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Abstract

Response management to the SARS-CoV-2 outbreak requires to answer several forecasting tasks.
For hospital managers, a major one is to anticipate the likely needs of beds in intensive care in
a given catchment area one or two weeks ahead, starting as early as possible in the evolution
of the epidemic. This paper proposes to use a bivariate Error Correction model to forecast the
needs of beds in intensive care, jointly with the number of patients hospitalised with Covid-19
symptoms. Error Correction models are found to provide reliable forecasts that are tailored to
the local characteristics both of epidemic dynamics and of hospital practice for various regions
in Europe in Italy, France and Scotland, both at the onset and at later stages of the spread of the
disease. The forecast performance is encouraging for all analysed regions, suggesting that the
present approach may be useful also beyond the analysed cases.

Keywords: SARS-CoV-2, Covid-19, Intensive Care Units, Forecasting, Vector error correction
model, VAR, Cointegration
JEL: C53, C32

IInformation and views set out in this paper are those of the authors and do not necessarily reflect the ones of
the institutions of affiliation. The authors thank Camillo Rossi, MD (Healthcare Director at Spedali Civili di Brescia,
Italy), for stimulating this research by requesting reliable short-run forecasts of Intensive Care Unit needs at the very
beginning of the COVID-19 outbreak. The authors acknowledge useful comments on a previous version of the paper
from Ian Vollbracht, Brian Doherty, and Helen Johnson from the European Commission and the ECDC respectively.
The first two authors acknowledge financial support from the Region of Lombardy, project 2014IT16RFOP012 ‘Mi-
sura a sostegno dello sviluppo di collaborazioni per l’identificazione di terapie e sistemi di diagnostica, protezione e
analisi per contrastare l’emergenza Coronavirus e altre emergenze virali del futuro’.
Declarations of interest: none.

1Email: paolo.berta@unimib.it ORCID: 0000-0003-0984-4288.
2Email: piergiorgio.lovaglio@unimib.it ORCID: 0000-0002-2340-0547.
3Email: paolo.paruolo@ec.europa.eu ORCID: 0000-0002-3982-4889, Corresponding author.

Address: European Commission, Joint Research Centre (JRC), Via Enrico Fermi 2749, TP 723, 21027 Ispra (VA),
Italy

4Email: stefano.verzillo@ec.europa.eu ORCID: 0000-0002-1895-8554.

August 17, 2020



1. Introduction

The human-to-human transmission of SARS-CoV-2 has spread around the world, prompting
the World Health Organization (WHO) to declare it a worldwide pandemic on March 12, 2020.
Since the start of the pandemic, different regions have experienced rising clusters of cases and
community transmission, inducing health authorities to introduce social-distance measures and
various forms of lock-down. For instance, the Italian region of Lombardy experienced a rapid
increase in Covid-19 cases in February 2020. Spanish regions, including Cataluña, experienced a
similar evolution, with a delay of one or a few weeks.

Many forecasting problems are generated by the pandemic; the specific one analysed in the
present paper is described in Subsection 1.1. Subsection 1.2 describes the corresponding data
availability and its geographical scale. The contribution of the paper is presented in Subsection
1.3, which is next linked to the literature in Subsection 1.4.

The rest of the paper is organised as follows: Section 2 describes the type of data used to
forecast Intensive Care Units (ICU) demand. Section 3 introduces the relevant class of models;
Section 4 discusses model estimation and testing while Section 5 reports full-sample estimates.
Section 6 discusses point and interval forecasts, while Section 7 contains the real-time application
to weekly forecast of Covid-19 demand for ICU. Section 8 reports conclusions. Appendix A
reports proofs.

1.1. Motivation
A major concern in the pandemic is the mounting pressure on the health care systems (Rodriguez-

Llanes et al., 2020) due to the steep demand of sub-intensive units and ICU during the outbreak.
The ECDC (2020) indicated ‘bed occupancy in ICU’ as the reference indicator of seriousness and
spread of Covid-19, both at community or regional level and at hospital level.

In this context, there is a concrete need for public health managers to forecast ICU demand
in real-time, with an horizon of one or two weeks, to plan or adjust health care resources. These
actions may involve staff reallocation or re-deployment, the retrofitting or the creation of new
wards for ICU or sub-intensive facilities with ventilators (Grasselli et al., 2020).

This forecast problem is addressed in the present paper and it is relevant at community or
regional level, i.e. at the level where health management takes place. This corresponds to the
geographical level of NUTS-2 regions in Europe. To showcase the proposed approach, data for
some European regions were selected.

Italy was the first country to experience the Covid-19 outbreak, and its four most affected
regions were included in the analysis. Other European countries experienced similar outbreaks,
with a delay. Among these, French health departments provided consistent data in open access
across time, and the Department of Paris has been chosen as a representative case. Similarly, data
on Scotland has been provided consistently up to the last weeks of July 2020, and these were also
selected for analysis.

1.2. Data
The pandemic has prompted public agencies to provide real-time data on the Covid-19 spread

with open access. The data consist typically of daily time series of numbers of people swabbed,
tested, infected, hospitalized or recovered, as well as Covid-19-related number of deaths. The data
is usually provided at the sub-national level at which health management takes place.
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Some of the reported indicators are prone to misreporting or selection bias. For instance,
the number of deaths may be under-reported due to deaths that were untested for Covid-19, see
e.g. Buonanno et al. (2020). The number of newly infected patients is of course affected by
heterogeneity in testing policies within and among countries, see e.g. Richardson and Spiegelhalter
(2020).

The number of patients (IC) admitted to Covid-19 ICU appears to be less subject to these
sources of bias, as it is taken from admission records that apply well-defined hospital procedures.
Possible anomalies may still be present, caused by lags in reporting, or mis-attribution of events to
specific dates, such as during weekends and bank holidays.5

This Covid-19 demand for ICU reflects both the spread of Covid-19 as well as current hospital
health practice, and policies put in place by Institutions; these may change during the evolution
of the epidemic. Recent analyses, in fact, find that interventions such as lock-downs, social dis-
tancing, business closures, quarantine, face masks etc. not only directly affect the spread (growth
rates) of the disease, but also indirectly affect its spread by changing people’s behavior. Evidence
on this has been provided in Hsiang et al. (2020), Zhang et al. (2020), Abaluck et al. (2020) and
Chernozhukov et al. (2020).

The population at risk for the ICU bed occupancy is mostly made of the hospitalized patients
with Covid-19 symptoms, labelled HwS. Data on HwS comes from admission records that reflect
well-defined hospital procedures, and hence appears less prone to the sources of bias cited above,
similarly to IC. HwS is also reported with the same frequency and spatial aggregation as IC. IC
and HwS correspond to the Recognised and Threatened in the classical Compartmental/SIR-like
methodology, see Adda (2016), Giordano et al. (2020) and Bollon et al. (2020).

This paper considers data on IC and HwS at sub-national level in various European countries as
case studies. The most affected regions in Italy were Lombardy, Piemonte, Emilia Romagna, and
Veneto; these Italian regions are analysed in the paper. Data on all Italian regions are published
since February 24, 2020, by the Italian Civil Protection6.

The paper validates the proposed approach also on Scottish data and French data from the
health Department of Paris.7 All data were last updated on August 7, 2020.

1.3. Contribution of the paper
This paper discusses the bivariate daily forecast for IC and HwS at regional level. It proposes

(i) a model-based approach, based on Vector Error Correction models (VECM) i.e. cointegrated
Vector Autoregressive models (VAR) (Davidson et al., 1978, Johansen, 1996), which take advan-
tage of the joint dynamics of the time series. Moreover, (ii) it adapts the VECM current technology
to accommodate the observed reality of high initial growth rates at the onset of the epidemic, that
tend to persist over time. Additionally, (iii) the flexible deterministic components are considered
in the VECM to allow for changes both in the diffusion of the epidemic and in hospital practice.
Finally (iv) the paper proposes an adaptive approach that can be used to forecast IC with as little
as 2 or 3 weeks of data. The proposed forecasting approach appears to work well on all data set
analysed.

5Several examples of these kind of issues were for instance reported by the Italian media.
6https://github.com/pcm-dpc/COVID-19
7https://www.data.gouv.fr and https://statistics.gov.scot/.
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Specifically, the VECM class of models accommodates the presence of a common trend be-
tween the two series, which corresponds to one cointegrating relation in the sense of Engle and
Granger (1987). The cointegrating relation can be interpreted as determining an equilibrium level
of IC as a function of the associated population at risk HwS. More specifically, this relation takes
the form

IC?
t = γtHwS ω

t , (1)

where ? indicates the equilibrium level. Here the ‘pass-through’ coefficient γt may vary over
time as a result to changes in the epidemic and in hospital practice. The parameter ω satisfies
the equality ω = ∂ log IC?

t /∂ log HwS t, and it is hence dubbed here the ‘elasticity’ parameter in
(1), even if cointegrating coefficients do not necessarily correspond to elasticity parameters in the
economic sense, see Johansen (2005).

Both the pass-through coefficient γt and the elasticity parameter ω reflect (a) the diffusion of
the epidemic as well as (b) the hospital admission protocols of patients into ICU, and they are
likely to differ between different regions and periods.

