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In regression discontinuity (RD), the treatment is determined by a continuous running vari-

able  crossing a known cutoff  or not. However, often  is observed only as a rounded-down

integer  (e.g., birth year observed instead of birth date), and  is not an integer. In this

case, the “cutoff sample” (the observations with the same  value around ) cannot be used,

because it is not clear whether their  actually crossed  or not. This paper shows that if

the distribution of the measurement error  ≡  −  is specified, then despite non-integer

, the cutoff sample can be used fruitfully in estimating the treatment effect and in testing

for the distributional assumption on . Particularly, there are good reasons to believe that

 is uniform on [0 1], not least because  is close to a popular way how pseudo uniform

random numbers are generated in simulation studies. Also, whereas two-step estimation has

been proposed in the RD literature, we show that the treatment effect can be estimated with

single-step OLS/IVE as in typical RD with  observed. A simulation study and an empirical

analysis for effects of a dental care support program on dental expenditure are provided.
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1 Introduction

Regression discontinuity (RD) is widely used to find treatment effects with observational

data; see Imbens and Lemieux (2008), Lee and Lemieux (2010), Choi and Lee (2017), Cat-

taneo and Escanciano (2017), Cattaneo et al. (2019), and references therein. In typical RD,

there are a binary treatment , an outcome  , and a continuous running variable , where

 is determined by whether  crosses a known cutoff  or not. If  is fully determined

by  so that (|) = , then the RD is a ‘sharp RD (SRD)’, otherwise, if  is partly

determined by an error , the RD is a ‘fuzzy RD (FRD)’.

The main attraction of RD is that local observations around  are balanced in all co-

variates, observed or not. Hence, using only such local observations enables estimating the

treatment effect while avoiding confounders despite no covariate controlled. Theoretically

speaking, this ‘local randomization’ requires using a small neighborhood of , but in practice,

using a sizable neighborhood is unavoidable if there are not too many observations around .

Often in RD, the rounded-down integer  of  is observed instead of :

 ≡ bc

There are many examples for this, but the most notable is birth year observed for confiden-

tiality instead of birth date. In this case, if  is not an integer, it is unclear whether individuals

around  =  are treated or not. For instance,  is health behavior and an education law

 goes into effect on Sept. 1, 2016 so that a student is subject to the law if born on or after

Sept. 1, 2010, i.e.,  = 1[201067 ≤ ] with birth date  and  = 201067, where 1[] ≡ 1 if
 holds and 0 otherwise. Here, we do not know whether the “cutoff sample” (i.e., those with

 = 2010) are treated or not.

In the literature, a couple of studies addressed RD with an integer running variable.

Lee and Card (2008) examined integer (or discrete) running variables where  is also an

integer. They recommended clustered inference with clustering at each integer point, which

is problematic, however, as pointed out by Kolesár and Rothe (2018). Dong (2015) proposed

two-step estimators, assuming that the measurement error

 ≡ − bc = −  is independent of  (“q ”)

and follows a known distribution. Any distribution on [0 1] can be adopted, but the most

basic is the uniform distribution on [0 1] (“[0 1]”), which was also adopted in Dong’s
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(2015) applications. Dong (2015) addressed integer , and suggested dropping the cutoff

sample (i.e., the sample with  = bc) if  is not an integer.
In this paper, under a known distribution for , we address integer  and any  that

may not be an integer to show that the cutoff sample can be used fruitfully in estimating the

treatment effect and in testing for the distributional assumption on . Although there are

many possible distributions to adopt for , we focus on  ∼ [0 1], as there are good reasons

to believe  ∼ [0 1], not least because  ≡  − bc is close to a popular way (‘linear
congruential generator’) how pseudo uniform random numbers are generated in simulation

studies. That is, ‘ ∼ [0 1]’ is a highly plausible assumption to make, which will be

demonstrated through simulation and empirical studies. When  ∼ [0 1], as well known,

 ≡ () =

Z 1

0

 =
1

 + 1


Other than the above goal with  ∼ [0 1], this paper has two other goals. First, we

generalize the identification findings of Dong (2015) obtained under integer  to any , integer

or non-integer. Second, whereas Dong (2015) proposed two-stage indirect estimators with

bootstrap inference, we show that (one-step direct) ordinary least squares estimator (OLS) or

instrumental variable estimator (IVE) is enough for SRD or FRD, respectively, if we modify

some regressors used in RD estimation only slightly.

When  is observed, a well-known RD identification finding is (Hahn et al 2001)

 ≡
( | = +)−( | = −)
(| = +)−(| = −)

= (effect on “compliers” on  = +) (1.1)

where ( | = +) ≡ lim↓( | = ) and ( | = −) ≡ lim↑( | = ); the

weakest condition for this complier interpretation appears in Choi and Lee (2018). The first

equation of (1.1) is equivalent to (Lee 2016, p.103)

( |) = (|) +() (1.2)

for an unknown function () continuous at . For SRD, the denominator in (1.1) equals

one, and (|) in (1.2) equals .
With the usual normalization − , implementation of (1.2) differs, depending on how

() is specified locally around : constant, linear, quadratic, etc. For the local linear

specification, one would set up

 = 0 +  + 1(− ) + 1(− ) +  with ( | ) = 0 (1.3)
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where the ’s are parameters,  is an error, and

 ≡ 1[ ≤ ]

For SRD with  = , the OLS of  on {1 −  (− )} is done using a local sample
with  ' , and for FRD, IVE is done using  as an instrument for .

