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Abstract

Coronavirus disease (COVID-19) is a severe ongoing novel pandemic that has emerged in Wuhan,
China, in December 2019. As of October 13, the outbreak has spread rapidly across the world,
affecting over 38 million people, and causing over 1 million deaths. In this article, | analysed
several time series forecasting methods to predict the spread of COVID-19 second wave in Italy,
over the period after October 13, 2020. | used an autoregressive model (ARIMA), an exponential
smoothing state space model (ETS), a neural network autoregression model (NNAR), and the
following hybrid combinations of them: ARIMA-ETS, ARIMA-NNAR, ETS-NNAR, and
ARIMA-ETS-NNAR. About the data, | forecasted the number of patients hospitalized with mild
symptoms, and in intensive care units (ICU). The data refer to the period February 21, 2020—
October 13, 2020 and are extracted from the website of the Italian Ministry of Health
(www.salute.gov.it). The results show that i) the hybrid models, except for ARIMA-ETS, are better
at capturing the linear and non-linear epidemic patterns, by outperforming the respective single
models; and ii) the number of COVID-19-related hospitalized with mild symptoms and in ICU
will rapidly increase in the next weeks, by reaching the peak in about 50-60 days, i.e. in mid-
December 2020, at least. To tackle the upcoming COVID-19 second wave it is necessary to
enhance social distancing, hire healthcare workers and implement sufficient hospital facilities,
protective equipment, and ordinary and intensive care beds.
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NNAR.
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1. Introduction

Coronavirus disease (COVID-19) is a severe ongoing novel pandemic that has officially emerged
in Wuhan, China, in December 2019. As of October 13, 2020, it has affected 215 countries and
territories, with over 38 million cases and approximately 1.1 million deaths (Worldometer, 2020).
At the time of writing, the most affected countries are both advanced and developing countries,
such as Argentina, Brazil, Colombia, France, India, Peru, Russia, Spain, and the USA. In the last
two weeks, several European countries, including Italy, saw a worrying surge of COVID-19
infections.

Italy was the first European country to be severely hit by COVID-19, and it has been one of the
main epicenters of the pandemic for about two months, i.e. from mid-February 2020 to mid-April
2020, when the outbreak reached the first peak. Then, the epidemic curve progressively decreased
until mid-August 2020, and after that the spread of infection re-accelerated again until today. As
of October 13, Italy has suffered 36,246 deaths and 365,467 cases.

The likelihood of a second wave is real and makes it necessary to predict the future epidemic
evolution, in plan to buy medical devices and healthcare facilities, and to manage health centers,
clinics, hospitals, and ordinary and intensive care beds.

Thus, the major goal of this paper is to provide short and mid-term forecasts of the patients
hospitalized from COVID-19 over the period after October 13, 2020. In fact, the COVID-19-
related hospitalizations trends allow to have a clear picture of the overall stress and pressure on
the national health care system. In particular, 1 implemented and compared three different time
series forecast techniques and their feasible hybrid combinations: autoregressive moving average
(ARIMA) model, innovations state space models for exponential smoothing (ETS), neural network
autoregression (NNAR) model, ARIMA-ETS model, ARIMA-NNAR model, ETS-NNAR model,
and ARIMA-ETS-NNAR model.

| organized the rest of this paper as follows. In section 2, I quickly discussed the relevant literature.
In section 3, | presented the data used in the analysis and discussed the empirical strategy. In
section 4, | discussed the main findings and policy implications. Finally, in section 5, | provided
some conclusive considerations.

2. Related literature

From the beginning of the 2020, an increasing body of literature has attempted to forecast the
spread of the COVID-2019 outbreak using different approaches (Bhardwaj, 2020; Fanelli and
Piazza, 2020; Giordano et al., 2020; Nesteruk. 2020; Tuite et al., 2020; Wu et al., 2020; Xu et al.,
2020; Zhao et al., 2020; Zhou et al., 2020). The most used are ARIMA (Alzahrani et al. 2020;
Benvenuto et al., 2020, Ceylan, 2020; Perone, 2020a & b), ETS (Bhandary et al., 2020; Cao et al.,
2020; Joseph et al., 2020), artificial neural network models (Melin et al., 2020; Wieczorek et al.,
2020), models derived from the susceptible-infected-removed (SIR) basic approach (Fanelli and
Piazza, 2020; Giordano et al., 2020; Nesteruk, 2020; Wu et al., 2020; Zhou et al., 2020), and hybrid
models (Chakraborty and Ghosh, 2020; Hasan et al., 2020; Singh et al., 2020; Swaraj et al., 2020).
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The implementation and the comparison of them, except for SIR models, represent the core of this
paper. Thus, intable 1, | reported 18 international studies that used single or hybrid ARIMA, ETS,
and neural network to forecast the transmission patterns of COVID-19 across the world.