The presence of an equilibrium relation of the type (1) implies that HwS is a natural candidate
predictor for IC, in the sense that (1) implies Granger causality at least of one of the two variables
IC and HwS, see e.g. Granger (2004). The model-based approach allows one to test the hypothesis
that this is the case empirically.

In addition to adjustment to the equilibrium relation of the type (1), the prediction of IC may
be influenced by the lagged values of the growth rates of IC and HwS. This dynamic adjustment
may incorporate some dynamic components with long half-time, which may be responsible for the
slow decay in growth rates experienced at the onset of the outbreak.

The flexible deterministic components in the present model can accommodate changes in the
evolution of the epidemic and medical practice. This paper also shows how the implied point and
interval forecasts that can used to predict turning points (peaks and troughs). All these features are
potentially heterogeneous across regions; a model fitting approach by region allows one to adapt
these tools to the different situations.

The above characteristics of the present approach innovate with respect to other approaches
in the literature, which, as discussed in the following subsection, focus on univariate models and
techniques.

1.4. Related literature
Forecasts of demand of IC in the literature are based on several approaches. One of them is

based on managerial strategies, such as scheduling and allocative rules, see Sadki et al. (2013) for
a review. A different one applies probabilistic rules, such as discrete event simulation and queuing
models, based on simulated scenarios (Ridge et al., 1998, Zhu et al., 2012) with Poisson models
(Pearson et al., 2012, Milne and Whitty, 1995); they predict IC as a function of population size
plus seasonal and organizational factors. All these approaches are applied to data at facility level,
such as an emergency department or ICU.

When patients microdata are available in a given facility, a different approach uses classifica-
tion and regression trees to predict IC for as a function of patients’ case-mix, admission patterns,
lengths of stay, ICU available capacity (Costa et al., 2003, Harper and Shahani, 2002) and refusal
rate (Harper and Shahani, 2002). Other authors propose state-transition models such as Markov

4



modelling and Monte Carlo simulations (Kreke et al., 2004) that predict when cohorts switch from
ordinary hospitalizations to ICU treatment.

In a time series framework, daily ICU demand has been modelled using univariate approaches;
these include classical exponential and damped-trend smoothing, SARIMA models (Aboagye-
Sarfo et al., 2015, Angelo et al., 2017, Kadri et al., 2014, Zhu et al., 2015) and artificial neural
network models (Buzaev et al., 2016, Jilani et al., 2019).

Rarely, however, demand for ICU or for treatment in Emergency Departments has been mo-
delled with a multivariate time series approach, with a few notable exceptions. Jones et al. (2009)
model jointly arrivals, inpatients, computed tomography orders and other variables by means of
VAR models, albeit without allowing for cointegration. Aboagye-Sarfo et al. (2015) compare
vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in
Western Australia with univariate ARMA and other forecasting rules, and conclude that multivari-
ate models outperform univariate ones.

During the Covid-19 pandemic, the timeliness of forecast of ICU demand has become more
and more important. Most papers focus on infected, deaths and recovered patients. Examples in-
clude Jombart et al. (2020), Petropoulos and Makridakis (2020), Benvenuto et al. (2020), Peracchi
(2020), Remuzzi and Remuzzi (2020), Grasselli et al. (2020), Deasy et al. (2020), which focus on
predicting the inception phase of the epidemic only. No other paper has yet apparently adopted
the present approach to jointly model the evolution of ICU demand and hospitalized patients with
Covid-19 symptoms in a time series context.

Several of these real-time models foresee re-specification to adapt to different evolution of the
pandemic, which makes them ill-suited for forecast comparisons. Adaptive methods with regular
models update include Egidi and Torelli (2020), Davis and Fard (2020) using Poisson generalized
linear mixed models, StatGroup-19 (2020), with Poisson autoregressions, Shoukat et al. (2020)
using negative-binomial models or IHME COVID-19 health service utilization forecasting team
(2020) with non-linear mixed effects curve-fitting models.

StatGroup-19 (2020) proposed to forecast IC by means of an ensemble model, with each com-
ponent being an univariate model (INteger valued AutoRegressive, INAR model with Poisson
innovations). In addition, Branas et al. (2020) and USCOVID (2020) publish daily forecasts of
new confirmed cases, deaths and patients needing ICU care in US States using a meta-population
Susceptible-Exposed-Infectious-Recovered (SEIR) model.

The approach in this paper, instead, rests in a pure multivariate time series approach (VECM),
which can be readily codified, and hence lends itself to forecast comparisons. Early results on the
application of the present approach to the first seven weeks of data up to mid-April 2020 for Italian
regions, Switzerland and Spain are reported in Berta et al. (2020).

2. The data

This section describes the type of data analyzed, both for Italian regions and for Scotland and
the Department of Paris. Let xt = (ict, hwst)′ = (log(ICt), log(HwS t))′ and denote with ∆ = 1 − L
the difference operator, with L the lag operator, Lxt = xt−1. Fig. 1 graphs the time series xt (natural
logarithm of counts) for the four Italian regions for the subsets of the consecutive days in February
24 - August 5, 2020 for which IC > 5. Fig. 2 reports the same graph for the Scotland and the
French health Department of Paris. All data were last downloaded on August 7, 2020.
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The data covers different calendar periods. Data for Italy started on February 24. Some regions
like Piemonte, did not have any person in ICU in the beginning; some other regions, like Veneto,
had a few or zero cases in ICU since late July. Because of this, data were here selected so as to
cover consecutive periods of days with IC > 5. The resulting periods are February 24 to August 6
for Lombardy, March 3 to July 24 for Piemonte, February 25 to June 1 for Veneto, February 27 to
July 23 for Emilia Romagna.

The epidemic started later in France and Scotland. The corresponding data cover the periods
March 18 to July 21 for Scotland and March 18 to August 5 for the Department of Paris.

The (first) peak of ICt is attained at different times; for Lombardy, this happened at t = 40
corresponding to April 3 with ICt = 1381; the first peak for HwS t is at t = 42 corresponding
to April 5 with HwS t = 12009 and a second peak is at t = 51 corresponding to April 14 with
HwS t = 12077.

For all the shown cases, the levels of the two time-series xt show a common trend. This appears
a common feature, that goes beyond the six data sets analysed here.8 The time evolution in some
cases appears to change, possibly reflecting changes in treatment practice and in the spread of the
disease.

The first difference ∆xt are reported for some regions in Fig. 3. The first differences ∆xt show
persistent declining behaviour in the first part of the sample, corresponding to the initial outbreak
of the COVID-19 epidemic.

The second differences ∆2xt are reported for Lombardy in the left panel of Fig. 4; the remaining
regions are similar to Lombardy. The second differences do not show persistent behaviour, but
possibly time-varying heteroskedasticity.

A first question regards the level of integration of xt. A common rule of thumb in the Box-
Jenkins tradition is to choose the order of differencing for which the standard deviation of the
series is lowest. Approximating the standard deviation with the sample range of the time series,
this rule can be applied to the scales of Fig. 1, 3, 4; this rule would suggest that xt is integrated of
order 1, indicated xt ∼ I(1).

The assumption xt ∼ I(1) does not explain the persistent declining behaviour of ∆xt in the first
part of the sample in Fig. 3. However, this behaviour would be consistent with ∆xt being stationary
– i.e. xt ∼ I(1) – but starting from an initial value that lies far from its average. As an illustration
of this, the right panel in Fig. 4 reports one simulation of a univariate Autoregressive (AR) process
with mean c, wt − c = ρ(wt−1 − c) + εt with ρ = 0.94, c = −0.1, w0 = 0.6, where εt are independent
and identically distributed (i.i.d.) N(0, σ2) random variables, with σ = 0.01.

The chosen initial value w0 = 0.6 is way above the average of wt equal to c = −0.1, and the
process is pushed towards its mean c = −0.1 (return-to-the-mean) over a rather long stretch of
time. The speed of the return-to-the-mean transition is governed by ρ: the larger the value of ρ,
the longer the time the process takes for the return-to-the-mean; this behaviour is also described
as a ‘large half-life’, see e.g. Fanelli and Paruolo (2010) are references therein. The observed
behaviour of ∆xt in Fig. 3 appears consistent with a large real autoregressive root.

Formal univariate unit root test on the two time series in xt were not performed for a number of

8Some early occasional look at data from Switzerland and regions in Australia showed the same feature. A full
analysis of these other data sets was not pursued, not only because of limitations in data access or changes in definitions
of variables, but also because the present paper does not attempt to cover all possible (sub-)national cases.
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Figure 1: Italian data for ic = log(IC) and hws = log(HwS ). Lombardy (upper left), Piemonte (upper right),
Emilia Romagna (lover left), Veneto (lower right). Sample periods are the subsets of the consecutive days
in February 24 - August 5, 2020 for which IC > 5. Red: ic. Blue: hws.
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Figure 2: Scottish and French data for ic = log(IC) and hws = log(HwS ). Left: Scotland. Right: Department
of Paris. Red: ic. Blue: hws.
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Figure 3: Data for ∆ic = ∆ log(IC) and ∆hws = ∆ log(HwS ). Left: Lombardy. Right: Dep. of Paris. Red:
ic. Blue: hws.
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Figure 4: Left: data for ∆2ic = ∆2 log(IC) and ∆2hws = ∆2 log(HwS ) for Lombardy, February 24 - August 6,
2020. Red: ic. Blue: hws. Right: simulation of a univariate AR process with mean c, wt−c = ρ(wt−1−c)+εt

with ρ = 0.94, c = −0.1, w0 = 0.6, εt i.i.d. N(0, σ2) with σ = 0.01.

reasons. The first one is that the approach proposed in this paper is multivariate, and as suggested
in Johansen (1996), this would rule out univariate unit root tests. A second reason not to perform
these tests is that the declining behaviour in the first part of the sample, corresponding to the initial
outbreak of the COVID-19 epidemic, would probably distort test results. Overall, the proposed
approach is to analyse the data as being I(1) and to use the resulting forecasts.

