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Abstract

The empirical and methodological efforts in using the generalised linear model to model

healthcare costs have been mostly concentrated on selecting the correct link and variance

functions. Another type of misspecification - misspecification of functional form of the key

covariates - has been largely neglected. In many cases, continuous variables enter the model

in linear form. This means that the relationship between the covariates and the response

variable is entirely determined by the link function chosen which can lead to biased results

when the true relationship is more complicated. To address this problem, we propose a hybrid

model incorporating the extended estimating equations (EEE) model and partially linear

additive functions. More specifically, we partition the index function in the EEE model into a

number of additive components including a linear combination of some covariates and unknown

functions of the remaining covariates which are believed to enter the index non-linearly. The

estimator for the new model is developed within the EEE framework and based on the method

of sieves. Essentially, the unknown functions are approximated using basis functions which

enter the model just like the other predictors. This minimises the need for programming

as the estimation itself can be completed using existing EEE software programs. The new

model and its estimation procedure are illustrated through an empirical example focused on

how children’s Body Mass Index (BMI) z-score measured at 4-5 years old relates to their

accumulated healthcare costs over a 5-year period. Results suggest our new model can reveal

complex relationships between covariates and the response variable.

Keywords: Body Mass Index; Extended estimating equations; Generalised linear

model; Healthcare cost; Sieve estimation

JEL Classification: C14, I10, P46
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1 Introduction

Econometric modelling of healthcare costs serves many purposes: to obtain key param-

eters in cost-effectiveness analyses (Hoch et al. 2002); to implement risk adjustment

in insurance systems (van de Ven & Ellis 2000); and to estimate health care costs

attributable to risk factors such as smoking and obesity (Johnson et al. 2003, Cawley

& Meyerhoefer 2012). Modelling healthcare costs is challenging because the cost data

are typically non-negative, heavy tailed and highly skewed. Early efforts centred

on linear regressions with a transformed cost dependent variable. However, with

transformed costs, it is necessary to undertake retransformation to obtain predictions

and marginal effects of predictors on the original cost scale. The retransformation can

be a cumbersome process, especially when heteroscedasticity remains after costs are

transformed (Manning 1998, Manning & Mullahy 2001).

Researchers have therefore sought alternative methods to avoid the need to trans-

form costs, and identified the generalised linear model (GLM) as a preferred approach

(e.g., Blough et al. 1999). The GLM is built around a link function that specifies

the relationship between the conditional mean and a linear function of the covariates

(i.e., the index) and a distributional family that specifies the form of the conditional

variance as a function of the conditional mean. Apart from being able to model cost

on its original scale, the GLM approach also has two advantages: it gains in effi-

ciency (precision) if the estimator matches the data generating process and it provides

consistent estimates even if the distribution family is incorrectly specified (i.e., the

choice of family only influences efficiency as long as the link function and covariates

are correctly specified). However, it is also known that GLM can suffer substantial

efficiency losses if data are heavily tailed or the variance function, represented by the

distribution family, is misspecified (Jones 2011).

These features of GLMs have motivated efforts to avoid the misspecification of

the link and variance functions. For example, a nonparametric GLM was proposed

by Chiou & Müller (1998) where both link and variance functions are unknown

but smooth functions. This has been rarely used in the healthcare costs modelling

literature though, most likely because there is difficulty in implementing the approach

when there are a large number of dummy or discrete regressors which is often the case

in health economics applications.

Another example is the extended estimating equations (EEE) model of Basu &

Rathouz (2005) which is a method to estimate a semiparametric GLM where the

index is specified as a Box-Cox transformation of the conditional mean, and the

variance function can be either a power function or quadratic function. Whilst not

fully nonparametric, the EEE model offers a great deal of flexibility in the choice
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of the link and variance functions. This has made it increasingly popular in health

economics research.

A less explored topic in this area is the potential misspecification of the functional

form of variables included in the index. In many cases, continuous variables enter

the index in linear form. This means the relationship between the covariate and the

dependent variable will be entirely determined by the link function chosen which can

lead to biased results when the true relationship is more complicated than the one

indicated by the chosen link function. Often, researchers try to use polynomials to

ameliorate this problem but this method is limited in the type of functional forms it

can accommodate largely due to its undesirable “nonlocal” behaviour (Magee 1998).

Another popular approach is to discretise the regressors. However, it may be difficult to

identify the relevant cut-off points and the approach may lose substantial information.

An alternative and possibly superior approach is to enter these variables into the

index nonparametrically. This leads to the partially linear additive model when it is

applied to a linear regression model (Engle et al. 1986) and the generalised (partially

linear) additive model (GAM) when it is applied to a GLM (Hastie & Tibshirani

1986). Partially linear models have been applied in health economics (Jones 2000),

but not to healthcare costs modelling and GLMs in particular.

