointly following from the likelihood

function in Equation 11. To arrive at the number of points of support of the distribution of

unobserved heterogeneity (i.e., K), I progressively add points of support, re-estimating the

entire model until the log-likelihood function fails to improve. For both the NHATS and the

HRS model, I arrive at K = 5 points of support, which implies that I estimate 102 and 104

parameters in the NHATS and the HRS samples, respectively. The respective log likelihood

values are -83,396.50 and -232471.99. Ultimately, to compare the system results to those in
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Table 2, I rely on simulations that change education, race, and smoking information. However,

to highlight the importance of unobserved heterogeneity, Table 3 presents estimates of the

cognitive health equation when estimated separately (“Single Equation”) and when estimated

jointly with all other equations (“DFRE”). The cognitive health specification is very simple;

it does not include polynomials in age or interaction terms. As the parameters capture level

shifts, changes in the slope of the age profile of cognitive health will come through modeled

composition changes due to selection.

Interpreting the parameters in Table 3 is challenging, especially in the case of the full system,

but some patterns emerge. First, in both NHATS and HRS, the parameter estimates on college

graduate and Black are significantly larger in magnitude in the system DFRE specification

relative to the (unweighted) single equation estimator. In the case of education, these results

are consistent with a significantly negative selection effect: Figure 3 shows a positive correlation

between general and cognitive health, and education encourages sample participation, through

either longer longevity and/or lower attrition. In the case of race, the dynamic selection effect

is positive because Blacks leave the sample at a greater rate. For current cigarette smoking,

in both NHATS and HRS, the negative effects grow in magnitude, although only in NHATS

do the effects grow beyond those implied by the IPW estimator. In the NHATS sample,

there is not sufficient variation in smoking behavior to identify former smoking separately from

current smoking in the cognitive health equation conditional on former smoking entering in the

determination of unobserved type. For this reason, I also omit former smoking from the single

equation specification. Because the magnitude of these results is better presented through

simulation, I present parameter estimates of the smoking, general health, mortality, attrition,

and initial conditions equations in Appendix Tables 5–8.

To gain intuition on the estimated distribution of unobserved heterogeneity, Table 4 pro-

vides estimates of the µ intercept parameters and the type probabilities for each data source.18

To identify the µ terms, in each data source, I normalize µ.
1 = 0 in each equation. Thus, type

one serves as the baseline to which other types are assessed. As an example, relative to this

normalization in the NHATS data, type 4 individuals, who constitute roughly 10.3% of the

sample in wave one, are significantly less likely to smoke; they have significantly lower word
18Appendix Table 8 provides the estimated ψ parameters from Equation 10.
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Table 3: Cognitive Scores on Smoking Behavior: System Estimator

NHATS HRS

Single Equation DFRE Single Equation DFRE

Est. St. Err. Est. St. Err. Est. St. Err. Est. St. Err.

