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Abstract

This paper examines the effect of peers and networks on the uptake of innovation in surgery.
Using a rich matched patient-surgeon data set covering all relevant surgeons, we construct a
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1. INTRODUCTION

Networks have been shown to be important determinants of behaviour in many areas of the economy,
including education (Calvé-Armengol et al, 2009; Sacerdote, 2011), risky-behaviours (Powell et al,
2005, Ali and Dwyer, 2009), programme participation (Banerjee et al, 2013), risk-sharing (Fafchamps
and Lund, 2005), knowledge spillovers (Bloom et al, 2013; Konig et al, 2014), trade (Chaney, 2014)
and systemic risk (Acemoglu et al, 2015). The aim of the present paper is to examine the effect of
networks and peer effects on the adoption of innovation in medical practice. Despite the fact that the
health care sector is characterised by high levels of innovation (for example, Newhouse, 1992; U.S.
CBO, 2008; Smith, Newhouse, and Freeland, 2009) there is little robust evidence on the effect of peer
behaviour on adoption of innovation in this sector (Agha and Molitor 2018). However, the healthcare
context, in which individuals train for long periods, become highly specialised and work in teams is
one where peer and network effects would be expected to operate.

We study the extent to which the adoption of an important innovation in surgical practice is
associated with the characteristics of senior physicians, their experience, their work networks and the
behaviour of their peers. As our "test bed" we use the English National Health Service (NHS) and
exploit a novel database which matches all NHS treated patients, physicians and hospitals over 14
years. The innovation we study is laparoscopic resection for colorectal cancer patients. Our choice of
innovation and setting is motivated by the following reasons. First, colorectal cancer is the third most
common cancer worldwide. There are 1.4 million new cases and almost 700,000 deaths annually
(Arnold et al, 2017). In England, colorectal cancer accounts for around 10 percent of all cancer deaths
annually and is the most expensive cancer to treat for the NHS, costing around $90m per annum
(Laudicella et al, 2016). Second, laparoscopic resection is an important innovation that is associated
with improved survival for colon cancer and better short-term outcomes including reduced pain
and blood loss, faster recovery time, and shorter length of hospital stay relative to the alternative
procedure of open resection (for example, Lacy et al., 2002, Nelson et al., 2004). Third, we observe the
take-up of this procedure from its first introduction in the NHS in 2000 so we can examine the impact
of network and peer behaviour from the beginning of the diffusion process. Fourth, laparoscopy is
almost exclusively undertaken by senior physicians who also perform the alternative procedure, so
all physicians we examine could, if they wished, adopt the innovation. Finally, in this single payer
setting where almost all surgeons are employees of a single hospital and healthcare is free at the
point of use, surgeons and hospitals all operate within the same centrally governed system with the
same financial incentives. Furthermore there is a common and centrally driven laparoscopy training
system for physicians. This allows us to isolate the role of the physician and their peers, abstracting
from drivers of variation that arise from responses to different payment regimes, patient selection
based on insurance status, defensive medicine and differences in hospital organization.!

We exploit the richness of our data to construct a dynamic network based on common workplaces
of surgeons from 1992 to 2014. The network thus evolves as surgeons move posts between hospitals.
We use this network to decompose each surgeon’s peers into present peers (i.e. those with whom a

10ur analyses control for hospital and time effects to capture any common time shocks and persistent differences across
hospitals.



surgeon currently works in the same hospital) and past peers (i.e. those with whom a surgeon has
worked in the past but does not currently work, and also to decompose peer laparoscopic behaviour
into present behaviour (i.e. behaviour in the same year) and past behaviour (i.e. behaviour in past
years whilst working together). Our empirical model thus incorporates four endogenous peer effects
allowing for heterogeneous effects of present/past behaviour of present/past peers.

Surgeons’ behaviour may be affected by the behaviour of leaders in their profession who are not
part of their workplace network. So in addition to workplace peer effects, we also seek to establish the
existence and identities of 'leaders’ in the diffusion process. We thus suppose there are two networks
through which peer effects operate: an observable workplace network, and an unobservable leaders
network, which we estimate together with the associated peer effects.> Our approach is motivated by
Rose, (2018), which considers a setting in which a static peer network is unobserved yet sparse (i.e.
each surgeon has only a few peers relative to the number of surgeons). We apply the same ideas to a
setting in which we have an observed workplace network that may not capture peer effects arising
from leaders. Specifically, we suppose that there exists a group of potential leaders who perform
high annual volumes of colorectal cancer surgery early on in the diffusion process(we take the top
5%). We apply the STIV estimator of Gautier et al, (2018) to simultaneously estimate leader identities
and their effect on behaviour. We also explore the extent to which the number of peers (present and
past) and distance in the network to the nearest pioneer affect laparoscopic behaviour.

Contemporaneous peer behaviour is endogenous by construction due to simultaneity and ex-
posure to common shocks.® This implies that two of the workplace peer effects variables (those
based on contemporaneous behaviour) and leader behaviour are endogenous in our model. For
this reason, we use an instrumental variables strategy to identify the parameters (as studied in in
Manski (1993); Moffitt et al, 2001; Lee 2007; Davezies et al, 2009; Bramoullé et al, 2009; Blume et
al, 2015 among others). The basic idea is to use exogenous characteristics of peers as instrumental
variables for contemporaneous peer behaviour.* Our identification strategy is based on the fact that
certain patients are more suitable for laparoscopic surgery than others. For each patient we predict
this suitability based on the detailed data we have on their exogenous characteristics (following an
approach adopted by Currie et al. 2016). Our empirical model includes a measure of each surgeon’s
own patients suitability scores in a particular year as a regressor. To construct instruments for the
endogenous peer effects, we replace the observed laparoscopic behaviour of peers with the predicted
laparoscopic behaviour of peers based on the suitability of their patients. The identifying assump-
tion is that the suitability of peers” patients does not directly determine a surgeon’s laparoscopic
behaviour, conditional on their own patient suitability and individual, year and hospital fixed effects.