Table 1. Eighteen selected studies on COVID-19 forecasts, which use a single or hybrid ARIMA,
ETS, and/or neural network approach.

Authors Data used Method Investigated area
Alzahrani et al. Confirmed ARIMA Saudi Arabia
(2020)
Aslam (2020) Confirmed, Active, KF-ARIMA, HW, & Pakistan
recovered, & deceased SutteARIMA
Bhandary et al. Confirmed ARIMA, ETS, & SIR Nepal
(2020)
Cao et al. (2020) Confirmed ARIMA, ARIMAX, ETS, China
& SEIQDR
Ceylan (2020) Confirmed ARIMA France, Italy, & Spain
Chakraborty and Confirmed ARIMA-WBF Canada, France, India,
Ghosh (2020) & South Korea
Hasan (2020) Confirmed ANN-EEMD World (aggregate)
MA, & REG

Joseph et al. Confirmed ETS & INGARCH Nine countries
(2020)
Khan & Gupta Confirmed ARIMA & NNAR India
(2020)
Kufel (2020) Confirmed ARIMA Several European

countries
Melin et al. (2020) Confirmed ME-ANN Mexico
Perone (2020a, Confirmed, & deceased ARIMA Italy, Russia, & USA
2020b)
Ribeiro et al. Confirmed ARIMA, CUBIST, RF, Brazil
(2020) RIDGE, SVR, & SEL
Singh S. et al. Deceased ARIMA-WBF France, Italy, Spain, UK,
(2020) & USA
Swaraj et al. Confirmed ARIMA, NNAR, & India
(2020) ARIMA-NNAR
Wieczorek et al. Confirmed ANN Several countries &
(2020) regions
Yonar H. et al. Confirmed ARIMA & B/W LES G8 countries
(2020)

Notes: ANN, artificial neural network; ARIMA, autoregressive integrated moving average; ARIMAX, ARIMA with
exogenous variables; B/W LES, Brown/Holt linear exponential smoothing method; CUBIST, cubist regression ;
EEMD, ensemble empirical model decomposition; HW Holt-Winters method; INGARCH, integer-valued generalized
autoregressive conditional heteroskedastic; KF, Kalman filter; MA, moving average; ME-ANN, multiple ensemble
artificial neural network; NNAR, nonlinear autoregressive neural network; REG, linear regression; RF, random forest;
RIDGE, ridge regression; SEIQDR, susceptible-infected but undetected-infected quarantined-suspected-discharged;
SEL, stacking-ensemble learning; SIR, susceptible-infectious-recovered; SutteARIMA, a-Sutte Indicator and
ARIMA; SVR, support vector regression; WBF, Wavelet-bases forecasting.



3. Materials and methods

The data used in this article refer to the real-time number of COVID-19 patients with mild
symptoms and in ICU in Italy from February 21, 2020 to October 13, 2020, for 236 observations.
| extracted the data from the official Italian Ministry of Health’s website (www.salute.gov.it). The
confirmed COVID-19-related hospitalizations trends are shown in Figure 1.

Data show that both patients hospitalized with mild symptoms and in ICU reached a first peak on
April 4, 2020; after that, they followed a downward trend until mid-August, before re-accelerating
again from the end of September 2020 to mid-October 2020. | compute the forecasts by using
different statistical techniques and their combination. Specifically, I use a univariate linear
autoregressive integrated moving average (ARIMA) models, univariate exponential smoothing
state space model (ETS), univariate linear and nonlinear neural network autoregression (NNAR)
models, hybrid ARIMA-ETS model, hybrid ARIMA-NNAR model, and hybrid ETS-NNAR
model.