In this paper, we extend the EEE model by considering a partially linear additive

index function with selected continuous variables entering the index nonparametrically.

This represents a marriage of the two lines of research described above resulting in a

highly flexible model that can potentially avoid three types of misspecification. The

proposed model is a semiparametric extension of GLM with GLM, EEE and GAM as

its special cases.

The estimator is developed within the EEE framework by Basu & Rathouz (2005)

and based on the method of sieves (Chen 2007). Essentially, the unknown functions

in the index are approximated using sets of basis functions which enter the model just

like the other predictors. This minimises the need for programming as the estimation

itself can be completed using existing EEE software modules (e.g., Basu 2005). The

confidence intervals for the unknown function and marginal effects can be obtained

using the bootstrap method after the model is estimated.

The method is illustrated through an empirical example that analyses how children’s

Body Mass Index (BMI) z-score measured at 4-5 years old is related to their medical

services costs over a 5-year period. This is a modified replication of Au (2012) in

which all the predictors were dummy coded. We considered two continuous variables,

the BMI z-score and mother’s age at birth, whose functional forms are unknown.

These two variables are also of different types, with the BMI z-score distributed on

the whole real line while the mother’s age at birth is distributed on the positive real
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line. This provides an opportunity to demonstrate how to use the method of sieves

under different situations.

Results suggest a complex relationship between children’s BMI z-score measured

at 4-5 years and their accumulated medical services costs. The score within the

normal weight range is not statistically significantly associated with the costs. The

score within the underweight range is negatively associated with the costs but the

association is statistically insignificant due to the small number of observations in this

group. The score within the overweight range is positively associated with the costs

and the association is statistically significant. The function of the score is overall of a

“bucket” shape, with decreasing slopes at both ends. By contrast, using polynomials

results in a function with an inverted U shape with increasing slopes at both ends.

The large deviation in the estimated marginal effects from the two approaches suggests

that not modelling the functional form of predictors appropriately may lead to biased

results and misleading policy implications.

2 Motivating example

Our motivating example is a modified replication of the Au (2012) study which

examined the association between children’s BMI at age 4-5 and medical care costs

over a 5-year period. The data came from the Longitudinal Study of Australian

Children (LSAC) which is a representative panel survey of Australian children. It

began in 2004 when the children were aged 4-5. The study was based on the data

from the first three waves of the 4-5 years old cohort, collected in 2004, 2006 and 2008,

which were linked to each child’s Medicare record, covering a 5-year period. Medicare

records include items related to the Medicare Benefits Scheme (MBS) costs and

the Pharmaceutical Benefits Scheme (PBS) costs, representing medical service costs

and pharmaceutical costs respectively. Accumulated MBS costs contain a negligible

portion of zeros while accumulated PBS costs contain a relatively large portion of

zeros. As our model is focused on the positive cost variable, we only consider MBS

costs (adjusted to 2015-2016 price level) in this study. They contain around 1% zeros

and these observations were dropped from our analysis.

In Au (2012) the key variable was not the BMI z-score but a discrete variable with

three categories: underweight, normal weight, or overweight. Using a GLM model

with log link and gamma distribution, Au (2012) found that both the overweight

and underweight status would increase the medicare costs but the latter effect is

not statistically significant even at 10% level. By contrast we used the original BMI

z-score as the key variable and in the meantime selected the mother’s age at birth

as an additional control variable. The other control variables are largely the same as
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those used in Au (2012) except that the mother’s smoking status was excluded from

our analysis since it has a large number of missing values. See the Appendix for the

other control variables and their definitions.

The BMI z-score has sparse data points on both ends of the distribution and the

mother’s age at birth has few data points on the right tail. We dropped these outliers

(below the 0.5th percentile and above the 99.5th percentile for the BMI z-score and

above the 99.5th percentile for the mother’s age at birth) as nonparametric estimation

is known to be unreliable in sparse regions. In total 64 observations were dropped

and the final sample size is 4,255. The mean and median costs are 841 AUD and 619

AUD. The mean of the BMI z-score is 0.56 (ranging from -2.80 and 3.34). The mean

of the mother’s age at birth is 30 (ranging from 15 to 44).

3 EEE with a partially linear additive index

3.1 The Model

Consider a sample of observations (Yi,Xi, Z1i, Z2i), i = 1, . . . , n1, where Yi is a

dependent variable, Z1i stands for the BMI z-score of individual i, Z2i stands for

“mother’s age at birth/100”2 of individual i, and Xi = (X1i, . . . , Xpi)
′ is a p× 1 vector

of the rest of the explanatory variables which does not contain a constant term3. One

of our main goals is to characterise the nonlinear impacts of Z1 and Z2 on Y .

