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Abstract

Recent research suggests that rapid recovery after knee replacement is beneficial for all
patients. Rapid recovery requires timely attention after surgery, yet staff resources are usually
limited. Thus, patients with the highest possible health gains from rapid recovery should be
identified with the objective to prioritise these patients when assigning rapid recovery capaci-
ties. We analyze the effect of optimal assignment rules under different capacity constraints for
patients set on the rapid recovery care path using disease specific patient-reported outcomes
(KOOS-PS) as measure for effectiveness. Subsequently, we build a policy tree to develop
optimal treatment assignment rules. We use patient-reported and observational data from
nine German hospitals from 2020/21. We apply a causal forest to estimate the double-robust
treatment effects, controlling for patient characteristics. We confirm that on average, after
controlling for patient characteristics, patients on the rapid recovery care path experience a
significantly larger improvement of their joint functionality than patients on the conventional
care path. Using the policy tree, we find that health outcome improvement can be increased
on average from 17.87 (observed improvement) to 20.02 on the KOOS-PS scale (0− 100) with-
out increasing capacity using optimal assignment rules selecting patients for rapid recovery
with characteristics linked to higher health gains. Increasing the capacity expects an health
outcome improvement of 20.13. We conclude that novel machine learning methods are effec-
tive in developing rules for selecting patients for rapid recovery based on their characteristics
maximising overall health gains given limited resources. Ultimately, such algorithms should be
used for clinical decision making systems as well as surgery and post-surgery capacity planning
to work towards the pressing challenges of increasing demand and decreasing supply, driven by
demographic change, in today’s hospital sector.
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1 Introduction

Rapid recovery after knee replacement has been the recommended protocol for knee osteoarthritis
for more than ten years Pashikanti & Von Ah (2012). Early mobilisation is the key component for
the rapid recovery care path, as it can improve health outcomes (Berg et al., 2018). Assignment
to the rapid recovery care path requires patients to be mobilised less than 6 hours post-surgery;
otherwise, patients are deemed to follow a conventional care path. The literature suggests that
rapid recovery has several advantages: The main advantage is that it reduces the length of stay of
patients. This can lead to less complications and hospital acquired conditions without increasing
readmissions (Berg et al., 2018; Gromov et al., 2019). Additionally, a reduced length of stay
contributes positively towards the mental state of a patient, as they return faster to their known
surroundings (Winther et al., 2015; Machin et al., 2013). Moreover, other health care costs can be
reduced Chua et al. (2020). Furthermore, the literature demonstrates that patients following the
rapid recovery care path show better clinical outcomes and patient-reported outcomes compared to
patients undergoing conventional care. (Berg et al., 2020) In addition, previous studies argue that
early mobilisation is feasible and safe for all patient characteristics, which advocates that all patients
could and should be set on the rapid recovery care path (Guerra et al., 2015). However, patients
need to be mobilised in a time-frame when physiotherapists and nurses are available. This can be
problematic outside of regular hospital business hours (Shaw et al., 2013). Therefore, mobilisation
in the early evening, i.e. after 17:00 or 18:00 (and on weekends) is unlikely and surgeries for rapid
recovery patients should not be scheduled in the afternoon. This limits the number of patients that
can receive rapid recovery. Patients that receive the surgery too late in the afternoon must be set
on the conventional care path and will most likely be mobilised the next day, i.e., after more than 6
hours. When a hospital needs to prioritise patients, it is thus crucial to understand which patients
should be set on the rapid recovery care path and which on the conventional care path (Berg et al.,
2018).
Building on this, we investigate two research questions: (1) Do patients on the rapid recovery care
path have on average larger improvements than patients on the conventional care path? (2) What
patients should be set on the rapid recovery care path given different capacity limits?
We exploit data from the German research project ”PROMoting Quality” to investigate both
research questions. We use the absolute change of the pre-surgery and 12-month post-surgery
KOOS-PS as functional health outcome as our dependent variable (Meadows, 2011; Black, 2013).
We use time to mobilisation post-surgery to identify rapid recovery patients. For the estimation of
the average treatment effect of rapid recovery addressing the first research question, we use inverse
probability weighting.
Investigating the second research question, we aim at maximising the average improvement patients
receive from rapid recovery. Therefore, we systematically analyse heterogeneous treatment effects
of the rapid recovery care path and identify patient characteristics that are related to a larger effect
of rapid recovery. We are further interested in the effects after setting different capacity constraints
appreciating that only a limited share of patients can be set on the rapid recovery care path. We
use the causal forest, a newly developed causal machine-learning method by Wager & Athey (2018),
to estimate heterogeneous effects. We then use the policy tree by Athey & Wager (2021) to find
optimal assignment rules with and without a capacity constraint.
Over the last few years, optimal policy assignment methods evolved thanks to advances in machine
learning. Optimal policy assignment methods maximise desired outcomes by exploiting treatment
heterogeneity. In practical settings such as planning and scheduling of surgeries under capacity
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constraints, optimal policy assignment can help decision makers to plan more efficiently. Based on
the rapidly expanding literature started by Manski (2004) and developed further by Hirano & Porter
(2009), Stoye (2009), Kitagawa & Tetenov (2018) developed a non-parametric solution for optimal
treatment assignment with known propensities. In our setting the propensities are unknown. For
that reason we follow Athey & Wager (2021). Athey & Wager (2021) suggests using a penalty
term to reduce the share of treated patients. Our study showcases how a capacity constraint in
the post-surgery care path affects the average outcome change of the patient sample and which
patients should be set on the rapid recovery care path to maximise results. To the best of our
knowledge, the methodology used in this paper has not been applied to post-surgery care paths of
knee replacements. Additionally optimising under a capacity constraint is a novel approach.
The results of the analysis are relevant because they showcase how to increase health outcomes by
selecting the patients which benefit most from rapid recovery. The developed policy tree could be
used for optimizing the planning and scheduling of surgeries to select the right patients for rapid
recovery maximising outcomes.

2 Data and Methods

In this section, we introduce the dataset, describe the empirical setup, present our method to
estimate heterogeneous effects of the rapid recovery care path on the Knee Injury and Osteoarthritis
Outcome Score (KOOS-PS1) change, and introduce our approach to building a policy tree for
optimal treatment assignment under capacity constraints.

