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Abstract

The empirical and methodological efforts in using the generalised linear model to model
healthcare costs have been mostly concentrated on selecting the correct link and variance
functions. Another type of misspecification - misspecification of functional form of the key
covariates - has been largely neglected. In many cases, continuous variables enter the model
in linear form. This means that the relationship between the covariates and the response
variable is entirely determined by the link function chosen which can lead to biased results
when the true relationship is more complicated. To address this problem, we propose a hybrid
model incorporating the extended estimating equations (EEE) model and partially linear
additive functions. More specifically, we partition the index function in the EEE model into a
number of additive components including a linear combination of some covariates and unknown
functions of the remaining covariates which are believed to enter the index non-linearly. The
estimator for the new model is developed within the EEE framework and based on the method
of sieves. Essentially, the unknown functions are approximated using basis functions which
enter the model just like the other predictors. This minimises the need for programming
as the estimation itself can be completed using existing EEE software programs. The new
model and its estimation procedure are illustrated through an empirical example focused on
how children’s Body Mass Index (BMI) z-score measured at 4-5 years old relates to their
accumulated healthcare costs over a 5-year period. Results suggest our new model can reveal

complex relationships between covariates and the response variable.
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1 Introduction

Econometric modelling of healthcare costs serves many purposes: to obtain key param-
eters in cost-effectiveness analyses (Hoch et al. 2002); to implement risk adjustment
in insurance systems (van de Ven & Ellis 2000); and to estimate health care costs
attributable to risk factors such as smoking and obesity (Johnson et al. 2003, Cawley
& Meyerhoefer 2012). Modelling healthcare costs is challenging because the cost data
are typically non-negative, heavy tailed and highly skewed. Early efforts centred
on linear regressions with a transformed cost dependent variable. However, with
transformed costs, it is necessary to undertake retransformation to obtain predictions
and marginal effects of predictors on the original cost scale. The retransformation can
be a cumbersome process, especially when heteroscedasticity remains after costs are
transformed (Manning 1998, Manning & Mullahy 2001).

Researchers have therefore sought alternative methods to avoid the need to trans-
form costs, and identified the generalised linear model (GLM) as a preferred approach
(e.g., Blough et al. 1999). The GLM is built around a link function that specifies
the relationship between the conditional mean and a linear function of the covariates
(i.e., the index) and a distributional family that specifies the form of the conditional
variance as a function of the conditional mean. Apart from being able to model cost
on its original scale, the GLM approach also has two advantages: it gains in effi-
ciency (precision) if the estimator matches the data generating process and it provides
consistent estimates even if the distribution family is incorrectly specified (i.e., the
choice of family only influences efficiency as long as the link function and covariates
are correctly specified). However, it is also known that GLM can suffer substantial
efficiency losses if data are heavily tailed or the variance function, represented by the
distribution family, is misspecified (Jones 2011).

These features of GLMs have motivated efforts to avoid the misspecification of
the link and variance functions. For example, a nonparametric GLM was proposed
by Chiou & Miiller (1998) where both link and variance functions are unknown
but smooth functions. This has been rarely used in the healthcare costs modelling
literature though, most likely because there is difficulty in implementing the approach
when there are a large number of dummy or discrete regressors which is often the case
in health economics applications.

Another example is the extended estimating equations (EEE) model of Basu &
Rathouz (2005) which is a method to estimate a semiparametric GLM where the
index is specified as a Box-Cox transformation of the conditional mean, and the
variance function can be either a power function or quadratic function. Whilst not

fully nonparametric, the EEE model offers a great deal of flexibility in the choice



of the link and variance functions. This has made it increasingly popular in health
economics research.

A less explored topic in this area is the potential misspecification of the functional
form of variables included in the index. In many cases, continuous variables enter
the index in linear form. This means the relationship between the covariate and the
dependent variable will be entirely determined by the link function chosen which can
lead to biased results when the true relationship is more complicated than the one
indicated by the chosen link function. Often, researchers try to use polynomials to
ameliorate this problem but this method is limited in the type of functional forms it
can accommodate largely due to its undesirable “nonlocal” behaviour (Magee 1998).
Another popular approach is to discretise the regressors. However, it may be difficult to
identify the relevant cut-off points and the approach may lose substantial information.

An alternative and possibly superior approach is to enter these variables into the
index nonparametrically. This leads to the partially linear additive model when it is
applied to a linear regression model (Engle et al. 1986) and the generalised (partially
linear) additive model (GAM) when it is applied to a GLM (Hastie & Tibshirani
1986). Partially linear models have been applied in health economics (Jones 2000),
but not to healthcare costs modelling and GLMs in particular.