The combination of different times series forecast methods should allow to maximize the chance
of capturing both the linear (if any) and nonlinear epidemic patterns (Zhang, 2003; Pannigrahi and
Behera, 2017), and it is useful with phenomena like COVID-19 epidemic, which seems
characterized by linear and nonlinear dynamics and components (Batista, 2020, Gupta and Pal,
2020). As well established from the seminal work of Bates and Granger (1969), combining
techniques with unique properties may allow to achieve better performance and forecast accuracy.?
The models are calculated as follows:

+ ARIMA models are detected by applying the “auto.arima” function included in the
package “forecast” (in R environment) and developed by Hyndman and Khandakar
(2008).2 This function follows sequential steps to identify the best ARIMA models, i.e.
the number of p parameters of the autoregressive process (AR), the order i of differencing
(1), and the number of q parameters of the moving average process (MA).* It combines
unit root tests,® and the minimization of the following estimation methods: the bias-
corrected Akaike’s information criterion (AlCc),® and the maximum likelihood estimation
(MLE). The unit root tests allow to identify the order of differencing; while the AlCc and
the MLE methods allow to identify the optimal parameters of the AR and MA processes.
Finally, the overall goodness of fit is tested by using five common forecast accuracy

2 See also, for example, Fallah et al. (2018).

3 A description of the “auto.arima” function is provided by Hyndman and Athanasopoulos (2018, section 8.7).

4 This definition refers to non-seasonal ARIMA model.

° | use both the augmented Dickey-Fuller’s test (ADF) (1981) and the Kwiatkowsky, Phillips, Schmidt, and Shin’s
test (KPSS) (1992). In fact, as stated by Gujarati and Porter (2009), there is not a recognized uniformly powerful test
for detecting unit root.

6 The AlICc is a bias-corrected version of the original Akaike information criterion (AIC), proposed by Sugiura (1978)
and Hurvich and Tsai (1989), which performs significantly better than the latter in both small and moderate sample
sizes, as in this case (Hurvich and Tsai, 1989).


http://www.salute.gov/

measures: mean absolute error (MAE), mean absolute percentage error (MAPE), mean
absolute scaled error (MASE), and root mean square error (RMSE);

ETS models are identified by using the “ets” function included in the package “forecast”
(in R environment), developed by Hyndman et al. (2008).” ETS simple models comprise
two main equations: a forecast equation and a smoothing equation. By implementing the
last two equations into an innovation state space model, it is possible to get an
observation/measurement equation and a transition/state equation, respectively. The first
equation allows to describe the observed data; while the second equation allows to
describe the behavior of the unobserved states. The states refer to the level, trend, and
seasonality. In particular, I use the AICc metric for choosing the best ETS model. The
goodness of fit is tested by using MAE, MAPE, MASE, and RMSE metrics;

NNAR models are identified by using the “nnetar” function included in the package
“caret” (R environment), developed by Hyndman, O’Hara, and Wang.® For non-seasonal
data, I can describe NNAR models with the notation NNAR (p,k), where p denotes the
number of non-seasonal lags used as inputs, and k means the number of nodes/neurons in
the hidden layer. NNAR (p,k) is the same as AR process, but with nonlinear functions.
The optimal number of non-seasonal lags is obtained by using the AICc metric, and the
optimal number of neurons is identified by calculating (p+P+1)/2, where p is the non-
seasonal AR order, and P is the seasonal AR order (if any). Finally, the goodness of fit is
investigated using MAE, MAPE, MASE, and RMSE metrics;

Hybrid models are identified by using the “hybridModel” function included in the package
“forecastHybrid” (in R environment), developed by Shaub and Ellis.° To combine the
single time series forecasting methods, | proceed as follows: i) first, | apply the Box-Cox
(1964) power transformation to the inputs to make normality assumption more plausible;
and ii) then, I implement the cross validation errors (“cv.errors”), which allow to give
more weight to the models that perform relatively better, by producing the best forecast;
and iii) finally, MAE, MAPE, RMSE, and Theil’s U are used for validating the weighting
procedure.

The estimated basic equation for ARIMA model is the following (Davidson, 2000):

A%y, = $14% 4 + - ¢pAd3’t—p t YV1€t-1 T " Vg€t—q T &t [1]

" A description of the “ets” function is provided by Hyndman and Athanasopoulos (2018, section 7.6)

8 A description of the “nnetar” function is provided by Hyndman and Athanasopoulos (2018, section 11.3).

9 A detailed description of the <“forecastHybrid” function is provided at the ULR: https://cran.r-
project.org/web/packages/forecastHybrid/forecastHybrid.pdf

5



Where A% the second difference operator, p is the lag order of the AR process, ¢ is the coefficient
of each parameter p, q is the order of the MA process, v is the coefficient of each parameter g, and
&; denotes the residuals of errors in time t.