2.1 Data

To evaluate the effect of rapid recovery on joint functionality, we exploit data originating from the
German research project PROMoting Quality (Kuklinski et al., 2020). In that project, a randomised
controlled trial was conducted to investigate the effect of an alert one, three and six months post-
surgery triggered if the health improvement of patients with primary hip and knee replacements
was not as expected. Data from 3,110 knee replacement patients was collected from 2019 to 2020
from nine German hospitals. Due to an incomplete data set we excluded 550 cases, resulting in a
final sample for our study of 2,560 observations.

Dependent Variable

The aim of this paper is to develop assignment rules maximising the improvement of patients’ joint-
related functionality after knee replacement. Therefore, our dependent variable is defined as the
absolute change between pre-surgery (admission to the hospital) and 12-month post-surgery KOOS
score (Roos et al., 1998; Roos & Lohmander, 2003). KOOS is a disease-specific PROM based on 7
items. The best achievable score is 0, where the patient has no pain and limitations (no impairment
of functionality). At a score of 100, the patient has severe pain and vast limitations (full impairment
of functionality). Therefore, a negative delta of the 12-month post-surgery vs. pre-surgery KOOS
means a health outcome improvement. However, for ease of interpretation, in this study we switch
the sign of the KOOS change, i.e., positive change is an improvement and negative change is a
deterioration of joint functionality, as in Berg et al. (2020).

1PS refers to the version of the questionnaire with 7 elements. Henceforth we will refer to it as KOOS.
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Independent Variables

Our independent variable of interest is whether a patient is on the rapid recovery pathway or on
the conventional care pathway. The data includes information on when a patient was mobilised
post-surgery in five bins, which are ”mobilised in less than 6 hours”, ”mobilised between 6 and 12
hours”, ”mobilised between 12 and 24 hours”, ”mobilised between 24 and 48 hours”, and ”mobilised
after 48 hours”. We define the bin “mobilised in less than 6 hours” as corresponding to the
patient being set on the rapid recovery path and the four other bins as the patient being set
on the conventional care path. We use several variables from the PROMoting Quality dataset as
control variables. The control variables consist of socio-demographic variables, medical variables,
and variables related to the surgery. The socio-demographic variables include age, sex, living
situation, job, job effort, and education. The medical information includes the pre-surgery KOOS
score, height, weight, comorbidities, and pre-surgery hip and knee problems and treatments (prior
congenital or developmental diseases, joint replacements, osteotomies, reconstruction, arthroscopic
procedures, joint-related surgeries, joint-related pre-existing conditions). The variables related to
the surgery include in which hospital the surgery was carried out, surgery duration, and surgical
complications.

2.2 Methods

Setup and Identification

The average treatment effect (ATE) denotes the expected effect of the binary independent variable
(treatment), in this case rapid recovery, on the outcome. Put differently, the average causal effect of
the treatment is the difference between the potential outcomes, as introduced by the counterfactual
framework of Rubin (1974), also called the Rubin Causal Model. In this framework, each individual
has potential outcomes with and without treatment, denoted as Yi(d = 1) and Yi(d = 0) respectively,
where d is a dummy for the treatment status. Formally, the ATE is defined as:

τ = E[Yi(d = 1)− Yi(d = 0)] (1)

Additionally, conditional ATEs (CATE) are of interest for our analysis because they uncover het-
erogeneous treatment effects through conditioning on certain patient characteristics. Formally, the
CATE is based on the ATE in Eq. 1, additionally conditioning on patient characteristics Xi = x:

τ(x) = E[Yi(d = 1)− Yi(d = 0)|Xi = x] (2)

We can assume that the assignment of patients to the rapid recovery or conventional care path is
not random and based on certain patient or provider characteristics. We use a strategy suitable for
controlling for confounders by selection on observables. The required identifying assumptions for
an observational study are (Wooldridge, 2010):

1. Conditional Independence Assumption (CIA): Random selection in the rapid recovery or
conventional care path conditional on X:

Y0, Y1 ⊥⊥ d|X = x (3)

2. Common Support (CS): Any unit (i.e., ”patient” in the context of our study) could be observed
with and without treatment:

0 < P (d = 1|X = x) < 1 ∀x ∈ X (4)
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3. Exogeneity: The post-surgery care path does not affect the confounders in a way that is
associated with the change of the KOOS:

Xd = X1−d (5)

4. Stable Unit Treatment Value Assumption (SUTVA):

• The treatment state of one unit only influences its own outcome.

• The treatment variation between units is minimal, meaning that the observed outcome
of one patient in the treatment state corresponds to the potential outcome for all patients
in that state.

It can be plausibly assumed that the CIA is fulfilled, as we control for various confounders. CIA
could be violated if there were other unobserved patient characteristics relating to the patient’s
motivation to pursue the rapid recovery or the conventional care path. If patients with a higher
motivation opt into rapid recovery and these patients additionally are more motivated in the reha-
bilitation program, those patients are most likely to have a higher improvement. This would then
lead to biased (C)ATEs. We discuss this potential limitation in more detail section 4. According
to CS, the probability of being on the rapid recovery care path for any observed combination of
confounders and outcomes should be larger than 0 and smaller than 1. We check this assumption by
plotting the density of propensity scores as suggested by Wager & Athey (2018).(see 6). Exogeneity
can be reasonably assumed to be fulfilled because the confounders are observed at the admission to
the hospital or during the surgery (complication and surgery duration), i.e before the care path is
observed. SUTVA assumes that there are no spillover effects. It can be assumed that a patient on
the rapid recovery care path will not affect the outcome of another patient. Since we can assume
that all four identifying assumptions are fulfilled, we can identify the ATE and the CATEs.

ATE and CATE Estimation

The estimation of the ATE and the CATE is based on the augmented inverse-probability weighted
scores by Robins et al. (1994) and the causal forest developed by Wager & Athey (2018), which is
based on Breiman (2001). The (C)ATE can be estimated with Eq. 6.

τ̂ =
1

n

n∑
i=1

Γ̂i (6)

Γ̂i = µ̂(1)(Xi)− µ̂(0)(Xi) +
di

ê(Xi)

(
Yi − µ̂(1)(Xi)

)
− 1− di

1− ê(Xi)

(
Yi − µ̂(0)(Xi)

)
(7)

Γ̂i consists of two components:

• The estimated conditional non-parametric expected values for the treated and non-treated
group, µ̂(1)(Xi) and µ̂(0)(Xi).

• The estimated non-parametric propensity scores ê(Xi), i.e. the probability that a patient will
receive the treatment depending on the confounders.