A second question is the possible presence of breaks in the mechanisms generating these data.
Some likely anomalies in the ict time series can be observed for all regions. It is possible that hos-
pital behaviour evolved along the epidemic, with a different pass-through of hospitalised COVID
patients into ICU care as time goes by. Other likely anomalies may arise because of reporting lags
and mis-dating of events; several of these events were reported in the press in Italy for instance.
All these events may cause the presence of breaks in the process, especially in the deterministic
components.
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The approach of this paper is to model xt as a Vector AutoRegressive (VAR) process with I(1)
variables and with a common trend and a Vector Error Correction VECM representation. In order
to accommodate the slow return-to-the-mean of ∆xt from an initial value away from its mean (see
the right panel of Fig. 4) the I(1) VAR is expected to present a large AR root and initial conditions
away from the mean. Moreover, breaks in the deterministic components of the processes are
expected to play a role. The relevant class of processes that can be used to incorporate these
features is briefly summarised in the next section.

3. Cointegrated VAR

This section recalls the essential elements of VAR and VECM with I(1) variables, see Hendry
(1995) and Johansen (1996). It also discusses breaks in the deterministic components in line with
Clements and Hendry (1996) and Johansen et al. (2000) in relation to the observed features of data
shown in Section 2.

3.1. VECM
Let xt be the p × 1 vector of variables, satisfying the equations A(L)xt = µDt + εt with A(L) =

I−
∑k

i=1 AiLi; xt is called a Vector AutoRegressive process of order k, VAR(k). Here k is the number
of lags, Ai are p× p matrices of coefficients, Dt is an nD × 1 vector of deterministic variables (such
as an intercept, time trend, seasonal or intervention dummy variables), εt is a p × 1 vector white
noise with mean 0 and positive definite variance-covariance matrix Ω. A special case is when εt is
assumed to be i.i.d. Gaussian;9 this assumption is made explicit when made in the following.

The AR characteristic polynomial det A(z) is assumed to have zeros outside the unit disc or
at z = 1; this is labelled the ‘unit and stable roots’ assumption in the following. A necessary
and sufficient condition for det A(z) to have a root at z = 1 is that A(1) is singular, where A(1) =

I −
∑k

i=1 Ai. This unit root is responsible for the random-walk behaviour of the process. Under the
‘unit and stable roots’ assumption, one hence has A(1) = −αβ′, where α and β are p × r matrices,
with 0 ≤ r < p10. Note that in the present case of p = 2, r can be 0 or 1. Under the A(1) = −αβ′,
the process for xt can be rewritten in the form

Γ(L)∆xt = αβ′xt−1 + µDt + εt, Γ(L) = I −
k−1∑
i=1

ΓiLi (2)

where Γi = −
∑k

j=i+1 A j, as can be verified by re-arranging terms. Johansen (1991) showed that a
necessary and sufficient condition for xt to be I(1) under the ‘unit and stable roots’ assumption is
that

rank(α′⊥Γβ⊥) = p − r, (3)

where α⊥ (respectively β⊥) is a basis of the orthogonal complement with respect to the space
spanned by the columns of α (respectively β) and Γ = Γ(1) = I −

∑k−1
i=1 Γi; see Johansen (1991,

1996). For this reason condition (3) is called the ‘I(1) condition’.

9This assumption may not be strictly valid for measurements xt that contain logs of count variables.
10When discussing properties of the process, it is convenient to assume that α and β are of full column rank.
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Under the ‘I(1) condition’ (3), it is shown that β′ defines r a stationary linear combinations
among the non-stationary variables xt−1 (corrected for Dt), i.e. that the r rows in β′ define r coin-
tegrating relations in the sense of Engle and Granger (1987). Eq. (2) defines the adjustment of
∆xt that correct the system toward equilibrium via the adjustment coefficients α. A process xt sa-
tisfying (2), the ‘unit and stable roots’ assumption as well as the ‘I(1) condition’ is called an I(1)
vector Error (or Equilibrium) Correction process (VECM).

The I(1) VECM process can be inverted into the so-called ‘common trends’ (CT) representation
for xt of the form

xt = C
t∑

i=1

(εi + µDi) + C1(L)(εt + µDt) + a, C = β⊥(α′⊥Γβ⊥)−1α′⊥ (4)

with β′a = 0 where a depends on k initial values of xt.11 Taking differences of (4) one obtains the
MA representation for ∆xt,

∆xt = C(εt + µDt) + C1(L)(∆εt + µ∆Dt). (5)

where C1(z) is an infinite order matrix polynomial convergent for all z within the a circle with
radius 1 + δ with δ > 0.

The ‘common trends’ representation (4) shows that the p time series xt share the p− r common
stochastic trends (random walks) α′⊥

∑t
i=1 εi, and that the r linear combinations β′xt are stationary

(around their mean), because β′C = 0 in (4). The ‘common trends’ representation also shows
that β′xt are cointegrating relations and β is the matrix of cointegration coefficients; β′xt − E(β′xt)
represent deviations from equilibrium.

Eq. (4) and (5) can be used to calculate the expectations E(·) of xt, β′xt and ∆xt; this gives

E(xt) = Cµ
t∑

i=1

Di + C1(L)µDt + a, E(β′xt) = β′C1(L)µDt, (6)

E(∆xt) = CµDt + C1(L)µ∆Dt, (7)

where β′C = 0, β′a = 0 from (4).
The coefficient C1 := C1(1) can be expressed in terms of the coefficients in the VECM equation

(2) as
C1 = −β̄ᾱ′ −CΓβ̄ᾱ′ − β̄ᾱ′ΓC −CΓβ̄ᾱ′ΓC −CΦC (8)

where ā = a(a′a)−1 for any full column rank matrix a, Γ := Γ(1) = I −
∑k−1

i=1 Γi and Φ :=
∑k−1

i=1 iΓi,
see eq. (7) in Johansen (2009) or eq. (3.8) in Franchi and Paruolo (2019). When µ1 = αρ1, one
finds C1µ1 = − (I + CΓ) β̄ρ1 from (8).

3.2. Deterministic components
Dt may contain any type of deterministic terms; the specifications considered in this paper

allow for broken linear trends, along the lines proposed in Johansen et al. (2000). Denote the

11Namely {xt}
0
t=−k+1. For a proof see Theorem 4.2 in Johansen (1996), where β′xt is assigned its stationary distri-

bution.
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sample as 1, . . . ,T . The deterministic terms Dt are split in two subsets, Dt = (D(1)′
t ,D(2)′

t )′ where
D(1)

t is taken to include a constant 1 and a linear trend t or both (1, t) interacted with period dummies
1(t > T1). Here 1(·) denotes the indicator function, which takes value 1 when the argument is true
and 0 otherwise, and Ti are in-sample dates, 1 < Ti < T .

As in Assumption 2.2 in Kurita et al. (2011)12, define q breaks 1 < T1 < . . . , Tq < T and, for
each break, consider the linear trend variable (t − Ti)1(t > Ti) = (t − Ti)+, which takes value 0
until t = Ti and values 1, 2, . . . starting from t = Ti + 1 onwards. A changing trend slope at Ti

can be represented as a linear combination of the elements in tvec = (t, (t − T1)+, . . . , (t − Tq)+)′.
The first difference of tvec is indicated here as 1vec,t = ∆tvec, and it contains the period dummies
1vec,t = (1,1(t > T1), . . . ,1(t > Tq))′. It is simple to see that

∑t
i=1 1vec,i = tvec.

The second set D(2)
t within Dt is taken to contain de-meaned cyclical deterministic components

and other dummies that do not generate trends when cumulated, i.e. |
∑t

i=1 D(2)
i | < c for all t

for some constant c > 0. Examples include day-of-week dummies si,t = 1(t mod 7 = i) − 1
7 ,

i = 1, . . . , 7, or blip dummies di,t = ∆1(t = i). Note that these variables are bounded when
cumulated, where for instance 0 =

∑7
j=1 si, j and hence |

∑t
j=1 si, j| <

6
7 is a bounded sequence.13

Therefore, the variables in D(2)
t do not generate trends when cumulated.