The local linear model (1.3) has become almost the “industry standard”, and the local

quadratic version obtains adding 2(− )2 + 2(− )2 to (1.3):

 = 0 +  + 1(− ) + 1(− ) + 2(− )2 + 2(− )2 +  (1.4)

If desired, we can go further than quadratic, but Gelman and Imbens (2019) advise against

adding higher-order terms.

The rest of this paper is organized as follows. Section 2 shows why  ∼ [0 1] is

plausible, and introduces Dong’s (2015) identification finding and two-step estimators under

integer . Section 3 presents our generalized identification finding for any  (integer or non-

integer) and the test for  ∼ [0 1] using the cutoff sample, and explains in detail the

OLS and IVE that are consistent for any . Section 4 provides a simulation study, where

the proposed estimators perform well even when the distribution of  is extremely far from

uniform. Section 5 presents an empirical analysis for effects of a Korean dental care support

program on the dental expenditure of the elderly. Finally, Section 6 concludes. The appendix

contains lengthy proofs. What is observed is ( ) for SRD and (  ) for FRD,

 = 1   , which are independent and identically distributed; we often omit the subscript

. Since the expression ‘running variable’ appears frequently, call it just ‘score’;  for score

and  for “genuine” score.

2 Uniform Error and Two-Step Procedure

In most RD applications with , the location normalization −  is done as in (1.3) so

that the cutoff becomes 0 for − . With  = bc, the analogous location normalization is

 − bc (=⇒  = bc becomes 0)

so that  = 0 is the normalized cutoff if  is an integer; if  is not an integer, the fraction

 shows how far off the cutoff is from 0. In the education law example, this normalization

redefines  as  − 2010 and gives  = 067. Because  =  + ,  equals  for the cutoff

sample ( = 0) after the normalization.

4



2.1 Measurement Error as Pseudo Uniform Number

To show  ≡  − bc is close to the popular linear congruential generator for pseudo
uniform random numbers, note the general form of linear congruential generator (see, e.g.,

Toral and Colet 2014):

 = ×−1 +  modulo 

where 0     , 0 ≤    , and  is a positive integer.

For instance, with  = 7,  = 0, = 10 and0 = 3, the generator becomes ‘ = 7−1

modulo 10’, from which the first few numbers are (123 ) = (1 7 9 ), where the

first number 1 is the remainder in dividing 70 = 7× 3 = 21 by 10, the second number 7 is
the remainder in dividing 71 = 7× 1 = 7 by 10, and the third number 9 is the remainder
in dividing 7 ×2 = 7 × 7 by 10. From (123 ) = (1 7 9 ), the pseudo uniform

numbers are (1 2 3 ) = (110 710 910 ), which can be written succinctly as

 =



− b


c; e.g., 1 = 21

10
− b21

10
c = 1

10
and 2 =

7

10


Of course, with  = 10, we quickly run into the problem of the same numbers generated

repeatedly, which is why a large number such as  = 232 with  = 1812433253 and  = 1 is

used to generate millions of different pseudo uniform numbers in practice.

For birth year, analogously to the preceding display, we have

 =
 

 
− b  

 
c =  

 
− 1 =   

Using individuals born different years amounts to using different ’s. In short, our main point

is that  is structured in the same way pseudo uniform random numbers are often generated.

Having a small  such as (year) 1990 and 2010 makes the same  getting repeated, which is

natural for birth date though, because many people are born on the same date.

Dong (2105, p.428) noted that, for fractional birth date,

first 4 moments of [0 1] : 050 033 025 020;

first 4 moments of birth date in NLSY97 : 050 034 025 020;

first 4 moments of birth date in Italy 2001-2011 : 051 034 026 020

That is, fractional birth date is almost [0 1]. This kind of small deviations from [0 1]

should be harmless, because even extreme deviations from [0 1] will be shown to have

only a limited influence on our estimators in the simulation study below.
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2.2 Two-Step Identification and Estimation

Consider SRD with integer , so that  = 0 after the normalization  − bc. Then
 ≡ 1[ ≤ ] is fully determined by  because

integer  =⇒  ≡ 1[ ≤ ] = 1[ ≤ ] =⇒ (|) = . (2.1)

Along with this, a key equation to be used under  ∼ [0 1]q  is

(|) = ( + |) =  +(|) =  + 05 (2.2)

This reveals that another distribution can be adopted without difficulty: for any distribution

with a known (|) = () = 1, we can use (|) =  + 1.

Since  is not observed, take (·|) on (1.3) with  =  for SRD to obtain

( |) = 0 +  + 1( + 05) + 1( + 05); (2.3)

(|) =  in (2.1) is used. Putting the terms with ,  and  in (2.3) together gives

( |) = (0 + 051) + ( + 051) + 1 + 1 (2.4)

This shows an important point: ignoring the integer nature of  to proceed as if  were

continuous fails to identify  with the slope of  = , unless 1 = 0 (⇐⇒ no change in

slope). Hence, Dong (2015) identified  in SRD indirectly with

 = { slope of ( |) in (2.4)}− 05{ slope of ( |) in (2.4)} (2.5)

and estimated  in two steps: do the OLS of  on (1   ) and plug the slope estimates

of  and  into (2.5). Dong (2015) then proposed bootstrap for asymptotic inference.

For FRD, considering the OLS of  on ( 1  ), the generalization of (2.5) is

 =
{ slope in ( |)} − 05{ slope in ( |)}
{ slope in (|)} − 05{ slope in (|)}  (2.6)

This suggests a multi-step procedure to estimate  by plugging in the OLS estimates for

(2.4) and the OLS estimates of  on ( 1  ).