5



Both components are estimated through the causal forest, for which we use the grf package in R
by Athey et al. (2019).2 The causal forest uses a random subsample of all confounders defined in
section 2.1 for splitting the observation at a given node so that similar observations (observations
with the same or similar confounders) end up in the same final leaf. As the causal forest is efficient
in a high-dimensional setting, there is no need to pre-select confounders for model efficiency (Wager
& Athey, 2018).

Policy Tree for Optimal Treatment Assignment with Capacity Constraint

In our setting we are not just interested in finding heterogeneous effects, but to find assignment
rules that identify patients that benefit the most/least from rapid recovery. Based on the rapidly
expanding literature on optimal treatment assignment started by Manski (2004) and developed
further by Hirano & Porter (2009), Stoye (2009), Kitagawa & Tetenov (2018) developed a non-
parametric solution for optimal policy assignment with known propensities. In our setting the
propensities are unknown. For that reason we follow Athey & Wager (2021). We define the policy
π as a function that maps Xp into {0, 1} as (Athey & Wager, 2021):

π : Xp → {0, 1}
Xp ⊆ X

(8)

We want to build assignment rules based on patient characteristics that are known, when the post-
surgery care path is scheduled. For that reason we exclude the hospital as a decision variable, as
we want to find hospital independent assignment rules. Additionally, we also exclude complications
and surgery duration as a decision variable, because complications and surgery duration is unknown
at the point in time when patients are assigned to the rapid recovery care path3. Following Athey &
Wager (2021) we exclude education for ethical and legal reasons. Discriminating based on education
and other variables related to the socio-economic status should not effect the treatment assignment.
To estimate the double-robust scores described above, we used among other variables BMI, weight
and height. We exclude BMI as a decision variable in the policy tree, as it is an interaction between
height and weight. Using height and weight should give more flexibility to the algorithm than only
using the BMI as the algorithm is not limited on the functional form of the BMI. In other words, π
sets patients based on their characteristics Xp on the rapid recovery care path or the conventional
care path. Xp is the subset of the control variables, excluding the above mentioned variables. W
is defined as the expected absolute change on the conventional care pare plus the expected CATE
of patients that the policy π selects for the rapid recovery care path (cf. (Athey & Wager, 2021)).
Therefore, W (π) is the welfare4 that policy π generates:

W (π) = E[Yi(π(Xi))] = E[Yi(0)] + E[τ(Xi)π(Xp,i)] (9)

2R: 4.1.3, grf: 2.2.1, Rcpp: 1.01.10
3Surgeons might have an expectation of the surgery duration based on potential risk factors (based on x-ray or

CT Scans and patient characteristics
4As the dependent variable in our study is the change of pre- and post-surgery KOOS, welfare refers to the KOOS

change.
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This leads to the following maximisation problem, subject to a capacity constraint:

π = argmax {W (π) : π ∈ Π}

s.t.
1

n

n∑
i=1

π(Xp) ≤ Q
(10)

π ∈ Π requires that the Π is a pre-specified policy class. In our case, this means the decision
tree must have a finite number of levels, to fulfill the assumption of finite Vapnik–Chervonenkis-
dimensions. This means that the algorithm searches for a solution with a limited complexity, in this
case the solution will be a decision tree with three levels. Infinite Vapnik–Chervonenkis-dimensions
would make it impossible to find a solution. (Manski, 2004; Athey & Wager, 2021; Kitagawa &
Tetenov, 2018)
The capacity constraint is fulfilled if the share of patients selected by π is smaller or equal to the
capacity Q. Q is the share of patients that can be set on the rapid recovery care path and needs to
be between 0 and 1. Q = 1 implies that there is no capacity constraint and potentially every patient
could be selected for the rapid recovery care path. 1

n

∑
(π = 1) implies that everyone gets set on

the rapid recovery care path, thus resulting in the ATE. We assume that Q < 1. By setting Q equal
to the share of patients on the rapid recovery care path in the sample, i.e., by keeping capacity
constant, we are able to compare the welfare in the status quo with the welfare of the policy tree.
Based on Chernozhukov et al. (2022) and Sverdrup et al. (2020) we can solve the maximisation
problem from Eq. 10:

π = argmax

{
1

n

n∑
i=1

(2π(Xp,i)− 1(Γ̂i − C) : π ∈ Π

}
(11)

Where Γ̂i are the double robust scores from Eq. 7. C is set as a sequence from the smallest
individual treatment effect τ(x)min to the largest individual treatment effect τ(x)max and then
solved iteratively to find what penalty C is required in order to fulfill the capacity constraint in Eq.
10 (Athey & Wager, 2021). The subsequent welfare generated by the policy π can be estimated
as follows by the R package policytree by Sverdrup et al. (2020), which is incorporated in the grf
package with Athey et al. (2019):

Ŵ (π̂) =
1

n

n∑
i=1

{
(2π̂(Xp,i − 1)Γ̂i

}
(12)

3 Results

In the following section, we will first show summary statistics and the average treatment effect of
the rapid recovery care path for patients with knee replacements5. Then, we will show the policy
trees, their assignment rules and their corresponding effects (i.e., KOOS changes). We will show
the results of policy trees without a capacity constraint and the empirical capacity constraint from
the data.

5We additionally estimate the models for patients with hip replacements. The results are similar and can be
received on request
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Descriptive Statistics

Table 1: Descriptive Statistics - Relevant Variables

Conventional Care Rapid Recovery
N=1,365 N=1,195

Dependent Variable
KOOS change 16.98 (14.6) 17.08 (15.1)

Socio-demographic Variables
Gender

Male 635 (46.52%) 555 (46.44%)
Female 729 (53.41%) 631 (52.8%)
Other 1 (0.07%) 9 (0.75%)

Job effort
I cannot judge that 130 (9.52%) 112 (9.37%)
Predominantly sitting activities 512 (37.51%) 466 (39%)
Light physical activities 237 (17.36%) 231 (19.33%)
Medium-heavy physical activities 319 (23.37%) 264 (22.09%)
Heavy physical activities 167 (12.23%) 122 (10.21%)

Education *
No school-leaving qualification 11 (0.81%) 1 (0.08%)
Primary school 255 (18.68%) 184 (15.4%)
Secondary school 804 (58.9%) 704 (58.91%)
University 295 (21.61%) 306 (25.61%)

Age 65.78 (9.1) 66.28 (9.57)
Living situation

Other 7 (0.51%) 10 (0.84%)
I live alone 268 (19.63%) 204 (17.07%)
I live in an institutional setting 13 (0.95%) 3 (0.25%)
I live with my family 1,077 (78.9%) 978 (81.84%)