3.3. Trends
This section describes the deterministic trends induced in the process by the chosen specifi-

cation of Dt. Partition µ = (µ(1), µ(2)) conformably with Dt = (D(1)′
t ,D(2)′

t )′, and µ(1) = (µ0, µ1)
conformably with D(1)

t = (1′vec,t, t
′
vec)

′. Next observe that

E(xt) = Cµ1

t∑
i=1

ivec + (Cµ0 + C1µ1) tvec + (C1µ0 + C2µ1) 1vec,t + c1t, (9)

E(β′xt) = β′C1µ1tvec +
(
β′C1µ0 + β′C2µ1

)
1vec,t + c2t (10)

E(∆xt) = Cµ1tvec + (Cµ0 + C1µ1) 1vec,t + c3t, (11)

where cit are such that |cit| < c for all t,14 and C1 and C2 are defined by C1(L) = C1 + C2(1 −
L) + C3(L)(1 − L)2. Eq. (9) shows that E(xt) contains broken quadratic trends unless Cµ1 = 0, eq.
(10) shows that E(β′xt) contains linear unless β′C1µ1 = 0 and eq. (11) shows that E(∆xt) contains
broken linear trends unless Cµ1 = 0. In view of the interpretation of ∆xt as a stationary process
with initial value away from the average, the last restriction Cµ1 = 0 appears of interest.

In this context, Johansen (1996) (eq. (5.13) to (5.17)) and Johansen et al. (2000) discussed the
type of restrictions on (µ0, µ1) that generate different trends, as in (9), (10), (11).15 In line with this
approach, the notation d(i, j; q) is employed here to indicate different classes of VECM processes,
i.e. different models; details are given in the following. The integer i in d(i, j; q) is associated with
the degree of the polynomial in the cointegration relation, while the integer j relates to the one
in the adjustment equations, with i ≥ j. The last integer q indicates the number of breaks; when

12The break dates denoted Ti here correspond to dates Ti + 1 in Kurita et al. (2011).
13In the following, the notation |ct | < c is used to denote bounded deterministic sequences ct, possibly different for

different expressions.
14c3t = ∆c1t
15The same approach is used in Kurita et al. (2011) in a I(2) VECM setting.
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Two stages EG VECM Model in Johansen (1996)
model first stage second stage levels differences symbol and eq. therein

d(0, 0; q) ∅ ∅ ∅ ∅ H2(r) eq. (5.17)
d(1, 0; q) 1vec,t ∅ 1vec ∅ H∗1(r) eq. (5.16)
d(1, 1; q) 1vec,t 1vec ∅ 1vec,t H1(r) eq. (5.15)
d(2, 1; q) (1′vec,t, t

′
vec)

′ 1vec,t tvec 1vec H∗(r) eq. (5.14)
d(2, 2; q) (1′vec,t, t

′
vec)

′ (1′vec,t, t
′
vec)

′ ∅ (1′vec,t, t
′
vec)

′ H(r) eq. (5.13)

Table 1: Models d(i, j; q) and their correspondence to models in Johansen (1996).

q = 0, the simplified notation d(i, j; 0) = d(i, j) is used. The correspondence of the models d(i, j; q)
with the models in Johansen (1996) section 5.7 is provided in Table 1.

More specifically, if µ1 , αρ1 for any non-zero ρ1, then E(xt) is seen to contain a broken
quadratic trend, see (9). In terms of models, this case corresponds to µ0 and µ1 unrestricted, which
is labelled here as d(2, 2; q), where q indicates the number of breaks in D(1)

t .
If µ1 = αρ1 for some non-zero ρ1 one has that E(xt) contains a broken linear trend, E(β′xt) also

contains a broken linear trend and E(xt) contain a (broken) constant. This case is labeled d(2, 1; q).
If µ1 = 0 and µ0 , αρ0 for any ρ0 , 0 one has that E(xt) contains a broken linear trend but E(β′xt)
does not; again E(∆xt) contains a broken constant. This case is labeled d(1, 1; q) in the following.
Note that the difference between the d(2, 1; q) and the d(1, 1; q) cases lies with the (broken) linear
trend in E(β′xt) or not. This appears relevant in the present application, where the cointegrating
relation may present a broken linear trend.

If µ1 = 0 and µ0 = αρ0 for some non-zero ρ0 one has that E(xt) and E(β′xt) contain a broken
constant, and E(∆xt) has a zero mean, up to a bounded remainder ct. This case is labeled d(1, 0; q)
in the following. The final case, labeled d(0, 0) corresponds to µ1 = µ0 = 0 for which E(xt), E(β′xt)
and E(∆xt) have zero mean, up to a bounded remainder ct. Note that in this case the number of
breaks q is irrelevant.

Remark that the present context, the cases d(2, 1; q) and d(1, 1; q) are of special interest; for
these cases, in fact, E(∆xt) is a (broken) constant.

4. Estimation and testing

Classes of processes of the type reviewed above need to be taken to the data. Subsections 4.1
and 4.2 discuss model estimation, while Subsection 4.3 provides interpretation for the cointegrating
relation. Subsection 4.4 discusses tests on the adjustment coefficients.

4.1. Inference
Inference based on the two stage approach in Engle and Granger (1987) (EG) is justified as

follows: the first stage cointegrating regression is super consistent, see Stock (1987). In the second
stage, inference is asymptotically normal, with standard errors computed as for known cointegra-
ting coefficients being consistent.

Maximum Likelihood (ML) in model (2) corresponds to looking for the canonical linear com-
bination of the levels xt−1 that is most correlated with ∆xt, see Johansen (1991). Because in the
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first half of the sample one observes a downward movement in ∆xt, it was found that ML estimates
of β′xt−1 tend to reproduce the downward movements in ∆xt.

While ML is asymptotically the most efficient method in large samples, in the present context
of a small sample with downward movements in ∆xt in its beginning, it was found not to be optimal
for the forecasting angle of this paper.

4.2. EG
Note that the term β′xt−1 in (2) cointains r (in the present case r = 1) cointegrating relations

among xt−1, and α measures adjustment towards equilibrium. The long-run equilibrium (coin-
tegrating) relation β′xt−1, properly corrected for Dt, is stationary. In the present case of r = 1,
the long-run equilibrium relation β′ can be normalised setting the coefficient to x1,t−1 equal to 1,
β′ = (1,−β2)′, and the cointegrating relation reads β′xt−1 = x1t−1 − β

′
2x2,t−1. Hence, correcting for

Dt,
x1,t−1 = β′2x2,t−1 + ϕ′H′1Dt + wt−1. (12)

The β2 coefficients (only one coefficient in the present case) describe the proportionality factor
between x1t and x2t in the long-run, where in (2) x1t and x2t may be trending (non-stationary) while
their deviation wt−1, called ‘ecm’, is stationary. In (2), H′1 is a design matrix that can select a subset
of Dt in H′1Dt.

The EG first stage is performed by estimating (12) by regression of x1t−1 on x2,t−1 and H′1Dt; this
generates β̂′xt−1 or, equivalently ŵt−1. These quantities are substituted in (2) in the second stage,
which estimates the remaining parameters by regression of ∆xt on ŵt−1, ∆xt− j for j = 1, . . . , k − 1
and H′2Dt, where H′2 is a design matrix that selects a subset of Dt in H′2Dt.

The specification of the deterministic terms in H′i Dt, i = 1, 2, gives the rationale for the notation
d(i, j; q), where i refers to the first stage and j to the second one. Consider first i; when i = 2, both
the constant and the trend t are included in H′1Dt, while when i = 1 only the constant is included.
Finally when i = 0, no deterministic component is included in (12). Hence, the index i is associated
to the degree i−1 of the polynomial fitted in the first stage. In case q > 0, a number of break points
in the constant and trend are allowed for.

The same convention is used for j in relation to H′2Dt in the second stage, i.e. the index j is
associated to the degree j − 1 of the polynomial fitted in the second stage.

4.3. Interpretation
When x1,t = ict (the log of ICt) and x2,t = hwst (the log of HwS t), the interpretation of the

coefficients in the cointegrating relation is as follows. The cointegrating relation (12) reads ict−1 =

ic?t−1 + wt−1 where ic?t−1 = β2 hwst−1 + a′01vec + a′1tvec for i = 2, where for j = 1, a1 = 0 and for j = 0,
a1 = a2 = 0. Taking exponentials,

IC?
t−1 = γtHwS β2

t−1 where γt = exp(a′01vec + a′1tvec). (13)

Here γt is the ‘pass-through’ coefficient from HwS β2
t−1 to IC?

t−1 and ω = β2 is the ‘elasticity’ coeffi-
cient. γt is allowed to be time-varying, reflecting changing practice in hospitals in the transition to
ICU admission.

Eq. (13) is a relation of semi-proportionality when 0 < β2 < 1 i.e. IC? moves less than
proportionally with respect to HwS . On the contrary, when β2 = 1, IC? is directly proportional to
HwS .
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4.4. Adjustment
The adjustment eq. (2) describes how ∆x1,t = ∆ict and ∆x2,t = ∆hwst adjust to deviations from

equilibrium wt−1 (equilibrium-correction), as well as to past changes. In particular, the equation
for the i-th (block of) variable(s), reads

∆xi,t = αi β
′xt−1 +

k−1∑
`=1

Γi j,`∆x j,t−` +

k−1∑
`=1

Γii,`∆xi,t− j + c′iµDt + εi,t (14)

where ci is an appropriate selection matrix. The following hypotheses can be considered for para-
meters in eq. (14)

H01 : αi = 0, (15)
H02 : Γi j,` = 0, ` = 1, . . . , k − 1 (16)

If both hypotheses hold, there is lack of Granger causality of x j,t for xi,t. In this case xi,t can be
interpreted as ‘autonomous’ i.e. as not reacting to past values of x jt, and it can be predicted on the
basis of its own past only.