In this paper, we extend the EEE model by considering a partially linear additive
index function with selected continuous variables entering the index nonparametrically.
This represents a marriage of the two lines of research described above resulting in a
highly flexible model that can potentially avoid three types of misspecification. The
proposed model is a semiparametric extension of GLM with GLM, EEE and GAM as
its special cases.

The estimator is developed within the EEE framework by Basu & Rathouz (2005)
and based on the method of sieves (Chen 2007). Essentially, the unknown functions
in the index are approximated using sets of basis functions which enter the model just
like the other predictors. This minimises the need for programming as the estimation
itself can be completed using existing EEE software modules (e.g., Basu 2005). The
confidence intervals for the unknown function and marginal effects can be obtained
using the bootstrap method after the model is estimated.

The method is illustrated through an empirical example that analyses how children’s
Body Mass Index (BMI) z-score measured at 4-5 years old is related to their medical
services costs over a 5-year period. This is a modified replication of Au (2012) in
which all the predictors were dummy coded. We considered two continuous variables,
the BMI z-score and mother’s age at birth, whose functional forms are unknown.
These two variables are also of different types, with the BMI z-score distributed on

the whole real line while the mother’s age at birth is distributed on the positive real



line. This provides an opportunity to demonstrate how to use the method of sieves
under different situations.

Results suggest a complex relationship between children’s BMI z-score measured
at 4-5 years and their accumulated medical services costs. The score within the
normal weight range is not statistically significantly associated with the costs. The
score within the underweight range is negatively associated with the costs but the
association is statistically insignificant due to the small number of observations in this
group. The score within the overweight range is positively associated with the costs
and the association is statistically significant. The function of the score is overall of a
“bucket” shape, with decreasing slopes at both ends. By contrast, using polynomials
results in a function with an inverted U shape with increasing slopes at both ends.
The large deviation in the estimated marginal effects from the two approaches suggests
that not modelling the functional form of predictors appropriately may lead to biased

results and misleading policy implications.

2 Motivating example

Our motivating example is a modified replication of the Au (2012) study which
examined the association between children’s BMI at age 4-5 and medical care costs
over a 5-year period. The data came from the Longitudinal Study of Australian
Children (LSAC) which is a representative panel survey of Australian children. It
began in 2004 when the children were aged 4-5. The study was based on the data
from the first three waves of the 4-5 years old cohort, collected in 2004, 2006 and 2008,
which were linked to each child’s Medicare record, covering a 5-year period. Medicare
records include items related to the Medicare Benefits Scheme (MBS) costs and
the Pharmaceutical Benefits Scheme (PBS) costs, representing medical service costs
and pharmaceutical costs respectively. Accumulated MBS costs contain a negligible
portion of zeros while accumulated PBS costs contain a relatively large portion of
zeros. As our model is focused on the positive cost variable, we only consider MBS
costs (adjusted to 2015-2016 price level) in this study. They contain around 1% zeros
and these observations were dropped from our analysis.

In Au (2012) the key variable was not the BMI z-score but a discrete variable with
three categories: underweight, normal weight, or overweight. Using a GLM model
with log link and gamma distribution, Au (2012) found that both the overweight
and underweight status would increase the medicare costs but the latter effect is
not statistically significant even at 10% level. By contrast we used the original BMI
z-score as the key variable and in the meantime selected the mother’s age at birth

as an additional control variable. The other control variables are largely the same as



those used in Au (2012) except that the mother’s smoking status was excluded from
our analysis since it has a large number of missing values. See the Appendix for the
other control variables and their definitions.

The BMI z-score has sparse data points on both ends of the distribution and the
mother’s age at birth has few data points on the right tail. We dropped these outliers
(below the 0.5th percentile and above the 99.5th percentile for the BMI z-score and
above the 99.5th percentile for the mother’s age at birth) as nonparametric estimation
is known to be unreliable in sparse regions. In total 64 observations were dropped
and the final sample size is 4,255. The mean and median costs are 841 AUD and 619
AUD. The mean of the BMI z-score is 0.56 (ranging from -2.80 and 3.34). The mean
of the mother’s age at birth is 30 (ranging from 15 to 44).

3 EEE with a partially linear additive index

3.1 The Model

Consider a sample of observations (Y;, X;, Z1;, Zo;), @ = 1,...,n', where Y; is a
dependent variable, Z; stands for the BMI z-score of individual i, Z,; stands for
“mother’s age at birth/100”* of individual 4, and X; = (X1, ..., X,;) is a p x 1 vector
of the rest of the explanatory variables which does not contain a constant term®. One
of our main goals is to characterise the nonlinear impacts of Z; and Z; on Y.