Medical Variables
Pre-surgery KOOS (0-100) 43.52 (12.95) 42.51 (12.71)
Height (cm) 172.44 (9.97) 172.89 (9.96)
Weight (kg) 90.82 (19.60) 90.58 (18.79)
BMI 30.5 (5.94) 30.25 (5.53)
Pulmonary disease 146 (10.70%) 110 (9.21%)
Diabetes mellitus 134 (9.82%) 113 (9.46%)
Depression 115 (8.42%) 77 (6.44%)
Rheumatoid arthritis or other types of arthritis 112 (8.21%) 82 (6.86%)
Diseases affecting the spine 299 (21.90%) 231 (19.33%)
Congenital or developmental disease of the knee 573 (41.98%) 670 (56.07%) *
No joint-related pre-existing conditions on the hip joint 829 (60.73%) 851 (71.21%) *
No joint-related surgical history of the knee 587 (43.00%) 564 (47.20%) *

Variables related to the surgery
Surgery duration 73.27 (21.84) 67.80 (23.26)
General complications requiring treatment 19 (1.39%) 6 (0.50%)
Cardiovascular complication requiring treatment 2 (0.15%) 2 (0.17%)
Other general complications requiring treatment 11 (0.81%) 2 (0.17%)
Specific complications 8 (0.59%) 1 (0.08%)

Note: The first column shows the mean for numeric variables and the count for categorical variables.
The second column shows the standard deviation for numeric variables and the share in % for categorical
variables in parentheses. A positive value in the absolute change in KOOS refers to an improvement from
the pre-surgery KOOS to the 12-post-surgery KOOS. ’*’ denotes a significant difference between patients
receiving rapid recovery and patients receiving conventional care with two-sided Welch’s t-test (numeric or
binary variables) and with two-sided Chi-Square test of independence (multinominal categorical variables)
at α = 5%.

Table 1 shows the descriptive statistics for the patients on the rapid recovery care path and on the
conventional care path. There are only minor differences in the pre-surgery KOOS and absolute
change of pre-surgery and 12-month post-surgery for the two groups and neither is significant
according to Welch’s t-test (α = 5%). As we will select the 20 most important variables for the
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policy based on the causal forest (see table 6), we just report these in the descriptive statistics6.
Education, congenital or developmental disease of the knee, no joint-related pre-existing conditions
on the hip and no joint-related surgical history of the knee are significantly different in the sample
of patients on the conventional care path and the rapid recovery care path, indicating that patients
on the rapid recovery care path have a lower level of severity and complexity. This suggests that
these affect the probability to be set on the rapid recovery care path or conventional care path and
need to be controlled for. The causal forest and the double robust estimator need to be able to
balance especially these variables. For the descriptive statistics on all variables see table 5

Figure 1: Scatter-plot of pre-surgery score and change
Note: A positive value in the absolute change in KOOS refers to an improvement from the pre-surgery
KOOS to the 12-post-surgery KOOS.

Plot 1 shows the correlation between the pre-surgery KOOS and the absolute change of KOOS. A
positive change denotes an improvement compared to the pre-surgery KOOS. Since the KOOS is
a score from 0 (no impairment of functionality) to 100 (full impairment of functionality), there is
a ceiling effect and there is a maximum possible improvement patients can have. The maximum
improvement is visualised in the dotted line. This means that especially patients with low im-
pairment of functionally have a small potential for improvement. Additionally, patients with high
impairment of functionality are less likely to have a negative change of their KOOS. Therefore, by
choosing absolute change as our the dependent variable and the outcome we aim to maximise in
our policy tree, we focus more on patients with higher impairment of functionality.
Plot 2 shows the number of patients on the rapid recovery care path for each of the nine hospitals.7

We observe a variability in the share of patients set on the rapid recovery path in the different
hospitals. The maximum is at 71% and the minimum at 4%. This shows that hospital is an
relevant control variable for estimating the ATE.

6For completeness we added categorical variables, if one category is among the important variables
7For data privacy reasons we cannot show the name and observations of the hospitals. The number of observations

do not necessarily relate to the size of the hospital, it only refers to how successfull a hospital was in patient
recruitment for the PROMoting Quality study
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Figure 2: Share of rapid recovery patients per hospital
Note: This figure shows the share of patients on the rapid recovery and conventional care path in the
nine hospitals. The hospital names are substituted with letters due to data privacy.

Average Treatment Effect

The causal forest and the double robust estimator suggest that patients on the rapid recovery care
path improve their KOOS score by 1.58 points with a 95% confidence interval at 1.22 and 1.94
compared to patients on the conventional care path (see. 2). This suggests that setting all patients
on the rapid recovery care path would - on average - increase the benefit the of patients.8 We do
not see a significant difference in the change of the pre-surgery and 12-month post-surgery KOOS
for patients on the rapid recovery care path and conventional care path in the descriptive statistics.
After controlling for patient characteristics we see a significant effect of the rapid recovery care
path. This suggest in combination with the Figure 6 in the Appendix, that there exist patient
characteristics that increase the probability for rapid recovery. The importance of confounders in
the causal forest is shown in Table 6. The variable importance based on Wager & Athey (2018)
shows how often a variable was chosen in the causal forest. Accordingly, BMI, age, pre-surgery
KOOS, weight and height are the five most important confounders determining if a patient is set
on the rapid recovery care path.

Table 2: Average Treatment Effect of the Rapid Recovery Care Path on KOOS Change

ATE CI

Knee Arthroplasty 1.58 [1.22, 1.94]

Note: Confidence bounds at α = 5%. The positive value in
the ATE refers to a larger improvement from pre-surgery
to 12-month-post-surgery KOOS for patients on the rapid
recovery care path compared with patients on the conven-
tional care path.

8This does not suggests that every individual patient benefits from the rapid recovery care path, as we can assume
mixed bag effects.
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Constrained and unconstrained Policy Tree

In this paragraph we show the policy tree for knee replacements and compare the welfare of different
assignment rules. As the dependent variable in our study is the change of pre- to 12-month post-
surgery KOOS, we refer to the KOOS change.

Figure 3: Unconstrained Policy tree: Knee Replacement
Note: The decision tree shows the decision criteria for an unconstrained policy tree with three layers.
CC stands for the conventional care path and RR for the rapid recovery care path.