Our results show that peer behaviour and the networks to which a surgeon belongs have
quantitatively important effects on uptake of the innovation we study. We show that there are
several channels that operate to increase the diffusion of innovation. Current peer effects, how well
connected the individual is, proximity to pioneers (early adopters) and one high volume leader in

2We restrict the leaders network to comprise of a ‘star” structure, in which there is a link from each leader to all other
surgeons.

3To be more precise, due to differential exposure to common shocks, since we include year effects in our specifications.

41f peer characteristics enter directly into the structural equation, the researcher instead uses the exogenous characteristics
of peers-of-peers as instruments, and so on.



the field all influence the individual surgeon’s use of the innovation for their patients. In addition,
we demonstrate that estimates that do not control for simultaneity and exposure to common shocks
are upwardly biased.

We make a contribution to two distinct literatures. The first is that on variation in medical practice.
It is well established that there are large differences in healthcare spending and utilization across
and within regions in the U.S. and elsewhere (Finkelstein et al. (2016); Skinner (2012); IOM (2013)),
with medical outcomes largely unassociated with utilization (Doyle et al. (2017); IOM (2013); Fisher
et al. (2003)). These differences cannot be fully explained by random fluctuations, differences in
prices across regions, income, health status (Finkelstein et al. (2016)) and preferences of patients
(Barnato et al. (2007)). Recent studies have instead pointed to the fact that these differences are in
part related to persistent productivity differentials across providers of care within regions (Skinner
and Staiger (2015)).> While variations are well-established, there is much less understanding of why
these persistent productivity differentials exist. Recent research has focused on the behaviour of
physicians (e.g. Epstein and Nicholson (2009), Currie et al. (2016), Currie and Macleod (2018), Cutler
et al (2019)). A small number of recent studies have focused on peer and work environment effects
and have shown the importance of peers in determining behaviour with respect to well established
medical procedures (Molitor, 2018, Chan, 2018, Silver, 2016. None of these studies have, to our
knowledge, examined the role of peers in the uptake of innovation.

Agha and Molitor (2018) examine the role local opinion leaders play in easing information frictions
associated with technology adoption. The paper analyzes the influence of physician investigators
who lead clinical trials for new cancer drugs. By comparing diffusion patterns across 21 new cancer
drugs, they separate correlated regional demand for new technology from information spillovers.
They find that patients in the lead investigator’s region are initially 36 percent more likely to receive
the new drug, but utilization converges within four years. They also find that superstar physician
authors, measured by trial role or citation history, have broader influence than less prominent authors.
However, whilst the topic studied in Agha and Molitor (2018) is related, the setting is rather different,
taking place within the US system in which financial incentives for adoption are potentially stronger.
More importantly, Agha and Molitor (2018) do not directly examine the effect of peers on physicians
behaviour, nor deal with endogenous peers and unknown pioneers. In contrast, we address these
issues directly.

This paper also makes a contribution to the literature on spatial models and identification of
endogenous peer effects. Our empirical model is an extension of the Panel Spatial Autoregression
model studied by Lee and Yu (2010, 2012), among others. We extend the panel SAR model in
two dimensions, both of which, to the best of our knowledge, are entirely novel. First, through
decomposing peers and their behaviours into present and past, and second, through introducing an
unobserved leaders network.

5The magnitudes that are similar to those found in the manufacturing sector (Chandra et al. (2016)



2. Data AND METHODOLOGY

2.1. Data

Data was linked from three main sources: the patient level hospital discharge dataset (Hospital
Episodes Statistics, HES) for all patients treated by the NHS in England for financial years 2000-2014°;
consultant level demographic and employment data from NHS Workforce Statistics for 1992-2014;
and consultant-level demographic and medical education data from the General Medical Council
(GMC) register, the national body that determines clinicians” qualification to practice in England.

HES contains information on patients” use of hospital care in all NHS Hospitals (known as
hospital trusts but referred to here as hospitals). This information includes date and method
of admission and discharge, clinical information on diagnoses and care provided. All clinicians
registered to practice in England have a unique GMC code, which is recorded in each dataset,
allowing the three data sources to be matched at the consultant level. In HES this code relates to
the consultant who led the surgical team that undertook the procedure. The GMC data provides
information on all clinicians registered to practice including five-year age bands, gender, education
degree, main and sub-specialties, university of qualification, country of qualification if outside the
UK, and year of qualification. Medical registration dates are also available post-1998. NHS Workforce
Statistics provide information on the surgeon’s career path between 1992 and 2014, both pre- and
post-becoming a senior clinician (known as a consultant in the UK), including hospital (trust) of
practice, job title (career position), and grade.

Using HES data, those colorectal cancer patients for which there was a choice for surgical
treatment between open and laparoscopic surgeries were identified using the Office of Population
Censuses and Surveys Classification of Surgical Operations and Procedures (OPCS) (NHS Digital,
2018).” This produced a dataset of 276,073 patients uniquely linked to a consultant (anonymised) code.
The data were then collapsed to create a single observation at consultant-year-hospital combination.®
In the relatively few cases in which the consultant practised in more than one hospital or moved
hospitals in a given year, we assigned the consultant to the hospital in which the consultant has
worked the largest number of days during the year (using the HES dataset). This resulted in a
dataset of 3,522 consultants and 19,834 consultant-hospital-year observations for which we have data
on surgical activity for each consultant covering the period 2000-2014. To locate consultants in the
years prior to 2000 (the year when laparoscopic surgery for colon cancer was first used in the NHS
and our HES data starts) in order to create peer and network variables (described below) and to

®Laparoscopic colectomy was introduced to the NHS in 2000.

7Colorectal open resections were identified according to the type of resection performed using the following OPCS codes:
HO05/H29 (subtotal/total colectomy); HO6 (extended right hemicolectomy); HO7 (right hemicolectomy); HO8 (transverse
colectomy); H09 (left hemicolectomy); H10 (sigmoid colectomy) and H11 (other colectomy); H04.1/H04.3/H04.8-9
(panproctocolectomy); H33.2-4/H33.6-9 (anterior rectal resection); and H33.5 (rectal resection, HartmannaAZs procedure).
Laparoscopic surgeries were identified with the additional secondary OPCS codes Y75, Y50.8 or Y71.4. Only the patientsdAZ
first colorectal surgery was included, as subsequent surgeries are less likely to offer a clinical choice of resection (Burns et
al., 2014; 2013). We code any laparoscopic surgery converted into open resection (OPCS: Y71.4) as laparoscopic surgery to
capture intention-to-treat laparoscopically.