Denote µ(Xi, Z1i, Z2i) = E(Yi|Xi, Z1i, Z2i). Suppose that there is a strictly mono-

tone and differentiable link function f(·) and a strictly positive function g(·) such

that:

f(µ(Xi, Z1i, Z2i)) = X′iβ +m1(Z1i) +m2(Z2i), (1)

Var(Yi|Xi, Z1i, Z2i) = g(µ(Xi, Z1i, Z2i)), (2)

where β is a p×1 vector of parameters, and m1(·) and m2(·) are two smooth functions

defined on R and [0, 1], respectively, given the nature of the two variables in our data

set.

If the link function f(·) and the variance function g(·) are known, then the model

is GAM. If m1(·) and m2(·) are also known, then the model is a GLM. In this paper,

1We focus on the case where there are two regressors of particular interest, Z1 and Z2, to illustrate

different families of basis functions. The method could be readily generalised to cases with more or

less regressors.
2The rescaling of mother’s age at birth to within [0, 1] is to facilitate the use of the Fourier basis

functions in Section 3.3.
3This is simply for the convenience of model identification. The constant is expected to be

absorbed into one of the unknown functions.
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we adopt the EEE framework by assuming that the link function f(·) and the variance

function g(·) have the following parametric forms:

f(µ) =

{
µλ−1
λ
, if λ 6= 0

log(µ), if λ = 0
, (3)

g(µ) = θ1µ
θ2 or θ1µ+ θ2µ

2, (4)

where the parameters λ, θ1 and θ2 are to be estimated from the data.

The nonparametric additive functions m1(·) and m2(·) in (1) can be estimated using

different approaches such as kernel estimation and sieve estimation. In the literature of

nonparametric estimation, it is well known that these unknown functions are identified

only up to a location shift. To uniquely identify them, some location normalisation

conditions need to be imposed. A commonly used identification condition in local

estimation methods (such as kernel estimation) is E(m1(Z1i)) = 0 or E(m2(Z2i)) = 0

(note that only one of these two zero mean conditions is required as Xi does not

contain a constant term). Another identification condition, which is often used in

series estimation, is m1(0) = 0 or m2(0) = 0 (again only one of these is required) (Li

2000).

In this paper, we will use the method of sieves to estimate m1(·) and m2(·) and

assume that m1(·) and m2(·) are square integrable over their support. As Z1i is

defined on R, this implies that the integral of the square of m1(z1) on R is finite, which

further implies that m1(z1) will approach zero as z1 approaches infinity. Visually,

on a Cartesian graph, this means both ends of the function m1(z1) will come near

to the horizontal axis when z1 becomes sufficiently small or large, suggesting the

location of the function is identified. In this case the square integrability condition on

m1(·) implicitly places a location normalisation on the function and thus no further

identification conditions are required (see related discussion under Assumption C.2 of

Dong & Linton (2018)).

3.2 The method of sieves

The method of sieves was first introduced by Grenander (1981). The main difficulty

encountered in nonparametric estimation is the need to search for a function on an

infinite function space. The core idea of sieve estimation is to convert it to a problem

of searching on a finite function space (through “parameterising” the nonparametric

problem) which is much easier to handle.

To illustrate, consider a regression model with only one predictor:

Y = q(X) + ε
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where ε is the error term and E(ε|X) = 0. q(·) is a smooth unknown function belonging

to a specific type of function space and defined on V which could be [0, 1], R, [0,∞),

etc. Estimation of q(·) is essentially a search for a function on the function space

which minimises the sum of squared residuals. However, this is not feasible since such

a space is infinite. What the method of sieves does is to replace the infinite space

with a finite space and then search for the optimal function on that.

For any q(x) on the defined function space, we can write it as a series expansion:

q(x) =
∞∑
j=0

πjtj(x), (5)

where tj(x) are the basis functions and πj are their weights. This sum of an infinite

number of basis functions can be approximated by a sum of a finite number of the

first few basis functions:

q(x) ≈
k−1∑
j=0

πjtj(x),

where k is a positive integer called the “truncation parameter”. This approximation

is valid because under some regularity conditions (e.g., Newey 1997) the truncation

residual
∑∞

j=k πjtj(x) is of a negligible order O(k−ν) when k is large enough, where ν

is a positive constant whose value is determined by the smoothness of q(x). Thus, for

sufficiently smooth q(x) and large enough k, the truncation bias caused by dropping

the remainder term
∑∞

j=k πjtj(x) can be ignored.

The estimation problem has now been reduced to a finite-dimensional optimisation

problem. What is left to do is to choose the appropriate basis functions and truncation

parameter along with the estimation of the weights. There are many different types

of basis functions, suitable for different function spaces and supports (Chen 2007).