The estimated equations for basic ETS (A,N,N) model with additive error is the following
(Hyndman and Athanasopoulos, 2018, section 7):

Forecast equation: 9,.,,, = [; [2]
Smoothing equation: l; = l;_; + a(y; — l;—1) [3]

Where [, is the new estimated level, . , . denotes each one-step-ahead prediction for time t+1,

which results from the weighted average of all the observed data, 0 < a < 1 is the smoothing
parameter which controls the rate of decrease of the weights, and y, — l;_, is the error at time t.
So, each forecasted observation is the sum of the previous level and an error. For each type of
errors, additive or multiplicative, there is a specific probability distribution. For a model with
additive errors, such in this case, it is assumed that errors follow a normal distribution. Thus, the
equations [2] and [3] can be rewritten as follows, respectively:

Observation equation: y, = l;_; + & [4]
Transition equation: [, = l;_, + a&; [5]
The equations [4] and [5] represent the innovations state space models that underlie the exponential
smoothing methods.

The basic form of the neural network autoregression equation is the following (Hyndman and
Athanasopoulos 2018, section 11.3):

Ve = (i) + & [6]
Where y,_, = ()’t—l,%—z yt_n)'is a vector containing the lagged values of the observed data,

f is the neural network with n hidden neurons in a single layer, and ¢, is the error. Finally, the
hybrid models are simple a combination of the described single models.

10 How stated by Hyndman and Athanasopoulos (2018, section 7), the innovations state space models for exponential
smoothing encompass 15 different methods. For each method there are two models: one with additive errors and one
with multiplicative errors, for a total of 30 models. The equation [2] refers to the simplest of the ETS models.
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Figure 1. Patients hospitalized with mild symptoms and in intensive care units, from February 21,
2020 to October 13, 2020.
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Source: Italian Ministry of Health (www.salute.gov.it).
4. Results and discussion

In tables 2, 3, 4 and 5, | reported the main forecast accuracy measures, and the best selected
parameters for the single and hybrid models. For the patients hospitalized with mild symptoms
(Tables 2 and 3), the optimal models are: ARIMA (4,2,4), ETS (A,Ad,N),** NNAR (4,2), hybrid
ARIMA (4,2,4)-NNAR (7,4), hybrid ARIMA (4,2,4)-ETS (A,Ad,N), hybrid ETS (A Ad,N)-
NNAR (7,4), and hybrid ARIMA (4,2,4)-ETS(A,Ad,N)-NNAR (7,4). For the patients hospitalized
in ICU (Tables 4 and 5), the optimal single and hybrid models are: univariate ARIMA (3,2,7),
univariate ETS (A,A,N), NNAR (4,2), hybrid ARIMA(4,2,3)-NNAR(6,4), hybrid ARIMA(4,2,3)-
ETS(AAN), *2 hybrid ETS(A,AN)-NNAR(6,4), and hybrid ARIMA(4,2,3)-ETS(A,A,N)-
NNAR(6,4).%3

According to Lewis’ interpretation (Lewis 1982, p. 40), since MAPE is always lower than 10, all
the predictive models are highly accurate. In particular, the forecasts show a forecast accuracy
(100-MAPE) ranging from 95.68% to 97.84%. Since MASE and Theil’s U are always and

11 The selected ETS model is also known as damped trend method with additive errors.

12 The selected ETS model is also known as Holt’s linear trend method.

13 The coefficients of the parameters estimated for the single and hybrid ARIMA and ETS models are provided in
Tables Al, A2, A3, & A4 (Appendix A).
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significantly lower than 1, all the proposed forecasting models performed better than the forecasts
from the (no-change) “naive” methods, i.e. the forecasts with no adjustments for casual factors
(Hyndman and Koehler, 2006). This allows to justify the use of more complex and sophisticated
models, such as ARIMA, ETS, NNAR, and their hybrid combination.

In tables 6 and 7, | compared the single and hybrid models by considering the minimization of
MAE, MAPE, and RMSE. For the patients hospitalized with mild symptoms, hybrid ARIMA-ETS
is better than the respective single models in 2 measures out of 6; the hybrid ARIMA-NNAR and
ETS-NNAR are better than the respective single models in all the accuracy measures; and the
hybrid ARIMA-ETS-NNAR is better than respective single models in 8 measures out of 9. For the
patients hospitalized in ICU, hybrid ARIMA-ETS is better than the single models in 3 measures
out of 6; and hybrid ARIMA-NNAR is better than the respective single models in all the accuracy
measures; ETS-NNAR is better than the respective single models in 5 measures out of 6; and
ARIMA-ETS-NNAR is better than respective single models in 8 measures out of 9.

