y

“!)Q UNIVERSITY

{
|

HEDG

HeavLta, EconoMETRICS AND DATA GROUP

WP 19/06

Early Rainfall Shocks and Later-Life Outcomes:
Evidence from Colombia

Bladimir Carrillo

February 2019

http://www.york.ac.uk/economics/postgrad/herc/hedg/wps/



Early Rainfall Shocks and Later-Life Outcomes:

Evidence from Colombia*

Bladimir Carrillo

November 25, 2017

Abstract

This paper uses birth cohorts spanning several hundred locations over 40 years to ex-
amine the long-term consequences of in utero exposure to abnormal rainfall events in
Colombia. The identification strategy exploits exogenous variation in extreme droughts
or floods experienced by individuals while in utero in their birth location. The results
indicate that individuals prenatally exposed to adverse rainfall shocks are more likely
to report serious mental illness, have fewer years of schooling, display increased rates
of illiteracy, and are less likely to work. These results are larger in magnitude for
individuals born in areas with higher risk of malaria, consistent with the notion that

exposure to infectious and parasitic diseases may play an important role.
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1 Introduction

It is now widely recognized that emissions of greenhouse gas will alter global climate, caus-
ing extreme weather events, such as droughts and floods, to become more frequent. One
prominent body of work highlights that these extreme weather events may have persistent
effects on human capital acquisition and welfare, especially for children in the developing
world. The prenatal programming theory indicates that individuals exposed to an unhealthy
environment during a sensitive period of fetal development are likely to suffer from a num-
ber of health and developmental difficulties that persist throughout life (Barker, 1997; Seckl,
1998). Since health is both a type of human capital and a contributor to other forms of
human capital (Becker, 2007), increasing attention is being paid to the long-run impacts of
a variety of early life shocks, including epidemics (Almond, 2006; Venkataramani, 2012; Bar-
reca, 2010), maternal stress (Aizer et al., 2016) and even food availability (Lindeboom et al.,
2010; Almond and Mazumder, 2011).! Recent notable work has documented that exposure
to higher rainfall in early life has positive effects on health, educational and socioeconomic
outcomes (Dinkelman, 2017; Maccini and Yang, 2009). This paper provides new evidence on
this important question in a context where droughts and excessive precipitation are likely to
have adverse consequences. Differently from previous studies, I exploit information on exact
date of birth to accurately measure prenatal exposure to rainfall conditions and shed light
on the timing of shocks during pregnancy.

There are several channels through which rainfall shocks can have intergenerational con-
sequences on human capital and welfare. It is well established that changes in precipitation
may affect the optimal conditions for infectious and parasitic diseases, which could adversely
affect the health of pregnant mothers and thus increase the risk of poor health in early life.
At the same time, lower yields of subsistence crops and reduced income from cash crops
due to water scarcity or excessive precipitation may result in reduced nutrition intake dur-
ing pregnancy, especially in countries with imperfect credit markets and fewer formal social
safety net programs. As a result, poor health among school age children is likely to result
in school absenteeism and higher probabilities of dropping out, most notably causing fewer
completed schooling (Miguel and Kremer, 2004; Baird et al., 2016).

This paper uses birth cohorts spanning several hundred locations over 40 years (1942-
1981) to conduct a systematic evaluation of the relationship between early rainfall shocks
and long-run socioeconomic outcomes. There are a few features about Colombia, the focus
of this paper, that make it an interesting case in which to study this question. Because

Colombia is exposed to both FEl Nino and La Nina phenomena, precipitation records vary

!See Almond and Currie (2011) for a comprehensive review of literature.



widely over time and space, with some periods characterized by heavy rainfall and others
by pervasive droughts. Indeed, Colombia has been considered one of the countries with
the highest incidence of extreme events. In 2010, the Global Climate Risk Index placed
Colombia in the top 3 countries most affected by loss related to floods and storms (Andalon
et al., 2016; Germanwatch, 2011). Moreover, the cohorts this paper analyses were born in a
context where a considerable fraction of population was living in rural areas and depended
on farming for a living either directly or indirectly. Thus, this paper investigates a context
where the aforementioned mechanisms are likely to be relevant.

My identification strategy exploits variation in rainfall records over time within munici-
palities. I construct a municipality-by-month weather dataset, which then is combined with
microdata by using date and place of birth to identify the prevailing rainfall conditions dur-
ing pregnancy. The empirical approach then compares later-life outcomes of individuals who
were prenatally exposed to extreme droughts or heavy rainfall relative to those who experi-
enced less severe rainfall conditions in utero. I control by a full set of municipality-of-birth
and month-of-birth x year-of-birth fixed-effects to account for time invariant characteristics,
aggregate shocks, and seasonal factors that might be correlated with the incidence of extreme
rainfall events. Hence, this approach exploits arguably random fluctuations in rainfall from
municipality-specific deviations in long-term rainfall after controlling for all seasonal factors
and common shocks to all municipalities.

I find evidence that in utero exposure to adverse rainfall shocks leads to poorer adult
outcomes. In particular, I find that a standard deviation increase in prenatal floods is
associated with a 3.2-percent increase in mental disability rates, a 0.21-percent decline in
years of schooling, a 1.7-percent increase in illiteracy rates and a 0.36-percent reduction in
the likelihood of working. I find also negative effects of prenatal droughts on adult outcomes,
although the effects tend to be smaller. These results are larger in magnitude for men than for
women when considering health and educational outcomes. For instance, I find a treatment
effect on mental disability that is approximately 20 times larger for males than for females.
These gender heterogeneities are consistent with a literature pointing out that male fetuses
are more vulnerable to in utero shocks than female fetuses (Almond and Mazumder, 2011;
Eriksson et al., 2010a; Kraemer, 2000). Conversely, I also find that women experience larger
changes in employment as a result of exposure to adverse rainfall shocks, which likely reflects
the larger scope for improvements among females who have much lower employment rates
relative to men.

When I consider separate exposure measures for each trimester, I find that the long-run
effects on educational and health outcomes occur from exposure during the first trimester.

This finding is consistent with medical literature emphasizing that the gestational environ-



ment during early stages of pregnancy can impact fetal brain structure and produce long-
lasting or permanent consequences on cognition and health (Altshuler et al., 2003; Glynn
et al., 2001; Lee et al., 2003; Mulder et al., 2002). In contrast, I find that the employment
effects are concentrated in the third trimester. I take this finding as suggestive evidence
that early rainfall shocks affect employment predominantly through a mechanism other than
education. In particular, Santos (2016) finds that the effects of excessive precipitation on
socio-emotional outcomes among children are concentrated in the third trimester, and this
timing is consistent with medical literature documenting that assaults in the third trimester
can have persistent effects on future emotional and personality outcomes (O’connor et al.,
2002; Brown et al., 2000, 1995). Thus, a potential interpretation of my findings is that the
employment effects of early rainfall shocks work primarily through noncognitive skills, which
is supported by a growing literature documenting the importance of these abilities in the
labor market (Heckman et al., 2006; Borghans et al., 2008). That said, I am circumspect
regarding this interpretation given the lack of available data on noncognitive skills among the
cohorts this paper studies. In any case, my findings highlight the importance of considering
the timing of the shocks when assessing the effects of exposure to adverse rainfall shocks or
other detrimental influences.