The choice of basis functions is often based on the support, the smoothness, the shape

restrictions (from economic theory) as well as the ease of computation (see Chen

(2007) for related discussions). The truncation parameter is typically obtained by

using a criterion or method such as the cross-validation.

3.3 Nonparametric estimation

The first step for the sieve estimation of m1(Z1i) and m2(Z2i) is to choose the basis

functions. We follow Chen (2007) and make the choice based on the supports (BMI

z-score is defined on R while mother’s age at birth/100 is defined on [0, 1]) and

economic constraints (health expenditures cannot increase unlimitedly). Both basis

function systems chosen in our estimation belong to the Hilbert space, ensuring that

m1(Z1i) and m2(Z2i) are square integrable on their support.
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For the BMI z-score, we use a basis function system defined as below:

hj(w) =
1

4
√
π
√

2jj!
Hj(w) exp(−w

2

2
), j = 0, 1, 2, . . .

where Hj(w) represent the physicists’ Hermite polynomials (Nevai 1986). We therefore

call this system the “physicists’ Hermite polynomial system” whose first four basis

functions are illustrated in Figure 1. Almost all basis function systems start from the

constant function of one (like polynomials). But in the physicists’ Hermite polynomial

system the first function is not one due to the square integrability condition over R,

which in effect enables location identification of m1(Z1i) as discussed in Section 3.1.

Figure 1: Physicists’ Hermite polynomial basis functions (first four functions)
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For any function φ(w) belonging to this function space, it can be written as:4

φ(w) =
∞∑
j=0

π1jhj(w), (6)

where π1j =
∫
φ(w)hj(w)dw. As explained in the last section, φ(w) can be approxi-

mated using the first few basis functions as:

φ(w) ≈
k1−1∑
j=0

π1jhj(w),

where k1 is a truncation parameter.

Since the values of “mother’s age at birth/100” are all between 0 and 1, we use the

Fourier series {s0(u) = 1, sj(u) =
√

2 cos(πju) for j ≥ 1}, which is an orthonormal

basis on the Hilbert space with the support [0, 1]. The first four basis functions of this

system are illustrated in Figure 2. In this case the first function s0(·) is the constant

function of one. As the other control variables X do not contain a constant and m1(z1)

approaches zero as z1 approaches infinity, any unaccounted constant component on

the right hand side of (1) is absorbed by m2(z2) through s0(z2) = 1.

4As the basis functions are orthonormal this is an orthogonal series expansion.
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Figure 2: Fourier series basis functions (first four functions)
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Likewise, for any function ψ belonging to this function space, it can be written as

ψ(u) =
∞∑
j=0

π2jsj(u), (7)

where π2j =
∫ 1

0
ψ(u)sj(u)du. This again can be approximated by

ψ(u) ≈
k2−1∑
j=0

π2jsj(u)

where k2 is a truncation parameter.

Given these choices, we can approximate m1(Z1i) and m2(Z2i) by

m1(Z1i) ≈
k1−1∑
j=0

π1jhj(Z1i) = H(Z1i)
′Π1, (8)

m2(Z2i) ≈
k2−1∑
j=0

π2jsj(Z2i) = S(Z2i)
′Π2, (9)
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where H(Z1i) = (h0(Z1i), . . . , hk1−1(Z1i))
′, S(Z2i) = (s0(Z2i), . . . , sk2−1(Z2i))

′, Π1 =

(π10, . . . , π1,k1−1)
′ and Π2 = (π20, . . . , π2,k2−1)

′.

In view of the series approximations (8) and (9), we can re-write (1) as

f(µ(Xi, Z1i, Z2i)) ≈ X′iβ + H(Z1i)
′Π1 + S(Z2i)

′Π2 = X′iB, (10)

where Xi = (X′i,H(Z1i)
′,S(Z2i)

′)′ and B = (β′,Π′1,Π
′
2)
′. Equation (10) now has a

linear parametric form, and its parameters B, together with the parameters λ, θ1 and

θ2 in the link and variance functions, can be estimated using existing EEE procedure

(e.g., the -pglm- Stata module was used in our analysis).

The performance of sieve estimation of m1(·) and m2(·) depends on the choice of

the truncation parameters k1 and k2. There are two types of potential errors. One is

the approximation error which occurs when the truncation parameter is not sufficiently

large. The other is the estimation error when the truncation parameter is too large

relative to the given sample size (so that there are too many parameters to estimate).

Hence, the optimal choice of k1 and k2 involves balancing between these two types of

errors. We used 10-fold cross validation (based on the averaged mean squared error

(MSE) and mean absolute error (MAE)) to select k1 and k2 in the empirical analysis.