For the quadratic model (1.4), considering the OLS of  and  on (1    2 2),

Dong’s (2015) identification result for FRD generalizing (2.6) is

 =
{ slope in ( |)} − { slope in ( |)}2 + {2 slope in ( |)}6
{ slope in (|)} − { slope in (|)2}+ {2 slope in (|)}6; (2.7)

for SRD, replace the denominator of (2.7) with one. Dong (2015) provided further results for

higher-order models.
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3 Any Cutoff, Main OLS/IVE and Test

This section is our main section allowing for any cutoff , not just integer ; i.e.,  6= 0 is
allowed after the normalization. First, we generalize the identification findings with integer 

in the preceding section to any . Second, we consider OLS and IVE for linear (·) in (1.3)
without using the cutoff sample. Third, the cutoff sample is used to test for  ∼ [0 1]

in the linear model, and in case the uniformity is not rejected, we introduce OLS and IVE

using the cutoff sample additionally. Fourth, we deal with quadratic (·) in (1.4). Often we
address SRD first, because FRD can be handled secondly as can be seen in (2.5) to (2.6).

The importance of the cutoff sample diminishes as the number of the integer support

points in use increases. But since we do not want to compare individuals too far apart, it is

better to keep the number of integer support points small, which may result in the proportion

of the cutoff sample being substantial for the local sample in use. With  denoting the

localizing bandwidth, the number of support points is 3 with  = 1 (for  = 0±1), 5 with
 = 2 (for  = 0±1±2), and so on.

3.1 Identification with Any Cutoff for Linear/Quadratic Model

Suppose  is any cutoff. With the linear model (1.3) for FRD, the appendix proves

 =
{ slope in ( |)}− (05− ){ slope in ( |)}
{ slope in (|)}− (05− ){ slope in (|)} (3.1)

which becomes (2.6) when  = 0 for integer ; for SRD, the denominator in (3.1) should be

replaced with one. This reveals that the adjustment using the slopes of  is unnecessary if

either  = 05 (as in our empirical analysis below) or 1 = 0 (⇐⇒ no change in slope). That

is, if either  = 05 or no change in slope in the linear model, then we can proceed with 

as we do with  in the usual RD to ignore the integer nature of . However, the following

shows that this finding is specific to the linear model.

For the quadratic model (1.4) in FRD, the appendix proves that  equals

{ slope in ( |)}− (05− ){ slope in ( |)}+ ∗{2 slope in ( |)}
{ slope in (|)}− (05− ){ slope in (|)}+ ∗{2 slope in (|)}
where ∗ ≡ (16)− + 2; (3.2)

for SRD, the denominator should be replaced with one. Clearly, (3.2) becomes (2.7) for

integer  (i.e.,  = 0). If  = 05, then the adjustment term with  drops out due to 05− ,
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but ∗ becomes zero only when  = 02115 or 07885. That is, the two adjustment terms in

(3.2) cannot drop out together.

3.2 Estimation for Any Cutoff without Cutoff Sample

For SRD, consider a linear model that is equivalent to (1.3):

 = 0 +  + −(1− )(− ) + +(− ) +  (3.3)

Using  ∼ [0 1]q , as in (2.2), we have

(− |) = ( + − |) =  +(|)−  = 05 05 ≡  + 05− ; (3.4)

any distribution can be used for  as long as (|) is known. To ease presentation, define

0 ≡ 1[ = 0] − ≡ 1[ ≤ −1] and + ≡ 1[1 ≤ ]

Since ‘ ≤ −1 =⇒  = 0’ and ‘ ≥ 1 =⇒  = 1’, (3.3) gives

 ≤ −1 : ( |) = 0 + −(− |) = 0 + −05; (3.5)

 ≥ 1 : ( |) = 0 +  + +(− |) =  + 0 + +05

Hence, ignoring the cutoff sample  = 0 gives

( |) = 0 + + + −−05 + ++05 (3.6)

Then  ≡ (0  − +)0 can be estimated by the OLS, say ̂1, of  on

1 ≡ (1 + −05 +05)0;

 is estimated by the OLS slope of +. This OLS as well as the IVE below require  ≥ 2.
Whereas (3.1) suggests a two-stage estimation,  can be estimated simply by the OLS

of  on 1 that has modified regressors based on 05. For FRD, apply IVE to

 = 0 +  + −−05 + ++05 +  where

the regressor is 1 ≡ (1  −05 +05)0 and the instrument is 1.

The above OLS and IVE are the same as the corresponding estimators in Dong (2015),

because the treatment status ambiguity occurs only for the cutoff sample when  is non-

integer. The equality can be seen by rewriting (3.6) as, with 1 = + − −,

0 + + + −05 + 1+05 = 0 + + + −( + 05− ) + 1+( + 05− )

= 0 + −(05− ) + { + 1(05− )}+ + − + 1+
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This gives the numerator of (3.1), because of  = + when the cutoff sample is unused.

3.3 Test and Estimation with Cutoff Sample

Our test is based on the next equation proven in the appendix for SRD:

( | = 0) = 0 + (1− ) + −(−052) + +05(1− )2 under  ∼ [0 1]q  (3.7)

This gives a method-of-moment test statistic:

1√


X


1( ̂1) 1( ) ≡ 0{ −0−(1−)−−(−052)−+05(1−)2} (3.8)

Since the cutoff sample is not used in obtaining ̂1, we can test for  ∼ [0 1]q using

{1( )} = 0 by plugging in  and ̂1.

Following Lee (2010, p. 109), the test statistic can be shown to be asymptotically normal

with the variance estimable by recalling 1,

1



X


1( ̂1)
2 + b2 1



X


 01( ̂1)1( ̂1)
01

where 1 ≡ {1 1−  −052 05(1− )2}0 b ≡ 1



X


1[ = 0]

1( ̂1) ≡ (
1



X


1[ 6= 0]1
0
1)
−1 · 1[ 6= 0]1( −1̂1).