80nly consultants with clinical expertise in performing colorectal cancer surgery and classified as in one of the following
four primary specialties: general surgery, geriatric medicine, gastroenterology, and urology were included to ensure we
focused on individuals for whom this kind of surgery was a normal part of their work.



fill in gaps in hospital locations for consultants not recorded as undertaken any hospital care in a
particular year, we use the NHS Workforce Statistics 1992-2014.” Consequently, we construct a panel
of 3,522 consultants from 1992-2014, though our estimation sample is restricted to 2000-2014 due to
availability of HES data.

2.1.1 Dependent variable

The dependent variable for our analysis is the proportion of colorectal cancer surgeries which were
performed laparoscopically, defined as y;; = lap;/suri;, where lap;; is the number of laparoscopic
colorectal cancer surgeries and sur;; is the number of colorectal cancer surgeries. We compute this
for t = 2000, 2001, ...,2014 using the HES data.

2.1.2 Surgeon characteristics

To control for surgeon characteristics, in addition to surgeon fixed effects, we use the GMC register
and HES data to construct surgeon age in bands, (age;;*°, agefto"“, a ge?f -, age?t0’54, a ge§55), number
of laparoscopic surgeries performed in areas other than colorectal cancer surgery in year t (olap;),
surgeon experience, measured by cumulative colorectal cancer surgeries performed up to and
including year ¢, divided by years since becoming a consultant (exper;;). Each of these variables are
constructed for the years t = 2000, 2001, ...,2014. In addition to these consultant characteristics, we also
created an index of patient suitability score for laparoscopic surgery (sco;; for + = 2000,2001, ...,2014).
Details of the construction of this variable are in Appendix A. The basic idea is to predict patient
suitability for laparoscopic surgery on the basis of a wide number of observed patient characteristics
only at the end of the period we observe in HES (in the years 2012-14). This period is after the initial
diffusion phase and after the issuance of national guidance in 2006 on use of laparoscopic surgery
for colorectomy and a training programme aimed at training colorectal surgeons in laparoscopic
surgery in 2009. Thus which patients are selected for laparoscopy should reflect good practice rather
than surgeon taste. The index of patient suitability (sco;) is then the mean of the suitability scores
over all patients of surgeon i in year ¢ patient suitability score.

There are a total of 3,522 surgeons in our unbalanced panel, but many of these perform very few
colorectal cancer surgeries. Between 2000 and 2014 the median surgeon performs just 4.5 colorectal
cancer surgeries per year on average, whilst the tenth percentile is 1.75. For this reason, we restrict
our estimation sample to those surgeons at or above the 0.6 percentile of cancer surgeries per year on
average (i.e. total colorectal surgeries divided by number of years in the sample between 2000 and
2014), which corresponds to 1,466 surgeons with average annual volumes at least equal to 6.

Tables 1 and 2 respectively summarise the data for all consultants and the estimation sample
in the first and last years of the estimation sample (2000 and 2014). There are no clear differences
between the two samples in terms of age composition, patient suitability scores nor number of
laparoscopic surgeries for conditions other than colorectal cancer. The estimation sample comprises

9This results in a dataset of 65,366 consultant-hospital-year observations covering 1992-2014 and contains data on
surgeons prior to their appointment as consultants.

10 Additional time varying variables at the consultant-year level that were calculated included a mortality indicator (the
ratio of patients discharged dead to all colorectal cancer surgery patients) and a binary indicator of moving hospital.



more experienced consultants, who perform more colorectal cancer surgeries on average. Surgeons
in the estimation sample also perform a higher proportion of laparoscopic colorectal cancer surgeries
in 2014 (mean of 0.486) compared with all surgeons (mean of 0.416), though there is no difference in
2000.

2.1.3 Networks

We use the NHS Workforce Statistics to define networks based on the hospital in which a surgeon
practices for the years 1992-2014. This period overlaps with the HES data (from 2000 onwards) but
also gives us additional information on surgeon’s work histories prior to 2000 (but not their surgical
activity). In a given year we say that there exists a link between two surgeons if they practice in the
same hospital. This permits us to define three networks, which we characterize by the time-varying,
symmetric N x N adjacency matrices A}, Af and A; for t = 1992,1993, ...,,2014. The entries are
defined as:

A 1 ifiand j work in the same hospital in year t and j # i 2.1)
v 0 otherwise ‘
1 if Y-leep A% > 0and A%, =0
Po_ =1992 “ijt t
Aijt = ’ . g g (2.2)
0 otherwise
Ajjr = Al + A 2.3)

These undirected (i.e. symmetric) networks keep track of each surgeon’s present links (A}), past
links (Af ) and combined present and past links (A;). The networks evolve over time as surgeons
move between hospitals. The networks are constructed such that a link between j and i in year ¢
may exist either in the present network, or the past network, but not both simultaneously. Hence,
if i works in the same hospital as j in year t, and has also previously worked in the same hospital
as j we would say that j is a current link of i (Ajj; = 1) but not a past link (Afjt = 0). We do this to
avoid double counting the behaviour of j when constructing our peer effects variables below. We
now proceed to describe the network-related covariates to be included in our analysis.

2.1.4 Diffusion over networks

The heat maps below show the diffusion over the network. To read these heatmaps: white — y;; =0,
red — y; = 1. The diagrams are constructed using a spring algorithm, so as to place surgeons close
to other surgeons with whom they are linked. To make the figure less noisy, each surgeon is shaded
by the average y;; among the 10 closest surgeons (according to their location on the diagram, and
including themselves). This ‘smoothing’” allows us to get an idea of heteroegeneity in diffusion over
different parts of the network (it can be thought of as similar to a non-parametric smoother e.g.
nearest neighbours regression). Broadly speaking, the heat maps show evidence of heterogeneity in
diffusion over the network. This could be due to peer effects, information flows etc. of the kind we



investigate here. It could, of course, also be due to other sources of heterogeneity (age, individual
effects, hospital effects etc.) and therefore we need to condition on these, which we do in the formal
analysis.