5. Full sample estimation

This section reports estimation of the model on the full-sample data described in Section 2.
The following Section 7 reports the real-time forecasting exercise. The first 7 days of data were
used as ‘burn-in’ period and the last 7 days at the end of the sample were kept for out-of-sample
validation. This left observations from T0 = 8 (corresponding to March 2) to observation Tq+1 =

114 (corresponding to June 16, 2020) as full estimation sample.
Indicate the estimation sample as t = T0, . . .Tq+1, and let b = (T1, . . . ,Tq)′ be the vector of

possible q break dates. Denote also the sum of squares residuals from the EG first stage regression
(12) as S (b), which is a function of the break dates b. Remark that the first stage regression is the
same for models d(2, j; q), which correspond to a single S (b) for all j = 0, 1, 2. Following Zivot
and Andrews (1992), b was selected so as to minimize S (b), namely

(T1, . . . ,Tq) = arg min
b∈Uq

S (b), (17)

where Uq is an appropriate set of break date vectors. In practice this set was chosen as follows,
denoting by g the number of gap days between breaks

Uq = {(b1, . . . , bh, . . . , bq) : bh−1 + g + 1 ≤ bh ≤ bmax
h , h = 1, . . . , q}, (18)

where b0 = T0 and bmax
h = Tq+1 − (q − h + 1)g + 1(h , q). Note that b1 < · · · < bh < · · · < bq in

Uq, and that the spacings between breaks in Uq are at least equal to g gap days, bh − bh−1 > g. In
the implementation the values q = 0, 1, 2 were considered.16 In the case of Lombardy, q = 4 was
chosen, see below, and break dates were set without recourse to the minimisation in (17).

16Too small values of g would result in perfectly collinear regressors: for example, if q = 1 and 1vec,t = (1,1(T >
T1))′, tvec = (t, (t − T1)1(T > T1))′ choosing T1 = 1 would generate perfect collinearity, because in this case (t −
T1)1(T > T1) + 1 − t = 0.
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Region ω̂ = β̂2 min γ̂t mean γ̂t max γ̂t break dates ρ2, ρ3, ρ4

Lombardy 0.5344 0.21 3.71 10.18 38, 75, 120, 145 0.92, 0.68 ± 0.31i
Emilia Romagna 0.8728 0.15 0.27 0.44 78, 106 0.85, 0.76 ± 0.20i
Piemonte 0.4851 2.0 5.4 13.8 28, 116 0.82, 0.64 ± 0.41i
Veneto 0.9482 0.052 0.257 0.441 19, 68 0.86,−0.33 ± 0.57i
Scotland 1.3988 8.7e-05 3.2e-03 1.0e-02 92, 108 0.13 ± 0.77i, 0.70
Dep. of Paris 1.0750 0.095 0.131 0.168 71, 112 0.83, 0.59 ± 0.20i

Table 2: Elasticity ω̂ = β̂2, pass trough estimates γ̂t and eigenvalues ρi of the companion matrix Â for the various
regions. ρi are ordered such that 1 = |ρ1| ≥ |ρ2| ≥ . . . , |ρs|.

Consider the full samples described in Section 2; model d(2, 1; q) was fitted to the full estima-
tion sample, excluding 7 days of data at the beginning for ‘burn-in’ period, and 7 days of data at
the end of out-of-sample forecast. Except for Lombardy, q was set for all regions equal to 2 and
the break dates were found by minimisation of (17).

The identified break dates are reported in Table 2. Lombardy seems to have undergone more
than 2 breaks; q was hence set equal to 4, and the break dates were identified as follows. In an early
stage of the writing of this paper, approximately 100 observations were available, and the identified
break dates were found to be 38, 75 by (17). As more data became available, the additional break
dates 120, 145 were added.

The EG first stage regressions for the four Italian regions are reported in Fig. 5 and the ones
of Scotland and the Dept. of Paris are reported in Fig. 6. The estimated elasticity parameters
ω = β2, and the pass-trough coefficient γt are summarised in Table 2. It can be seen that the
estimated elasticity parameters ω = β2 ranges from 0.48 to 1.4. The elasticity parameters and
the pass-trough coefficient γt appear to compensate, in the sense that lower values of ω = β2 are
associated with higher values of γt and vice versa.

In the specification of the second EG stage, no short term dummies D(2)
t were added, and the

coefficients of the period dummies 1(t > Ti) were constrained to 0, leaving only the constant in
1vec unrestricted. Table 2 reports the obtained largest eigenvalues ρi of the companion matrix A
in eq. (19), see the following section. It can seen that, usually, the estimated system have a large
persistent root close to 0.9, as anticipated in Section 2.

Table 3 reports the estimates of the adjustment coefficients αi, i = 1, 2 in eq. (14), as well as
the list of lags ` for which the Γi j,` coefficients were significant at 5% level for both adjustment
equations in eq. (14), see (15) and (16). It is seen that the error-correction coefficient α1 is always
strongly significant, implying that ∆ict adjusts to disequilibrium errors. In a couple of regions, also
α2 is marginally significant at 5% level, implying that also ∆hwst adjusts to disequilibrium errors.

Only two lags ` are identified for Emilia Romagna and for Scotland for which ∆ict is signi-
ficantly influenced by ∆hwst−`, see (15). Vice versa, the lags ` for which ∆hwst is significantly
influenced by ∆ict−` are rather abundant. One would hence conclude that (ict, hwst)′ are jointly
dependent, i.e., neither variable appears ‘autonomous’. Focusing on the ∆ict equation, the ability
of hwst− j to predict ∆ict appears to come mainly from the ‘ecm’ term wt−1.

Overall, the d(2, 1; q) model shows a good fit on the full estimation sample data. The following
sections summarize the forecasting characteristics of this class of models.
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Figure 5: First stage EG regression for Italian regions. Red: ic. Blue: fitted values from (12). Estimation
sample between vertical dashed lines.

Apr May Jun Jul

2
3

4
5

Scotland

ic
 (

re
d)

 a
nd

 fi
t E

G
1 

(b
lu

e)

Apr May Jun Jul Aug

3.
5

4.
5

5.
5

6.
5

Dep. Paris

ic
 (

re
d)

 a
nd

 fi
t E

G
1 

(b
lu

e)

Figure 6: First stage EG regression for Italian regions. Red: ic. Blue: fitted values from (12). Estimation
sample within vertical dashed lines.
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sig.lag ` in ∆ict eq. sig.lag ` in ∆hwst eq.
Region α̂1(pvalue) α̂2(pvalue) ∆ict−` ∆hwst−` ∆ict−` ∆hwst−`

Lombardy −0.256 (0e-04) 0.1645 (6e-04) 1,3 1,2,3
Emilia Romagna −0.1807 (6e-04) 0.025 (0.4631) 1, 3 2 1 1
Piemonte −0.5586 (0e-04) 0.1685 (0.1265) 1,2,3 3 2,3
Veneto −0.757 (0.0022) 0.1542 (0.6627) 2
Scotland −0.9146 (2e-04) 0.1448 (0.1265) 3 3 2,3 2,3
Dep. of Paris −0.5497 (0e-04) −0.1434 (0.0447) 1,2 2 1

Table 3: Adjustment equations. Estimates of αi, i = 1, 2 and list of lags ` for which the Γi j,` coefficients were significant
at 5% level for both adjustment equations in eq. (14), see (15), (16).

6. Forecasting

The VECM class of processes is a subset of the VAR class, whose forecasting properties are
well known both in the stationary and non-stationary cases, see Lütkepohl (2005). This section
summarises how point and interval forecast are derived, see Subsection 6.2, together with predic-
tors for turning points, see Subsection 6.3, making use of the companion form of the VAR and
of the VECM, see Subsection 6.1. Appendix A proves claims on their relation. Finally, indices
of point forecast performance are reviewed in Subsection 6.4, while Subsection 6.5 discusses of
performance indicators for interval forecasts.

The notation yt+h|t is used to denote the point forecast yt+h|t = Et(yt+h) where Et(·) indicates
expectation conditional on all observed information on the past of the process xt, i.e. the sigma
field generated by {xt−s, s ≥ 0}. Here yt+h denotes any random variable at time t+h, like yt+h = ∆xt+h

or yt+h = xt+h.

6.1. The companion form
This subsection describes how (2) can be expressed in companion form. Define the state vector

Xt = (∆x′t , xt−1
′,∆x′t−1, . . . ,∆x′t−k−2)′ with dimension s × 1, s = pk, and observe that (2) can be

written as
Xt = AXt−1 + Js,p(µDt + εt)

i.e. 

∆xt

xt−1

∆xt−1

∆xt−2
...

∆xt−k+2


=



Γ1 + αβ′ αβ′ Γ2 . . . Γk−2 Γk−1

Ip Ip

Ip

Ip
. . .

Ip





∆xt−1

xt−2

∆xt−2

∆xt−3
...