I then explore a set of additional heterogeneities that may provide insights on the mech-
anisms at play. I find that the effects of prenatal rainfall conditions are substantially larger
among individuals born in areas with higher risk of malaria. In particular, I find that a stan-
dard deviation increase in normal rainfall conditions in utero causes a 4.3-percent reduction
in mental disability rates, a 3.4-percent decrease in speech/hearing disability rates, a 0.42
percent increase in years of education, and a 2.3-percent decline in illiteracy rates. These
findings are consistent with the idea that exposure to infectious and parasitic diseases may
be an important channel of impact. In contrast, I do not find a consistent pattern when I
explore heterogeneities with respect to other factors, including income and population size.
In addition, I am not able to detect a statistically significant interaction between rural popu-
lation rate and in utero rainfall shocks. To the extent that rural population rate adequately
captures the fraction of population depending on farming and related agricultural activi-
ties, this result suggests that agricultural income is not the primary mechanism driving the
long-run effects of rainfall shocks.

This paper is related to a growing literature linking early rainfall conditions and later-
life outcomes. One of the first studies in this area is that of Maccini and Yang (2009),
who find evidence that exposure to early droughts is associated with poorer self-reported
health and less grades of schooling in Indonesia. Dinkelman (2017) shows that early drought

raises later-life disability rates in South Africa, with the effects concentrated in physical



and mental disabilities. Shah and Steinberg (2017) examine mid-term outcomes and find
that droughts in early life reduce test scores and lead to fewer years of schooling among
children in India. Adhvaryu et al. (2016) also examine mid-term outcomes and document
that the effects of adverse rainfall shocks are smaller for children from families who receive
conditional cash transfers in Mexico. To the best of my knowledge, no study has examine
the effects of prenatal exposure to rainfall shocks on long-run outcomes in Latin American.
My work is also related to a set of promising studies that focuses on the short-run effects
of rainfall shocks, including Santos (2016), Aguilar and Vicarelli (2011), and Hoddinott and
Kinsey (2001). Particularly relevant to the context of the present study is the contribution
of Santos (2016) who finds that in utero exposure to floods translates into an increase in the
incidence of low birth weight and an increased risk of poor socio-emotional problems in early
childhood in Colombia.

The present study extends the existing literature in at least three important ways. First,
this paper uses data on local conditions to distinguish between heterogeneous effects across
subgroups, which may help understand the mechanisms linking rainfall conditions and long-
run outcomes. As plausible as the hypotheses of changes in agricultural income and diseases
in utero may be, previous studies tend to assume rather than test them. Second, I exploit
precise information on date and place of birth to accurately measure prenatal exposure to
abnormal rainfall events. The existing literature has made use of the individual’s year of birth
(rather than year and month of birth) to identify early rainfall exposure. Thus, it is unclear
whether the effects are driven by prenatal or postnatal exposure to rainfall conditions. As
discussed in detail by Doyle et al. (2009), interventions aimed at investing during the prenatal
period can have costs radically different from those focused on the postnatal period. Hence,
identifying the timing of the effects is crucial for guiding the design of policies intended to
mitigate the adverse consequences of rainfall shocks. In addition, relying only on individual’s
year of birth for identifying exposure may be empirically problematic because it may include
exposure at the time of conception. If different quality parents are more likely to postpone
fertility when exposed to extreme rainfall shocks around time of conception, then it may lead
to overestimates of the true effects of rainfall shocks on later-life outcomes. Using precise
information on date of birth, the present study examines cohorts conceived before a shock
occurred and contributes to the literature by exploring the extent to which this issue may
be important in practice.

Third, I focus on a country with no known son preferences, and estimate effects sepa-

rately for males and females.? This distinction is particularly important to understand the

2While Mexico is also a country with no known son preferences, Adhvaryu et al. (2016) do not estimate
the effects separately by gender. In addition, they examine only medium-term outcomes and do not have any



mechanisms underlying the gender heterogeneities in the treatment effects. The evidence on
gender differences in the effect of early rainfall on adult outcomes has been mixed. While
Maccini and Yang (2009) find that the effects that are larger for women than for men, Dinkel-
man (2017) shows exactly the opposite. This should come as no surprise, since it is unclear
whether gender bias in household resource allocation is contributing to exacerbate the reper-
cussions of poor early health. A large literature suggests that males are biologically more
vulnerable to poor conditions in utero (Almond and Mazumder, 2011; Eriksson et al., 2010a;
Kraemer, 2000). So, the gender heterogeneities observed in Indonesia and South Africa
may be the combination of gender discrimination and biological effects. An investigation of
gender differences in treatment effects in countries with both non-gender and gender bias
would allow to understand the importance of these mechanisms and some possible policy
prescriptions that may mitigate the detrimental influences of rainfall fluctuations.

The rest of paper is organized as follows. Section 2 provides information on the data,
while Section 3 introduces the empirical strategy. Section 4 presents the main results and

robustness tests. Section 5 explore potential mechanisms of impact. Section 6 concludes.

2 Data

2.1 Weather data

This paper builds a series for temperature and precipitation using data from the Terrestrial
Air Temperature and Terrestrial Precipitation: 1900-2010 Gridded Monthly Time Series,
version 3.02, respectively (Matsuura and Willmott, 2012). This dataset provides worldwide
estimates for weather conditions at the 0.5 x 0.5 degree latitude/longitude grid. Using
an interpolation algorithm, Matsuura and Willmott (2012) compute values for each grid
node from several nearby weather stations around the world. The number of stations in
Colombia is 291, which were established from 1940 and onwards.?> For the period prior to
1940, Matsuura and Willmott’s (2012) interpolation method relies on nearby countries where
stations did exist to generate weather data for every grid-months cell in Colombia. Since
the data prior to 1940 are likely to be more noisy as a result of this imputation procedure,
I focus on cohorts born after this date. To construct a municipality-by-month of weather
panel, I employ the same approach as Rocha and Soares (2015). I begin by computing the

centroid for each of the 1060 municipalities and then locate the four closest nodes to build

information on health outcomes, where the gender heterogeneity effects have be shown to be the strongest
in other settings.

3See https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/
Cat-logo-Nacional-de-Estaciones-del-IDEAM/hp9r-jxuu/data



a monthly series as the weighted average of estimates related to these four nodes. I use the
inverse of the distance to each node as weight. The average number of municipalities per
grid is 2.6 (with standard deviation of 2.9), and the number of grids involved in my sample
is 405.

Following Adhvaryu et al. (2016), I define “normal rainfall” for a given month if rainfall
fell within one standard deviation of historical mean for that calendar month within munic-
ipality. Since I am not comparing municipalities, the “normal” rainfall measure should not
be taken in an absolute sense. These are simply normal rainfall months for each municipality
within the given period. Both the historical mean and standard deviation are calculated for
each municipality and calendar month over the 1900-2010 period. The results are extremely
similar when I instead consider the 1942-2010 period. I then measure prenatal exposure as
the fraction of normal rainfall months occurring in the 9 months before birth. For example,
if an individual was born in December, then prenatal exposure to normal rainfall is com-
puted as the share of normal rainfall months between April and December. While the focus
is on normal rainfall conditions in utero, I also use specifications that separate floods and
droughts. Flood and drought shocks are defined as + 1 standard deviations with respect to

the historical monthly mean of each municipality.

2.2 Census data

This paper uses microdata from the 2005 Colombia Census, the most recent full population
census available. T use a randomly drawn sample available through the Integrated Public Use
Microdata Series (IPUMS), a project to harmonize the coding census from several countries
(Ruggles and Sobek, 1997; Sobek et al., 2012). Importantly for my analysis, the Census asks
for municipality and exact date of birth.* This information allows me to match individuals
with weather conditions of the municipality where they were born to identify the prevailing
rainfall conditions in utero. My analysis sample consists of adults aged 25-65 at the time of
the interview in 2005 (cohorts born between 1942 and 1981).