For FRD, do the test with  replaced by , as the relationship between  and  in SRD is

analogous to that between  and  in FRD. Denoting the OLS of  on 1 as ̂1, the test

statistic is −12P
1( ̂1) with the variance estimable by

1



X


1( ̂1)
2 + b2 1



X


 011( ̂1)1( ̂1)
01

Differentiating 1( ) with respect to  under − = + = 0 gives . Hence, if   0,

then the test statistic decreases as  increases. If the test statistic value is negative, then the

value of  that would make the test statistic zero is lower than the nominal value of , as

if the treatment had started earlier. This situation seems to have occurred in our empirical

analysis where  = 05 and  is dental expenditure of South Korean elders, because people

can wait for many dental treatments. For example, if one needs a denture but is not qualified

for a dental care support until age 70, then he/she would wait until age 70, which is likely

when the person is poor as many elders in South Korea are.
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If the test does not reject, we can do the OLS/IVE using the cutoff sample additionally.

For this, combine (3.6) and (3.7) to get, for any integer ,

( |) = 0+{(1−)0++}+−(−0520+−05)++{05(1−)20++05} (3.9)

Compared with (3.6) excluding 0 ≡ 1[ = 0], the regressor for  has (1− )0 extra; also,

the regressors for − and + have extra components involving 0. The appearance of (1−)0
for  makes a good sense, because the proportion of the treated in the cutoff sample is 1−.
For estimation, do the OLS of  on (with  ≥ 2)

1 ≡ {1 (1− )0 + + −0520 + −05 05(1− )20 + +05}0 (3.10)

For FRD, do, using 1 as an instrument for 1,

IVE of  on 1 ≡ {1  −0520 + −05 05(1− )20 + +05}0

3.4 Estimation and Test for Quadratic Model

Consider a quadratic model equivalent to (1.4) for SRD:

 = 0++−(1− )(− )++(− )+−−(1− )(− )2+++(− )2+ 

The appendix shows that, for SRD without the cutoff sample, do

OLS ̂2 of  on 2 ≡ (1 + −05 +05 −∗ +∗)0

where ∗ ≡ 2 + (1− 2) + (13)− + 2

For FRD, using 2 as instruments for 2, do

IVE of  on 2 ≡ (1  −05 +05 −∗ +∗)0

Regarding the test for SRD, the appendix shows that the moment to be used is

2( ) ≡ 0{ − 0 − (1− )− −(−052)− +05(1− )2 − −−
3

3
− ++

(1− )3

3
}

The asymptotic variance of −12P
2( ̂2) can be estimated with

1



X


2( ̂2)
2 + b2 1



X


 022( ̂2)2( ̂2)
02

where 2 ≡ {1 1−  −
2

2

(1− )2

2

3

3

(1− )3

3
}0

2( ̂2) ≡ (
1



X


1[ 6= 0]2
0
2)
−1 · 1[ 6= 0]2( −2̂2)
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For FRD, the test statistics is −12P
2( ̂2) where ̂2 is the OLS of  on 2.

The asymptotic variance can be estimated with

1



X


2( ̂2)
2 + b2 1



X


 022( ̂2)2( ̂2)
02

As for the estimation using the cutoff sample additionally, do

OLS of  on 2 ≡ {1 (1− )0 + + −0520 + −05

05(1− )20 + +05
3

3
0 + −∗

(1− )3

3
0 + +

∗}0

For FRD, using 2 as instruments for 2, do

IVE of  on 2 ≡ {1  −0520 + −05

05(1− )20 + +05
3

3
0 + −∗

(1− )3

3
0 + +

∗}0

4 Simulation Study

Our base simulation design is

Each  value has 500 or 1000 observations, 5000 repetitions,  ∼ (0 1)

 = (1− )1[  −05] + 1[  −05]  =  +   = 02 05 09

 = 0 +  + −(− ) + +(− ) +  +(0 1) 0 =  = 1 − = 05 + = 1

This is a FRD with  and  the same for about 70% of the observations.

To see how robust the estimators are to violations of  ∼ [01], we try three non-

uniform distributions: (i)  has an asymmetric density linearly increasing from 0.5 to 1.5, (ii)

 ∼ (2 2) whose density is symmetric about 0.5 and proportional to (1− ), going up

and down with a peak of 15 at 05, and (iii)  ∼ (05 05) whose density is symmetric

about 0.5 and proportional to −05(1 − )−05, going down and up. All three distributions

are highly non-uniform; particularly  ∼ (05 05) is extremely so, because its density is

unbounded at both ends. Note that both Beta distributions have mean 0.5. The three non-

uniform distributions are dubbed, respectively, “Inc 0.5-1.5”, “QuadPeak”, and “DownUp”

in the simulation tables below.

In each entry of all tables below, Bias, Sd, and Root mean squared error (Rmse) are

shown. In each table, three panels for  = 02, 05 and 09 are provided. Also, ‘IVE’ is the
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IVE without the cutoff sample, ‘IVE’ is the IVE using the cutoff sample, and ‘P(Reject)’ is

the rejection proportion of the test with ±196 as the critical values.
Table 1 is for  = 0±1±2 so that  = 2500 because each integer point has 500

observations. In the first panel for  = 02, IVE using the cutoff sample has lower Rmse’s than

IVE. Both IVE and IVE are much biased for the asymmetric distribution ‘Inc 0.5-1.5’,

but almost unbiased for the other distributions. The test has the correct size 0.05, and rejects

the asymmetric non-uniform distribution far more easily than the two Beta distributions.