Once k1 and k2 are chosen, we can use the EEE estimation procedure to obtain

an estimate B̂ =
(
β̂
′
, Π̂′1, Π̂

′
2

)′
and subsequently estimates of m1(u) and m2(u) as

m̂1(u) = H(u)′Π̂1 and m̂2(u) = S(u)′Π̂2.

3.4 Marginal effects and standard errors

One of the main reasons for undertaking cost regressions is to examine a key variable’s

impact on costs. It is therefore necessary to derive the marginal effects, which can be

challenging in the case of nonparametric estimation (e.g., when using kernel estimation).

Often, an additional step of parameterisation is needed to facilitate the derivation of

the first order derivative. Sieve estimation has a clear advantage in this case as the

core of this approach is to parameterise the unknown function.

Here we demonstrate how to derive the marginal effects of Z1 and Z2 given the

two different basis function systems. Let l(·) be the inverse function of f(·). Simple

algebra gives that

l(w) =

{
(λw + 1)

1
λ if λ 6= 0

exp(w) if λ = 0
,

l(1)(w) =

{
(λw + 1)

1
λ
−1 if λ 6= 0

exp(w) if λ = 0
. (11)

where l(1)(w) represents the first order derivative of l(w). The marginal effects of Z1
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and Z2 are then calculated as

∂µ(X, Z1, Z2)

∂Z1

= l(1) (X′β +m1(Z1) +m2(Z2)) ·m(1)
1 (Z1), (12)

∂µ(X, Z1, Z2)

∂Z2

= l(1) (X′β +m1(Z1) +m2(Z2)) ·m(1)
2 (Z2), (13)

where m
(1)
1 (·) and m

(1)
2 (·) are the first order derivatives of m1(·) and m2(·), respectively.

Given the approximation (8), we can replace m
(1)
1 (Z1i) by Π′1H

(1)(Z1i) where

H(1)(Z1i) is the first order derivative of H(Z1i), i.e., H(1)(Z1i) = (h
(1)
0 (Z1i), . . . , h

(1)
k1−1(Z1i))

′.

The first order derivatives for the Physicists’ Hermite polynomial basis functions are

given below

h
(1)
j (Z1i) =

{
− 1√

2
h1(Z1i), j = 0,

1√
2

(√
jhj−1(Z1i)−

√
j + 1hj+1(Z1i)

)
, j ≥ 1.

Similarly, given the approximation (9), m
(1)
2 (Z2i) can be replaced by Π′2S

(1)(Z2i)

where S(1)(Z2i) = (s
(1)
0 (Z2i), . . . , s

(1)
k2−1(Z2i))

′. The first order derivatives for the Fourier

series basis functions are given below

s
(1)
j (Z2i) =

{
0, j = 0,

−
√

2πj · sin(πjZ2i), j ≥ 1.

By substituting the estimates of β, Π1, Π2 and λ into (12) and (13), we can obtain

estimates of the marginal effects of Z1 and Z2. The standard errors and confidence

intervals for estimates of m1(Z1) and m2(Z2) and the marginal effects of Z1 and Z2

can be obtained through a bootstrap method. For example, Stata has an in-built

bootstrap command that can be used in conjunction with -pglm-.

One may wonder why we do not directly calculate the standard errors considering

the linear combination of basis functions. However, this would work only if we can

establish an asymptotic distribution for the estimator of B in equation(10). The

vectors Π1 and Π2 have diverging dimensions as the sample size increases (since

the truncation parameters k1 and k2 are diverging asymptotically in order for the

remainder terms to be negligible as sample size increases). On the other hand, in

equation(10), the estimator of β and those of Π1 and Π2 have different convergence

rates (the sieve estimation part has a slower convergence rate). It is therefore difficult

to derive the asymptotic variance of the estimator of B in equation(10) and hence we

recommend using the bootstrap method.

4 Results

Given the nature of the two continuous variables we have chosen suitable basis

functions, as described in Section 2.3. The new model can be estimated using the

11



Stata module -pglm- once the truncation parameters k1 and k2 are determined. Based

on the formula k1 = k2 = bn1/6c adapted from Dong & Linton (2018) the initial

truncation parameter for both variables was chosen as 4. We then allowed each to

vary from 3 to 5 which leads to 9 different models which were then evaluated using a