The unconstrained policy tree in Figure 3 splits patients on the three levels. This results in eight
groups and eight CATEs. Following the assignments from the policy tree, patients in the groups
with a positive point estimate should be set on the rapid recovery care path because the patient
group benefits from the rapid recovery care path. Patients in the groups with a negative point
estimate should be set on the conventional care path, because the patient group benefits from the
conventional care path. As described in section 2.2, the policy tree creates groups that maximise
welfare. Table A1 in the appendix shows the eight CATEs including confidence intervals and sample
size for each group (i.e., policy tree node).
Patients weighing ≤ 76kg, younger or 72 years old and smaller or as tall as 156cm belong to group
1 and should be set on the conventional care path. This subgroub contains 33 patients. Its CATE
has a point estimate of −1.88 and is insignificant at α = 5% because of confidence intervals at
−9.83 and 6.06. The other seven groups work equivalently.
The confusion matrix shows the comparison between the patient assignment based on the uncon-
strained policy tree and the status quo in Table 3. The policy tree sets 1,494 (58.36%) patients on
the rapid recovery care path and 1,066 (41.64%) patients on the conventional care path. According
to the optimal policy tree assignment, 713 patients should be set on the rapid recovery care path
and are set on the rapid recovery care path in the sample. 584 patients are set on the conventional
care path by the policy tree and follow it in the sample. Therefore, in the status quo, just 1,297
(50.66%) patients weren’t reassigned and already were on their optimal post-surgery care path.
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Table 3: Policy tree confusion matrix: Knee Arthropasty

N=2,560 Treated Not Treated Sum (Share)
by Policy Tree by Policy Tree in Status Quo

Treated in Status Quo 713 482 1,195 (46.68%)
Not Treated in Status Quo 781 584 1,365 (53.32%)

Sum (Share) in Policy Tree
1,494 1,066

(58.36%) (41.64%)

Note: This table shows the confusion matrix of patients that are currently treated versus
patients that should be treated according to the policy tree.

As discussed in section 1, there is a capacity constraint on how many patients can be mobilised
within six hours after surgery, i.e., that can be set on the rapid recovery care path. The constraint
policy tree creates subgroups that maximise the welfare while respecting set capacity constraint.
As main scenario, we set the capacity constraint of the policy tree equal to the observed capacity
constraint of our sample (46.68%). The constrained policy tree splits on other variables than the
unconstrained policy tree. The resulting tree is shown in figure 4 and the CATE can be found in A2.
The policy tree with capacity constraint works the same as the unconstrained policy tree. Patients
weighing less than 90kg and less than 74kg and are younger or 70 years old are part of group 1 and
should be set on the rapid recovery care path. This subgroub contains 236 patients and its CATE
is significant at α = 5% with a point estimate of 5.97. The other seven groups work equivalently.
Following the constraint policy tree, 1, 189 (46.45%) patients should be set on the rapid recovery
care path. The empirical capacity constraint was at 1195 (46.68%) on the rapid recovery care path,
and therefore fulfilling the empirical capacity constraint.

Figure 4: Constrained Policy tree: Knee Replacement
Note: The decision tree shows the decision criteria for a constrained policy tree with three layers. CC
stands for the conventional care path and RR for the rapid recovery care path.

Using the policy tree with capacity constraint, we can estimate the change in KOOS for all theo-
retically possible capacity constraints, i.e., from 0 to 100% (see figure 5).9 In Table 4 we report the
welfare generated by the policies with different capacities. The unconstrained policy tree expects
to generate a welfare of 20.13. The policy tree with the empirical capacity constraint is expected to
generate a welfare of 20.02, demonstrating that the capacity constraint leads to 0.55% lower KOOS
score than without a capacity constraint. As additional scenarios we included welfare at a capacity

9We had to exclude the highest and the lowest capacities because, this would result in unstable groups
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constraint of 40% and 60% in Table 4. The confidence intervals show that the expected welfares of
all four policy trees are significantly different from the observed welfare at α = 5%. The welfare of
all patients following the rapid recovery care path is significantly higher than the observed welfare.
Additionally, the point estimate of welfare is smaller than the point estimate of the unconstrained
und constrained welfare, however insignificantly. This suggests that there is some evidence that not
every patient benefits from the rapid recovery care path. The welfare, when all patients follow the
conventional care path is significantly smaller then the observed welfare by reflecting the negative
of the ATE.

Figure 5: Welfare for the range of capacity constraints
Note: Confidence bounds at α = 5%. The positive value in the welfare refers to a larger improvement
form the pre-surgery to the 12- month post-surgery KOOS. All observations are positive because it
includes the effect of the knee replacement surgery.

Table 4: Welfare comparison

Point
Estimate

Confidence Interval

Observed welfare 17.03

Unconstrained Welfare 20.13 [17.53, 22.72] *

Welfare with 60% capacity constraint 20.13 [17.51, 22.74] *

Welfare with empirical capacity constraint 20.02 [17.39, 22.66] *

Welfare with 40% capacity constraint 19.37 [16.7, 22.04]

All patients on the rapid recovery care path 17.87 [17.51, 18.23] *

No patients on the rapid recovery care path 16.29 [15.93, 16.65] *

Note: Confidence bounds at α = 5%. The positive value in the welfare refers to a larger
improvement form the pre-surgery KOOS to the 12-months post-surgery. ”*” shows a
significant difference with the observed welfare.
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4 Discussion