2.1.5 Peer effects

To examine how the laparoscopic behaviour of a surgeon i’s peers determines their own laparoscopic
behaviour we exploit the richness of our panel data. We decompose peers into present and past using
the networks defined above, and peer laparoscopic behaviour into present and past. This allows us
to study peer effects in a dynamic setting. We study four possible peer effects on surgeon i in year t,
defined below. To construct the peer effects variables, we combine our networks with the HES data
to define the following peer effects covariates for t = 2000,2001, ..., 2014.1

e 'Now-now’ peer effects (i/}}"

): The proportion of laparoscopic surgeries in year t among other
surgeons in the same hospital as surgeon i in year t. This measures the impact of current

behaviour among i’s current peers. It is defined as:

N
vt =) Wil ALy (2.4)
=1

= S A @3
Yh—1 AjjySUTKe
where w;;; weights each peer of i by the number of colorectal cancer surgeries performed, and
the weights are normalised to sum to 1. Weighting in this way implies that the behaviour of i is
equally influenced by each colorectal cancer surgery performed by a peer. Consequently, an
equivalent definition is:

N n .
Lt Aijtlap]t
N an _
Zj:1 Ai].tsur]t

—nn

Yie = (2.6)
which is the proportion of laproscopic surgeries among all surgeries conducted by other
surgeons in the same hospital. A similar interpretation applies to the remaining peer effects.

The above definition cannot be applied to construct the peer effect for surgeons with no peers
(i.e. A?jt =0forj=1,..,N). In this event we set i}}" = 0, which means that having no peers
12

is equivalent to having peers which do zero laparoscopic surgeries.'~ We adopt the same

convention for the remaining peer effects.

e 'Past-now’ peer effects (y!;"): The proportion of laparoscopic surgeries in year t among other
surgeons with which surgeon i has worked with in years 1992,1993...,t — 1 but does not work

Npeer effects are constructed for laproscopic surgery, which is recorded in HES and starts in t=2000. The networks are
defined from 1992.
12Qur analysis also conditions on number of peers, see Section 2.1.8



with in year f. This measures the impact of current behaviour among i’s past peers. It is defined

nn
it 7

identically to ¥}}", replacing A" with AP.

e 'Now-past’ peer effects (y.,): The proportion of laparoscopic surgeries in years 2000,2001, ..., t —
1 for surgeons in the same hospital as surgeon i in year t. In constructing this variable, we
only consider surgeries by surgeon j in years in which i and j worked together. That is, we
only consider peer laparoscopic behaviour to which surgeon i was exposed. This measures the
impact of past behaviour among i’s current peers. For t = 2001,2002, ..., 2014 it is defined as:

-1 N
711}7_ np n n .
Vi = Y L Wil ALALYs (2.7)
$=2000 j=1
SUr;
ZUZ;;: t—1 N :n A" (28)
r=2000 k=1 Afgt Alj, SUTkr

For t = 2000, we set i/, = 0 for all i, since laparoscopic colorectal cancer surgery did not take
place prior to 2000.

o 'Past-past’ peer effects (/"

): The proportion of laparoscopic surgeries in years 1992,1993, ..., t — 1
among other surgeons with which surgeon i has worked with in years 2000, 2001, ...,t — 1 but
does not work with in year t. In constructing this variable, we only consider surgeries by
surgeon j in years in which i and j worked together. That is, we only consider peer laparoscopic
behaviour to which surgeon i was exposed. This measures the impact of past behaviour
among i’s past peers. It is defined identically to 7, replacing Ajj; and A, with AZt and Al

respectively.

2.1.6 Leaders

We also consider peer effects arising from ‘leaders’, the identities of which we treat as unknown
and seek to estimate. We suppose that the year t behaviour of a few particular surgeons (‘leaders’)
determines the year t behaviour of all other surgeons. This is equivalent to introducing additional
covariates, one for each potential leader. When estimating the model, we assume that there are only
a few leaders and we treat their identities as unknown. This is equivalent to assuming that the
parameter vector associated with the leader variables defined below is sparse (i.e. it has many entries
equal exactly to zero). To achieve this, we apply the high-dimensional instrumental variables (STIV)
estimator of Gautier et al, (2018).
For each potential leader j, we define for t = 2000, 2001, ..., 2014:

%t = 1{j7éi}1{surjt>0}(l - Aijt)%‘t (2.9)

where 1, is the indicator for condition c. We include the (1 — A;j;) so that a leader is presumed
to influence surgeon i in year ¢ through this channel only if they are unknown to one another (in
the sense that they have never worked in the same hospital at the same time). We do this to avoid
double counting of behaviour, since if A;j; = 1 then the behaviour of j is captured by the peer effects



covariates described in the previous section. It is also important for identification, since if we were to
omit (1 — A;j;) then the leader variables would be almost collinear with year fixed effects, which we
also include in our specification.'?

We define % for each j in a set of potential leaders. We suppose that potential leaders are those
with high average annual volumes of colorectal cancer surgery. We consider the set of potential
leaders to be those surgeons in the top 5% of the average annual volume of colorectal cancer surgeries
over 2000-2014. That is, for each surgeon, we divide the the total number of colorectal cancer surgeries
between 2000 and 2014 and divide by the number of years observed in the data over the same period.
We then take the top 5% of surgeons in this measure as our potential leaders. This yields 73 potential

leaders, which we denote by | C {1,2,..., N}.