In the second panel for  = 05, IVE=IVE as if the cutoff sample is uninformative

when  = 05. This result must be specific to our simulation design, as IVE 6=IVE in our
empirical analysis below with  = 05. The test fails to reject the Beta distributions, which

is not necessarily bad because the estimates are almost unbiased for the Beta distributions.

In the third panel for  = 09, the findings are similar to those in the first panel, but the test

power is much lower for the asymmetric distribution with  = 09.

Table 1. Bias, Sd & Rmse and Test for Linear Model ( = 2500)

Uni[0,1] Inc 0.5-1.5 QuadPeak DownUp

 = 02

IVE -0.02 0.56 0.56 -0.17 0.58 0.61 0.00 0.57 0.57 -0.02 0.58 0.58

IVE 0.02 0.44 0.44 -0.10 0.57 0.58 0.01 0.40 0.40 0.05 0.50 0.51

P(Reject) 0.05 0.49 0.14 0.13

 = 05

IVE 0.00 0.56 0.56 -0.15 0.57 0.59 -0.01 0.56 0.56 0.00 0.57 0.57

IVE 0.00 0.56 0.56 -0.15 0.57 0.59 -0.01 0.56 0.56 0.00 0.57 0.57

P(Reject) 0.06 0.16 0.05 0.05

 = 09

IVE 0.03 0.58 0.58 -0.12 0.57 0.58 0.03 0.59 0.59 0.02 0.57 0.57

IVE 0.00 0.40 0.40 -0.17 0.40 0.44 0.00 0.37 0.37 -0.04 0.45 0.45

P(Reject) 0.05 0.06 0.09 0.14

 = 0±1±2 (500 obs. each); Inc 0.5-1.5, () = 05 + ; QuadPeak,

() ∝ (1− ); DownUp, () ∝ −05(1− )−05; IVE, IVE not using cutoff

sample; IVE, IVE using cutoff sample; P(Reject), test rejection proportion.

In Table 2, the sample size doubles as each integer support point gets 1000 observations.
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The findings in Table 2 are almost the same as those in Table, except that the Bias’s, Sd’s and

Rmse’s are mostly smaller than in Table 1 due to the larger sample size. Also, the rejection

proportions are higher for the non-uniform distributions when the estimates are biased so

that the uniformity should be rejected.

Table 2. Bias, Sd & Rmse and Test for Linear Model ( = 5000)

Uni[0,1] Inc 0.5-1.5 QuadPeak DownUp

 = 02

IVE 0.00 0.39 0.39 -0.16 0.40 0.43 0.00 0.38 0.38 -0.01 0.40 0.40

IVE 0.01 0.31 0.31 -0.12 0.39 0.41 0.00 0.28 0.28 0.04 0.35 0.35

P(Reject) 0.05 0.79 0.24 0.25

 = 05

IVE 0.01 0.38 0.38 -0.15 0.39 0.42 0.00 0.37 0.37 0.00 0.38 0.38

IVE 0.01 0.38 0.38 -0.15 0.39 0.42 0.00 0.37 0.37 0.00 0.38 0.38

P(Reject) 0.05 0.26 0.05 0.05

 = 09

IVE 0.00 0.40 0.40 -0.13 0.39 0.42 0.02 0.40 0.40 0.01 0.40 0.40

IVE -0.02 0.28 0.28 -0.17 0.28 0.32 0.00 0.25 0.25 -0.02 0.31 0.31

P(Reject) 0.05 0.06 0.13 0.23

 = 0±1±2 (1000 obs. each); Inc 0.5-1.5, () = 05 + ; QuadPeak,

() ∝ (1− ); DownUp, () ∝ −05(1− )−05; IVE, IVE not using cutoff

sample; IVE, IVE using cutoff sample; P(Reject), test rejection proportion.

Table 3 uses 7 integer points  = 0±1±2±3, each with 500 observations so that
 = 3500, and the quadratic model with −− = 005 and ++ = 02 is employed; otherwise,

the simulation designs are the same as in the above linear model design. There are two

more estimators compared: IVE and IVE, which are the quadratic-model versions of

IVE and IVE, respectively. Also ‘P(Reject)’ presents two rejection proportions of the

linear-model and quadratic-model tests.

The first panel for  = 02 shows that IVE and IVE are heavily biased, compared

with IVE and IVE, although their Sd’s are much smaller. Both tests have almost correct

sizes, but the power is lower in the quadratic model test, which is not necessarily bad because

the biases are much lower in IVE and IVE. In the second panel for  = 05, we have

13



IVE=IVE and IVE=IVE as in the second panel of Table 2. IVE and IVE are much

biased with smaller Sd’s as in the first panel. Also, the power is lower for the quadratic model

test, and both tests essentially fail to reject the Beta distributions.