College Graduate 0.700 0.039 1.273 0.055 0.828 0.028 1.233 0.044

Race

Black -0.768 0.044 -1.337 0.058 -0.776 0.033 -1.223 0.050

Other -0.639 0.068 -1.095 0.101 -0.595 0.066 -1.135 0.095

Current Smoker -0.162 0.070 -0.311 0.097 -0.111 0.037 -0.193 0.053

Former Smoker 0.006 0.026 -0.028 0.040

L. Word Recall Score 0.560 0.006 0.213 0.007 0.462 0.003 0.184 0.004

Chronic Conditions -0.046 0.011 -0.072 0.014 -0.131 0.008 -0.156 0.011

Age/100 -8.913 0.259 -14.433 0.347 -8.595 0.171 -12.942 0.202

Female 0.389 0.034 0.713 0.048 0.616 0.023 0.915 0.034

Nonmetro Residence -0.110 0.042 -0.112 0.056

AHEAD -0.287 0.036 -0.362 0.048

Constant 10.738 0.229 18.931 0.306 11.124 0.133 13.919 0.153

Permanent Mass Points

µc
2 -1.019 0.093 6.151 0.079

µc
3 2.174 0.063 4.068 0.060

µc
4 -4.250 0.091 2.519 0.142

µc
5 -2.024 0.051 2.183 0.047

Notes: The table presents estimates of the word recall equation for the NHATS and the HRS
data. For each data source, the first two columns present estimates and standard errors when
estimating this equation separately from other equations in the model. The second two columns
present estimates and standard errors from my preferred system estimator in which all equations
are estimated jointly. Samples sizes are 28,429 and 76,831 person/year observations for the
NHATS and the HRS, respectively.
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recall scores; and are significantly more likely to attrit from the sample. Furthermore, individ-

uals with higher counts of chronic health conditions in wave 1 are significantly more likely to

follow type 2 patterns (see Appendix Table 8), which constitute roughly 31.1% of the sample

and are significantly more likely to attrit from the sample (but are not more likely to die). In

the HRS, type 4 individuals, who make up 2.4% of the sample, have significantly higher word

recall scores, but also have significantly greater numbers of chronic health conditions, and they

are more likely to attrit from the sample and die.

Table 4: Estimated Unobserved Factors

Smoking Cognitive Health General Health Attrition Death

Probability Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.

NHATS

µ1 0.289 0.000 . 0.000 . 0.000 . 0.000 . 0.000 .

µ2 0.311 -0.114 0.345 -1.019 0.093 0.005 0.018 3.769 0.176 -10.283 0.000

µ3 0.075 0.145 0.452 2.174 0.063 0.006 0.020 0.956 0.278 0.265 0.212

µ4 0.103 -0.977 0.399 -4.250 0.091 -0.009 0.020 1.664 0.229 -0.343 0.164

µ5 0.222 -0.337 0.265 -2.024 0.051 -0.009 0.014 -0.335 0.350 -0.314 0.127

HRS

µ1 0.109 0.000 . 0.000 . 0.000 . 0.000 . 0.000 .

µ2 0.071 0.349 0.201 6.151 0.079 0.012 0.015 0.509 0.261 0.544 0.117

µ3 0.372 0.190 0.145 4.068 0.060 0.000 0.010 0.465 0.177 -0.010 0.079

µ4 0.024 -0.148 0.328 2.519 0.142 1.097 0.024 1.823 0.295 1.568 0.153

µ5 0.425 0.207 0.136 2.183 0.047 -0.008 0.010 0.309 0.185 -0.233 0.076
Notes: The table presents the estimated µ factors and the associated standard errors from each equation
in the DFRE system of equations model. These estimates are generated from estimating all equations
jointly. Estimated factors are relative to the normalization that all factors associated with type 1 are
zero.

Tables 3 and 4 provide evidence of the importance of jointly estimating health investment,

health, and selection equations and allowing for unobserved heterogeneity, but parameters

themselves are difficult to interpret because of the complexity of the system. In the next

subsection, I simulate the estimated system model to both assess model fit and to demonstrate

the role of dynamic selection bias over the age profile.

5.3 Simulation

To simulate the estimated model, I replicate each individual in each data source 50 times, and

I endow each simulated individual with error draws from each equation. For a given individ-
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ual, their data from the initial wave generates the probability of each unobserved type in the

distribution of unobserved heterogeneity. From that probability distribution, a random draw

determines a simulated individual’s µ type, which remains fixed for the rest of the simulation.

Thus, a given individual in the data may have multiple types over their 50 replications. Impor-

tantly, as I simulate forward, the endogenous characteristics (i.e., smoking, cognitive health,

and general health) update based on the simulated behavior and outcomes. In the event that

an individual is simulated to die or attrit, an indicator signals that the person is simulated to

leave the sample. Because the exogenous characteristics are time invariant, in the case that

a person dies or attrits in the data but is not simulated to leave, I continue to simulate the

person’s behavior and outcomes until they are simulated to leave.