2.1.7 Endogeneity and instrumental variables

In a cross-section setting, endogeneity of the peer effects covariates is well known due to simultaneity
of behaviour and exposure to common shocks. In our longitudinal setting, this implies that all
peer effects variables based on year t behaviour (yg”,yﬁ”,’y“{ft) are endogenous by construction.
Consequently, our identification strategy follows an instrumental variables approach. To construct
instruments, we replace yj; in the definitions of each endogenous covariate listed above with the
suitability score scoj;, which yields the instrumental variables Wﬁ”,ﬁﬁ",sﬁﬂt. The instruments
depend on only the networks, patient characteristics and volumes of colorectal cancer surgeries, and
are thus plausibly exogenous in our model.

The exclusion restrictions thus require that the suitability scores of other surgeons” patients do
not directly influence surgeon i’s laparoscopic behaviour conditional on the score of i’s patients,
individual and year fixed effects and the other exogenous covariates listed in this section.

We treat peer effects based on past behaviour (i, 7") as exogenous, since simultaneity is broken

by the temporal lag.

2.1.8 Network location

In addition to peer effects, we consider the role of i’s position in the networks. Specifically, we
consider:

e The number of other surgeons with which surgeon i works in year t. This measures the number
of current connections, and is referred to as the degree. We define:

N
degh =) Al (2.10)
j=1

130mitting (1 — Ajjt) yields y{t =121 1sur, >0y Yjt- If our panel were balanced we would have Lisury>0p = 1, 50 that

’yit = 1,211 yjt- Consequently, _17{t would take the same value for all N — 1 surgeons other than j, which would be almost
collinear with an indicator for year t. Although our panel is not balanced, we observe most surgeons in most years, and so
the above concerns still apply, though to a slightly lesser extent.

10



e The number of other surgeons with which i has worked in years 1992, ,t — 1 but does not work
with in year t. This measures the number of past connections. We define:

N
degh = X% Al (2.11)
]:

e The distance in the network to the nearest pioneer, defined as a surgeon who has performed
at least 15 laparoscopic surgeries up to and including 2005.1* We construct dispio; as the
number of links traversed in the network represented by A; (i.e. there exists a link between
two surgeons if they have ever worked together, up to and including year t) to the nearest
pioneer. Distance has range 0,1, 2, ..., c0. A value of 0 means that i is a pioneer, 1 means that i
has worked in the same trust as a pioneer up to and including year t (but i is not a pioneer), 2
means that i has worked in the same trust as a surgeon who has worked in the same trust as a
pioneer (but i is not a pioneer and has not worked in the same trust as a pioneer up to and
including year t), and so on. A value of co means that i is not a pioneer and cannot reach a
pioneer by traversing links in the network. This could arise if i has never worked in the same

trust as another surgeon in our sample.

We then construct indicators for dispio;; = 1 (dispiol;;) and dispio; = 2 (dispio2;;) to include in
our regressions. The excluded group are those surgeons with dispio;; > 2.1°

14We define pioneer status as a time invariant characteristic of a surgeon. That is, we say that a surgeon is a pioneer in
all years if they reach 15 laparoscopic surgeries by the end of 2005.
15The indicator for dis pio;; = 0 is not time-varying, and so is absorbed into the surgeon fixed effect.

11



Table 1: Summary statistics for all 3,522 surgeons

Mean SD Min Max n Mean SD Min Max n
2000 2014

Dependent variable
Vit 001 0062 0 1 1093 0416 0346 0 1 1446
lapy 0.167 0737 0 10 1093 8584 10618 0 66 1446
sur;y 18357 18659 1 112 1093 16.211 14929 1 71 1446
Peer effects
v 0009 002 0 04 1093 0527 0151 0.043 0922 1446
vl 0.009  0.03 0 05 1093 0545 0.085 0 0842 1446
Vi 0 0 0 0 1093 0326 0165 0 0832 1446
yhr 0 0 0 0 1093 0.125 0119 0 0765 1446
scolf" 0488 0055 0 0571 1093 0502 0.023 0373 0572 1446
scol) 043 0165 0 0592 1093 05 004 0 056 1446
Network location
deg!t 1632 1028 0 56 1093 2244 969 5 45 1446
degh 2636 1928 0 98 1093 10949 5195 0 282 1446
dispiol; 057 050 0 1 1093 0791 0401 0 1 1446
dispio2; 0378 0485 0 1 1093 0.168 0374 0 1 1446
Surgeon characteristics
age;®™ 0181 0385 0 1 1090 0295 0456 0 1 1442
ageld™* 0277 0448 0 1 1090 0281 045 0 1 1442
agei;™ 0248 0432 0 1 1090 0205 0404 O 1 1442
age})™>* 018 0384 0 1 1090 0.139 0346 0 1 1442
olapy 30732 3684 0 307 1093 85596 71507 0 = 746 1446
expery 5387 9221 0125 77 943 19.795 17255 0.05 114 1368
scojs 0466 0.087 0059 0701 1090 0461 0.119 0.037 0817 1442
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Table 2: Summary statistics for estimation sample of 1,466 surgeons

Mean SD Min Max n Mean SD Min Max n
2000 2014

Dependent variable
Vit 0.008  0.03 0 0256 650 0486 029 0 1 923
lap; 024 0897 0 10 650 12966 11.079 0 66 923
sur; 27.409 19334 1 112 650 23.629 13953 1 71 923
Peer effects
g 0.008  0.02 0 0208 650 0543 0162 0 0952 923
v 0.008 0021 0 025 650 0562 0085 0 0929 923
v 0 0 0 0 650 0338 0.17 0 0819 923
yhr 0 0 0 0 650 0125 0127 0 1 923
5co’l! 0482 0095 0 0577 650 051 0028 0 0577 923
scot,’ 0415 0.18 0 058 650 0508 0039 0 0566 923
Network location
deg!! 6491 3862 0 19 650 8472 3758 0 17 923
degh 10272 7484 0 38 650 44391 19473 0 102 923
dispiol; 052 05 0 1 650 0764 0425 0 1 923
dispio2; 0385 0487 0 1 650 0172 0378 0 1 923
Surgeon characteristics
age;® 0177 0382 0 1 648 0284 0451 0O 1 920
ageil)™* 0276 0447 0 1 648 0279 0449 0 1 920
agel?™ 0225 0418 0 1 648 0207 0405 0 1 920
agex)™>* 0191 0394 0 1 648 015 0357 0 1 920
olapy ~ 33502 36808 0 307 650 82436 62583 0 746 923
expery  8.044 11.108 0333 77 558 29.105 14.652 0545 114 883
soj; 0487 0.062 0.103 0.701 650 0491 0.08 0.043 0.686 923
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3. EsTIMATION