We analyse the effect of the rapid recovery care path on the KOOS change from pre-surgery to
12-months post-surgery and develop optimal treatment assignment rules in the presence of capacity
constraints (three scenarios). We utilise recently developed causal machine learning methods for the
individual effect estimation (causal forest) and for the assignment rules (policy tree). We compare
the welfare generated by the different possible policies.
We find that, on average, patients benefit from the rapid recovery care path with a 1.58 higher
absolute change of the pre-surgery and 12-month post-surgery KOOS. The policy tree that max-
imises the average KOOS change selected more patients for the rapid recovery care path than the
empirical capacity constraint would allow. The unconstrained policy expects an average KOOS
change of 20.13. Enforcing the empirical capacity constraint results in a policy tree that estimates
a higher absolute change than in the status quo with 20.02 versus 17.03. This implies that even
without increasing (personnel) capacity, hospitals can increase their patients’ expected function-
ality improvement by 17.56% by selecting the right patients for rapid recovery and by scheduling
surgeries accordingly. Increasing the capacity to the optimum will only increase the KOOS change
to 20.13. This suggests there are decreasing marginal returns if policy tree is used. Increasing
the capacity even further, and setting all patients on the rapid recovery care path reduces the the
welfare. This suggests that not every patient benefits from rapid recovery.
The developed policy tree can thus be used for the surgery scheduling process to select patients
that benefit most from the rapid recovery care path. Patients weighing less than 76kg, younger
than 72 and taller than 156cm benefit most from the rapid recovery care path in the unconstrained
case. In the scenario with the empirical capacity constraint patients weighing between 90 and 94kg
and a pre-surgery KOOS lower 29.7. Identified rapid recovery patients should be scheduled early,
i.e., the surgery should start before 12.00 p.m. to ensure that patients can still be mobilised within
6h post-surgery. In our sample the surgery takes on average 70.72 minutes and in Berg et al. (2018)
the earliest mobilisation is after three hours. Therefore, the patients need to be mobilised between
04.10 p.m. and 07.10 p.m. With a usual physiotherapy staff schedule from 8 a.m. to 04.30 p.m.,
mobilisation at 07.10 p.m. is unlikely. If we take into account that specialized nurses could also
mobilise a patient, the nurses won‘t have time- to mobilise the patients during the switch between
late- and night-shift.
Berg et al. (2020) analyses the effect of rapid recovery for knee replacements on patient reported
outcomes, including KOOS. They show that rapid recovery has positive significant effects on four
out of five KOOS subscales. The effects size is similar as our estimated effect between 1-2 points.
However, there seems to be a strong selection of patients into the rapid recovery care path based on
the pre-operative score, as there is a high significant difference in the pre-surgery KOOS. It is not
clear what methods the authors used to control for patient characteristics, with very limited patient
information. In our sample rapid recovery seems to be less dependent on the pre-surgery KOOS
score, as we could not find a significant difference in our sample. This suggests that in our sample
there are not as many selection criteria as in the sample used by Berg et al. (2020). With such
a large difference in the pre-surgery KOOS it is also unclear whether common support is fulfilled.
We show in Figure 6 that common support is fulfilled with estimated propensities far a way from
0 and 1, which allows us to control for patient characteristics more confidently.
To the best of our knowledge there are no studies using optimal assignment rules to select patients
for the rapid recovery path. There are studies doing conventional subgroup analysis, whether rapid
recovery is safe for specific patient groups Edwards et al. (2018); Berg et al. (2018). These studies
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are not comparable to our approach, because we do not use predefined subgroubs to estimate
outcomes.
Current applied paper using the optimal policy learning developed by Athey & Wager (2021) focus
on targeting in several domains from product recommendation Wan et al. (2022), customer retention
Ko et al. (2022), fundraising targets Cagala et al. (2021), coupon campaigns Langen & Huber (2023)
and labour market training Athey & Palikot (2022). There are currently two studies in the broad
field of health economics: Cassidy & Manski (2019) develop a decision-theoretic methodology for
testing and treatment strategies for tuberculosis, without an application. McCullough & Shakya
(2020) analyses the heterogeneous effects of health insurance on patient utility. McCullough &
Shakya (2020) also build a policy tree. As it is based on the RCT Oregon Health Insurance
Experiment, there is no confounding necessary and they do not enforce a capacity constraint. To
the best of our knowledge there are no studies enforcing a capacity constraint.

Limitations

As all empirical studies, our study has limitations due to the available data and model assumptions.
Regarding data, firstly, the limited sample size leads to underpowered subgroups and confidence
intervals that are too large to show significant effects. This was especially visible for the CATEs with
negative signs, i.e., subgroups for which conventional care is more beneficial than rapid recovery.
This suggests that it is more difficult to construct subgroups for which the conventional care path
yields significantly better results as compared to the rapid recovery care path. Similarly, there are
four insignificant CATEs from the policy tree without a capacity constraint and four insignificant
CATEs from the policy tree with the empirical capacity constraint. Additionally, the small sample
size does not allow us to build confidence sets through cross-validation. Therefore, we do not know
how stable the subgroups are and cannot evaluate the performance of the policy tree. Secondly,
the sample might not be representative, because of a selection bias. There were many missing
observations in the pre- and post-surgery KOOS. As this is the dependent variable, we had to
exclude 550 observations (17.68%). This could lead to a selection bias, as we do not know why
some patients did not provide information on their pre- and post-surgery KOOS. Additionally,
patient data was obtained in a multi-center study including pre-selected nine German hospitals.
The results might not represent the population as the hospitals all have specialised orthopedics
departments.
We decided to define our single objective as maximising absolute change of pre-surgery and 12-month
post-surgery KOOS. Alternative objectives could be relative change or the 12-month post-surgery
KOOS. Choosing an alternative single objective or multiple objectives, based on a combination
of single objectives, will not only change the effect estimates but will also change the assignment
rules. By choosing absolute change we focus on patients with high impairment of functionality
because patients with high impairment of functionality have a larger potential of improvement. By
choosing the 12-month post-surgery KOOS as our objective we would focus on patients that reach
the score for no impairment of functionality, which are patients with less pre-surgery impairment of
functionality. Depending on the application, there are arguments focusing on either patients with
low or high impairment of functionality. We decided to focus on patients with high impairment of
functionality, because it is likely that patients with lower impairment, do need the knee replacement
and could receive a conservative treatment. Additionally the literature uses change as the dependent
variable.
Thirdly, in addition to mobilisation within six hours post-surgery, rapid recovery consists of two
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pre-surgery measures, namely health literacy education and physiotherapy. In our data, we can
only observe if a patient was mobilised within six hours post-surgery. Thus, in our conventional
care group, patients initially selected for rapid recovery receiving both education and physiotherapy
might be included. For these patients, we cannot isolate the effects of both pre-surgery measures on
the 12-month KOOS change. Still, it can be argued that these pre-surgery measures are to further
improve patients health state. Thus, this limitation might result in an underestimation of the ATE.
In other words, if we could identify and exclude pre-surgery rapid recovery patients that ended up
receiving conventional care, our results might be even more significant.
Regarding model assumptions, the estimates might be biased due to failing of the conditional
independence assumption. More concretely, there are information missing on patient motivation.
The conditional independence assumptions is likely to fail, if patients with a higher motivation
opt into rapid recovery and these patients additionally are more motivated in the rehabilitation
program. Those patients are most likely to have a higher improvement. This would then lead to
biased (C)ATEs. Still, we can argue that also patients motivated to participate in a rapid recovery
program are limited by hospitals’ capacity constraint and surgeons’ willingness to accept their
request.
Lastly, in our the data, the number and share of patients with complications (readmissions and
revisions) is very small. If surgery outcome was more heterogeneous, it would be possible to add
the estimated probability for a complication as a decision, to additionally schedule the post-surgery
path based on patients’ risk for complications.