I begin by simulating the sample under a baseline scenario in which all exogenous char-

acteristics are kept as in the data and behavior (i.e., smoking), health, death, and attrition

are all endogenous. From this simulation, I calculate the mean smoking, health, and sample

exit probabilities conditional on remaining in the sample in the simulation. In all figures that

follow, the results by age are grouped into three-year age bins for ease of presentation. Figure 5

demonstrates that over the age profile, the simulated cognitive health outcomes and cumulative

sample exit proportions (from either mortality or attrition) closely mirror the data. Appendix

Figures 1 and 2 demonstrate a similar model fit for smoking behavior, general health, and the

separate outcomes of attrition and death.
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Figure 5: Model Fit

a. NHATS, Cognitive Health b. HRS, Cognitive Health

c. NHATS, Cumulative Sample Exits d. HRS, Cumulative Sample Exits

Notes: The figure presents cognitive health (a and c) and the cumulative sample exits (b and d)
for the NHATS and HRS samples. The Black solid lines come directly from the data conditional
on remaining in the sample data, and the blue dotted lines come from simulation conditional on
remaining in the simulated sample.

Next, Figure 6 shows how the simulated distribution of unobserved heterogeneity changes

over the age profile. Because types are estimated to die/attrit at different rates, the figure

reveals how the sample composition on the basis of permanent type changes as some individuals

selectively drop from the simulated sample. For example, in NHATS data in Figure 6a, type

2 individuals, who comprise roughly 30% of the sample at younger ages, comprise only 13% of

the remaining sample by age 90 because they are much more likely to leave the study through

attrition. Similarly, type 4 individuals are much more likely to leave the sample through

attrition, and they have, on average, a 4.25 lower word recall score than type 1 individuals. In

the HRS, Figure 6b shows that the most prominent type (type 5) becomes more so over the age
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profile. These individuals are of significantly better cognitive health than type 1 individuals.

Figure 6: Age Profile of Unobserved Heterogeneity Distribution

a. NHATS b. HRS

Notes: The figure presents the simulated proportions of each unobserved type over the age profile
conditional on remaining in the simulated sample.

I focus on the average treatment effect on the treated (ATT) with respect to education,

race, and smoking, which I define as the difference in mean cognitive health conditional on

a given treatment relative to the mean cognitive health in a counterfactual scenario in which

those same individuals did not have the treatment. To calculate the standard errors, I draw 50

sets of parameters from the full variance/covariance matrix and re-simulate the model under

each draw. Table 2 presents estimates from simulation of the model under the column DFRE.

As suggested by the point estimates in Table 3, in NHATS data, the simulated ATTs are all

significantly larger in magnitude than either the OLS or IPW estimates. The college gap in

mean word recall score is now 1.419 words, or 18.3%; the White/Black gap is now 1.484 words,

or 18.2%, and the smoking gap is now 0.34 words, or 4.2% words. Similar results exist for HRS

data. However, the average effects are larger in magnitude in ways that are consistent with

theory and with results in Section 4.

Figures 7a and 7b show the effects of college graduation on word recall scores for those

with a college education over the age profile. The blue dashed line presents regression adjusted

estimates of these effects from the single equation (unweighted) estimator in Equation 12 in

which I allow the effects to vary by three-year age bins. The black solid line presents similar

estimates from the preferred DFRE system estimator. In both NHATS and HRS, Figures
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7a and 7b show a.) significantly larger effects in the DFRE specification and b.) widening

gaps between the estimates over the age profile. In both Figures, the DFRE effects grow in

magnitude while the OLS estimates generally tend towards zero. Similarly, the effects of race

for Blacks are a.) larger in magnitude than OLS and b.) grow in magnitude over the age

profile. These effects, shown in Figures 7c and 7d, suggest that at nearly all ages, the dynamic

selection effect is enough to statistically bias the implications of race towards zero. In the case

of smoking in Figures 7e and 7f, the DFRE simulation results are larger in magnitude, but the

confidence intervals overlap with those from the OLS estimator, and there are not significant

trends in the gap between the estimates generated from each estimator.
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Figure 7