Our baseline specification for surgeon i = 1,2, ..., N in year t = 2000, 2001, ..., 2014 in hospital h(i, t)

is:

Vit = & + Wt + Yn(ip) + Z ﬁaby?tb + Zﬁ]g{t + x40 + €it (3.1)
(ab)e{np}? j€]

where a;, pi; and ;5 are respectively surgeon, year and hospital fixed effects, ), p)c(n,p)2 ﬁabyf’f
captures workplace peer effects, ) ;c; j%t captures leader effects, x;; stacks network location covari-
ates and consultant characteristics and ¢;; is the disturbance. For specifications restricting §; = 0 for
j € ], we apply OLS to estimate the parameters. Otherwise, we apply the STIV estimator of Gautier
et al, (2018).

The STIV estimator is an instrumental variables estimator designed for a ‘high-dimensional’
setting. In particular, it does not restrict the relative magnitudes of the sample size, number of
parameters and number of instruments. For instance, the number of parameters can be larger than
the sample size, or the number of instruments can be fewer than the number of parameters. In our
application, the number of instruments is equal to the number of parameters (=88: 4 peer effects,
73 leaders, 4 network location covariates, and 7 surgeon characteristics), which is relatively large
compared to the sample size. Gautier et al, 2018 (Section 8.2) also derive confidence intervals, which
we apply here. To facilitate comparison of OLS and STIV, we report confidence intervals as opposed
to standard errors, since the confidence intervals for the STIV estimator are not constructed in the
conventional way (i.e. by inverting a t-test).'¢

The STIV estimator yields sparse solutions (i.e. many of the parameters are estimated to be
precisely zero). Sparsity is achieved through the addition of a penalty term in the objective function,
which penalizes the sum of absolute values of the entries of the parameter vector or a subset of the
parameter vector. In our application, we apply the penalty to the 77 entries of §; for j € J. This
approach is well suited to our assumption that there are relatively few leaders among the set of
potential leaders, but that their identities are unknown. Further details and performance guarantees
for the STIV estimator are available in Gautier et al, (2018).

4. RESULTS

Table 3 presents our results. Throughout this section, to interpret the magnitudes of the effects we
present the effect of a year 2014 standard deviation change in the covariates (see Table 2) measured
in year 2014 standard deviations of the proportion of laparoscopic surgeries.

In the ‘OLS’ column, we apply the least squares estimator to (3.1) under the restriction g/ = 0 for
j € ] (i.e. no leader effects). We find a positive and statistically significant peer effect based on current
behaviour among current links (77}"). The effect is quite large: a standard deviation increase in ¥}"
is associated with a 0.16 standard deviation increase in the proportion of laparoscopic surgeries.

16We modify slightly the sample splitting procedure to fit our panel data setting. Instead of taking a random sample of
observations, we take a random sample of consultants, keeping all of their observations together.
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However, much of this effect is likely due to positive bias arising from simultaneity of behaviour
and exposure of a surgeon and her peers to common shocks. The effect of the past behaviour of a
surgeon’s current links (y;") is positive and statistically significant at the 0.1 level, though it is small
in magnitude. The other peer effects are close to zero and statistically insignificant.

All of the network location variables have a positive sign, though only the number of past links
(degh)) is statistically significant at the 0.05 level. Each additional past connection is associated with
an increase of 0.3 percentage points in the proportion of laparoscopic colorectal cancer surgeries.
Whilst each additional connection has only a small impact, a standard deviation increase in the
number of past connections is associated with a 0.20 standard deviation increase in the proportion of
laparscopic surgeries.

The coefficients on the age dummies suggest an inverted-U association between uptake of
laparoscopic surgery and consultant age. All else equal, consultants aged under 40 are similar to
those 55 and over, with the highest uptake occurring between 44 and 49. The number of laparoscopic
surgeries performed for diseases other than colorectal cancer and consultant experience are both
positively and statistically significantly associated with the proportion of laparscopic surgeries (y;;). A
standard deviation increase in the number of laparscopic surgeries for diseases other than colorectal
cancer (olap;;) is associated with a 0.18 standard deviation increase in the proportion of laparscopic
surgeries. For experience the effect of a standard deviation increase is smaller, with a standard
deviation increase of 0.03.

The patient suitability score has a large, positive and statistically significant coefficient. The
coefficient suggests that moving from a mean patient suitability of 0 to 1 is associated with an
increase in the proportion of laparoscopic surgeries by around 0.5. Whilst this might appear large, a
reasonable benchmark for this effect would be 1, which lies outside the confidence interval. This
suggests that surgeons’ behaviour is substantially influenced by factors other than patient suitability.
Indeed, a standard deviation increase in the suitability score is associated with only a 0.14 standard
deviation increase in the proportion of laparoscopic surgeries.

We now relax the restriction of no leader effects. This increases substantially the number of
parameters to be estimated relative to OLS. To enable us to examine the effect of changing both the
assumption of exogeneity of peer effects and the number of peer effects that are estimated, we report
two sets of estimation results for the STIV estimator, the first under exogeneity (STOLS) and the
second under endogeneity of contemporaneous peer effects (STIV).

The ‘STOLS’ column reports estimation results for the STIV estimator applied to (3.1) treating all
covariates as exogenous. Relative to OLS, we find that all of the peer effects increase in magnitude.
Moreover, the effect of proximity to an pioneer (dispiol;,dispio2;;) increase in magnitude, and the
coefficient on dispiol;; is statistically significant at the 0.1 level. The estimator returns five non-zero
coefficients, corresponding to five leaders. All of the coefficients are positive and all but one are
statistically significant at the 0.05 level. However, as with the other peer effects, we expect positive
bias due to simultaneity and exposure to common shocks.