The most reliable and accurate single and hybrid models are ARIMA and ARIMA-NNAR,
respectively. The results show that hybrid models always outperformed the single models, with
the only exception of ARIMA-ETS. The best models are ARIMA-NNAR, ETS-NNAR, and
ARIMA-ETS-NNAR.

In table 8, I also compute the percentage efficiency gains — in terms of MAE and RMSE
minimization — from using the three best hybrid models. Specifically, hybrid ARIMA-NNAR
outperforms single ARIMA and NNAR models from 1.87% to 8.91% on MAE, and from 4.19%
t0 9.47% on RMSE. Hybrid ETS-NNAR outperforms single ETS and NNAR models from 3.01%
to 9.02% on MAE, and from 2.68% to 12.4% on RMSE. Finally, hybrid ARIMA-ETS-NNAR
outperforms single ARIMA, ETS, and NNAR models from 0.69% to 9.61% on MAE, and from
0.1% to 12.4% on RMSE.

In figures 2 to 8, | fit all the seven models for both the time series. The light blue area shows the
prediction interval at 80%, and the dark blue area shows the prediction interval at 95%. The
forecasts of the best models show that the number of patients hospitalized with mild symptoms
and in ICU will significantly increase in the next 45 days, i.e. from October 14, 2020 to November
27, 2020. However, if the number of patients hospitalized with mild symptom will approximately
stabilize between the end of November 2020 and the beginning of December 2020, the number of
patients in ICU will require more time to reach the plateau. This is also confirmed by the other
forecasting methods, except of ETS.

ARIMA-NNAR, ETS-NNAR, and ARIMA-ETS-NNAR show that: i) after 10 days (October 23),
the number of patients hospitalized with mild symptoms will be 8,829, 8,032, or 8,125,
respectively; ii) after 20 days (November 2), they will be 14,038, 12,058, or 11,877; and iii) after
45 days (November 27), they will be 20,795, 14,823 or 16,052. About the number of patients
hospitalized in ICU, ARIMA-NNAR, ETS-NNAR, and ARIMA-ETS-NNAR show that: i) after
10 days, the required intensive care beds will be 1,177, 1,040 or 1,100; ii) after 20 days, they will
be 2,065, 1,446, or 1,829; and iii) after 45 days, they will be 3,320, 1,907 or 3,030.1

14 The forecasted values are shown in Table A5 (Appendix A).
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Thus, a second wave of COVID-19 is expected in the next two months, with a peak in mid-
December 2020. This has several policy implications both for the national health care system and
economic activities. In particular, the predictions seem to stress the importance of implementing
adequate containment measures and an increasing number of ordinary and intensive care beds, of
hiring further healthcare personnel, and of buying care facilities, protective equipment, and
ventilators to fight the infection and reduce deaths.'®

However, the opportunity of implementing more or less restrictive non-pharmaceutical
interventions (NIP) to tackle the epidemic — such as social distancing, travel ban, the use of face
mask, hand hygiene, and bar and restaurant restrictions (ECDC, 2020) — should be carefully
evaluated because of the negative impact on the overall economic activity. In fact, according to
Fitch Rating’s (2020) previsions, the first wave of COVID-19 and the consequent massive
lockdown measures could have already caused up to 9.5% contraction for the Italian 2020 GDP.
Thus, to avoid new strict lockdown measures and further economic loss, it seems important to
ensure the strict compliance with the basic COVID-19 control measures, such as social distancing,
hand hygiene, and the use of protective equipment, rather than restricting or even closing public
and private economic activities, such as provided by the recent Italian Prime Minister’s Decrees
of October 13, 2020. In fact, if the extension of the national state of emergency is well justified,
the hours restriction for bakery, bar, ice cream shops, pubs, restaurant, and retail trade activities,
and the total closure of all indoor and outdoor dance halls, discos, and similar spaces may seriously
worsen the current Italy’s economic downturn.®

By the contrary, it may be more useful to expand public transport, adopt the double-shifts
schooling system, and isolate older and vulnerable people. Finally, a better balance between public
health, public utility, and freedom of economic initiative is recommended.

Table 2. Forecast accuracy measures of the single and hybrid models for patients hospitalized with
mild symptoms.