10-fold cross-validation based on the averaged MSE and MAE. Results are in Table 1

which suggests the model with k1 = 3 and k2 = 4 produced both the smallest MSE

(1.8272) and the smallest MAE (1.0149)5. The 10-fold cross-validation was also used

to select the optimal model based on polynomials resulting in a quadratic function

for BMI z-score and a cubic function for mother’s age at birth. The average MSE

and MAE for this model are 1.8304 and 1.0159, inferior to the model estimated using

sieves.6

Table 1: Truncation parameters selection: model comparison based on averaged mean

squared error (MSE) and mean absolute error (MAE) from 10-fold cross-validation

Based on MSE

k1\k2 3 4 5

3 1.8369 1.8272 Convergence problems

4 1.8380 1.8283 Convergence problems

5 1.8382 1.8285 Convergence problems

Based on MAE

k1\k2 3 4 5

3 1.0191 1.0149 Convergence problems

4 1.0195 1.0153 Convergence problems

5 1.0192 1.0150 Convergence problems

We compare the functions estimated using sieves with the ones estimated using

discretisation. For the BMI z-score, we divided it into 11 categories and used one of

them (−0.5 0) as the reference level; See Table 2. Using the midpoints in each category

and with the coefficient for the reference category fixed (at -0.13 for a location close

to the other estimated functions), we were able to plot the implied functional form

(the green line) in Figure 3, along with the ones estimated using sieves (the blue lines)

and polynomials (the red line). The solid blue line represents the optimal model using

sieves when k1 = 3 and the dashed blue line represents the model using sieves when

5The MSE and MAE numbers look small because the dependent variable is normalised using its

sample mean prior to the estimation.
6On the original cost scale, this means an increment of 2263 in MSE and an increment of 0.843 in

MAE from the optimal model estimated using sieves.
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k1 = 4. The figure suggests the functions estimated using sieves are very close to

the implied functional form from discretisation. In fact, the one based on k1 = 4

matches it very well, even capturing the hump in the middle. However this is a sign

of over-fitting, proven by the cross-validation results.

Using polynomials does not identify the location of the target function. To facilitate

the comparison (i.e., to compare functions around the same location) we applied an

identification condition that m1(0) = −0.19 representing the point where the optimal

model produced by sieve estimation passes the y axis. The figure suggests a clear

discrepancy between the functional form estimated by polynomials and the other two.

It presents an inverted U shape with increasing slopes at both ends. By contrast, the

functional form of the optimal model is of a “bucket” shape overall, with decreasing

slopes at both ends.

Table 2: Estimation of m1(BMI z-score) by using sieves, polynomials, and discretisa-

tion

Est Std P-value

Sieves

x0 -0.3491 0.1383 0.0120

x1 -0.0291 0.0343 0.3960

x2 -0.1439 0.0736 0.0500

Polynomials

x -0.0097 0.0183 0.5980

x2 0.0225 0.0110 0.0400

Discretisation

-2.8 ∼ -2.0 0.0840 0.2292 0.7140

-2.0 ∼ -1.5 0.0008 0.1259 0.9950

-1.5 ∼ -1.0 -0.0594 0.0687 0.3870

-1.0 ∼ -0.5 -0.0466 0.0635 0.4640

-0.5 ∼ 0 reference

0 ∼ 0.5 -0.0370 0.0514 0.4720

0.5 ∼ 1.0 -0.0778 0.0487 0.1100

1.0 ∼ 1.5 -0.0582 0.0507 0.2510

1.5 ∼ 2.0 0.0230 0.0591 0.6980

2.0 ∼ 2.5 0.0726 0.0876 0.4070

2.5 ∼ 3.34 0.0916 0.1059 0.3870
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Figure 3: Plotting the estimated m1(BMI z-score) by using sieve estimation (k1 = 3

and k1 = 4), polynomials (a quadratic function), and discretisation
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For the mother’s age at birth, we divided it into six categories and used the first

category (<= 20) as the reference level; See Table 3. Similarly, using the midpoints in

each category and with the coefficient for the reference category fixed at 0.1 (again,

for the convenience of visual comparison), we plotted the implied functional form in

Figure 4, along with the ones estimated using the sieves and the polynomials. The

figure suggests both the Fourier series with k2 = 4 and polynomials fit well with small

differences on both ends.

Table 3: Estimation of m2(mother’s age at birth) by using sieves, polynomials, and

discretisation

Est Std P-value

Sieves

z0 3.0902 3.4857 0.3750

z1 -3.5825 4.0819 0.3800

z2 1.8794 2.0865 0.3680

z3 -0.7254 0.6204 0.2420

Polynomials

x 0.1624 0.1376 0.2380

x2 -0.0045 0.0047 0.3470

x3 0.00004 0.0001 0.4640

Discretisation

15.18 ∼ 20 reference

20 ∼ 25 0.0751 0.0741 0.3110

25 ∼ 30 0.1742 0.0740 0.0190

30 ∼ 35 0.1569 0.0771 0.0420

35 ∼ 40 0.1086 0.0781 0.1640

40 ∼ 44.11 0.0771 0.0969 0.4260

Note: When using the method of sieves, the mother’s age at birth variable was scaled into

[0, 1]. Also, the estimated z0 combines the intercept in the linear index and the true z0.
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Figure 4: Plotting the estimated m2(mother’s age at birth) by using sieve estimation

(k2 = 4), polynomials (a cubic function), and discretisation
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For the preferred model, the estimated λ is 0.93 with its standard error 0.34. The power

variance function was used with its parameters θ1 estimated as 0.80 (standard error 0.06)

and θ2 as 1.41 (standard error 0.18). These suggest the link function is very close to identity

and the variance function is close to a Poisson.7 The former is expected since all the X

variables in our example are dummies so if the relationships between the two continuous

variables and the cost are sufficiently recovered then there should be little nonlinearity left

for the link function to capture.