Denote (X, Z1;, Z2i) = E(Y;| Xy, Z1i, Z2;). Suppose that there is a strictly mono-
tone and differentiable link function f(-) and a strictly positive function g(-) such
that:

F((Xs, Zvi, Zo)) = X8 + ma(Z1;) + ma(Za), (1)
Var(Y;i|Xi, Zvi, Zai) = g(1(Xi, Z1iy Zai)), (2)

where 3 is a p x 1 vector of parameters, and m4(-) and ms(-) are two smooth functions
defined on R and [0, 1], respectively, given the nature of the two variables in our data
set.

If the link function f(-) and the variance function g(-) are known, then the model
is GAM. If m;(-) and my(-) are also known, then the model is a GLM. In this paper,

"'We focus on the case where there are two regressors of particular interest, Z; and Zs, to illustrate
different families of basis functions. The method could be readily generalised to cases with more or
less regressors.

2The rescaling of mother’s age at birth to within [0, 1] is to facilitate the use of the Fourier basis
functions in Section 3.3.

3This is simply for the convenience of model identification. The constant is expected to be

absorbed into one of the unknown functions.



we adopt the EEE framework by assuming that the link function f(-) and the variance

function ¢(-) have the following parametric forms:

s
f(u—{ o AFD (3)

| log(p), ifA=0
g(p) = 1™ or Oy Oy, (4)

where the parameters A, 6; and 6, are to be estimated from the data.

The nonparametric additive functions m;(-) and ms(+) in (1) can be estimated using
different approaches such as kernel estimation and sieve estimation. In the literature of
nonparametric estimation, it is well known that these unknown functions are identified
only up to a location shift. To uniquely identify them, some location normalisation
conditions need to be imposed. A commonly used identification condition in local
estimation methods (such as kernel estimation) is E(m;(Zy;)) = 0 or E(mg(Zy)) =0
(note that only one of these two zero mean conditions is required as X; does not
contain a constant term). Another identification condition, which is often used in
series estimation, is m4(0) = 0 or my(0) = 0 (again only one of these is required) (Li
2000).

In this paper, we will use the method of sieves to estimate m;(-) and ms(-) and
assume that m(-) and ms(-) are square integrable over their support. As Zj; is
defined on R, this implies that the integral of the square of m;(z;) on R is finite, which
further implies that mq(z;) will approach zero as z; approaches infinity. Visually,
on a Cartesian graph, this means both ends of the function m;(z;) will come near
to the horizontal axis when z; becomes sufficiently small or large, suggesting the
location of the function is identified. In this case the square integrability condition on
mq(-) implicitly places a location normalisation on the function and thus no further
identification conditions are required (see related discussion under Assumption C.2 of
Dong & Linton (2018)).

3.2 The method of sieves

The method of sieves was first introduced by Grenander (1981). The main difficulty
encountered in nonparametric estimation is the need to search for a function on an
infinite function space. The core idea of sieve estimation is to convert it to a problem
of searching on a finite function space (through “parameterising” the nonparametric
problem) which is much easier to handle.

To illustrate, consider a regression model with only one predictor:

Y =q(X)+e



where € is the error term and E(e|X) = 0. ¢(-) is a smooth unknown function belonging
to a specific type of function space and defined on V which could be [0, 1], R, [0, c0),
etc. Estimation of ¢(-) is essentially a search for a function on the function space
which minimises the sum of squared residuals. However, this is not feasible since such
a space is infinite. What the method of sieves does is to replace the infinite space
with a finite space and then search for the optimal function on that.

For any ¢(z) on the defined function space, we can write it as a series expansion:
o

q(z) = mit;(x), (5)
§=0

where ¢;(x) are the basis functions and 7; are their weights. This sum of an infinite
number of basis functions can be approximated by a sum of a finite number of the
first few basis functions:

q(x) ~ ijtj(a:),

where k is a positive integer called the “truncation parameter”. This approximation
is valid because under some regularity conditions (e.g., Newey 1997) the truncation
residual 3 7%, 7;t;(x) is of a negligible order O(k™") when £ is large enough, where v
is a positive constant whose value is determined by the smoothness of ¢(z). Thus, for
sufficiently smooth ¢(z) and large enough k, the truncation bias caused by dropping
the remainder term » 2%, m;t;(z) can be ignored.

The estimation problem has now been reduced to a finite-dimensional optimisation
problem. What is left to do is to choose the appropriate basis functions and truncation
parameter along with the estimation of the weights. There are many different types
of basis functions, suitable for different function spaces and supports (Chen 2007).
The choice of basis functions is often based on the support, the smoothness, the shape
restrictions (from economic theory) as well as the ease of computation (see Chen
(2007) for related discussions). The truncation parameter is typically obtained by

using a criterion or method such as the cross-validation.