Table 3. Bias, Sd & Rmse and Test for Quadratic Model ( = 3500)

Uni[0,1] Inc 0.5-1.5 QuadPeak DownUp

 = 02

IVE -1.18 0.23 1.20 -1.25 0.23 1.27 -1.19 0.22 1.21 -1.17 0.23 1.19

IVE -0.68 0.18 0.71 -0.86 0.21 0.89 -0.66 0.17 0.68 -0.71 0.20 0.74

IVE -0.04 0.67 0.68 -0.10 0.67 0.68 -0.04 0.65 0.65 -0.03 0.67 0.67

IVE 0.01 0.40 0.40 -0.03 0.61 0.61 -0.01 0.35 0.35 0.04 0.48 0.49

P(Reject) 0.05, 0.04 1.00, 0.73 0.67, 0.23 0.60, 0.21

 = 05

IVE -0.72 0.21 0.75 -0.79 0.21 0.82 -0.72 0.21 0.75 -0.71 0.21 0.74

IVE -0.72 0.21 0.75 -0.79 0.21 0.82 -0.72 0.21 0.75 -0.71 0.21 0.74

IVE 0.00 0.59 0.59 -0.07 0.60 0.60 0.00 0.58 0.58 0.00 0.60 0.60

IVE 0.00 0.59 0.59 -0.07 0.60 0.60 0.00 0.58 0.58 0.00 0.60 0.60

P(Reject) 0.06, 0.06 0.54, 0.25 0.07, 0.05 0.06, 0.05

 = 09

IVE -0.16 0.21 0.26 -0.23 0.21 0.31 -0.17 0.20 0.26 -0.15 0.21 0.26

IVE -0.36 0.17 0.40 -0.44 0.17 0.47 -0.35 0.16 0.39 -0.40 0.19 0.44

IVE 0.03 0.69 0.69 -0.04 0.67 0.67 0.04 0.67 0.68 0.04 0.68 0.68

IVE -0.01 0.33 0.33 -0.09 0.33 0.34 -0.01 0.29 0.29 -0.02 0.40 0.40

P(Reject) 0.05, 0.05 0.05, 0.05 0.42, 0.12 0.66. 0.21

 = 0±1±2±3 (500 obs. each); Inc 0.5-1.5, () = 05 + ; QuadPeak

() ∝ (1− ); DownUp, () ∝ −05(1− )−05; IVE, IVE not using cutoff

sample; IVE, IVE using cutoff sample; IVE & IVE, quadratic model

versions of IVE & IVE; P(Reject), rejection proportion of test (linear, quad.).

In the third panel for  = 09, IVE is far more biased than IVE whereas the Sd of

IVE is only a little smaller than the Sd of IVE: using the cutoff sample does not always

result in improvements, if the local neighborhood is not local enough so that the model

misspecification matters. Differently from IVE relative to IVE, however, IVE does much
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better than IVE. Again, the quadratic-model test rejects less than the linear-model test,

which is not necessarily bad because the quadratic model estimators are little biased under

the Beta distributions. We omit the simulation results for the quadratic model with each

integer point having 1000 observations, because what can be learned from this relative to

Table 3 is similar to what was learned from Table 2 relative to Table 1.

5 Empirical Analysis

The National Health Insurance Service (NHIS) in South Korea expanded its dental

support program coverage for denture and dental implant on July 1, 2015, to the elderly

of age 70 or above whereas the existing age cutoff used to be 75. NHIS expected that about

100,000 to 120,000 elders would benefit by paying about $1000 less per year for the covered

dental treatments that would cost about $1600 on average if not for the program. We use

the 2016 wave from ‘the Korea Longitudinal Study of Aging’ for the 2015 information with

 = 7089 to assess the effect of the dental support program extension  on the 2015 dental

expenditure  in 10 000 Korean Won (a little less than $10). This is a SRD, as there is no

exception for the qualification condition based on age.

Table 4. Descriptive Statistics of Variables ( = 7089)

Variable Mean (Sd) Min, Max Variable Mean (Sd)

dental expenditure  24.0 (118) 0, 2200 smoking 0.11 (0.31)

age in years  66.8 (10.3) 52, 106 drinking 0.34 (0.48)

male 0.43 (0.49) elementary school 0.38 (0.49)

married 0.77 (0.42) middle school 0.16 (0.37)

household income 3101 (2692) 0, 35000 high school 0.34 (0.47)

university 0.11 (0.32)

 , income in ' $10; Min, Max for dummy omitted; education dummy for completion

Table 4 provides descriptive statistics for  and , along with those for covariates on

gender, marital status, household income, smoking, drinking, and education. For each value

of , there are about 200 persons; 182 persons in our cutoff sample with  = 0. We provide

effect estimates with the covariates uncontrolled first and controlled later, but as it turns out,

controlling the covariates makes little difference.
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Figure 1: 2015 Mean Dental Expenditure for Each Birth Year Cohort

The cutoff  varies across individuals in the cutoff sample, because persons reaching age

70 on a date after July 1, 2015, become treated on the date and onwards. However, since 

is the dental expenditure in 2015, those cutoff-sample individuals who became eligible later

than July 1, 2015, are only partly treated, compared with the fully treated persons who

became eligible on July 1, 2015. This case differs from the usual RD where individuals are

fully treated with different cutoffs. That is, our RD case with an individually varying cutoff

is unusual, because individuals in the cutoff sample are partially treated to different degrees.

Another unusual aspect in our RD case is that dentures and implants can wait for several

months, which means that those who are partly treated may be almost as good as fully treated

if they wait until they become eligible within 2015. Indeed, Figure 1 plotting ( |) for
birth years  = 1940 ∼ 1950 reveals this feature. Figure 1 presents two linearly fitted lines
to the right and left of the cutoff sample dot for birth year 1945, where a clear break of

magnitude greater than 30 is seen at birth year 1945; the 1945 dot was not used for the

linear line estimation. Although we expected the 1945 dot to be somewhere vertically in the

middle, it actually is as low as the dots for earlier birth years 1944-1940. This also raises a

possibility that despite  = 05, the “de facto”  could have been earlier, as individuals could

have waited until their eligibility date for their dental problems that occurred much earlier.