We now return to the key research question of the empirical example - how children’s

BMI z-score measured at 4-5 years old relates to their accumulated MBS costs over a 5-year

period. To answer this question, we plot the estimated m1(BMI z-score) along with its

confidence intervals; See Figure 5. The vertical dashed lines indicate the approximate

cut-points for the BMI categories using age and gender specific cut-offs from Cole et al.

(2000): the one on the left represents the cut-off between underweight and normal weight

while the one on the right represents the cut-off between normal and over weight.

7Using the quadratic variance function would suggest the variance function is closer to Inverse

Gaussian. But as we expected, the choice of variance function structure had little impact on the

estimation of the conditional mean.
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Figure 5: Estimated m1(BMI z-score) using the method of sieves and its marginal

effects on MBS costs
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Note: Top panel: m1(BMI z-score) estimated using the method of sieves with confidence

intervals; Bottom panel: the marginal effects of BMI z-score at age 4-5 on a 5-year accumu-

lated MBS costs (mother’s age at birth is fixed at its mean 30 and all the dummy variables

are set at their reference level) with confidence intervals; The vertical dashed lines indicate

the approximate cut-points for the BMI categories using age and gender specific cut-offs

from Cole et al. (2000): the one on the left represents the cut-off between underweight and

normal weight while the one on the right represents the cut-off between normal and over

weight.

18



From Figure 5, we can see that when the BMI z-score is around 1, m1(BMI z-score)

reaches its smallest value and as the z-score increases from there m1(BMI z-score) increases,

suggesting the accumulated MBS costs increase as well. On the other hand, when the z-score

decreases from there, m1(BMI z-score) first increases slightly and then becomes almost flat

until the z-score reaches around -1, and then increases.

Whether these relationships are statistically significant can be examined through marginal

effects analysis. For example, we can fix the mother’s age at birth at its mean 30 and all

the other control variables at their reference levels, and then use the method outlined in

Section 2 to calculate the marginal effects of different BMI z-scores. For illustration, we plot

the estimated marginal effects and associated confidence intervals in Figure 5. It suggests

that for this specific scenario, all the marginal effects are statistically significant for the

overweight range but statistically insignificant for the normal weight range (small size and

large standard error). For the underweight range, most are statistically insignificant (but we

need to be aware that this group of children is of a small sample size).

Whilst mother’s age at birth is only a control variable, out of interest we also plot the

estimated m2(mother’s age at birth) and its marginal effects (when the BMI z-score is set

to the mean value of 0.56 and all the other control variables are set at their reference levels)

in Figure 6. These suggest that the accumulated MBS costs increase as mother’s age at

birth increases until around 30 years old then decrease after that but for the selected child

the marginal effects of mother’s age at birth on costs are not statistically significant from

zero after age reaches around 27 years old.

Finally a head-to-head comparison of marginal effects from polynomials and sieves is

undertaken; See Figure 7. For the BMI z-score, the difference is clear. One of the key

questions policy makers would ask is how healthcare costs are related to being overweight,

to which these two methods would give very different answers. For mother’s age at birth,

the difference is small except that using polynomials generated larger marginal effects for

younger ages and it changes at a faster speed.
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Figure 6: Estimated m2(mother’s age at birth) using the method of sieves and its

marginal effects on MBS costs
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Note: Top panel: m2(mother’s age at birth) estimated using the method of sieves with

confidence intervals; Bottom panel: the marginal effects of mother’s age at birth on a 5-year

accumulated MBS costs (the child’s BMI z-score at age 4-5 is fixed at its mean of 0.56 and

all the dummy variables are set at their reference levels) with confidence intervals.
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Figure 7: Estimated marginal effects on MBS costs: comparison between the method

of sieves and polynomials
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Note: Left panel: the marginal effects of BMI z-score at age 4-5 on a 5-year accumulated

MBS costs (mother’s age at birth is fixed at its mean 30 and all the dummy variables are

set at their reference levels) with 95% confidence intervals; Right panel: the marginal effects

of mother’s age at birth on a 5-year accumulated MBS costs (the child’s BMI z-score at age