3.3 Nonparametric estimation

The first step for the sieve estimation of my(Zy;) and may(Zy;) is to choose the basis
functions. We follow Chen (2007) and make the choice based on the supports (BMI
z-score is defined on R while mother’s age at birth/100 is defined on [0, 1]) and
economic constraints (health expenditures cannot increase unlimitedly). Both basis
function systems chosen in our estimation belong to the Hilbert space, ensuring that

m1(Z1;) and my(Zy;) are square integrable on their support.



For the BMI z-score, we use a basis function system defined as below:

1 w? )
hi(w) = = Hj(w)exp(~ "), §=0,1.2,...

where H;(w) represent the physicists’ Hermite polynomials (Nevai 1986). We therefore
call this system the “physicists’” Hermite polynomial system” whose first four basis
functions are illustrated in Figure 1. Almost all basis function systems start from the
constant function of one (like polynomials). But in the physicists’ Hermite polynomial
system the first function is not one due to the square integrability condition over R,

which in effect enables location identification of mq(Z;;) as discussed in Section 3.1.

Figure 1: Physicists’ Hermite polynomial basis functions (first four functions)
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For any function ¢(w) belonging to this function space, it can be written as:*
p(w) =D msh;(w), (6)
=0

where m1; = [ ¢(w)hj(w)dw. As explained in the last section, ¢(w) can be approxi-

mated using the first few basis functions as:

k1—1

P(w) ~ Z Tihi(w),

where k; is a truncation parameter.

Since the values of “mother’s age at birth/100” are all between 0 and 1, we use the
Fourier series {so(u) = 1, s;(u) = v/2cos(rmju) for j > 1}, which is an orthonormal
basis on the Hilbert space with the support [0, 1]. The first four basis functions of this
system are illustrated in Figure 2. In this case the first function sq(-) is the constant
function of one. As the other control variables X do not contain a constant and m(z;)
approaches zero as z; approaches infinity, any unaccounted constant component on
the right hand side of (1) is absorbed by ma(29) through s¢(z9) = 1.

4As the basis functions are orthonormal this is an orthogonal series expansion.



Figure 2: Fourier series basis functions (first four functions)
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Likewise, for any function v belonging to this function space, it can be written as

Y(u) = Z%‘S;‘(U),

where my; = fol Y(u)sj(u)du. This again can be approximated by

ko—1

P (u) ~ Z 2585 (w)

where ks is a truncation parameter.

Given these choices, we can approximate mq(Zy;) and may(Zy;) by

k1—1

ml(Zu) ~ Z lehj(Zli) = H(Zu)lnl,
=0

ko—1

m2<ZQi) =~ Z ngSj(Zgi) = S(Zgiyng,
7=0

9

(7)



Where H(Zh) = (hO<Z1i)7 N hk171<Z1i))/7 S(ZQZ) = (80<Z2i), NN Sk2,1(Z21'))/, ]-_-[1 =
(10, -« s Ty —1)" and IIy = (790, . . ., T2 k,—1)'

In view of the series approximations (8) and (9), we can re-write (1) as
(X, Z1i, Zai)) = XiB + H(Z1;) T + S(Zy:) I, = X{B, (10)

where X; = (X}, H(Zy;),S(Z)")’ and B = (@', II},IL,). Equation (10) now has a
linear parametric form, and its parameters B, together with the parameters A\, 6; and
0y in the link and variance functions, can be estimated using existing EEE procedure
(e.g., the -pglm- Stata module was used in our analysis).

The performance of sieve estimation of m;(-) and my(-) depends on the choice of
the truncation parameters k; and k. There are two types of potential errors. One is
the approximation error which occurs when the truncation parameter is not sufficiently
large. The other is the estimation error when the truncation parameter is too large
relative to the given sample size (so that there are too many parameters to estimate).
Hence, the optimal choice of k; and ks involves balancing between these two types of
errors. We used 10-fold cross validation (based on the averaged mean squared error
(MSE) and mean absolute error (MAE)) to select k; and ko in the empirical analysis.

Once k; and ky are chosen, we can use the EEE estimation procedure to obtain
an estimate B = (3/, IT,, ﬁg)’ and subsequently estimates of mj(u) and mg(u) as
i (u) = H(u)'TL; and Ms(u) = S(u)T,.