Model MAE MAPE MASE RMSE ACF1 Theil’s U
ARIMA 112.2358 2.6081 0.4218 201.0097 0.0207 -
ETS 121.3297 2.5805 0.456 219.229 0.1191 -
NNAR 116.8677 2.2939 0.4392 210.4792 -0.0071 -
ARIMA-ETS 113.9646 3.4691 - 206.49 0.0495 0.9006
ARIMA-NNAR 106.4554 2.1901 - 190.542 -0.0238 0.3536
ETS-NNAR 113.8641 2.1585 - 204.9186 0.0119 0.3542
ARIMA-ETS-NNAR  111.4661 2.16 - 201.0401 0.0178 0.3621

5 This is consistent with my recent paper (Perone, 2021), in which I showed that the Italian health care system
saturation played a key role in explaining the variability of COVID-19 mortality. In particular, ordinary and intensive
care beds saturation allowed to explain almost up to 90% of the COVID-19 mortality, at the first peak of the epidemic.
16 Further details about the restrictions and control measures implemented by the Italian government (on October 13,
2020) are available at: https://www.gazzettaufficiale.it/eli/id/2020/10/13/20A05563/sg.
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Table 3. Structure of the single and hybrid models for patients hospitalized with mild symptoms.

Model Components AlCc o? Structure Weight
ARIMA ARIMA 3,169.07 40,750 (4,2,4) -
ETS ETS 1,633.72 2.0419 (A,Ad,N) -
NNAR NNAR - 0.7027 (4,2) -
ARIMA-ETS ARIMA 3,169,07 42,193 (4,2,4) 0.46
ETS 3,846.92 222.0379 (A,Ad,N) 0.54
ARIMA-NNAR ARIMA 3,169,07 42,193 (4,2,4) 0.698
NNAR . 34,249 (7,4) 0.302
ETS-NNAR ETS 3,846,92 222.0388 (A,Ad,N) 0.73
NNAR - 31,658 (7,4) 0.27
ARIMA-ETS- ARIMA 3,169.07 42,193 (4,2,4) 0.387
NNAR ETS 3,846.92 222.0388 (A,Ad,N) 0.455
NNAR - 31,371 (7,4) 0.158

Table 4. Forecast accuracy measures of the single and hybrid models for patients hospitalized in
ICU.

Model MAE MAPE MASE RMSE ACF1 Theil’s U
ARIMA 12.2536 3.4997 0.3327 20.4164 -0.0071 -
ETS 13.609 3.4292 0.3696 23.2846 0.2078 -
NNAR 12.7657 3.2256 0.3467 20.9578 -0.1716 -
ARIMA-ETS 12.6339 3.4923 - 21.3438 -0.0258 0.6753
ARIMA-NNAR 12.0248 3.2221 - 19.5603 -0.0633 0.5778
ETS-NNAR 12.3817 3.229 - 20.3967 -0.0623 0.5851
ARIMA-ETS-NNAR  12.3018 3.2007 - 20.3963 -0.0594 0.5785

Table 5. Structure of the single and hybrid models for patients hospitalized in ICU.

Model Components AlCc o? Structure Weight
ARIMA ARIMA 2,103.88 420.4 (3,2,7) -
ETS ETS 1,154.31 0.7412 (AAN) -
NNAR NNAR - 0.0065 (4,2) -
ARIMA-ETS ARIMA 2,106.15 450.4 (4,2,3) 0.487
ETS 2,775.88 23.0116 (AJANN) 0.513
ARIMA-NNAR ARIMA 2,106.15 450.4 (4,2,3) 0.611
NNAR - 360.5 (6,4) 0.389
ETS-NNAR ETS 2,775.88 23.0116 (AAN) 0.621
NNAR - 344.7 (6,4) 0.379
ARIMA-ETS- ARIMA 2,106.15 450.4 (4,2,3) 0.367
NNAR ETS 2,775.81 23.0116 (AAN) 0.386
NNAR - 333.6 (6,4) 0.248
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Table 6. Comparison between hybrid and single models for patients hospitalized with mild
symptoms.

Hybrid models Single models MAE MAPE RMSE
ICU ICU

ARIMA-ETS ARIMA Single Single Single

ETS Hybrid Single Hybrid

ARIMA-NNAR ARIMA Hybrid Hybrid Hybrid

NNAR Hybrid Hybrid Hybrid

ETS-NNAR ETS Hybrid Hybrid Hybrid

NNAR Hybrid Hybrid Hybrid

ARIMA-ETS-NNAR ARIMA Hybrid Hybrid Hybrid

ETS Hybrid Hybrid Hybrid

NNAR Hybrid Hybrid Single

Table 7. Comparison between hybrid and single models for patients hospitalized in ICU.