The Census provides information on basic socio-economic and demographic characteris-
tics. I consider several adult outcomes. First, I explore years of schooling and an indicator
for illiteracy. Since young individuals are excluded from the analysis, these measures are
likely to capture completed schooling. Second, I examine an indicator for having any serious
disability and the number of disabilities as measures of health human capital. Individuals
who reported having any disability are asked to provide information on the type of disability,

so I also construct indicators for individual disability types. These include vision, hearing

4The 2005 Census is the only Colombian Census with information on month and year of birth.



or speech, mental and physical disabilities. These disability measures have been widely used
in the literature linking early shocks and later life outcomes (Almond, 2006; Almond and
Mazumder, 2011; Lin and Liu, 2014). Unfortunately, the 2005 Census does not provide in-
formation on income. Hence, I use an indicator for employment status as a proxy for labor
market success.

The expanded sample consists of 18,240,846 individuals. I drop observations with missing
data for any of the outcomes of interest. This restriction results in dropping about 0.004
percent of the sample. I also exclude individuals born in the five main capitals of the
country because these are very large urban centers where the mechanisms of impact should
not be so relevant.’ The resulting expanded sample consists of 15,049,738 individuals. Since
the analysis exploits the municipality-by-month-by-year variation in rainfall conditions, I
collapse the data into municipality-of-birth x month-of-birth x year-of-birth - cells and use
the conditional means as dependent variables. In the regressions, I weight the observations
by the cell size to adjust for precision with which the cell means are estimated. To explore
potential heterogeneity in the treatment effects, I collapse these data separately for male and
females. Estimates based on this type of group-means data are asymptotically equivalent to
the ones derived from the micro-data counterpart (Donald and Lang, 2007), but the use of
group-means data eases the computational burden.

In the original IPUMS sample, municipalities with population less than 20,000 are “re-
gionalized” (combined) with neighboring municipalities within the same department to cre-
ate geographical units with populations greater than 20,000. Under this definition, the total
number of geographical units or simply municipalities in my sample is 524. To match in-
dividuals with weather data, I first collapse the weather dataset, which was constructed as
described in previous section, into the broader definition of municipality used in the IPUMS
sample. Some municipalities with population less than 20,000 within a same geographical
unit may have different grid points. To cluster the standard errors in the empirical analysis,
I create new “grid” codes by grouping municipalities with common grid points together into
a new group.® For ease of exposition, I refer to these new groups simply as grids. The

number of grids in the census-rainfall analysis is 216.

®Specifically, I exclude individuals born in either Bogot4, Medellin, Cali, Barranquilla or Cartagena.
These municipalities have been historically the five main cities of Colombia in terms of population. While
this sample restriction does not have large impacts on point estimates, it does improve the precision with
which the parameters of interest are estimated.

6As an illustration, consider four municipalities, A, B, C, and D. A, B and D consist of one single
municipality with population greater than 20,000. C consists of two neighboring municipalities, each of
which has a population less than 20,000. Now suppose that A, B, and one of the municipalities in C have
the same grid point code. In addition, suppose that D and the other municipality in C have the same grid
point. In this case, I define A, B, C and D as being part of a same cluster.



Table 1 shows descriptive statistics for the outcomes of interest. About 6 percent of
individuals have at least a disability and the average number of disabilities is 0.08. The
most common disability in the data is that related to vision. The fraction of individuals
suffering from this condition is 3 percent. By contrast, 1 percent of individuals report a
serious mental disability. While the prevalence of some disability types is relatively low, I
show below that there is sufficient variation across cohorts and birthplace for identification.
The mean schooling level is 7.95. About 7 percent of individuals do not know how to read or
write, and 58 percent of people have a job. On average, individuals spend 69 percent of their
prenatal period in normal rainfall conditions, with a standard deviation of 0.18. This figure

is similar across different trimesters, but the standard deviation increases by 60 percent.

2.3 Other data

To explore potential mechanisms, I use a rich set of municipality-specific historical data. In
particular, I use data on number of residents, rural population rate, and per capita income
from the 1973 Census. I use the percentage of the population residing in rural areas as a
proxy for the fraction of population depending on farming and related agricultural activities
for their livelihoods. T also obtain data on malaria ecology from Bleakley (2010). I use these
variables to evaluate the degree to which these aggregate factors magnify or dampen the
baseline effects of prenatal rainfall shocks.

I also use data from the Colombia Demographic Health Survey (DHS) to study whether
prenatal rainfall shocks affect postnatal investments. The DHS is a nationally representative
survey of women ages 15-49 and contains detailed information on early investments for all
children under five. I use all the waves (1986, 1990, 1995, 2000, 2004-05, 2009-10) of the DHS
and pool them into one dataset. The inputs I examine are vaccination and breastfeeding.
Vaccinations have been shown to be effective in preventing ill health and mortality. Given
the limited access to medical treatment in developing countries, vaccinations become an
important health inputs. Likewise, breastfeeding plays a central role in nutrition, especially
in environments characterized by unsafe drinking water and limited supply of food.” T also
exploit information about date of birth and date of death (if deceased) to explore the role
of selective mortality. Unlike vaccination and breastfeeding, death histories are recorded for
all births linked to a woman. However, since these death histories are based on retrospective
information, I focus on births that occurred less than ten years prior to the date of the
survey, closely following Baird et al. (2011). Figure 1 shows the birth years where the DHS

and Census samples cover roughly the same cohorts.

TA large body of work has documented that breastfeeding is predictive of later cognitive outcomes (see,
for example, Del Bono et al. (2012)).



The DHS provides information on the exact date of birth, but not on the municipality
of birth. Therefore, I match individuals with rainfall conditions using the municipality of
residence and date of birth. One concern with using the municipality of residence rather than
that of birth is measurement error, which is likely to induce a bias towards zero in estimates
of the effects of prenatal rainfall shocks. To address this issue, I restrict the analysis sample
to children in families that have been living in the current municipality for a greater time
than child’s age. These children represent about 83 and 78 percent of the full investment
and mortality samples, respectively. As in the census sample, I exclude children in the five
main capitals of the country. After these restrictions, the investment and mortality samples
consist of about 30,000 and 78,000 children, respectively. Descriptive statistics for these
samples are presented in Appendix Table A.1

2.4 Variation in rainfall shocks and outcomes

Because the statistical approach of this study relies on within-municipality variation, I con-
firm that there is in fact substantial within-municipality variability in the data for identi-
fication. Figure 2 plots the frequency with which normal rainfall months occur over time
and space. It reveals that the incidence of normal rainfall conditions varies sharply across
municipalities within a given month. Episodes of normal rainfall months occur, on average,
in 67 percent of the Colombian municipalities. Yet, there are periods with pervasive rainfall
shocks, with less than 30 percent of municipalities experiencing normal rainfall conditions.

To evaluate the within-municipality variability in the data more formally, I regress the
exposure measure for a cell on a full set of municipality fixed effects and month-by-year fixed
effects. The residual variation in this regression is a direct measure of within-municipality
variability. An R-squared far from 1 is counted as evidence of substantial within-municipality
variation. I find that about 80 percent of the total variation in prenatal rainfall exposure
cannot be explained by this set of fixed effects. When I account for municipality-specific
linear time trends in addition, I find still substantial within-municipality variation, with 68
percent of the variation due to within-municipality differences.

I also evaluate the within-municipality variability in the main outcomes of interest. Mu-
nicipality and time fixed effects cannot explain 70 percent of the variation in years in school-
ing, and this hardly changes when municipality-specific time trends are accounted for. I also
find that a substantial portion of the total variation in employment status is due to within-
municipality differences, about 80 percent. After controlling for municipality-specific linear
time trends, and fixed effects for municipality-of-birth and month-of-birth x year-of-birth,

between 88 and 95 percent of the variation in disability outcomes remains unexplained. In



summary, this analysis reveals that there is meaningful variation in the data for identification.