a. NHATS: Education b. HRS: Education

c. NHATS: Race d. HRS: Race

e. NHATS: Smoking f. HRS: Smoking

Notes: The figure presents the simulated average treatment effect on the treated (ATT) over the age profile for
education (a and b), race (c and d), and smoking (e and f). The blue, dashed line presents results from a modified
version of Equation 12 in which the effects of the characteristics of interest are interacted with binary variables
for 3-year age bins. The black, solid line presents simulated results from the DFRE estimator. 95% confidence
intervals are clustered at the individual level for the OLS estimator and bootstrapped with 50 replications of the
full variance-covariance matrix of parameter estimates.

Results in Figure 7 also shed light on the degree to which each individual characteristic

affects just the level of cognitive health or also the slope. This issue highlights the value of
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using both NHATS and HRS data, which have respectively better coverage at older and young

ages. In the case of education, the gap in cognitive health between college graduates and non-

graduates is fairly stable between ages 72 and 90 at roughly 1.5 words. However, at younger

ages, particularly in the HRS, there is evidence that the gap in cognitive health is considerably

smaller. For example, at age 57, the gap is only 0.6 words and not significantly different that

the OLS estimate. Similarly, with respect to the White/Black gap, the DFRE emerges as

statistically larger in magnitude at age 63 in HRS. In the case of smoking, the DFRE estimates

are larger in magnitude relative to the OLS estimates, but the ATT of smoking on cognitive

health is small, and the differences between estimators are not statistically significant.

6 Discussion

This paper shows that dynamic selection is an important source of bias in applied microeco-

nomic settings in which researchers wish to understand how a treatment affects some outcome

or behavior. The theory in Section 2 is general in that it demonstrates that dynamic selection

will be a problem when the treatment in question affects the probability of sample composition

changes (through the health implications for mortality and attrition) and when the outcome

of interest is correlated with other drivers of sample exit. Importantly, dynamic selection is

not limited to panel data settings—cross-sectional comparisons over the age profile are just as

problematic.

In the context of cognitive decline, I find that three commonly thought of risk factors for

decline—education, race, and smoking—are more important than previously believed, and, in

the case of education and race, their importance grows at relatively young ages before leveling

off. Simulating the estimated model yields effects of education and race that are roughly

double the estimated effects from an IPW estimator in an older cohort; in a younger cohort,

the effects of education and race are also significantly larger than IPW estimates. One possible

explanation for these findings is that unobserved determinants of longevity—which the system

of equations explicitly allow for—are important in a cohort whose initial mean age is 76.

The estimated model reveals that the overall age profile of cognitive health is also likely

propped up by dynamic selection. To investigate, I compare the simulated age profiles of
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cognitive health from the baseline simulation to a simulation in which no one is allowed to exit

through either death or attrition. There is no significant difference in the mean of cognitive

health at age 69 between simulations; but by age 90, mean cognitive health is 5.88% lower in the

NHATS and 6.26% in the HRS in the simulation in which sample composition is not allowed to

change. These results have implications for understanding how changes in life expectancy —

through technological advancement, or, in the case of reductions, due to “deaths of despair” —

change the prevalence of cognitive disease and dementia. As individuals live longer, failing to

account for dynamic selection may suggest that elder cognitive health is getting worse, when

in fact the marginal person is simply living longer.

Using panel data, this paper also shows that connecting economic theory with estimation

in a quasi-structural way can illuminate empirical problems that may not be well-appreciated.

Indeed, the motivation for the empirical model comes out of a standard (i.e., Grossman (1972))

economic theory of behavior, and yet the issue of dynamic selection is not often discussed in

empirical economics. The quasi-structural approach is simple to estimate and simulate, and

this estimator has the appealing property that correlation in the error structure is easy to allow

for. Furthermore, researchers often wish to chart not only the average effect of an intervention,

behavior, or policy but also how that effect varies over the age profile. Simulating the estimated

model makes this exercise straightforward. Future research may apply this estimator to a wide

variety of questions in which dynamic selection may be significant.
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