3.4 Marginal effects and standard errors

One of the main reasons for undertaking cost regressions is to examine a key variable’s
impact on costs. It is therefore necessary to derive the marginal effects, which can be
challenging in the case of nonparametric estimation (e.g., when using kernel estimation).
Often, an additional step of parameterisation is needed to facilitate the derivation of
the first order derivative. Sieve estimation has a clear advantage in this case as the
core of this approach is to parameterise the unknown function.

Here we demonstrate how to derive the marginal effects of Z; and Z, given the
two different basis function systems. Let [(-) be the inverse function of f(-). Simple

algebra gives that

1

>|

Y

B (Aw+1)x ifA#0
lw) = { exp(w) ifA=0

() = {(Awﬂ)i—l it A0 )

exp(w) ifA=0
where [V (w) represents the first order derivative of [(w). The marginal effects of Z;

10



and Z5 are then calculated as

% =@ (X'B +mi(Z1) +ma(Z2)) - m§1)<Zl)v (12)

1

% = W (X'B +mi(Z1) +ma(Zy)) - m(21)<Z2)7 (13)
2

where m{"( -) and m§( -) are the first order derivatives of m;(-) and ma(+), respectively.

Given the approximation (8), we can replace m{"”(Zy) by II{H®(Zy;) where
H(l)(Zh) is the first order derivative OfH(ZM‘>, i.e., H(1)<le) = (h((Jl)<ZlZ), . 7h](§11)_1(Zli)),-
The first order derivatives for the Physicists’” Hermite polynomial basis functions are

given below

WY (Z1) = _\/%hl(zh% 1=0
! \/Li (Vihj-1(Zv) = V7 +Thji(Z)) , 5> 1.

Similarly, given the approximation (9), m$"”(Zs) can be replaced by TI,SM(Zy;)
where SM(Zy;) = (sél)(Z%), e 31(612)71(2%))'. The first order derivatives for the Fourier

series basis functions are given below

(1) 0’ j 07
S ZZ =
j (Z2i) { —V27j - sin(mjZy;), j > 1.

By substituting the estimates of 3, ITy, ITy and A into (12) and (13), we can obtain
estimates of the marginal effects of Z; and Z;. The standard errors and confidence
intervals for estimates of m;(Z;) and my(Z3) and the marginal effects of Z; and Z,
can be obtained through a bootstrap method. For example, Stata has an in-built
bootstrap command that can be used in conjunction with -pglm-.

One may wonder why we do not directly calculate the standard errors considering
the linear combination of basis functions. However, this would work only if we can
establish an asymptotic distribution for the estimator of B in equation(10). The
vectors IT; and IT, have diverging dimensions as the sample size increases (since
the truncation parameters k; and ko are diverging asymptotically in order for the
remainder terms to be negligible as sample size increases). On the other hand, in
equation(10), the estimator of 3 and those of II; and I, have different convergence
rates (the sieve estimation part has a slower convergence rate). It is therefore difficult
to derive the asymptotic variance of the estimator of B in equation(10) and hence we

recommend using the bootstrap method.

4 Results

Given the nature of the two continuous variables we have chosen suitable basis

functions, as described in Section 2.3. The new model can be estimated using the

11



Stata module -pglm- once the truncation parameters k; and ko are determined. Based
on the formula k; = ko = [n'/%| adapted from Dong & Linton (2018) the initial
truncation parameter for both variables was chosen as 4. We then allowed each to
vary from 3 to 5 which leads to 9 different models which were then evaluated using a
10-fold cross-validation based on the averaged MSE and MAE. Results are in Table 1
which suggests the model with k; = 3 and ky = 4 produced both the smallest MSE
(1.8272) and the smallest MAE (1.0149)°. The 10-fold cross-validation was also used
to select the optimal model based on polynomials resulting in a quadratic function
for BMI z-score and a cubic function for mother’s age at birth. The average MSE
and MAE for this model are 1.8304 and 1.0159, inferior to the model estimated using

sieves.’

Table 1: Truncation parameters selection: model comparison based on averaged mean

squared error (MSE) and mean absolute error (MAE) from 10-fold cross-validation

Based on MSE
k1\k2 3 4 5
3 1.8369 | 1.8272 | Convergence problems
4 1.8380 | 1.8283 | Convergence problems
5 1.8382 | 1.8285 | Convergence problems
Based on MAE
k1\k2 3 4 5
3 1.0191 | 1.0149 | Convergence problems
4 1.0195 | 1.0153 | Convergence problems
) 1.0192 | 1.0150 | Convergence problems