3 Empirical Strategy

To measure the relationship between prenatal rainfall conditions and later-life outcomes, I

use the following specification:

Outcomejms = @ + BRjmt + VZjme + 0T rend;, x M,

(1)
+ 10+ tnt + Ejme

for cohorts born in municipality j, month m and year t. Outcome is the dependent variable
of interest, either a health, educational or employment outcome. R is the fraction of normal
rainfall months during the 9 months prior to birth. The covariates Z include a set of prede-
termined individual characteristics, such as sex and race. In all specifications, I control for
municipality-specific linear time trends (Trendy, x M;) to account for factors changing over
time that might affect the outcomes of interest.

The models include municipality-of-birth fixed effects (7;), which absorb any unobserv-
able time-invariant determinants of adult outcomes, including initial conditions, geography,
and area-specific risks of diseases. The set of month-of-birth x year-of-birth fixed effects
() controls for common time trends such as seasonal fluctuation in later outcomes, macroe-
conomic conditions and common national policies. Finally, £, is the error term. All the
models use robust standard errors clustered at the grid level. These standard errors therefore
allow for arbitrary correlation in residuals across municipalities within a grid and for serial
correlation at the grid or municipality level.

The coefficient [ measures the effects of prenatal exposure to rainfall on the adult out-
comes of interest. My quasi-experimental design rests on the assumption that the occurrence
of extreme rainfall events is uncorrelated with omitted determinants of later-life outcomes.
This assumption is plausible insofar as parents are unlikely to anticipate precisely a rainfall
shock at a given moment in time and place. By conditioning on the full set of municipal-
ity and time fixed effects and local-specific time trends, the analysis uses arguably random
fluctuations in rainfall from municipality-specific deviations in long-term rainfall after ac-
counting for all seasonal factors and common shocks to all municipalities.

Yet, I address several identification issues that may arise when following this statistical
framework. First, one may be concerned if more-educated and higher quality parents are
more likely to postpone fertility when exposed to extreme rainfall shocks around time of

conception. My focus on shocks occurring in the 9 months prior to birth should mitigate
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concerns related to selective fertility. However, I also explore specifications that include
exposure to rainfall conditions in the 10-12, 13-15 and 16-18 months before birth to evaluate
the degree to which selective fertility may be important in practice. The results from these
models suggest little evidence that it is a major problem in my setting.

Second, a bias may arise if different types of women are likely to migrate away from areas
affected by adverse rainfall conditions. It seems implausible that this is the case given that I
focus on temporary variations in rainfall and by the low migration rates of pregnant women.
To evaluate this issue empirically, I limit the census sample to children and construct an
outcome that takes the value of 1 if the child was born in the municipality where he/she
was interviewed in 2005. I then test whether rainfall shocks affect this outcome. If women
are likely to migrate to different municipalities in response to rainfall shocks, one would
expect to see statistically significant estimates in these regressions. I perform this analysis
at the individual level and the regressions include controls for month-of-birth x year-of-birth
fixed effects, municipality-of-birth fixed effects, and child’s sex and race. To examine the
possibility of heterogeneous responses across regions, I run the regressions separately for
urban and rural areas. Consistent with the view that migration is unlikely to be related to
temporary variations in rainfall, I find statistically insignificant estimates in these regressions
(see Appendix Table A.14). This reduces concerns on migration.

Third, as the sample is based on surviving (and presumably higher quality) individuals,
a potential issue is selective mortality, either during pregnancy or in early infancy. While
most miscarriage happens in the first trimester, there is possibility of late miscarriage and
stillbirth. If rainfall exposure during pregnancy affects this culling process, any estimated
impacts after birth would need to be a combination of selection and a direct treatment effect.
However, any bias from using this selected sample most likely will bias the estimates towards
zero. If so, my estimates should be taken to be lower bound of the true effect, and large
impacts would even become more telling. Therefore, I am less concerned about bias from

selective mortality. I return to this discussion below.

4 Results

4.1 Main findings

I begin by examining graphically the relationship between prenatal rainfall and the outcomes
of interest. 1 estimate local linear regressions of adult outcomes on fraction prenatal in
normal rainfall, conditional on municipality-specific time trends, municipality-of-birth and

year-of-birth x month-of-birth fixed effects. Figures 3-4 plot the respective estimates and 95
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percent confidence intervals. Figure 3, panels (a)-(b) suggest that prenatal normal rainfall
is negatively associated with the probability of reporting any serious disability and the
number of disabilities, but the estimates tend to be imprecisely estimated. The same pattern
is observed for mental and physical disabilities. There not clear patterns for vision and
hearing /speech disabilities. Figure 4 indicates that individuals who spent more time of their
prenatal period in normal rainfall conditions have more years of schooling, display lower
likelihood of being illiterate, and are more likely to work in the labor market.

I formally present the regression results in Table 2. All estimates are based on the full
specification that adjusts for municipality-of-birth fixed effects, month-of-birth x year-of-
birth fixed effects, municipality-specific time trends and the set of predetermined individual
characteristics. Panel (a) uses the fraction of normal rainfall during the 9 months prior to
birth as the key independent variable. Panel (b) shows the results from a specification that
uses separate exposure measures for each trimester.

Columns (1)-(2) look at an indicator for any serious disability and the number of disabil-
ities, respectively. The coefficients are negative as one would expect, but very imprecisely
estimated. Still, these aggregate measures of disabilities may mask important form of hetero-
geneities across disability types. Columns (3)-(6) explore the effects of early rainfall shocks
on disability types. I find evidence that greater exposure to normal rainfall in utero is sig-
nificantly associated with lower incidence of mental and physical disabilities. Column (3)
shows that a standard deviation increase in normal rainfall during the first trimester de-
creases mental disability rates by 0.029 percentage points. Relative to a mean of 1 percent,
this represents a 2.9-percent reduction in the prevalence of mental disability. Column (4)
suggests that for one standard deviation of normal rainfall in the 9 months before birth, the
rate of physician disability declines by 0.046 percentage points, or 2.34-percent relative to
the mean. When I look at separate exposure measures for each trimester, I find that the
effect of in utero exposure to normal rainfall on physical disability occurs from exposure
during the second trimester - although this effect is imprecisely estimated and thus is only
statistically significant at the 16 percent level.

To better place the disability results in perspective, I compare these estimated effects to
the differences in the disability outcomes between less- and more-educated individuals. This
seems to be a relevant comparison given the well-established striking correlation between
health and education.® In my sample, a standard deviation increase in years of education
is associated with a decrease of 0.48 percentage points in the probability of reporting any

serious mental disability.? Relative to this difference, the estimated effect of exposure to

8See Adams et al. (2003) for a good summary of this literature
9This estimate is obtained by regressing mental disability on years of schooling, and controls for age,

12



normal rainfall during the first trimester on mental disability is about 6 percent.

Column (7) investigates the relationship between prenatal rainfall conditions and years
of schooling. When I use separate exposure measures for each trimester, I find evidence that
greater normal rainfall during the first trimester leads to more years of schooling, with an
estimate of 0.077 (standard error=0.026). This implies that for one standard deviation of
normal rainfall during the first trimester, years of schooling increases by 0.023, or 0.28-percent
relative to the mean. For comparison, Duflo (2001) finds that a large school construction
program led to an increase of 0.15 years of education in Indonesia. Column (8) reveals that
exposure to normal rainfall in utero has significant effects on illiteracy. This effect also occurs
from exposure during the first trimester. A standard deviation increase in normal rainfall
during the first trimester is associated with a decline in the likelihood of being illiterate
of about 0.10 percentage points. This represents a decline of 1.6 percent relative to the
mean illiteracy rate. Finally, column (9) shows robust evidence that greater exposure to
normal rainfall in utero leads to an increase in the probability of working. This relationship
is entirely driven by exposure to normal rainfall in the third trimester. The estimated
coefficient implies that a standard deviation increase in normal rainfall during the third
period increases employment probability by 0.30 percentage points.