Table 5 presents the RD estimation results without controlling any covariates. Anal-

ogously to ‘IVE’ and ‘IVE’ in the simulation tables of the preceding section, ‘OLS’ is

the linear-model OLS without the cutoff sample, whereas ‘OLS’ is the linear model OLS

with the cutoff sample; − and + are the slope estimates from OLS. ‘OLS0’ is the OLS

under the assumption  = 0 as if the treatment had started on January 1, 2015. ‘ts’ is the
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test statistic value for the linear model. ‘OLS’, ‘OLS’, ‘OLS0’ and ‘ts’ are analogously

defined for the quadratic model; −, +, −− and ++ are the slope estimates from OLS.

Table 5. Effect Estimate (t-value) & Test Statistic (Covariate Uncontrolled)

 ()  = 2 (959)  = 3 (1386)  = 4 (1812)  = 5 (2217)

OLS -36.7 (-1.2) -31.6 (-1.4) -34.6 (-2.2) -34.2 (-2.6)

OLS -39.3 (-1.3) -32.4 (-1.5) -35.4 (-2.3) -35.0 (-2.6)

− 3.19 (0.28) -2.35 (-0.29) 2.55 (0.65) 4.26 (1.6)

+ 6.76 (0.86) 7.20 (1.5) 4.13 (1.6) 2.28 (1.2)

OLS0 -35.4 (-1.8) -29.6 (-1.9) -33.0 (-2.7) -33.0 (-3.0)

ts -1.65 -1.06 -1.99 -2.50

OLS -44.8 (-0.83) -30.5 (-0.79) -33.8 (-1.2)

OLS -49.7 (-0.90) -31.6 (-0.80) -34.9 (-1.2)

− 8.78 (0.24) -12.5 (-0.56) -7.80 (-0.52)

+ 17.26 (0.60) 15.5 (0.98) 14.3 (1.4)

−− 2.80 (0.29) -3.29 (-0.77) -2.17 (-0.90)

++ -2.48 (-0.35) -2.56 (-0.85) -2.20 (-1.3)

OLS0 -40.9 (-1.6) -29.0 (-1.3) -31.5 (-1.7)

ts -1.69 -0.69 -0.89

, sample size with ; OLS, linear-model OLS without cutoff sample;

OLS, linear-model OLS with cutoff sample; − & + from OLS;

OLS0, linear-model OLS with  = 0; ts, test statistic; OLS,

OLS, OLS 0, ts for quadratic model; −, +, −− , ++ from OLS

The effect estimates from the linear model are insignificant for  = 2 and 3, but become

significant for  = 4 and 5; the effect magnitude stays fairly stable around −32 ∼ −39 as
Figure 1 indicates. The slope estimates for − and + look insignificant for all  values.

Also, OLS0 with  = 0 are similar to OLS and OLS. Somewhat disappointingly, OLS

hardly differs from OLS with rather small efficiency gains, which might be due to  = 05.

The test is not-rejecting with  = 2 and 3, but rejecting with  = 4 and 5. Even when

non-rejecting, ts is negative with a fairly large magnitude, which seems to be due to the

aforementioned reason that dental procedures can wait several months. That is, the cutoff

sample elders seem to have waited until they became eligible for the dental support program,
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which is equivalent to having  lower than its nominal value 05.

For the quadratic model, the effect estimates are insignificant for all  values under con-

sideration; judging from the −, +, −− and ++ estimates, it seems that the quadratic

model is over-specified. The test statistic values are all insignificantly negative for the

quadratic model.

Table 6 presents the effect estimates (t-values) with the eight covariates in Table 4

controlled. Despite controlling the covariates, the results are remarkably similar to those in

Table 5, which demonstrates the robustness of our findings in Table 5.

Table 6. Effect Estimate (t-value) & Test Statistic (Covariates Controlled)

 ()  = 2 (959)  = 3 (1386)  = 4 (1812)  = 5 (2217)

OLS -40.2 (-1.3) -33.1 (-1.5) -35.7 (-2.3) -35.3 (-2.6)

OLS -41.3 (-1.3) -33.4 (-1.5) -36.5 (-2.3) -36.2 (-2.7)

OLS0 -35.8 (-1.8) -30.5 (-1.9) -33.9 (-2.7) -34.1 (-3.1)

OLS -43.1 (-0.82) -30.5 (-0.78) -33.5 (-1.1)

OLS -47.1 (-0.86) -31.1 (-0.78) -34.5 (-1.1)

OLS0 -40.5 (-1.5) -29.3 (-1.3) -32.0 (-1.8)

, sample size with ; OLS, linear-model OLS without cutoff sample;

OLS, linear-model OLS with cutoff sample; OLS0, linear-model OLS with

 = 0; ts, test statistic; OLS, OLS and OLS0 are for quadratic model.

6 Conclusions

Often in regression discontinuity (RD) with a cutoff , the running variable  is observed

only as its rounded-down integer . If one proceeds as usual ignoring the integer nature of ,

then there occurs a bias in general. In the RD literature, indirect estimators for the treatment

effect have been proposed under the assumption that the measurement error  ≡ − follows
a known distribution, which may be found with an auxiliary sample or a census. When  is

not an integer, the existing indirect estimators do not use the “cutoff sample” (the sample

with  equalling the integer version of ), because their treatment status is unclear.

In this paper, we made a number of contributions. First, we explained why the uniform

distribution “[0 1]” on [0 1] for  is likely to hold in reality:  ≡  −  is close to a

popular way pseudo uniform random numbers are generated in simulation studies. Second,
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we generalized the existing RD identification findings with integer  to those with any  to

show that the value of  may play an important role; e.g., the RD bias due to observing 

instead of  may disappear if  = 05 as in our empirical analysis. Third, when  is not an

integer, we showed how to make use of the cutoff sample in estimation and in test for the

[0 1] assumption.