Hybrid model Single model MAE MAPE RMSE
ARIMA-ETS ARIMA Single Hybrid Single
ETS Hybrid Single Hybrid

ARIMA-NNAR ARIMA Hybrid Hybrid Hybrid
NNAR Hybrid Hybrid Hybrid

ETS-NNAR ETS Hybrid Hybrid Hybrid
NNAR Hybrid Single Hybrid

ARIMA-ETS- ARIMA Single Hybrid Hybrid
NNAR ETS Hybrid Hybrid Hybrid
NNAR Hybrid Hybrid Hybrid

Table 8. Comparison of the efficiency between hybrid and single models.

Hybrid Single Mild condition ICU
MAE RMSE MAE RMSE
ARIMA-NNAR ARIMA -5.15% -5.21% -1.87% -4.19%
NNAR -8.91% -9.47% -5.8% -6.67%
ETS-NNAR ETS -6.15% -6.53% -9.02% -12.4%
NNAR -2.57% -2.64% -3.01% -2.68%
ARIMA-ETS-NNAR ARIMA -0.69% 0.15% 0.39% -0.1%
ETS -8.13% -8.3% -9.61% -12.4%
NNAR -4.62% -4.48% -3.63% -2.68%

Notes: negative values show the percentage efficiency gains from using hybrid models.
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Figure 2. Arima forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 3. ETS forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 4. NNAR forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 5. Hybrid ARIMA-ETS forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 6. Hybrid ARIMA-NNAR forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 7. Hybrid ETS-NNAR forecasts of patients hospitalized with mild symptoms and in ICU.
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Figure 8. Hybrid ARIMA-ETS-NNAR forecasts of patients hospitalized with mild symptoms and in ICU.
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5. Conclusions

In this paper, | attempted to forecast the short and mid-term dynamics of the real-time patients
hospitalized from COVID-19 in Italy. In particular, I used both single time series forecast methods
and hybrid combinations of them. The results show that: i) the best single and hybrid models are
ARIMA and ARIMA-NNAR, respectively; ii) and hybrid ARIMA-NNAR, ETS-NNAR, and
ARIMA-ETS-NNAR models outperformed the respective single models, by leading to more
accurate and reliable predictions. Thus, hybrid models seem to enhance the chances of capturing
a greater number of combinations of the linear and nonlinear epidemic patterns, compared with
the use of single time series forecasting methods.

Predictions seem also to give useful policy indications. In fact, they show that the number of
patients hospitalized with mild symptoms and in ICU will significantly grow until mid-December
2020, when the second epidemic peak is expected. | predict that the necessary ordinary and
intensive care beds will double in 10 days, and triple in about 20 days. Thus, it is necessary to
strengthen the national health care system by buying protective equipment and hospital beds,
managing health care facilities, and hiring and training healthcare workers.

Finally, the hybrid combination of ARIMA, ETS, and NNAR have proven to be sufficiently
accurate in the short and mid-term. However, the results in the mid-term should be taken with
more caution because of the inevitable uncertainty and bias, which tend to grow over time.
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Appendix A.

Table Al. Estimated parameters for ARIMA models (Fig. 2).

Parameters Mild condition ICU
Coefficients Standard error Coefficients Standard error

AR (1) -0.6491*** 0.1171 -0.0924 0.1715
AR (2) 0.7842*** 0.1603 0.0094 0.1364
AR (3) 0.3078*** 0.1084 0.5872*** 0.1314
AR (4) -0.3912*** 0.0772

MA (1) 0.1763* 0.0984 -0.4972*** 0.171
MA (2) -1.3753*** 0.1034 -0.1028 0.2107
MA (3) 0.003 0.0689 -0.4019** 0.1697
MA (4) 0.803*** 0.0762 0.3012** 0.1225
MA (5) 0.0347 0.0794
MA (6) -0.0566 0.0787
MA (7) 0.3411*** 0.0856

Notes: ***p-value < 0.01; **p-value < 0.05; *p-value < 0.1.
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Table A2. Estimated parameters for ETS models (Fig.3).

Smoothing Mild condition ICU
parameters

Coefficients Coefficients
o 0.9999 0.8734
B 0.3635 0.4243
p 0.98

Table A3. Estimated parameters for ARIMA models (Fig. 5, 6, & 8)

Parameters Mild condition ICU
Coefficients Standard error Coefficients Standard error

AR (1) -0.6491%** 0.1171 0.3273*** 0.0819
AR (2) 0.7842*** 0.1603 0.8596*** 0.0877
AR (3) 0.3078*** 0.1084 -0.1893** 0.0776
AR (4) -0.3912%** 0.0772 -0.1597** 0.0717
MA (1) 0.1763* 0.0984 -0.9059*** 0.0517
MA (2) -1.3753*** 0.1034 -0.756*** 0.0754
MA (3) 0.003 0.0689 0.8659*** 0.0464
MA (4) 0.803*** 0.0762

Notes: ***p-value < 0.01; **p-value < 0.05; *p-value < 0.1.