Table 3, panel (a) considers separately the effects of prenatal floods and droughts on later
life outcomes. I find that a standard deviation increase in prenatal floods is associated with
a 3.2-percent increase in mental disability rates, a 0.21-percent decline in years of schooling,
a 1.7-percent increase in illiteracy rates and a 0.36-percent reduction in the likelihood of
working. The corresponding effects of droughts tend to be smaller and statistically insignif-
icant. For example, the effect of exposure to floods in the 9 months before birth on mental
disability is about 11 times larger than that of exposure to droughts. Panel (b) examines the
effects of droughts and floods separately in each trimester. The results suggest that greater
exposure to floods during the first trimester leads to higher mental disability rates, fewer
years of schooling and increased illiteracy probabilities. The effects of floods on employment
are driven by exposure during the second and third trimesters. I also find evidence that
higher exposure to droughts during the first trimester leads to an increase in the probability
of reporting any serious hearing or speech disability, and to poorer educational outcomes.

Overall, the results of this section suggest that prenatal rainfall has significant effects
on mental disability, years of schooling, illiteracy and employment. In general, these results
are largely driven by excessive precipitation. In addition, my findings suggest that the
effects of adverse rainfall shocks on health and educational outcomes are stronger in the

first trimester. This is consistent with a vast medical literature indicating that the first

sex, and race.
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trimester of pregnancy is a key period where the fetus develops most of its organs and thus
is most vulnerable to poor environmental conditions (Glynn et al., 2001; Lee et al., 2003;
Mulder et al., 2002). Some of these studies also emphasize that the gestational environment
during early stages of pregnancy can impact fetal brain structure and produce long-lasting
or permanent consequences on cognition (Altshuler et al., 2003). This suggests that the
negative effects of exposure to adverse rainfall shocks on education may be not only a result
of health channels, but also a direct consequence of cognition deficits.

Differently from mental disability and educational outcomes, I find that the timing of the
employment effects is the third trimester. A possible interpretation of this finding is that this
relationship works through a different mechanism. Previous studies in epidemiology have
shown that exposure to stressful events in the third trimester of pregnancy leads to poorer
emotional and personality outcomes later in life (O’connor et al., 2002; Brown et al., 2000,
1995), and a growing literature in economics documents the importance of non-cognitive
skills in the labor market (Heckman et al., 2006; Borghans et al., 2008). Thus, a possible
interpretation of my findings may be that the employment effects of prenatal rainfall work
primarily through non-cognitive skills. This interpretation is supported by the evidence in
Santos (2016) that the negative short-term effects of excessive precipitation in Colombia on
socio-emotional outcomes are concentrated in the third trimester of gestation. Of course,
this is a very suggestive interpretation, since I do not have any measure of non-cognitive

skills among adults to draw strong conclusions.

4.2 Selective mortality

Since my analysis is based on surviving individuals, a concern with my findings is selective
mortality. If there is a meaningful mortality effect of prenatal rainfall shocks, then who
survives is subject to selection, and this selection varies exactly with the exposure measure.
If there is a hypothetical underlying distribution of health, and those in the left tail die (with
the threshold shifting with the exposure measure), it would mean that those who survive
under worse circumstances actually look better later in life (for mechanical reasons due to
this selection process). As discussed above, this would bias the estimates of the effect of
rainfall on later life outcomes towards zero.

Appendix Table A.2 explores the degree to which selective mortality may be important
in practice. Panel (a) examines the effects of prenatal rainfall on cohort size (in logarithms).
The results show evidence that greater exposure to floods decreases cohort size. With cohort
size interpreted as cumulative survival, this result indicates some evidence that exposure to

adverse rainfall shocks in utero is associated with increases in mortality. While significant,
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the estimated effect is not substantially large in magnitude. The point estimate of -0.031
implies that cohort size decreases by 0.56 percent for a standard deviation increase in floods
in the 9 months before birth. When I examine the effects separately for younger and older
cohorts, I find larger point estimates for the former group, but the coefficients are now
imprecisely estimated and thus statistically insignificant.

Panels (b)-(c) examine the effects of prenatal rainfall on cohort size separately for males
and females. One may observe stronger effects for men if male fetuses are more vulnerable to
detrimental influences in utero than female fetuses Eriksson et al. (2010b); Kraemer (2000).
While the results in the table provide evidence highly consistent with this hypothesis, they
do not indicate substantial cohort size effects. A standard deviation increase in prenatal
floods reduces the number of live males only by 0.7 percent. The corresponding decline in
the number of live females is about 0.3 percent and statistically indistinguishable from zero.
I continue to find limited evidence of a meaningful cohort size effect when I simultaneously
stratify the sample according to sex and age.

To further check for selective mortality, I explore the effects of prenatal shocks on mortal-
ity using individual mortality records in the DHS. Specifically, I estimate linear probability
models where the dependent variable is either an indicator for neonatal mortality or infant
mortality using data at the child level. The results are presented Appendix Table A.3. I find
evidence that is highly consistent with the cohort size results discussed above. The results
in panel (a), which consider the full sample, reveal that greater exposure to floods in utero
is associated with increased rates of neonatal mortality. The estimated coefficient suggests
that a standard deviation increase in prenatal floods causes an increase of 0.16 percentage
points in the likelihood of dying in the first month of life. Panels (b)-(c) document that
this effect is larger for males than for females. The corresponding increase in the probability
of dying in the first month is 0.25 percentage points for males, while it is 0.09 percentage
points and statistically insignificant for females. Finally, Appendix Table A.4 shows limited
evidence of an interaction between rainfall shocks and mother’s observable characteristics.

While these results provide suggestive evidence that adverse rainfall shocks in utero
are associated with increases in mortality rates, the estimated effects are not substantial.
Therefore, even if extreme rainfall conditions killed off those who would have had better later-
life outcomes, this channel is unlikely to be of the right order of magnitude to explain the
results of the present study. For example, suppose that one standard deviation of prenatal
floods killed off 0.5 percent of children (as suggested by the cohort results in Appendix Table
A.2), and this non-surviving group would have completed 10 percent years of schooling
more than the rest of population. Then, prenatal exposure to floods would generate a 0.05

percent increase in years of schooling. Even if floods killed 1 percent of children, and these
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non-survivors would have completed 10 percent years of schooling more than the rest of

population, this would still only generate an effect of 0.1 percent on years of schooling.

4.3 Additional analyses and robustness checks

I conduct a number of other specification checks to test the robustness of the main results. As
mentioned above, one could be concerned if different parents change fertility decisions when
exposed to adverse rainfall shocks around conception time. My focus on the 9 months before
birth should reduce concerns regarding selective fertility. However, I can extend the baseline
specification and include exposure measures several trimesters before pregnancy to explore
the extent to which selective fertility may be important in practice. If it is a major issue,
one would expect to see statistically significant coefficients on these additional exposure
measures. As can be seen from Table 4, including these variables leaves the estimates of
interest unchanged. Moreover, there is no evidence that exposure to rainfall shocks prior to
pregnancy is correlated with adult outcomes. This finding suggests that selective fertility is
unlikely to be important in my setting.