We conducted a simulation study to demonstrate that our proposed estimators and tests

work as they are supposed to, and that the estimators are highly robust to deviations from

the [0 1] assumption on . We also provided an empirical analysis, where the [0 1]

assumption is rejected for large bandwidth values, but not for small bandwidth values. Using

the cutoff sample in estimation made only a minute difference in our empirical analysis, which

seems to be due to  = 05. Despite this, however, there is no reason not to make use of

the cutoff sample, as the requisite extra work is almost zero while there are things to gain:

testability of [0 1], and the potential efficiency gain which could be substantial in other

applications.

APPENDIX

Identification with Any Cutoff for Linear/Quadratic (·)

Take (·|) on the linear model (1.3) with  =  for SRD to obtain

( |) = 0 +  + 1( + 05− ) + 1( + 05− )

= 0 + (05− )1 + { + (05− )1} + 1 + 1

=⇒  = { slope in ( |)}− (05− ){ slope in ( |)}

Generalizing this for FRD gives (3.1). As for the quadratic (1.4) with  = , with 2 = 13,

{(− )2|} = {( + )2 − 2( + ) + 2|} = 2 + 21 + 2 − 2 − 21 + 2

= 2 + (21 − 2) +
1

3
− 21 + 2 = 2 + (1− 2) + 1

3
− + 2 (A.1)

Using this renders

( |) = 0 +  + 1( + 05− ) + 1( + 05− )

+2{2 + (1− 2) +
1

3
− + 2}+ 2{2 + (1− 2) +

1

3
− + 2}

= 0 + 1(05− ) + 2(
1

3
− + 2) + { + 1(05− ) + 2(

1

3
− + 2)}

+{1 + 2(1− 2)} + {1 + 2(1− 2)} + 2
2 + 2

2
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Hence  in SRD equals

(slope of )− (slope of )(1
2
− ) + (slope of 2){(1− 2)(1

2
− )− (1

3
− + 2)}

= (slope of )− (slope of )(1
2
− ) + (slope of 2)(

1

2
− 2+ 22 − 1

3
+ − 2)

= (slope of )− (slope of )(1
2
− ) + (slope of 2)(

1

6
− + 2) (A.2)

Generalizing this for FRD gives (3.2).

Proof for ( | = 0) in SRD with Linear ()

For (1.3) with  = , we have

( | = 0  = 0) = 0 + −{(| = 0  = 0)− }; (A.3)

( | = 1  = 0) = 0 +  + +{(| = 1  = 0)− }

Because  is uniform on any subinterval of (0 1), we have

(| = 0  = 0) = {| ∈ (0 )} = 05

(| = 1  = 0) = {| ∈ ( 1)} = 05(+ 1) (A.4)

Substituting these into (A.3) renders

( | = 0  = 0) = 0 + −(05− ) = 0 + −(−05) (A.5)

( | = 1  = 0) = 0 +  + +(05− 05)

Because  ( = 0| = 0) =  ( ∈ [0 )) =  as  ∼ [0 1]q ,

( | = 0) = ( | = 0  = 0) ( = 0| = 0) +( | = 1  = 0) ( = 1| = 0)

= {0 + −(−05)}+ {0 +  + +(05− 05)}(1− )

= 0 + (1− ) + −(−052) + +05(1− )2 (A.6)

Proofs for Quadratic (·)

For the SRD quadratic model, we get, recalling (A.1),

 ≤ −1 : ( | = ) = 0 + −{(|)− }+ −−{(− )2|}

= 0 + −05 + −−
∗; (A.7)

 ≥ 1 : ( | = ) = 0 +  + +05 + ++
∗
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Combining these two cases gives, for all  values other than 0,

( |) = 0 + + + −−05 + ++05 + −−−
∗ + +++

∗ (A.8)

Observe

(2| = 0) = (2|0    ) =

Z 

0

2 =
1

3
3|0 =

2

3
; (A.9)

(2| = 1) = (2| ≤   1) =

Z 1



2(1− ) =
1

3(1− )
3|1 =

1 + + 2

3


This gives, as −  = −  on  = 0,

{(− )2| = 0  = 0)} = (2 − 2+ 2| = 0)

= (2| = 0)− 2(| = 0) + 2 =
2

3
− 2× 

2
+ 2 =

2

3
;

{(− )2| = 1  = 0)} = (2| = 1)− 2(| = 1) + 2

=
1 + + 2

3
− 2× 1 + 

2
+ 2 =

1 + + 2 − 3− 32 + 32
3

=
(1− )2

3


Using these, we have

( | = 0  = 0) = 0 + −{(| = 0  = 0)− }

+−−{(− )2| = 0  = 0)} = 0 + −(05− ) + −−
2

3
;

( | = 1  = 0) = 0 +  + +{05(+ 1)− }+ ++
(1− )2

3


Hence, analogously to (A.6), ( | = 0) becomes

{0 + −(−05) + −−
2

3
}+ {0 +  + +(05− 05) + ++

(1− )2

3
}(1− )

= 0 + (1− ) + −(−052) + +05(1− )2 + −−
3

3
+ ++

(1− )3

3
 (A.10)

This gives the uniformity test in the main text.

Combine (A.8) and (A.10) to obtain

( |) = 0 + {(1− )0 + +} + −{−0520 + −05}

++{05(1− )20 + +05} + −−(
3

3
0 + −∗) + ++{

(1− )3

3
0 + +

∗}]

This gives the OLS and IVE with quadratic (·) using the cutoff sample.
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