We compare the functions estimated using sieves with the ones estimated using
discretisation. For the BMI z-score, we divided it into 11 categories and used one of
them (—0.5 0) as the reference level; See Table 2. Using the midpoints in each category
and with the coefficient for the reference category fixed (at -0.13 for a location close
to the other estimated functions), we were able to plot the implied functional form
(the green line) in Figure 3, along with the ones estimated using sieves (the blue lines)
and polynomials (the red line). The solid blue line represents the optimal model using

sieves when k; = 3 and the dashed blue line represents the model using sieves when

5The MSE and MAE numbers look small because the dependent variable is normalised using its

sample mean prior to the estimation.
60n the original cost scale, this means an increment of 2263 in MSE and an increment of 0.843 in

MAE from the optimal model estimated using sieves.
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k1 = 4. The figure suggests the functions estimated using sieves are very close to
the implied functional form from discretisation. In fact, the one based on k; = 4
matches it very well, even capturing the hump in the middle. However this is a sign
of over-fitting, proven by the cross-validation results.

Using polynomials does not identify the location of the target function. To facilitate
the comparison (i.e., to compare functions around the same location) we applied an
identification condition that m;(0) = —0.19 representing the point where the optimal
model produced by sieve estimation passes the y axis. The figure suggests a clear
discrepancy between the functional form estimated by polynomials and the other two.
It presents an inverted U shape with increasing slopes at both ends. By contrast, the
functional form of the optimal model is of a “bucket” shape overall, with decreasing

slopes at both ends.

Table 2: Estimation of m;(BMI z-score) by using sieves, polynomials, and discretisa-

tion

Est Std | P-value
Sieves
X -0.3491 | 0.1383 | 0.0120
1 -0.0291 | 0.0343 | 0.3960
X -0.1439 | 0.0736 | 0.0500
Polynomials
x -0.0097 | 0.0183 | 0.5980
x? 0.0225 | 0.0110 | 0.0400
Discretisation
-2.8 ~ -2.0 0.0840 | 0.2292 | 0.7140
-2.0 ~-1.5 0.0008 | 0.1259 | 0.9950
-1.5 ~-1.0 -0.0594 | 0.0687 | 0.3870
-1.0 ~ -0.5 -0.0466 | 0.0635 | 0.4640
-0.5~0 reference
0~ 0.5 -0.0370 | 0.0514 | 0.4720
0.5~ 1.0 -0.0778 | 0.0487 | 0.1100
1.0 ~ 1.5 -0.0582 | 0.0507 | 0.2510
1.5~ 2.0 0.0230 | 0.0591 | 0.6980
2.0 ~ 2.5 0.0726 | 0.0876 | 0.4070
2.5 ~ 3.34 0.0916 | 0.1059 | 0.3870

13



Figure 3: Plotting the estimated m;(BMI z-score) by using sieve estimation (k; = 3

and k; = 4), polynomials (a quadratic function), and discretisation
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For the mother’s age at birth, we divided it into six categories and used the first
category (<= 20) as the reference level; See Table 3. Similarly, using the midpoints in
each category and with the coefficient for the reference category fixed at 0.1 (again,
for the convenience of visual comparison), we plotted the implied functional form in
Figure 4, along with the ones estimated using the sieves and the polynomials. The
figure suggests both the Fourier series with ko = 4 and polynomials fit well with small

differences on both ends.

Table 3: Estimation of my(mother’s age at birth) by using sieves, polynomials, and

discretisation
Est Std | P-value

Sieves
20 3.0902 | 3.4857 | 0.3750
21 -3.5825 | 4.0819 | 0.3800
29 1.8794 | 2.0865 | 0.3680
23 -0.7254 | 0.6204 | 0.2420
Polynomials
x 0.1624 | 0.1376 | 0.2380
x? -0.0045 | 0.0047 | 0.3470
x? 0.00004 | 0.0001 | 0.4640
Discretisation
15.18 ~ 20 reference
20 ~ 25 0.0751 | 0.0741 | 0.3110
25 ~ 30 0.1742 | 0.0740 | 0.0190
30 ~ 35 0.1569 | 0.0771 | 0.0420
35 ~ 40 0.1086 | 0.0781 | 0.1640
40 ~ 44.11 0.0771 | 0.0969 | 0.4260

Note: When using the method of sieves, the mother’s age at birth variable was scaled into

[0,1]. Also, the estimated zy combines the intercept in the linear index and the true z.
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Figure 4: Plotting the estimated mq(mother’s age at birth) by using sieve estimation
(ko = 4), polynomials (a cubic function), and discretisation
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For the preferred model, the estimated A is 0.93 with its standard error 0.34. The power
variance function was used with its parameters #; estimated as 0.80 (standard error 0.06)
and 0y as 1.41 (standard error 0.18). These suggest the link function is very close to identity
and the variance function is close to a Poisson.” The former is expected since all the X
variables in our example are dummies so if the relationships between the two continuous
variables and the cost are sufficiently recovered then there should be little nonlinearity left
for the link function to capture.