4-5 is fixed at its mean 0.56 and all the dummy variables are set at their reference levels)

with 95% confidence intervals; Top panel: estimated using the method of sieves; Bottom

panel: estimated using polynomials (quadratic for BMI z-score and cubic for mother’s age

at birth). The dashed lines on the left panel indicate the approximate cut-points for the

BMI categories using age and gender specific cut-offs from Cole et al. (2000): the one on

the left represents the cut-off between underweight and normal weight while the one on the

right represents the cut-off between normal and over weight.
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5 Discussion and conclusion

The empirical and methodological efforts in using the GLM to model healthcare costs

have been mostly concentrated on selecting the correct link and variance function. The

misspecification of functional form of the key covariates has been largely neglected. Using

polynomials cannot guarantee accurate approximation of any functional form. To address

this problem, we propose a hybrid model incorporating the EEE framework by Basu &

Rathouz (2005) and the partially linear additive index. More specifically, we partition the

index function in the EEE model into a number of additive components including a linear

combination of covariates (either dummy coded or continuous which are believed to enter

the index linearly) and unknown functions of continuous variables which are believed to

enter the index non-linearly.

These unknown functions can be estimated using various methods such as the kernel

method, but the method of sieves is adopted in this paper. With this method, we can ap-

proximate the unknown functions using sets of basis functions (similar to using polynomials).

The resulting estimation problem can therefore be solved using the existing user-written

EEE software programs (e.g., -pglm- in Stata). The standard errors and confidence intervals

for these variables and their marginal effects can be obtained using the bootstrap method.

The key to estimating such a model, however, lies in choosing suitable types of basis

functions and appropriate truncation parameters. How to choose basis functions in other

empirical situations is not in the scope of this study but has been extensively discussed

elsewhere (see e.g., Chen 2007). Nevertheless, the two variables considered in our empirical

example represent two of the most commonly used types and thus the basis functions adopted

in our example may be useful in many other empirical applications.

The physicists’ Hermite polynomial system was chosen as the basis function for BMI

z-score. By theory it can recover any square integrable function defined on R. As explained

before, this type of functions must approach zero as the variable approaches infinity. This

implies that there is an upper bound (or lower bound) for the function at the two extreme

ends, which is sensible in the case of healthcare costs as costs are typically constrained.

However, in practice we do not observe at infinity and only approximate the function

wherever we have observations. So on a finite sample space, this basis function system in

fact can recover any functional form including those not square integrable on R (e.g., linear)

but on a finite interval.8

Unlike kernel estimation, where the selection of bandwidth has been extensively studied,

research on how to choose the truncation parameter in sieve estimation has been relatively

rare. Following the literature, we adopted out-of-sample forecast ability as the criterion in

the selection of truncation parameters through the 10-fold cross validation. We also used a

formula proposed by Dong & Linton (2018) which needs to satisfy specific conditions such

as the degree of smoothness. It gave a good approximation to the final result. However, we

8A square integrable function defined on R cannot be linear on R but can be linear on a finite

space.
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do not recommend it as a rule of thumb for sieve estimation in general like Silverman’s rule

of thumb (Silverman 2018) for kernel estimation, as it is not a general result. However, it

certainly can be used as a starting point.

Our model is a semiparametric extension of GLM with GLM, EEE and GAM as special

cases. It inherits the benefits of EEE and has a clear advantage over the GAM which requires

a sequential search for the link and variance function as well as all the unknown functions.

This can be a laborious process and the optimal model may not even be identified given the

strong interplay between the link function and the unknown functions (one changes as the

others change). This may also explain why GAM has not been adopted in the healthcare

cost regression literature in spite of the popularity of GLM in the area.

In conclusion, this paper identifies an often neglected but important area for modelling

healthcare costs and proposes a new model to tackle the potential misspecifications. The

estimation of the model can be undertaken using existing software packages with minimal

programming needed and thus should be a viable new tool for health economists who are

working in modelling healthcare costs and other similar areas.
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Appendix Other control variables

Variable Levels

Child’s characteristics

Gender
female (reference)

male

Age
age in months at time of survey <60 (reference)

age in months at time of survey >= 60

Birth weight
>= 2500 grams (reference)

<2500 grams

Breastfed at 6 months
no (reference)

yes

Language at home
only English (reference)

English and other languages

Siblings
none (reference)

at least one sibling

Schooling

pre-school (reference)

pre-year one and year one

day care centre

other

Residential location

city (reference)

inner-regional area

rural area

remote area

Attention Deficit Disorder
no (reference)

yes

Hearing problems
no (reference)

yes

Vision problems
no (reference)

yes

Eczema
no (reference)

yes

Ear infections
no (reference)

yes

Mother’s characteristics

Education level

university degree (reference)

diploma

high school and below

Full time employment
no (reference)

yes

Healthcare card holder
no (reference)

yes
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