∆xt−k+1


+ Js,p(µDt + εt), (19)

where Js,p with s ≥ p, indicates the first p columns of Is, of the form Js,p = (Ip, 0)′, and A is called
the companion matrix of the AR process xt. The eigenvalues of A are the reciprocals of the roots
of det(A(z)) = 0, which are assumed to be equal to 1 or with modulus greater than 1.17

17For a proof of this, see e.g. Johansen (1996) proof of Theorem 2.2.
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The state-space Xt in (19) is not minimal. In fact a reduced state-space vector Wt can be defined,
which contains only the stationary part of Xt, namely Wt = (∆x′t , xt−1

′β,∆x′t−1, . . . ,∆x′t−k−2)′. The
reduced state-space vector Wt is of dimension q = s − (p − r), and one has Wt = G′Xt where
G = diag(Ip, β, I(k−1)p). Appendix A shows that Wt satisfies the companion form Wt = BWt−1 +

Jq,p(µDt + εt) with B = G′AḠ. The set of eigenvalues of A is shown to be the union of the set of
eigenvalues of B and 1 (taken p − r times).

6.2. Forecasts
Set vt = Js,pµDt and ut = Js,pεt, so that eq. (19) reads Xt+1 = AXt + vt+1 + ut+1. One finds

Xt+h = AhXt +

h−1∑
i=0

Ai(vt+h−i + ut+h−i) (20)

and Xt+h|t := Et(Xt+h) = AhEt(Xt) +
∑h−1

i=0 AiEt(vt+h−i + ut+h−i) = AhXt +
∑h−1

i=0 Aivt+h−i. Xt+h|t can be
computed recursively as Xt+ j|t = AXt+ j−1|t + vt+ j with j = 1, . . . , h, starting at j = 1 with Xt|t = Xt.

Interest lies in the forecast of the level and the first differences yt+h := (∆x′t+h, x
′
t+h)′. Indicate

their point forecast as yt+h|t := (∆x′t+h|t, x
′
t+h|t)

′; these can be retrieved from Xt+h|t as follows

yt+h|t =

(
∆xt+h|t

xt+h|t

)
= M′Xt+h|t, M′ = K′J′s,2p, K′ =

(
Ip 0
Ip Ip

)
(21)

where J′s,2pXt+h|t = (∆x′t+h|t, x
′
t+h−1|t)

′. The forecast variance-covariance matrix for yt+h := (∆x′t+h, x
′
t+h)′,

denoted by Σh, is found to be

Σh =

h−1∑
i=0

ViΩV ′i = Σh−1 + Vh−1ΩV ′h−1, Vi = M′AiJs,p, (22)

where Ω = E(εtε
′
t).

18 This expression follows from (20) and (21) using the equality Xt+h − Xt+h|t =∑h−1
i=0 Aiut+h−i.

Forecast intervals can be constructed as a′yt+h|t±κ
√

a′Σha where a is any pre-specified selection
vector. For instance a can be chosen to the j-th column e j of the I2p to select variable number j
within yt+h|t. If the errors are Gaussian, choosing for instance κ = 2 (respectively 3) gives a 95.45%
(respectively 99.73%) coverage rate for these forecast intervals. If errors are not Gaussian, Che-
byshev’s inequality can be used to derive a conservative bound for the coverage of these intervals,
Pr(|a′yt+h|t/

√
a′Σha| > κ) < κ−2. For instance, for κ = 2 (respectively 3) the coverage is at least

Pr(|a′yt+h|t/
√

a′Σha| < κ) ≥ 1 − κ−2 = 0.75 (respectively 88.89%).

6.3. Turning points
The process (2) can generate peaks and troughs, i.e. turning points; this is also reflected in

forecasts. For instance, the growth rates ∆xt in the first outbreak phase of the epidemic are usually

18As noted in Lütkepohl (2005), some of the elements in Σh may diverge as h→ ∞, as at least one of the eigenvalues
of A is equal to 1. However, this is not a concern for any finite horizon h.
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large and positive. The forecasts of ∆xt may predict a decline of future growth rates ∆xt+h to small
positive and eventually negative rates; this generates the prediction of the first peak.

Recall that (x1,t, x2,t)′ = (ict, hwst)′, and assume one wishes to forecast a downward turning
point in variable i, such as i = 1. In particular, one can be interested in the first forecast horizon
for which m consecutive predictions of ∆xi,t are negative. In order to do so, consider all fore-
cast horizons j at which there is a change of sign in the prediction of ∆xi,t, namely Ci,h = { j :
sign(∆xi,t+ j|t) , sign(∆xi,t+ j−1|t), j = 1, 2, . . . , h}. Given the set Ci,h, one can define the subset for
which m consecutive forecasts of ∆xi,t are negative

Cm−
i,h = { j ∈ Ci,h : sign(∆xi,t+ j|t) = · · · = sign(∆xi,t+ j+m|t) = −1}, h?i = inf Cm−

i,h (23)

and define the minimal horizon h?i = inf Cm−
i,h at which this occurs. Note that, if m consecutive

negative prediction of ∆xi,t+ j+m|t do not exist, then inf ∅ = ∞.
The interpretation of h?i is the first forecast horizon for which m consecutive predictions of ∆xi,t

are negative; this is hence a possible definition for turning point for xi,t during the upward trending
phase. A similar definition applies for upward turning points in a decreasing trending phase where
Cm+

i,h is defined replacing −1 with +1 in the previous definitions. Here the focus is on the first
downward turning point.

The horizon h?i in (23) depends of the companion matrices A or B in the companion form for
Wt or Xt in (20) or (A.1), as well as on the last value Wt or Xt at which the forecast is made. In
particular, if the expected growth rate in (7) is negative, long-term forecasts of ∆xi,t will tend to the
overall expectation E(∆xi,t), and this implies a certain forecast horizon h?i at which predictions of
∆xi,t turn negative.

6.4. Accuracy of point forecasts
Let y(i)

t+ j|t indicate the point forecast of yt+ j performed in t for model i over time periods t +

1, . . . , t + h. Several measures of ex-post accuracy for the point forecast can be considered, starting
from the Mean Absolute Error (MAE). Following Makridakis et al. (2020), the symmetric mean
absolute percentage error (sMAPE) and mean absolute scaled error (MASE) were also considered,
along with the mean absolute percentage error (MAPE) and the mean arctangent absolute percen-
tage error (MAAPE), see Kim and Kim (2016). The standard formulation of these indicators is the
following

MAEi =
1
h

h∑
j=1

|yt+ j − y(i)
t+ j|t|, sMAPEi =

2
h

h∑
j=1

|yt+ j − y(i)
t+ j|t|

|yt+ j| + |y
(i)
t+ j|t|

,

MAPEi =
1
h

h∑
j=1

∣∣∣∣∣∣∣yt+ j − y(i)
t+ j|t

yt+ j

∣∣∣∣∣∣∣ , MAAPEi =
1
h

h∑
j=1

arctan

∣∣∣∣∣∣∣yt+ j − y(i)
t+ j|t

yt+ j

∣∣∣∣∣∣∣ , (24)

MASEi =
1
h

∑h
j=1 |yt+ j − y(i)

t+ j|t|

1
t−n

∑t
j=n+1 |y j − y j−n|

,

For any of these indices, like MAE, one can consider their relative version with respect to the
Random Walk model in the spirit of MASE. Specifically the following relative indices are conside-
red here: MAERi = MAEi/MAE0, MAPERi = MAPEi/MAPE0, sMAPERi = sMAPEi/sMAPE0,
MAAPERi = MAAPEi/MAAPE0.
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In the definition of MASE, Makridakis et al. (2020) select n = 1 for daily data, as in the original
proposal of Hyndman and Koehler (2006). In the present application, the standard transposition of
MASE shown in (24) has some limitations. First, the idea in Hyndman and Koehler (2006) was to
scale the absolute forecast error of the point forecast y(i)

t+ j|t with the average absolute forecast error
of a näive forecast based on the Random Walk model, here indexed as model 0. The above formula
of MASE for n = 1 compares the absolute forecast error for a j-step ahead forecast y(i)

t+ j|t with the
one of a one-step ahead of the Random Walk model, hence losing comparability of the forecast
horizons between numerator and denominator.

Secondly, the above formula of MASE for n = 1 compares the mean absolute error of the out-
of-sample forecast y(i)

t+ j|t in the numerator with the in-sample mean absolute error of the Random
Walk model. Of course this comparison is appropriate when there is time-homogeneity between
the in-sample and out-of-sample periods. This is not the case in the present application, where the
mean absolute error of the Random Walk model decreases as time passes from the onset of the
epidemic, because of the slow decline in growth rates in the first part of the epidemic, see Section
2. For these reasons, this indicator is not considered in the present application.

A possible solution to these shortcomings of MASE that provides a solution to the above limi-
tations is given by MAERi = MAEi/MAE0, where the average forecast error for model i, namely∑h

j=1 |yt+ j − y(i)
t+ j|t| is compared with the same average

∑h
j=1 |yt+ j − yt| =

∑h
j=1 |yt+ j − y(0)

t+ j|t| for the
forecast error for the Random Walk model for the same forecast horizon j. In this sense, the fore-
cast horizons are balanced in the numerator and denominator. Moreover, both forecast errors are
computed out-of-sample, hence circumventing the slow decline in growth rates at the onset of the
epidemic.