In the main results, I use standard errors clustered at the grid level to account for correla-
tion across municipalities within a grid and for serial correlation at the grid or municipality
level. A possible disadvantage of these standard errors is that they do not allow for cor-
relation across municipalities in different grid points, which may be important if rainfall
shocks are spatially correlated. To check the robustness of my main findings to this issue,
I compute standard errors that are adjusted for arbitrary spatial and serial correlation in
the data using Conley’s (1999) method. This method creates a spatial weighted covariance
matrix where the weights start at 1 and decline linearly to 0 when a prespecified cutoff is
reached (Conley, 1999). I compute Conley standard errors at the cutoff distances of 100 and
500 kilometers (Appendix Table A.5). Comparing the Conley (1999) standard errors to the
robust errors clustered by grid level suggests that spatial correlation is not a major issue and
the findings discussed above remain essentially the same with the Conley standard errors. In
fact, the Conley standard errors are generally smaller than the baseline in the case of years
of schooling. Now, the estimated effect of exposure to normal rainfall in the 9 months before
birth on years of education is statistically significant at the 5 percent level.

Colombia has experienced a war between governments, paramilitary groups, crime syn-
dicates and left-wing guerrillas that began in the mid-1960s. A work by Dube and Vargas
(2013) shows that income shocks significantly influence the intensity of this conflict, so a
natural question is to what extent the estimates of rainfall shocks could be affected by pre-

natal exposure to violence. This is a relevant point given that my sample includes some
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individuals who were potentially exposed to the conflict. To explore this question, I create
conflict intensity measures using data from Dube and Vargas (2013) and include interactions
between such measures and linear time trends in the main regressions.'® As can be seen from
Appendix Tables A.6-A.7, including these additional controls has no effect on the estimated
coefficients of interest.

Appendix Table A.8 considers alternative measures of rainfall shocks. Panel (a) defines
early rainfall shocks by the deviation of rainfall 9 months before birth from the average
historical rainfall in each municipality. More specifically, the variable is the natural log of
prenatal rainfall minus the natural log of mean rainfall in the given municipality. This is the
measure used by Maccini and Yang (2009). When I follow this specification, I find estimates
that are statistically significant only in some cases. Indeed, I find that higher rainfall relative
to the normal local rainfall is associated with increased rates of mental disability and fewer
years of schooling, but there is no evidence of significant effects for the rest of outcomes. This
weaker evidence is perhaps unsurprising given the evidence that exposure to both extreme
positive and negative rainfall shocks lead to poorer adult outcomes.

Panel (b) defines a positive (negative) rainfall shock for a given month if rainfall was above
the 90th (below the 10th) percentile of the distribution for that calendar month within the
municipality. The fractions of prenatal drought and excess rainfall are computed using these
definitions of extreme drought and wet months. I find coefficients that are generally very
imprecisely estimated under these measures.

Panel (c) defines extreme droughts and floods based on the Spatial Precipitation Index
(SPI). The SPI relaxes the assumption of normality and fits a gamma distribution to rainfall
data before constructing measures of the deviation of rainfall from average historical rainfall
in a given municipality. Having computed drought and flood months based on the SPI score,
the fraction of early exposure to either extreme droughts or floods is calculated using the
same logic as in the baseline measure. Using exposure measures based on the SPI leads to
results that are in general consistent with the baseline findings, although the coefficients of
interest are also very imprecisely estimated.

The main regressions have focused on the effects of prenatal rainfall on adult outcomes.
A natural extension of my is analysis is to evaluate whether postnatal exposure also affects
long-run outcomes. While the prenatal programming theory highlights that the nine months
of gestation is a particularly important period of human development (Barker, 1997), some
studies suggest that the first year of life may be also important (Hoddinott and Kinsey,
2001; Glewwe and King, 2001). Because I have information on the exact date of birth, I can

0This strategy is similar to that of Bleakley (2010), who tries to control for conflict intensity in his
analysis of the long-term impacts of malaria eradication in Colombia.
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examine whether and the extent to which exposure to normal rainfall during the first year
of life affects adult outcomes. The results of this exercise are presented in Table 5. They
show that greater exposure to normal rainfall during the first year of life is associated with
poorer educational outcomes. A standard deviation increase in normal rainfall during the
first year is associated with a 0.19-percent increase in years of education and a 1.4-percent
decline in illiteracy. I find no evidence that postnatal rainfall affects the rest of outcomes.
Previous studies have documented seasonal fluctuations in adult outcomes according to
the month of birth that may be driven by factors other than rainfall variations (Buckles and
Hungerman, 2013). Although I control for month-of-birth x year-of-birth fixed effects in
all regressions, one could be even concerned if there is regional-specific seasonal variation in
adult outcomes spuriously correlated with variation in rainfall shocks. In Appendix Tables
A.9-A.10, T examine this issue by estimating models that control for a full set of municipality-
of-birth x month-of-birth fixed effects. Point estimates are virtually identical to the ones

derived from the baseline specification, casting doubt on this additional source of bias.

4.4 Gender heterogeneities

I now investigate the gender specificity of the main results. Table 6 shows the results from
running regressions separately for males and females. The results for mental disability in-
dicate larger impacts for males than for females. Men who spent 29 percent of their first
trimester exposed to normal rainfall conditions are 0.06 percentage points less likely to report
any mental disability. Relative to mean rate of 0.1, this represents a 6-percent reduction. In
addition, I now find a statistically significant (at the 5 percent level) effect of exposure to
normal rainfall in the second trimester on mental disability among males, although the effect
is smaller magnitude compared to that in the first trimester. The results also suggest that
greater prenatal exposure to normal rainfall is associated with a decline in the likelihood
of reporting any serious hearing or speech disabilities among males. Conversely, the corre-
sponding treatment effects on these outcomes among females are smaller in magnitude and
statistically indistinguishable from zero. The differences in point estimates are striking. For
instance, the treatment effect of exposure to normal rainfall in the first trimester on mental
disability is at least 20 times larger (in absolute value) for males than for females.

There are also striking differences in the the effects of prenatal rainfall on educational
outcomes between males and females. The estimated effect of exposure during the fist
trimester on years of schooling is about 3 times larger for men than for women. Now, a
standard deviation increase in normal rainfall in the first trimester implies 0.035 more years of

schooling among males. The corresponding increase in years of schooling for females is about
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0.011 and statistically insignificant. In the case of literacy, the estimated effect of normal
rainfall in the first trimester is about 2 times larger for males than for females. A standard
deviation increase in normal rainfall during the first trimester generates a 2.2-percent decline
in illiteracy rate among men, while the corresponding estimated effect among women is 1
percent and statistically significant. Finally, I find that the effect of prenatal rainfall in the
third trimester on employment is larger for females than for males. The results suggest that
females who spent 29 percent of the third trimester in normal rainfall conditions are 0.44
percentage points more likely to work in the labor market. The corresponding estimate for
males implies an increase of 0.15 percentage points in the probability of working, which is
about 3 times smaller than that for females.

Overall, the results suggest strong gender heterogeneities. Taken in their entirety, the
results reveal larger treatment effects for males than for females when considering health and
educational outcomes. One might think that differential selective mortality between women
and men drives the observed differences. If the culling process is much more pronounced for
women than for men, then this may drive the gender differences in the effects of prenatal
rainfall on these outcomes. However, the evidence suggests that the exact opposite is true. As
shown in section 4.2, greater prenatal exposure to adverse rainfall shocks results in a larger
reduction in the number of live cohorts among males than among females. If anything,
this evidence suggests that the differences in the effects prenatal rainfall shocks on long-run
educational and health outcomes between men and women are likely to be larger than my
estimates show.