The ‘STIV’ column reports estimation results for the STIV estimator applied to (3.1) treating the
covariates based on the contemporaneous laparoscopic behaviour of other surgeons (y;;”,yﬁ”,gﬁft)
as endogenous. As discussed in Section 2.1.7, our identification strategy is based on instruments
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p?’l
it
covariates.

(sco}",sco;, SACTJZ: ;) which replace y;; with the suitability score scoj; in the definition of the endogenous

Relative to the ‘STOLS’ estimator, the instrumental variables approach reduces the magnitudes
of all of the peer effects, though the effect of current peers’ current behaviour remains positive and
statistically significant. The reduction in magnitudes of the endogenous peer effects variables can be
attributed to a reduction in positive bias due to simultaneity and common shocks. Additionally, the
estimator returns only one non-zero leader parameter, which is a subset of the five leaders suggested
by the STOLS estimator. The associated parameter has decreased in magnitude by a factor of a
around a half. As with the other peer effects, this change is likely due to a reduction in positive bias.
With regard to finding one (as opposed to five) leaders, there are two possible explanations. The
first is that the STOLS estimator spuriously yields non-zero coefficients for four of the leaders due to
upwards bias, which is corrected by the STIV estimator. The second is that the STIV estimator has
lower precision than STOLS (as does the IV estimator relative to OLS), and so it is more conservative
in setting the parameters equal to zero.

These two explanations would apply equally if we had applied OLS and IV and compared
t-statistics for the null hypothesis of equality to zero. We would fail to reject the null with higher
probability with the IV estimator than with the OLS estimator for two reasons. First, because the IV
coefficient will typically be smaller in magnitude than the OLS coefficient, and second because it
will typically be less precisely estimated. Thus, the numerator of the t-statistic is smaller, and the
denominator larger, and so the t-statistic is smaller under IV than OLS.

Parameter estimates for three of the network location covariates are larger in magnitude for
STIV than STOLS/OLS. The effect of the number of current links (degipt) remains close to zero
and statistically insignificant, whilst the number of past links maintains a positive and significant
coefficient close to those of OLS and STOLS. There is, however, an increase in the effect size of pioneer
proximity, with the parameter estimates for the indicators of having worked at the same hospital
as a pioneer (dispiol;) and having worked at the same hospital as a surgeon who has worked at
the same hospital as a pioneer (dispio2;) both increasing in magnitude. The former is statistically
significant at the 0.05 level. Having worked in the same hospital as a pioneer increases the proportion
of laparoscopic surgeries by 6.5 percentage points relative to surgeons who have never worked with
a pioneer nor with another surgeon who has worked with a pioneer. This effect size corresponds to a
0.22 standard deviation increase in the proportion of laparoscopic surgeries.

The STIV estimator suggests a similar inverted-U age profile to OLS/STOLS. The coefficient on
the number of laparoscopic surgeries for diseases other than colorectal cancer also remains similar,
though the coefficient on experience is smaller in magnitude and not statistically significant.

We now consider the relative importance of determinants of laparoscopic behaviour. To do this,
we use our STIV results to compare the relative effect sizes of year 2014 standard deviation changes in
determinants, measured in year 2014 standard deviations of the proportion of laparoscopic surgeries.
For dummy variables, we consider instead a change from 0 to 1.

In decreasing effect size, the determinants which induce more than a 0.1 standard deviation
change in laparoscopic behaviour are: the number of laparoscopic surgeries for diseases other than
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Table 3: Estimation Results

Dep. var. y;; (range [0, 1]) OLS STOLS STIV
Peer effects
v 0.283* 0.452* 0.206"
[0.251,0.315] [0.406,0.499] [0.130,0.282]
vl 0.0296 0.115** 0.110
[-0.020,0.079] [0.012,0.217] [-0.038,0.259]
v, 0.0496* 0.191** 0.004
[-0.001,0.100] [0.114,0.269] [-0.131,0.140]
gty -0.0265 -0.2346** 0.031
[-0.087,0.034] [-0.348,-0.121] [-0.117,0.179]
i 0.403**
[0.161,0.645]
2 0.008
[-0.238,0.255]
2 0.260*
[-0.044,0.565]
e 0.143
[-0.029,0.315]
yi? 0.341* 0.164
[0.201,0.481] [-0.053,0.382]
Network location
deg’t 0.00177* -0.00115 0.00139
[-0.00015,0.00369]  [-0.00458,0.00227] ~ [-0.00234,0.00512]
degh 0.00301** 0.00346** 0.00359**
[0.0018,0.0042] [0.0021,0.0048] [0.0017,0.0054]
dispiol;y 0.0273 0.0466* 0.0650**
[-0.079,0.134] [-0.004,0.097] [0.011,0.119]
dispio2;y 0.0281 0.0288 0.0394

[-0.074,0.130]

[-0.021,0.079]

[-0.014,0.093]

Surgeon characteristics

age; ™ -0.00574 -0.0467** -0.0327**
[-0.053,0.041] [-0.066,-0.027] [-0.060,-0.005]
age;) 0.0270 0.0564** 0.0235**
[-0.010,0.063] [0.0448,0.0680] [0.0075,0.0393]
ageit ¥ 0.0356** 0.0158** 0.0435**
[0.010,0.062] [0.003,0.028] [0.025,0.062]
agex) > 0.0212** 0.0110 -0.0091
[0.005,0.038] [-0.003,0.025] [-0.030,0.012]
olapi; 0.000830** 0.00112** 0.00118**
[0.00072,0.00094]  [0.00092,0.00134]  [0.00087,0.00148]
exper;s 0.000675** 0.001286** 0.00008
[0.00015,0.00120]  [0.00053,0.00205]  [-0.00112,0.00127]
scojy 0.505** 0.623** 0.572**
[0.459,0.550] [0.517,0.729] [0.429,0.715]
Consultant FE Yes Yes Yes
Year FE Yes Yes Yes
Hospital FE Yes Yes Yes
Leaders No Yes Yes
Sample size 11,266 11,259 11,259
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Notes: 95% confidence intervals in brackets. *x: significantaf the 0.05 level, *: significant at 0.1 level. The STOLS column
applies the estimator of Gautier et al, (2018) treating all covariates as exogenous. The STIV column applies the estimator of