5 Conclusion

This study finds that the rapid recovery care path significantly improves the average absolute
functionality change for knee replacement patients. We use an optimal assignment method to show
that the best assignment rules would require more patients to be set on the rapid recovery care
path than observed in our sample. The policy tree identifies subgroups that should receive the
rapid recovery with priority to maximise expected positive functionality change under the observed
capacity constraint. Correspondingly, our results show that hospitals can increase their patients’
expected health gains even without increasing their capacity. This can be achieved by selecting the
patients to be assigned to rapid recovery as identified by the policy tree. We find that health outcome
changes can be increased on average from 17.03 to 19.25 on the KOOS scale without increasing
capacity using optimal assignment rules selecting patients for rapid recovery with characteristics
linked to higher health gains. In a clinical setting, planning and scheduling of surgeries would have
to align with this prioritisation to unlock potential healthcare quality gains. Surgery planning and
scheduling software and clinical decision support systems for post-surgery care plans should thus
incorporate algorithms such as the one presented here.

16



References

Athey, S. & Palikot, E. (2022). Effective and scalable programs to facilitate labor market transitions
for women in technolog. arXiv preprint arXiv:2211.09968.

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics,
47(2), 1148 – 1178.

Athey, S. & Wager, S. (2021). Policy learning with observational data. Econometrica, 89(1),
133–161.
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A Appendix

A.1 Descriptive Statistics

Table 5: Descriptive Statistics - All Variables

Conventional Care Rapid Recovery

N=1,365 N=1,195

Dependent Variable

KOOS change 16.98 (14.60) 17.08 (15.10)

Socio-demographic Variables

Gender

Male 635 (46.52%) 555 (46.44%)

Female 729 (53.41%) 631 (52.80%)

Other 1 (0.07%) 9 (0.75%)

Job

Job-seeker 16 (1.17%) 9 (0.75%)

Unable to work due to arthrosis 105 (7.69%) 102 (8.54%)

Unable to work due to a condition other than arthritis 55 (4.03%) 31 (2.59%)

Voluntarily not working 780 (57.14%) 703 (58.83%)

Employed part-time 118 (8.64%) 110 (9.21%)

Employed ful-time 291 (21.32%) 240 (20.08%)

Job effort

I cannot judge that 130 (9.52%) 112 (9.37%)

Predominantly sitting activities 512 (37.51%) 466 (39.00%)

Light physical activities 237 (17.36%) 231 (19.33%)

Medium-heavy physical activities 319 (23.37%) 264 (22.09%)

Heavy physical activities 167 (12.23%) 122 (10.21%)

Education *

No school-leaving qualification 11 (0.81%) 1 (0.08%)

Primary school 255 (18.68%) 184 (15.40%)

Secondary school 804 (58.90%) 704 (58.91%)

University 295 (21.61%) 306 (25.61%)

Age 65.78 (9.10) 66.28 (9.57)

Living situation

Other 7 (0.51%) 10 (0.84%)

I live alone 268 (19.63%) 204 (17.07%)

I live in an institutional setting 13 (0.95%) 3 (0.25%)

I live with my family 1,077 (78.90%) 978 (81.84%)

Medical Variables

Pre-surgery KOOS (0-100) 43.52 (12.95) 42.51 (12.71)

Height (cm) 172.44 (9.97) 172.89 (9.96)

Weight (kg) 90.82 (19.60) 90.58 (18.79)

BMI 30.50 (5.94) 30.25 (5.53)

Heart disease
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No 1,200 (87.91%) 1,059 (88.62%)

Yes 165 (12.09%) 136 (11.38%)

Hypertension

No 594 (43.52%) 524 (43.85%)

Yes 771 (56.48%) 671 (56.15%)

Consequences of a stroke

No 1331 (97.51%) 1,174 (98.24%)

Yes 34 (2.49%) 21 (1.76%)

Pain in the legs due to poor circulation

No 1301 (95.31%) 1,142 (95.56%)

Yes 64 (4.69%) 53 (4.44%)

Pulmonary disease

No 1,219 (89.30%) 1,085 (90.79%)

Yes 146 (10.70%) 110 (9.21%)

Diabetes mellitus

No 1,231 (90.18%) 1,082 (90.54%)

Yes 134 (9.82%) 113 (9.46%)

Disease of the nervous system

No 1,319 (96.63%) 1,164 (97.41%)

Yes 46 (3.37%) 31 (2.59%)

Cancer (in the past 5 years)

No 1,287 (94.29%) 1,138 (95.23%)

Yes 78 (5.71%) 57 (4.77%)

Depression *

No 1,250 (91.58%) 1,118 (93.56%)

Yes 115 (8.42%) 77 (6.44%)

Rheumatoid arthritis or other types of arthritis

No 1,253 (91.79%) 1,113 (93.14%)

Yes 112 (8.21%) 82 (6.86%)

Diseases affecting the spine

No 1,066 (78.10%) 9,64 (80.67%)

Yes 299 (21.90%) 231 (19.33%)

Congenital or developmental disease of the hip joint

No 1,333 (97.66%) 1,157 (96.82%)

Yes 32 (2.34%) 38 (3.18%)

Prior joint-replacement on the knee

No 1,232 (90.26%) 1,069 (89.46%)

Yes 133 (9.74%) 126 (10.54%)

Prior osteotomy on the hip joint

No 1,362 (99.78%) 1,192 (99.75%)

Yes 3 (0.22%) 3 (0.25%)

Prior osteotomy on the knee

No 1,354 (99.19%) 1,184 (99.08%)

Yes 11 (0.81%) 11 (0.92%)

Congenital or developmental disease of the knee *

No 792 (58.02%) 525 (43.93%)
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Yes 573 (41.98%) 670 (56.07%)

No joint-related pre-existing conditions on the hip joint

No 536 (39.27%) 344 (28.79%)

Yes 829 (60.73%) 851 (71.21%) *

No joint-related pre-existing conditions on the knee

No 1,025 (75.09%) 892 (74.64%)

Yes 340 (24.91%) 303 (25.36%)

Prior joint-replacement on the hip joint

No 1,276 (93.48%) 1,123 (93.97%)

Yes 89 (6.52%) 72 (6.03%)

Prior reconstruction of the knee ligaments

No 1,307 (95.75%) 1,153 (96.49%)