These patterns are in general inconsistent with Maccini and Yang (2009), who show larger
effects for females in Indonesia, but are in line with Dinkelman (2017), who find stronger
impacts of droughts for males in South Africa. A major distinction between the setting
that these authors study and mine is that Colombia is a country with not known gender
bias at early ages. Indeed, the sex ratio at birth, which has emerged as an indicator of
sex-discrimination at early ages, is in the normal range 104-107. Thus, it seems implausible
that sex discrimination accounts for the gender differences in the effects I document here.
Rather, my findings are consistent with the literature on fragile males, which suggests that
male fetuses have less ability to produce nutrients in the placenta than female fetuses. This is
supported by studies documenting gender-specific effects of different shocks during pregnancy
(Ross and Desai, 2005).

The results also reveal stronger employment effects among females, which contrasts with
the pattern observed for health and educational outcomes. Comparing employment rates
for men and women in my sample, I find that females have much lower labor supply than

males: 37 percent of women are employed in the labor market, while that figure is about
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78 percent for men. Therefore, the gender differences in employment effects may simply
reflect the much larger scope for improvements in this outcome among women. On the other
hand, this result is also consistent with the notion that the primary mechanisms driving
the employment and education effects are different. As discussed in section 4.1, a potential
candidate behind the relationship between prenatal rainfall shocks and employment is non-
cognitive skill formation. If this is indeed the case, the gender specificity of my results
would imply that this mechanism is more important for females than for males. Consistent
with this hypothesis, a series of studies has found that a number of non-cognitive skills are
more rewarded for females than for males (Semykina and Linz, 2007; Heckman et al., 2006;
Nyhus and Pons,; 2005). Heckman et al. (2006) find a much stronger relationship between
non-cognitive skills and employment for women compared to that of men in the United
States. In the same line, Nyhus and Pons (2005) show that the labor market returns to
personality dimensions such as emotional stability and agreeableness are larger for females
in Netherlands. Semykina and Linz (2007) reach a similar conclusion using data from Russia.

These potential explanations need not be mutually exclusive.

5 Mechanisms

5.1 Heterogeneous treatment effects

In this section, I explore heterogeneity in treatment effects to help understand the possible
mechanisms at play. The literature generally attributes the effects of prenatal rainfall to
agricultural income and diseases. Precipitation is crucial for agricultural productivity, so
extreme fluctuations in rainfall can adversely affect the income of rural families that depend
on agricultural activities. Reduced income in turn may adversely affect living conditions of
pregnant women and thus the quality of the prenatal period. At the same time, infections dis-
eases such as malaria are affected by rainfall shocks. Previous studies have documented that
both excessive precipitation and droughts are associated with malaria epidemics (Gagnon
et al., 2002).1* While plausible, previous studies tend to assume rather than test these mech-
anisms. Understanding the importance of these mechanisms is important for the design of
policy.

To investigate the relative role of agricultural income and disease environment, I regress

the outcomes of interest on interactions of prenatal rainfall with a set of municipality-specific

1A comprehensive discussion of the relationship between rainfall shocks and malaria incidence can be
found in Sta (2013)
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variables. This regression is specified as follows:

Outcomej,: = a + Rt + Z 5kijt X IJ]»€ + Y Zjme + 0T rend;, x M;+
k (2)

1 + Mt + gjmt

A significance of coefficients on interactions (6*) would point to the presence of differences in
the effect of prenatal rainfall on later-life outcomes. If for example one expects agricultural
income to be an important factor underlying the results above, then one should observe
larger impacts among cohorts born in areas with a high fraction of population depending on
agriculture for their living. I use rural population rate in 1973 as a proxy for the proportion
of individuals depending on agricultural income. To examine the importance of the disease
channel, I examine heterogeneities with respect to a measure of malaria risk. Many cohorts
analyzed by this paper were born in a period where malaria had not been eradicated and
was a major cause of morbidity in Colombia. Furthermore, the risk of malaria varies widely
across areas of Colombia, with some regions with very high risk of malaria and others with
low or no incidence. Naturally, there could be other important diseases driving the long-run
effects of prenatal rainfall on adult outcomes and they are likely to be correlated with malaria
incidence. Since limitations of the available data do not allow me to disentangle all possible
infectious disease mechanisms, I interpret any significant interaction with respect to malaria
simply as evidence supporting the existence of a disease channel.

I also examine heterogeneities with respect to income and population size. Because all
these variables are correlated, examining interactions with income and population size is
useful to help understand the relative importance of agricultural income and malaria from
economic development. To better compare the importance of each factor, I standardize each
factor to have mean 0 and standard deviation 1.

As shown in Table 7, the effects of prenatal rainfall shocks tend to be larger among
cohorts born in municipalities with higher risk of malaria. This is especially true when
considering disability outcomes. Differently from the baseline results in Table 2, I now
observe statistically significant effects on the number of disabilities, and the probability
of reporting a serious speech or hearing disability among cohorts born in malarious areas.
In addition, the effects on educational outcomes are stronger that the baseline ones. For
individuals in endemic areas (one standard deviation above the mean of malaria incidence),
a standard deviation increase in normal rainfall causes a 1.2-percent decline in the number
of disabilities, a 4.3-percent reduction in mental disability rates, a 3.4-percent decrease in

speech/hearing disability rates, a 0.42 percent increase in years of education, and a 2.3-
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percent decline in illiteracy rates.'> By contrast, I find no evidence of an interaction between
prenatal rainfall shocks and rural population, suggesting that agricultural income is not the
main channel driving the results. Moreover, when heterogeneities with respect income and
population size are examined, I do not find systematic evidence of a significant interaction.
This suggests that is disease risk, and not only economic development, behind the malaria
results.

To uncover more details on these interactions, I estimate a specification that separates
floods and droughts. This separation may be particularly useful for malaria. The mosquito
that transmits the malaria parasite depends on standing water to survive to adulthood, so
the effects of excessive precipitation may be more important in endemic areas than that of
droughts (Barreca, 2010). Nevertheless, there is also evidence that droughts can favor the
development of malaria epidemics in South America (Gagnon et al., 2002). As shown in
Table 8, there are statistically significant interactions between droughts, floods and malaria
incidence. I find that a standard deviation increase in prenatal droughts in endemic areas
leads to a 2.4-percent increase in mental disability rates, a 3-percent increase in the likelihood
of reporting any physical disability, a 5.8-percent increase in hearing/speech disability inci-
dence, a 0.32-percent decline in years of schooling, and a 1.57-percent increase in illiteracy
rates. Analogously, one standard deviation increase in floods among individuals in endemic
areas causes a 5-percent increase in mental disability rates and a 0.41-percent decline in
years of schooling. Although the interaction between floods and malaria tends to be less
precisely estimated for other outcomes, I find point estimates that are similar or somewhat
larger in magnitude compared to that of the interaction between droughts and malaria. In
particular, I find that greater prenatal floods in endemic areas increases illiteracy rates by
2.4 percent. The results in the table also reveal little evidence of a systematic interaction
between rainfall shocks and other factors across outcomes.

Between 1940 and 1980, Colombia experienced substantial changes. In particular, malaria
was eradicated and the economy shifted from an agricultural and mainly rural economy to a
predominantly urban economy. So it is natural to expect that there will have been changes
in the relationship between early rainfall shocks and adult outcomes. For example, more
individuals living in areas with low malaria risk would imply smaller effects of rainfall shocks
among more recent cohorts if malaria risk is an important mechanism. With this in mind,
I run the regressions separately for cohorts born before and after 1960 (Appendix Table
A11-A.12). A shortcoming of this exercise is that the effects of prenatal rainfall shocks for a
given individual may be increasing throughout life, so different effects across cohorts may be

the result of this mechanism rather than changes in agricultural income or disease risk. But

12These effects are relative to the mean of the outcome of interest.
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since I focus on individuals aged 25-65, which are likely to have completed their schooling,
the “age” effect should be a minor issue for educational outcomes.