Gautier et al, (2018) treating contemporaneous peer effects (y;‘t",yf’t", ?Z ;) as endogenous, with corresponding instruments

(ﬁﬁ",%ﬁ", sﬁ)?t). Only non-zero estimates of ,Bf are reported in models with Leaders.



colorectal cancer (olapj, 0.25), the number of past links (degﬁ, 0.24), having worked in the same
hospital as a pioneer (dispiol;, 0.22), patient suitability (sco;, 0.16), being aged 44-49 (age;**, 0.15),
having worked in the same hospital as a surgeon who has worked with a pioneer (dispio2;, 0.14),
the laparoscopic behaviour of other surgeons in the same hospital in the same year (7", 0.12) and
leader laparoscopic behaviour (572, 0.10).

In sum, the results show that both the workplace network and peer effects play important roles
in determining the uptake of laparoscopic surgery. In terms of networks, the number of past links
that a surgeon has plays a large effect and workplace proximity to a pioneer is also important. With
regard to peer effects, it seems that surgeons’” behaviour depends to a much larger extent on the
contemporaneous behaviour of others in the same hospital as opposed to the past behaviour of their

direct colleagues. Finally, the laparoscopic behaviour of leaders also seems to play an important role.

5. CoNcCLUSION

The focus of this paper is the effect of work network and peer behaviour on the uptake of a highly cost-
effective medical innovation. We use matched data on patient treatment and surgeon employment to
create a rich panel data set that allows us to construct surgeons’ networks (whom they worked with
and when) and the behaviour of peers. Our model contains present and past peers and the behaviour
of each types of peers in the present and past and a measure of distance to pioneers of the innovation.
In our estimation, we treat these peer effects as endogenous. We also allow for two networks through
which peer effects may operate: an observable workplace network and an unobservable network of
"leaders’ in the innovation process.

Our results show the importance of multiple peer and network effects. We show uptake operates
through several channels. We identify an effect of current behaviour of workplace colleagues (a
peer effect), distance to pioneers (a network effect), number of connections (a network effect) and
the effect of (one) leader in the field (a network effect). While we cannot identify exactly how these
effects operate, our results are commensurate with information flows between surgeons and, for
the peer effects, access to resources for such surgery in the hospital. We can however rule out the
explanation of an absence of facilities for laparoscopic surgery at the hospital level as all the hospitals
in our sample have these facilities.

More generally, our results show the importance of multiple channels influencing behaviour in
this field. In terms of policy, our findings suggests first, that using multiple channels may be better
than simply using one and, second, that focusing on individuals who have good networks may be
less cost-effective that trying to identify those who are outside those networks and targeting efforts
on providing them with better connections to leaders and early adopters.
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Figure 1: Diffusion by 2004
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Figure 2: Diffusion by 2009
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Figure 3: Diffusion by 2014

25




A. CONSTRUCTION OF THE PATIENT SCORE

An index of patient suitability for laparoscopic surgery was constructed as follows. HES data
contains a rich set of observable patient characteristics including the age, sex, detailed diagnosis code,
comorbidities, cancer location, and socioeconomic characteristics of the patient’s small geographical
area of residence. To reduce these variables to a single index (required as we use this as an instrument
for peer behaviour) we follow the same methodology by Currie et al. (2016) and use a standard
simple ‘'machine learning’” algorithm that estimates a logit model of use of laparoscopy for the pool of
patients undergoing surgery between 2012 and 2014 as a function of a vector of patient characteristics.
This period is after the issuance of national guidelines and a training programme to promote the use
of laparoscopic surgery for colon cancer (Coleman, 2009), so patient treatment reflects “accepted and
best practice’ rather than the behavior early in the diffusion process and the index reflects patient
suitability rather than physician (unobserved) attitudes towards innovation.
We estimate the following model for patient j:

Prob(laparoscopy; = 1) = F(w}@) (A1)

where F(.) is the logistic cumulative distribution function, Prob(laparoscopy; = 1) is the probability
that the patient j receives a laparoscopic procedure, w; is a vector of patient characteristics defined
below and 0 is the parameter vector.

The vector of patient characteristics w; is composed by gender, age in groups,
(page;™, page3* >, page?®™, page®~”, page:”), income distribution in quintiles of the small ge-
ographical area where the patient lives as reported in the 2001 Census, dummy variables for
the three locations of colorectal cancer (i.e. colon, rectosigmoid junction, and rectum), number
of comorbidities diagnosed (ranging from 1 to 7), and the Charlson comorbidity index in groups,
(charlsonfz, charlson?"‘*, charlson]?‘L). Comorbidities are coexistent diseases to colorectal cancer, which
may directly affect the prognosis the disease, or indirectly influence the choice of treatment. The
Charlson comorbidity index is the most widely used comorbidity index for predicting the outcome
and risk of death from many comorbid diseases (Charlson et al., 1987; de Groot et al., 2003). It
contains 17 comorbidities including cardiac arrhythmia, congestive heart failure, peripheral vascular
disease, cerebral vascular disease, dementia, coronary obstructive pulmonary disease, rheumatoid dis-
ease, ulcers, liver disease, diabetes, kidney disease, hemiplegia or paraplegia, leukaemia, lymphoma,
dementia, metastatic cancer, and acquired immunodeficiency syndrome (AIDS). Each comorbidity is
weighted according to their potential influence on mortality and, because of that, is likely to identify
poorer candidates for invasive procedures (i.e. better candidates for laparoscopic surgery).

We then predict the patient suitability score for each patient using the logit estimates of 6 for the
universe of patients treated between 2000 and 2014. To obtain the patient suitability index sco;, we
take the mean predicted probability of laparoscopic surgery over all patients of surgeon i in year ¢.
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