We now return to the key research question of the empirical example - how children’s
BMI z-score measured at 4-5 years old relates to their accumulated MBS costs over a 5-year
period. To answer this question, we plot the estimated m(BMI z-score) along with its
confidence intervals; See Figure 5. The vertical dashed lines indicate the approximate
cut-points for the BMI categories using age and gender specific cut-offs from Cole et al.
(2000): the one on the left represents the cut-off between underweight and normal weight

while the one on the right represents the cut-off between normal and over weight.

"Using the quadratic variance function would suggest the variance function is closer to Inverse
Gaussian. But as we expected, the choice of variance function structure had little impact on the

estimation of the conditional mean.
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Figure 5: Estimated m;(BMI z-score) using the method of sieves and its marginal
effects on MBS costs

0.2

Mean estimate of m(BMI z-score)
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Lower bound for the 95% CI
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Note: Top panel: mj(BMI z-score) estimated using the method of sieves with confidence
intervals; Bottom panel: the marginal effects of BMI z-score at age 4-5 on a 5-year accumu-
lated MBS costs (mother’s age at birth is fixed at its mean 30 and all the dummy variables
are set at their reference level) with confidence intervals; The vertical dashed lines indicate
the approximate cut-points for the BMI categories using age and gender specific cut-offs
from Cole et al. (2000): the one on the left represents the cut-off between underweight and
normal weight while the one on the right represents the cut-off between normal and over

weight.
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From Figure 5, we can see that when the BMI z-score is around 1, mq(BMI z-score)
reaches its smallest value and as the z-score increases from there m;(BMI z-score) increases,
suggesting the accumulated MBS costs increase as well. On the other hand, when the z-score
decreases from there, m;(BMI z-score) first increases slightly and then becomes almost flat
until the z-score reaches around -1, and then increases.

Whether these relationships are statistically significant can be examined through marginal
effects analysis. For example, we can fix the mother’s age at birth at its mean 30 and all
the other control variables at their reference levels, and then use the method outlined in
Section 2 to calculate the marginal effects of different BMI z-scores. For illustration, we plot
the estimated marginal effects and associated confidence intervals in Figure 5. It suggests
that for this specific scenario, all the marginal effects are statistically significant for the
overweight range but statistically insignificant for the normal weight range (small size and
large standard error). For the underweight range, most are statistically insignificant (but we
need to be aware that this group of children is of a small sample size).

Whilst mother’s age at birth is only a control variable, out of interest we also plot the
estimated mgo(mother’s age at birth) and its marginal effects (when the BMI z-score is set
to the mean value of 0.56 and all the other control variables are set at their reference levels)
in Figure 6. These suggest that the accumulated MBS costs increase as mother’s age at
birth increases until around 30 years old then decrease after that but for the selected child
the marginal effects of mother’s age at birth on costs are not statistically significant from
zero after age reaches around 27 years old.

Finally a head-to-head comparison of marginal effects from polynomials and sieves is
undertaken; See Figure 7. For the BMI z-score, the difference is clear. One of the key
questions policy makers would ask is how healthcare costs are related to being overweight,
to which these two methods would give very different answers. For mother’s age at birth,
the difference is small except that using polynomials generated larger marginal effects for

younger ages and it changes at a faster speed.
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Figure 6: Estimated mgy(mother’s age at birth) using the method of sieves and its
marginal effects on MBS costs
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Note: Top panel: mg(mother’s age at birth) estimated using the method of sieves with
confidence intervals; Bottom panel: the marginal effects of mother’s age at birth on a 5-year
accumulated MBS costs (the child’s BMI z-score at age 4-5 is fixed at its mean of 0.56 and

all the dummy variables are set at their reference levels) with confidence intervals.
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Figure 7: Estimated marginal effects on MBS costs: comparison between the method

of sieves and polynomials
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Note: Left panel: the marginal effects of BMI z-score at age 4-5 on a 5-year accumulated
MBS costs (mother’s age at birth is fixed at its mean 30 and all the dummy variables are
set at their reference levels) with 95% confidence intervals; Right panel: the marginal effects
of mother’s age at birth on a 5-year accumulated MBS costs (the child’s BMI z-score at age
4-5 is fixed at its mean 0.56 and all the dummy variables are set at their reference levels)
with 95% confidence intervals; Top panel: estimated using the method of sieves; Bottom
panel: estimated using polynomials (quadratic for BMI z-score and cubic for mother’s age
at birth). The dashed lines on the left panel indicate the approximate cut-points for the
BMI categories using age and gender specific cut-offs from Cole et al. (2000): the one on
the left represents the cut-off between underweight and normal weight while the one on the

right represents the cut-off between normal and over weight.
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5 Discussion and conclusion