Table A4. Estimated parameters for ETS models (Fig. 5, 7, & 8)

Smoothing Mild condition ICU
parameters

Coefficients Coefficients
a 0.9999 0.9071
B 0.4555 0.5871
P 0.9708

Table A5. The predicted values of hospitalized with mild condition and in ICU in Italy, from October 14,
2020 to November 27, 2020.

Hospitalized with mild condition* Hospitalized in intensive care units*

Date ARIMA-  ETS-NNAR  ARIMA- ARIMA-  ETS-NNAR  ARIMA-
NNAR ETS-NNAR NNAR ETS-NNAR

14-10-2020 5,341 5,325 5,327 564 561 562
15-10-2020 5,643 5,583 5,595 607 608 607
16-10-2020 5,957 5,847 5,867 664 660 661
17-10-2020 6,307 6,117 6,157 720 713 713
18-10-2020 6,672 6,403 6,453 786 766 772
19-10-2020 7,065 6,697 6,765 853 820 832
20-10-2020 7,472 7,006 7,084 929 875 896
21-10-2020 7,906 7,331 7,419 1,006 931 961
22-10-2020 8,359 7,673 7,767 1,091 986 1,030
23-10-2020 8,829 8,032 8,125 1,177 1,040 1,100
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24-10-2020
25-10-2020
26-10-2020
27-10-2020
28-10-2020
29-10-2020
30-10-2020
31-10-2020
1-11-2020
2-11-2020
3-11-2020
4-11-2020
5-11-2020
6-11-2020
7-11-2020
8-11-2020
9-11-2020
10-11-2020
11-11-2020
12-11-2020
13-11-2020
14-11-2020
15-11-2020
16-11-2020
17-11-2020
18-11-2020
19-11-2020
20-11-2020
21-11-2020
22-11-2020
23-11-2020
24-11-2020
25-11-2020
26-11-2020
27-11-2020

9,322
9,817
10,333
10,847
11,377
11,905
12,442
12,977
13,510
14,038
14,553
15,063
15,550
16,025
16,470
16,894
17,287
17,651
17,988
18,292
18,573
18,824
19,057
19,264
19,458
19,632
19,795
19,945
20,085
20,218
20,342
20,463
20,576
20,688
20,795

8,407
8,793
9,189
9,593
10,003
10,416
10,832
11,245
11,655
12,058
12,450
12,826
13,182
13,514
13,818
14,092
14,332
14,540
14,715
14,859
14,974
15,062
15,127
15,170
15,194
15,202
15,196
15,177
15,148
15,109
15,063
15,010
14,952
14,889
14,823

8,496

8,868

9,251

9,631

10,017
10,398
10,778
11,152
11,518
11,877
12,220
12,552
12,862
13,155
13,425
13,676
13,904
14,114
14,306
14,481
14,643
14,789
14,927
15,051
15,169
15,277
15,380
15,476
15,568
15,656
15,739
15,821
15,900
15,977
16,052

1,266
1,357
1,449
1,541
1,633
1,723
1,813
1,899
1,984
2065
2,143
2,218
2,290
2,358
2,423
2,485
2,543
2,599
2,652
2,702
2,750
2,796
2,841
2,883
2,925
2,966
3,006
3,045
3,084
3,123
3,162
3,201
3,240
3,280
3,320

1,093
1,145
1,193
1,240
1,283
1,323
1,359
1,392
1,420
1,446
1,468
1,487
1,505
1,521
1,535
1,550
1,564
1,578
1,592
1,606
1,622
1,638
1,654
1,672
1,690
1,709
1,729
1,749
1,770
1,791
1,813
1,836
1,859
1,883
1,907

1,173
1,246
1,320
1,394
1,469
1,542
1,616
1,688
1,759
1,829
1,896
1,962
2,025
2,086
2,144
2,200
2,254
2,305
2,354
2,401
2,446
2,490
2,533
2,575
2,617
2,658
2,698
2,739
2,780
2,821
2,862
2,903
2,945
2,988
3,030

*Values are rounded to the nearest integer.
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