Yes 58 (4.25%) 42 (3.51%)

Other arthroscopic procedures on the knee *

No 1,035 (75.82%) 860 (71.97%)

Yes 330 (24.18%) 335 (28.03%)

No joint-related surgical history of the hip joint *

No 516 (37.8%) 336 (28.12%)

Yes 849 (62.20%) 859 (71.88%)

No joint-related surgical history of the knee *

No 778 (57.00%) 631 (52.80%)

Yes 587 (43.00%) 564 (47.20%)

Variables related to the surgery

Surgery duration 73.27 (21.84) 67.8 (23.26)

General complications requiring treatment *

No 1,346 (98.61%) 1,189 (99.50%)

Yes 19 (1.39%) 6 (0.50%)

Cardiovascular complication requiring treatment

No 1,363 (99.85%) 1,193 (99.83%)

Yes 2 (0.15%) 2 (0.17%)

Other general complications requiring treatment *

No 1,354 (99.19%) 1,193 (99.83%)

Yes 11 (0.81%) 2 (0.17%)

Specific complications *

No 1,357 (99.41%) 1,194 (99.92%)

Yes 8 (0.59%) 1 (0.08%)

Note: The first column shows the mean for numeric variables and the count for categorical variables. The

second column shows the standard deviation for numeric variables and the share in % for categorical variables

in parentheses. A positive value in the absolute change in KOOS refers to an improvement from the pre-

surgery KOOS to the 12-post-surgery KOOS. ’*’ denotes a significant difference between patients receiving rapid

recovery and patients receiving conventional care with two-sided Welch’s t-test (numeric or binary variables)

and with two-sided Chi-Square test of independence (multinominal categorical variables) at α = 5%.

A.2 Variable Importance
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Table 6: Variable importance

Variable

Importance
Name

Included in

policy tree

0.1539 BMI

0.1322 Age X

0.1310 Pre-surgery KOOS X

0.1300 Weight X

0.0844 Height X

0.0521 Depression X

0.0363 Light physical activities X

0.0190 Predominantly sitting activities X

0.0171 Heavy physical activities X

0.0158 Pulmonary disease X

0.0145 Congenital or developmental disease of the knee X

0.0143 Hospital H

0.0134 Other arthroscopic procedures on the knee X

0.0125 Diabetes mellitus X

0.0119 Diseases affecting the spine X

0.0100 Secondary school X

0.0095 Female X

0.0095 No joint-related pre-existing conditions on the hip joint X

0.0094 Rheumatoid arthritis or other types of arthritis X

0.0089 Hospital I

0.0085 No joint-related surgical history of the knee X

0.0080 Hospital D

0.0080 Heart disease X

0.0073 I live with my family X

0.0071 University

0.0069 No joint-related pre-existing conditions on the knee

0.0068 Hypertension

0.0063 No joint-related surgical history of the hip joint

0.0060 Cancer (in the past 5 years)

0.0058 Voluntarily not working

0.0049 Prior joint-replacement on the knee

0.0049 Unable to work due to arthrosis

0.0048 Medium-heavy physical activities

0.0048 Prior joint-replacement on the hip joint

0.0038 I live alone

0.0038 Employed part-time

0.0034 Employed full-time

0.0033 Pre-existing conditions of the knee

0.0031 Hospital F

0.0027 Congenital or developmental disease of the hip joint
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0.0012 Prior reconstruction of the knee ligaments

0.0011 Hospital G

0.0009 Unable to work due to a condition other than arthritis

0.0008 Pain in the legs due to poor circulation

0.0000 Surgery duration

0.0000 Consequences of a stroke

0.0000 Hospital A

0.0000 Hospital C

0.0000 General complications requiring treatment

0.0000 Cardiovascular complication requiring treatment

0.0000 Other general complications requiring treatment

0.0000 Specific complications requiring treatment

0.0000 Disease of the nervous system

0.0000 Prior joint-replacement on the knee

0.0000 Hospital B

0.0000 Prior osteotomy on the knee

0.0000 Prior osteosynthesis on the knee

0.0000 Prior reconstruction of the knee ligaments

0.0000 Other arthroscopic procedures on the knee

0.0000 Congenital or developmental disease of the knee

0.0000 Hospital E

0.0000 Other Gender

0.0000 Prior osteotomy on the hip joint

0.0000 I live in an institutional setting

0.0000 No school-leaving qualification

Note: The table shows the variable importance for all confounders based on (Wager & Athey,

2018). Variables are also indicated if they are used in the policy tree. There is one category left

out due to dummyfication of each categorical variables.
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A.3 Test for Common Support

Figure 6: Common support of estimated propensity scores

Note: The scores should be > 0 and < 1.

A.4 Conditional Average Treatments Effects of the Policy Trees

Table A1: Conditional Average Treatment Effects of the Rapid Recovery Care Path on KOOS
Improvement with unconstrained Policy Tree

Point

Estimate
CI Sample Size Node Number Action

-2.61 [-6.41, 1.19] 157 8 CC

4.31 [2.62, 6] 1024 7 RR

4.54 [-3.22, 12.30] 86 6 RR

-1.91 [-3.73, -0.09] 685 5 CC

-5.79 [-9.57, -2.01] 191 4 CC

5.16 [-0.82, 11.14] 81 3 RR

5.67 [2.59, 8.75] 303 2 RR

-1.88 [-9.83, 6.06] 33 1 CC

Note:Confidence bounds at α = 5%. The positive value in the CATE refers to a larger improve-

ment from pre-surgery to 12-month-post-surgery KOOS for patients on the rapid recovery care

path compared with patients on the conventional care path.

A6



Table A2: Conditional Average Treatment Effects of the Rapid Recovery Care Path on KOOS
Improvement with constrained Policy Tree

Point

Estimate
CI Sample Size Node Number Action

-3.46 [-7.56, 0.63] 134 8 CC

4.75 [2.99, 6.51] 934 7 RR

-4.24 [-10.23, 1.74] 89 6 CC

16.16 [4.52, 27.79] 24 5 RR

12.95 [-3.19, 29.09] 31 4 RR

-1.85 [-3.60, -0.11] 829 3 CC

-0.78 [-3.88, 2.31] 283 2 CC

5.97 [2.52, 9.42] 236 1 RR

Note: Confidence bounds at α = 5%. The positive value in the CATE refers to a larger im-

provement from pre-surgery to 12-month-post-surgery KOOS for patients on the rapid recovery

care path compared with patients on the conventional care path.
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