The empirical and methodological efforts in using the GLM to model healthcare costs
have been mostly concentrated on selecting the correct link and variance function. The
misspecification of functional form of the key covariates has been largely neglected. Using
polynomials cannot guarantee accurate approximation of any functional form. To address
this problem, we propose a hybrid model incorporating the EEE framework by Basu &
Rathouz (2005) and the partially linear additive index. More specifically, we partition the
index function in the EEE model into a number of additive components including a linear
combination of covariates (either dummy coded or continuous which are believed to enter
the index linearly) and unknown functions of continuous variables which are believed to
enter the index non-linearly.

These unknown functions can be estimated using various methods such as the kernel
method, but the method of sieves is adopted in this paper. With this method, we can ap-
proximate the unknown functions using sets of basis functions (similar to using polynomials).
The resulting estimation problem can therefore be solved using the existing user-written
EEE software programs (e.g., -pglm- in Stata). The standard errors and confidence intervals
for these variables and their marginal effects can be obtained using the bootstrap method.

The key to estimating such a model, however, lies in choosing suitable types of basis
functions and appropriate truncation parameters. How to choose basis functions in other
empirical situations is not in the scope of this study but has been extensively discussed
elsewhere (see e.g., Chen 2007). Nevertheless, the two variables considered in our empirical
example represent two of the most commonly used types and thus the basis functions adopted
in our example may be useful in many other empirical applications.

The physicists’ Hermite polynomial system was chosen as the basis function for BMI
z-score. By theory it can recover any square integrable function defined on R. As explained
before, this type of functions must approach zero as the variable approaches infinity. This
implies that there is an upper bound (or lower bound) for the function at the two extreme
ends, which is sensible in the case of healthcare costs as costs are typically constrained.
However, in practice we do not observe at infinity and only approximate the function
wherever we have observations. So on a finite sample space, this basis function system in
fact can recover any functional form including those not square integrable on R (e.g., linear)
but on a finite interval.®

Unlike kernel estimation, where the selection of bandwidth has been extensively studied,
research on how to choose the truncation parameter in sieve estimation has been relatively
rare. Following the literature, we adopted out-of-sample forecast ability as the criterion in
the selection of truncation parameters through the 10-fold cross validation. We also used a
formula proposed by Dong & Linton (2018) which needs to satisfy specific conditions such

as the degree of smoothness. It gave a good approximation to the final result. However, we

8 A square integrable function defined on R cannot be linear on R but can be linear on a finite

space.
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do not recommend it as a rule of thumb for sieve estimation in general like Silverman’s rule
of thumb (Silverman 2018) for kernel estimation, as it is not a general result. However, it
certainly can be used as a starting point.

Our model is a semiparametric extension of GLM with GLM, EEE and GAM as special
cases. It inherits the benefits of EEE and has a clear advantage over the GAM which requires
a sequential search for the link and variance function as well as all the unknown functions.
This can be a laborious process and the optimal model may not even be identified given the
strong interplay between the link function and the unknown functions (one changes as the
others change). This may also explain why GAM has not been adopted in the healthcare
cost regression literature in spite of the popularity of GLM in the area.

In conclusion, this paper identifies an often neglected but important area for modelling
healthcare costs and proposes a new model to tackle the potential misspecifications. The
estimation of the model can be undertaken using existing software packages with minimal
programming needed and thus should be a viable new tool for health economists who are

working in modelling healthcare costs and other similar areas.
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Appendix Other control variables

Variable

Levels

Child’s characteristics

Gender

female (reference)

male

Age

age in months at time of survey <60 (reference)

age in months at time of survey >= 60

Birth weight

>= 2500 grams (reference)

<2500 grams

Breastfed at 6 months

no (reference)

yes

Language at home

only English (reference)

English and other languages

none (reference)

Siblings .
at least one sibling
pre-school (reference)
) pre-year one and year one
Schooling

day care centre

other

Residential location

city (reference)

inner-regional area

rural area

remote area

Attention Deficit Disorder

no (reference)

yes

Hearing problems

no (reference)

yes

Vision problems

no (reference)

yes

Eczema

no (reference)

yes

Ear infections

no (reference)

yes

Mother’s characteristics

Education level

university degree (reference)

diploma

high school and below

Full time employment

no (reference)

yes

Healthcare card holder

no (reference)

yes
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