6.5. Accuracy of forecasts intervals
Consider the forecast intervals (li,t+ j, ui,t+ j) built for yt+ j by model i at 1 − α confidence level

over horizons j = 1, . . . , h. To measure the accuracy of forecast intervals, define the following
indices

AIS =
1
h

h∑
j=1

si,t+ j, si, j = ui, j − li, j +
2
α

(
(li, j − y j)1(y j < li, j) + (y j − ui, j)1(y j > ui, j)

)
(25)

MSIS =
1

1
t−n

∑t
j=n+1 |y j − y j−n|

1
h

h∑
j=1

si,t+ j, BASISi =
1
h

h∑
j=1

si,t+ j

s0,t+ j

Here si,t+ j is the interval scoring proposed by Gneiting and Raftery (2007) for model i. The fac-
tor 2/α given a penalty to deviations from the confidence interval. In the present context, the
confidence level α was computed both under Gaussianity or using Checyshev’s approximation.

AIS gives the Average Interval Score, while MSIS is standard transposition of the Mean Scaled
Interval Score in Makridakis et al. (2020). The latter suffers from the same limitation of MASE.
a possible modification of MSIS is introduced here, called BASIS for ‘Balanced Average Scaled
Interval Score’, where the score for model i is compared with the one for the Random Walk model.

Comparing AISi with the value for the Random Walk model gives AISRi = AISi/AIS0. Note
that BASIS is a measure already relative to Random Walk model, so that its relative version
BASISi/BASIS0 = BASISi/1 = BASISi would give the same result.
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7. Real-time forecasting

The forecasting problem is defined using daily data organized in weeks, assuming to observe
data for t = 1, . . . ,T , where T = 7n and n indicates weeks. The exercise consists in forecasting
xT+ j for j = 1, . . . , 7 using data up to xT .

In order to mimic a real-time forecasting situation as closely as possible, the forecast exercise
is started as soon as there is enough data available to compute estimates, namely n = 2 weeks of
data.

No use of D(2)
t dummies was made, nor of judgemental choices on model selection in real

time. This provides a fair comparison between models; moreover, it provides a lower bound on
the performance of the models with respect to the one that can be obtained in real time. In real
situation, in fact, additional forecaster’s analysis and wisdom may improve the performance of the
models.

More precisely, models d(1, 1; q) and d(2, 1; q) were fitted to the data for t = 1, . . . , 7n starting
for week n, and forecasts were produced for the following week, namely for t = 7n + 1, . . . , 7n + 7.
The number of breaks q was set equal to 0 up to week 5, equal to 1 from week 6 to 10, and equal to
2 from week 11 onwards. Indices of forecast accuracy were then computed, providing a measure
of forecast performance of the associated models. For weeks 2 and 3, no ‘burn-in’ period was
used, while starting form week 4, the first week of data was discarded.

Fig. 7 reports the real-time forecasts for ic = log(IC) of model d(2, 1; q) for Italian regions,
while Fig. 8 is relative to Scotland and the health Department of Paris. Graphs for model d(1, 1; q)
were similar and showed a marginally lower forecast performance; they are not reported here
for brevity. It can be seen that the forecast performance of weeks 2 and 3 is rather poor, possibly
reflecting the large estimation uncertainty due to the small sample size. For later weeks the forecast
performance is reasonable.

Tables 4 and 5 report MAE and MAER for models d(1, 1; q) and d(2, 1; q) respectively, for all
regions. Recall that the values of MAE can be taken as an approximation to the MAPE for the
count of IC; these table show that the relative percentage error for IC is substantial in the weeks 2
and 3, as high as 50 %. It is also usually higher than the Random Walk model. Starting from week
4 onwards, the relative percentage error for IC gets often lower that 10%. Comparing MAE and
MAER values for d(1, 1; q) and d(2, 1; q), one can see that d(1, 1; q) tends to do better up to week
7, but it is later dominated by d(2, 1; q).

Tables 6 and 7 report AIS and AISR for models d(1, 1; q) and d(2, 1; q) respectively, for all
regions. The patterns for this index are similar with respect to what observed for MAE and MAER
above, with low performance in weeks 2 and 3 and improved performance thereafter. In some
weeks where IC tends to stay constant, the Random Walk model outperforms the proposed mo-
dels also in later weeks. Comparing AIS and AISR values for d(1, 1; q) and d(2, 1; q), one can see
that d(1, 1; q) tends to do better up to week 7, but it is later dominated by d(2, 1; q). Similar pat-
terns were found for the other forecast performance indicators considered above, such as sMAPE,
MAAPE, BASIS, etc., which are not reported here for brevity.

Overall, the d(1, 1; q) and d(2, 1; q) models appears to have a reasonable performance in real-
time.
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MAE MAER
week L ER P V S DP L ER P V S DP

2 0.64 0.12 0.36 0.14 0.59 0.33 1.62 0.25 1.03 0.20 2.04 1.74
3 0.09 0.50 0.12 0.24 0.10 0.06 0.35 4.73 0.67 0.67 1.78 1.65
4 0.06 0.62 0.02 0.02 0.15 0.07 0.62 5.22 1.33 0.13 1.91 0.49
5 0.04 0.05 0.14 0.04 0.19 0.03 3.26 2.51 1.39 0.69 1.09 0.24
6 0.04 0.01 0.19 0.08 0.11 0.09 0.56 0.16 1.47 0.43 0.65 0.60
7 0.10 0.01 0.27 0.09 0.18 0.10 0.76 0.11 1.22 0.43 0.89 0.53
8 0.01 0.02 0.11 0.17 0.23 0.11 0.08 0.13 0.82 0.67 0.98 0.60
9 0.03 0.05 0.05 0.08 0.31 0.09 0.17 0.32 0.50 0.74 1.23 0.83

10 0.12 0.04 0.27 0.46 0.33 0.04 0.59 0.23 1.06 0.94 2.63 0.26
11 0.13 0.41 0.25 0.86 0.35 0.12 0.79 3.14 1.21 2.04 1.08 0.73
12 0.05 0.20 0.14 0.06 0.08 0.06 0.37 1.50 0.77 0.12 0.61 0.64
13 0.02 0.08 0.16 0.23 0.17 0.17 0.21 0.32 1.03 0.78 1.02 0.58
14 0.15 0.33 0.37 0.21 0.04 0.56 0.84 1.30 0.72 0.33
15 0.20 0.69 0.33 0.57 0.03 2.24 1.18 1.06 1.06 0.26
16 0.25 0.15 0.30 0.28 0.26 0.63 2.96 0.97 0.87 5.92
17 0.18 0.06 0.04 0.45 0.11 1.57 1.15 0.16 0.82 1.65
18 0.28 0.11 0.34 0.35 3.82 1.22 2.96 1.11
19 0.09 0.12 0.23 0.08 0.71 2.55 0.63 1.62
20 0.16 0.13 0.63 0.64
21 0.20 0.72
22 0.15 0.75

Table 4: MAE and MAER for model d(1, 1; q). Left: MAE. Right: MAER. L: Lombardy, ER: Emilia Romagna, P:
Piemonte, V: Veneto, S: Scotland, DP: Department of Paris.
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MAE MAER
week L ER P V S DP L ER P V S DP

2 0.56 0.52 0.58 0.14 0.59 0.43 1.42 1.07 1.65 0.21 2.01 2.25
3 0.06 0.42 0.22 0.38 0.09 0.05 0.25 4 1.27 1.05 1.52 1.38
4 0.08 0.02 0.23 0.01 0.14 0.10 0.86 0.17 15.66 0.05 1.81 0.69
5 0.05 0.09 0.23 0.04 0.14 0.02 4.38 4.50 2.33 0.68 0.80 0.17
6 0.03 0.02 0.08 0.21 0.05 0.03 0.51 0.32 0.63 1.10 0.30 0.19
7 0.10 0.02 0.13 0.09 0.05 0.12 0.75 0.21 0.58 0.45 0.27 0.59
8 0.01 0.06 0.05 0.12 0.25 0.08 0.09 0.42 0.36 0.49 1.05 0.44
9 0.01 0.07 0.05 0.02 0.26 0.06 0.09 0.48 0.53 0.22 1 0.53

10 0.09 0.04 0.05 0.36 0.19 0.05 0.46 0.26 0.20 0.73 1.52 0.28
11 0.13 0.33 0.08 0.53 0.21 0.11 0.77 2.52 0.38 1.25 0.66 0.69
12 0.10 0.03 0.03 0.20 0.10 0.03 0.70 0.20 0.15 0.40 0.81 0.29
13 0.03 0.11 0.05 0.12 0.24 0.23 0.27 0.43 0.30 0.43 1.45 0.76
14 0.12 0.35 0.10 0.22 0.02 0.46 0.90 0.37 0.74 0.20
15 0.04 0.66 0.14 0.52 0.09 0.42 1.13 0.44 0.97 0.69
16 0.17 0.47 0.21 0.28 0.30 0.43 9.45 0.70 0.86 6.96
17 0.22 0.07 0.11 0.46 0.04 1.86 1.31 0.48 0.83 0.56
18 0.29 0.07 0.22 0.21 3.92 0.80 1.89 0.66
19 0.32 0.21 0.25 0.08 2.56 4.71 0.69 1.58
20 0.19 0.20 0.73 1.01
21 0.08 0.29
22 0.16 0.77

Table 5: MAE and MAER for model d(2, 1; q). Left: MAE. Right: MAER. L: Lombardy, ER: Emilia Romagna, P:
Piemonte, V: Veneto, S: Scotland, DP: Department of Paris.
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AIS AISR
week L ER P V S DP L ER P V S DP

2 2.97 0.75 1.27 0.70 3.76 1.92 1.51 0.39 0.87 0.43 2.39 1.69
3 0.25 3.20 0.59 1.12 0.46 0.22 0.21 2.16 0.53 0.71 0.45 0.29
4 0.20 3.10 0.55 0.55 0.39 0.24 0.20 2.55 0.59 0.41 0.45 0.39
5 0.19 0.49 0.47 0.51 0.52 0.24 0.22 0.46 0.59 0.44 0.69 0.44
6 0.18 0.46 0.44 0.40 0.37 0.25 0.23 0.48 0.61 0.38 0.54 0.50
7 0.30 0.42 0.88 0.46 0.51 0.32 0.41 0.49 1.31 0.47 0.78 0.69
8 0.20 0.39 0.42 0.51 0.75 0.29 0.29 0.49 0.64 0.56 1.08 0.63
9 0.20 0.39 0.44 0.45 1.14 0.25 0.30 0.51 0.70 0.52 1.54 0.57

10 0.60 0.42 0.89 2.56 1.18 0.26 0.84 0.58 1.51 1.09 1.72 0.60
11 0.32 1.86 0.76 4.25 1.11 0.34 0.50 2.62 1.32 3.96 1.14 0.80
12 0.29 0.49 0.46 0.68 0.69 0.32 0.47 0.72 0.76 0.53 0.88 0.76
13 0.32 0.50 0.48 1 0.90 0.81 0.52 0.72 0.84 0.97 1.06 0.68
14 0.41 1.23 1.43 0.88 0.33 0.55 0.93 1.91 0.80 0.75
15 0.68 3.96 1.06 2.44 0.33 1.13 1.52 1.10 1.22 0.77
16 1.01 0.64 0.90 0.91 0.99 0.62 0.87 1 0.63 2.34
17 0.43 0.61 0.47 2.18 0.37 0.69 0.85 0.76 0.96 0.88
18 0.88 0.63 1.45 1.72 1.43 0.87 2.36 1.30
19 0.50 0.64 0.83 0.44 0.83 0.90 0.74 0.96
20 0.55 0.63 0.87 0.90
21 0.58 0.65
22 0.69 0.75

Table 6: AIS and AISRfor model d(1, 1; q). Confidence level computed using Chebyshev’s inequality. L: Lombardy,
ER: Emilia Romagna, P: Piemonte, V: Veneto, S: Scotland, DP: Department of Paris.
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AIS AISR
week L ER P V S DP L ER P V S DP

2 3.30 2.83 3.92 0.64 3.71 2.62 1.68 1.48 2.70 0.40 2.35 2.31
3 0.24 2.68 0.82 2.31 0.39 0.22 0.20 1.81 0.74 1.48 0.38 0.29
4 0.22 0.47 0.56 0.57 0.39 0.30 0.21 0.39 0.61 0.43 0.45 0.49
5 0.19 0.51 0.58 0.51 0.41 0.24 0.22 0.48 0.73 0.43 0.54 0.43
6 0.18 0.42 0.30 0.81 0.37 0.23 0.23 0.44 0.41 0.77 0.53 0.45
7 0.29 0.38 0.33 0.32 0.38 0.34 0.40 0.44 0.49 0.33 0.58 0.72
8 0.19 0.36 0.33 0.41 0.81 0.29 0.27 0.45 0.51 0.45 1.16 0.62
9 0.19 0.37 0.33 0.40 0.71 0.27 0.29 0.49 0.53 0.46 0.96 0.60

10 0.36 0.39 0.32 2.10 0.65 0.22 0.50 0.53 0.53 0.89 0.94 0.53
11 0.33 1.36 0.23 1.84 0.78 0.34 0.50 1.91 0.40 1.71 0.81 0.78
12 0.31 0.24 0.26 0.69 0.59 0.25 0.49 0.35 0.43 0.54 0.74 0.60
13 0.28 0.31 0.24 0.73 1.20 0.96 0.46 0.46 0.42 0.71 1.42 0.80
14 0.31 1.49 0.39 1.04 0.36 0.42 1.12 0.52 0.95 0.81
15 0.30 3.77 0.49 2.19 0.36 0.49 1.45 0.51 1.10 0.82
16 0.61 2.51 0.83 0.84 1.23 0.38 3.41 0.92 0.58 2.90
17 0.81 0.59 0.37 1.83 0.38 1.29 0.83 0.61 0.81 0.90
18 1.18 0.61 0.78 1.01 1.92 0.86 1.27 0.76
19 1.27 0.62 0.93 0.43 2.11 0.88 0.83 0.93
20 0.59 0.66 0.93 0.94
21 0.31 0.35
22 0.81 0.88

Table 7: AIS and AISRfor model d(2, 1; q). Confidence level computed using Chebyshev’s inequality. L: Lombardy,
ER: Emilia Romagna, P: Piemonte, V: Veneto, S: Scotland, DP: Department of Paris.
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Figure 7: Real-time forecasts for ic = log(IC) of model d(2, 1; q) for Italian regions. Lombardy (upper left),
Piemonte (upper right), Emilia Romagna (lover left), Veneto (lower right). Yellow: q = 0. Gold: q = 1.
Orange: q = 2.
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Figure 8: Real-time forecasts for ic = log(IC) of model d(2, 1; q) for Scotland and the Department of Paris.
Left: Scotland. Right: Department of Paris. Yellow: q = 0. Gold: q = 1. Orange: q = 2.
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8. Conclusions

Daily time series data of Covid-19 hospitalized patients and of Covid-19 patients admitted in
ICU are used to forecast demand for ICU in real time. The proposed bivariate VECM model
exploits the link between the series in levels, which reflects the fact that group of hospitalised
patients is the natural population at risk for intensive care.

This link is found to translate empirically into a cointegrating relation. The associated para-
meters can be grouped in a pass through multiplicative coefficient and in an elasticity parameter.
It is found that both the pass through coefficient and an elasticity parameter are region-specific,
reflecting differences in health care response to the outbreak.

The VECM, endowed with broken linear trends, is able to capture changes in hospital practice,
the effects of containment measures and the evolution of the epidemic. These broken deterministic
components affect the pass through coefficient, and are found to be very relevant empirically.

These models were applied to the real-time forecast if ICU demand for the four most affected
Italian regions; this analysis showed that the models can provide real-time reasonably reliable
forecasts. The same findings are obtained for French data from the health Department of Paris and
for Scotland. These results suggest that the proposed approach may be useful to predict Covid-19
related ICU demand for other heath-care systems beyond the ones analysed here.

The VECM models presented here do not consider issues relate to reduced availability of ICU
beds due to the healthcare system reaching or even surpassing its capacity (Ji et al., 2020). In
practice ICU capacity utilization never approached full capacity in the analysed regions, due to the
creation of new ICU, possibly via the retrofitting of other hospital facilities; hence this does not
appear to be a problem from the empirical perspective.

Further improvements of the approach may come from incorporating additional sources of
information, such as ICU saturation or size, waiting times, lengths of stay in ICU, patient distri-
butions by age and co-morbidities in the area etc. The multivariate nature of the VECM has the
potential to accommodate the modeling of this additional information, which may also lower the
need to recourse to broken deterministic components.
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Appendix A. Stationary companion form

Wt satisfies the stationary companion form Wt = BWt−1 + Jq,p(µDt +εt) with B = G′AḠ, namely

∆xt

β′xt−1

∆xt−1

∆xt−2
...

∆xt−k+2


=



Γ1 + αβ′ α Γ2 . . . Γk−2 Γk−1

β′ Ir

Ip

Ip
. . .

Ip





∆xt−1

β′xt−2

∆xt−2

∆xt−3
...

∆xt−k+1


+ Jq,p(µDt + εt). (A.1)

The fact that B = G′AḠ can be shown as follows. Let N = (G, F)′ where F = (0, β⊥, 0) confor-
mably with G. Observe that N is invertible and that NXt = (W ′

t , f ′t )′ = Rt where ft = β′⊥xt−1. Pre-
multiplying Xt = AXt−1 + Js,p(µDt +εt) by N and observe that NXt = NAN−1NXt−1 +NJs,p(µDt +εt)
i.e. Rt = NAN−1Rt−1 + Js,p(µDt + εt) because NJs,p = Js,p as can be verified directly. Because N
has orthogonal blocks one also sees that N−1 = (Ḡ, F̄), and hence

NAN−1 =

(
G′AḠ G′AF̄
F′AḠ F′AF̄

)
=

(
G′AḠ 0
(β′⊥, 0) Ip−r

)
where G′AF̄ = 0 follows because F̄ acts on the second block of columns, and all entries in G′A in
the second block end with β′. Similarly one finds F′AḠ = (β′⊥, 0) and F′AF̄ = Ip−r. The equation
of ft = β′⊥xt−1 reads ft = β′⊥J′q,pWt−1 + ft−1 = β′⊥∆xt−1 + ft−1, i.e. it is an identity (which loads on
the stationary part Wt−1). This shows that B = G′AḠ follows because β′⊥xt−2 is never loaded in ∆xt.
This shows that the dynamics of Wt is autonomous with respect to the one of ft, and that ft depends
on the dynamics of Wt.

This also shows that the eigenvalues of A are equal to the eigenvalues of B and of Ip−r, where
the latter are p − r eigenvalues all equal to 1. In the present context with p = 2 and r = 1, one has
p − r = 1.
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