Although the coefficients are estimated very imprecisely likely due to reduced sample
sizes, I find a consistent pattern showing smaller effects in magnitude for more recent cohorts
when examining educational outcomes. The treatment effect of normal rainfall in the 9
months prior to birth on years of schooling is about 3.8 times larger for individuals born
before 1960 than for those born after 1960. In the same vein, one standard deviation increase
in normal rainfall reduces the probability of being illiterate by 0.15 percentage points among
individuals born before 1960, while it implies a reduction of only 0.03 percentage points
among individuals born after 1960. The results in Appendix Table A.12, which consider
the effects of prenatal rainfall in each trimester, consistently show larger effects on long-run

educational outcomes among older cohorts.

5.2 Postnatal investments

The long-run effects shown above represent the impacts of rainfall throughout an individ-
ual’s life-cycle, which include parental investments after birth. Existing literature suggests
several pathways through which rainfall shocks may affect parental investments. The income
effects of rainfall shocks may have direct repercussions on the ability of parents to allocate
important resources to their children early after-birth, especially in contexts characterized
by credit constraints and other market imperfections. In this case, postnatal investments
would reinforce the baseline impacts of prenatal rainfall shocks. Alternatively, income shocks
induced by fluctuations in precipitation may affect the opportunity cost of time-intensive in-
vestments. For example, if parents anticipate that returns to agricultural activities are low
due to unfavorable rainfall conditions, they may be more likely to be at home and devote
more time to crucial time-intensive investments, such as traveling to distant facilities for free
health services (Miller and Urdinola, 2010). As a result, investments would contribute to
compensating the initial adverse effects of rainfall shocks on infant health.

Shifts in child endowments at birth due to prenatal rainfall shocks may also affect house-
hold behavior independently of changes in income. A prominent literature both theoretical
and empirical suggests that parents’ investments respond to variations in birth endowments.
An early study by Becker and Tomes (1976) suggests that complementarities in the pro-
duction function of child quality create an incentive for families to devote more resources
in highly endowed children. This implies that parental investments reinforce the long-term
consequences of poor infant health. Conversely, Behrman et al. (1982) argue that parents

are likely to undertake compensatory investments in weaker children because of altruism and
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aversion to inequality. In addition, one could see significant effects of prenatal rainfall on
postnatal investments if sick children get more doctors’ visits (and thus gets vaccinations)
and get more maternal care (perhaps breastfeeding longer). Empirically the evidence on
the relationship between birth endowments and parental investments has been mixed, with
some studies finding evidence for reinforcing investments (Adhvaryu and Nyshadham, 2016;
Datar et al., 2010) and others showing the opposite (Del Bono et al., 2012; Bharadwaj et al.,
2013). Hence, it is difficult to infer how prenatal rainfall shocks affect investments through
the child endowments channel.

I then use data from the DHS to understand the relationship between prenatal rainfall
shocks and postnatal investments, driven either by an income effect, parents investing more
or less in weaker children, or any other channel. Since the cohorts in the DHS are not the
same as in the main results, this analysis should be view as an exploratory exercise. Using

data at the child-level, I estimate the following specification:
Investmentjme = & + BRijimt + 7V Zjme + 0T rendy, X M; + 0; + fimt + Eijme (3)

for the child 7 born in municipality j, month m, and year t. R is the fraction of normal
rainfall months during the 9 months prior to birth. The vector Z contains basic demo-
graphic characteristics, including mother’s age at first birth, indicators for mother’s educa-
tion level, an indicator for marital status (married), an indicator for child’s sex, and birth
order. The regressions control for municipality-specific linear time trends (T'rendy, x M,),
municipality-of-birth fixed effects (7;), and month-of-birth x year-of-birth fixed effects (ft:).
In all regressions, I also control for average temperature during the 9 months before birth.
Standard errors are clustered at the grid level in all regressions. I also present results from
a specification that separates the effects of rainfall in each trimester.

The results are reported in Table 9. Column (1) shows that children with greater exposure
to normal rainfall conditions in utero are less likely to have ever been breastfed. Columns
(2)-(3) look at the duration of breastfeeding by using linear and log-linear regressions.! T
find evidence that greater exposure to normal rainfall in utero is associated with a decline in
the duration of breastfeeding. Column (4) uses a dummy indicating whether the child was
breastfed for more than six months, the minimum length recommended by the World Health
Organization (WHO). Using this breastfeeding measure, I find that exposure to normal
rainfall during the first and second trimester reduces the likelihood of being breastfed.

In the next set of columns, I look at BCG (Bacillus Calmette-Guerin), polio, DPT (diph-

theria, pertussis and tetanus combination) and measles vaccinations. I construct dummies

13Tn the log-linear regressions, I use log(duration of breastfeeding + 1) as dependent variable.
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indicating whether the child has all the recommended vaccination doses for specific dis-
eases.'* The results indicate that greater exposure to normal rainfall conditions in the first
trimester reduces the probability of being vaccinated for these diseases. Appendix Table
A.13 shows estimates of the effects of prenatal rainfall for each of the three DPT and polio
vaccines separately. I find stronger effects on receiving the third doses compared to that on
receiving the first and second doses.

Overall, I find evidence that prenatal exposure to normal rainfall leads to less health
investments in early-life. This indicates that postnatal investments may be contributing
in mitigating the long-run adverse consequences of poor neonatal endowments. The fact
that the effects on earlier investments such as first doses of polio and DPT vaccinations
are less strong suggests that parents engage in compensatory investments once child quality
is better known. In addition, the timing of the impacts on vaccination contrast with the
income or opportunity cost mechanisms in driving the investments effects, since they would
imply significant impacts on early postnatal investments. While it is beyond the scope of
this paper understanding the nature of these investment effects and it is impossible to rule
out alternative histories, the evidence suggests that parental responses to birth endowments
may be an important source of these findings. Independently of the specific mechanism
generating these investment effects, the results of this section suggest that the reduced-form
impacts of early rainfall shocks on adult outcomes are likely to represent lower bounds of

biological effects.

6 Conclusion

The health and other consequences of extreme weather events are an increasingly salient issue
in the public debate about the costs and benefits of climate change mitigation policies. Sev-
eral scholars highlight that more heavy rainfall and droughts will have serious repercussions
for children’s development in poorer and more fragile states. This paper uses Colombian data
to gain new insights into the effects of early rainfall shocks on later-life welfare. The find-
ings suggest that prenatal exposure to adverse rainfall conditions results in poorer long-run
health, educational, and employment outcomes. The effects of rainfall shocks on health and
educational outcomes tend be larger when exposure occurs during the first trimester, which
is consistent with medical literature emphasizing that the gestational environment during

early stages of pregnancy is particularly important for future cognition and health. Con-

1In Colombia, the recommended vaccination schedule is: BCG within weeks after birth, polio at two
months, four months, and six months; DPT at two months, four months, and six months; measles at 11
months.
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versely, the results indicate that the impact of prenatal rainfall shocks on employment are
concentrated in the third trimester. This finding indicates that rainfall affects this outcome
primarily through a mechanism other than education. Previous evidence from the medical
literature and recent work in economics suggest that non-cognitive skills may be a candidate
channel of impact, but more work is required to draw strong conclusions.

The results of this study also reveal substantial heterogeneities between men and women.
Remarkably, I find that the effects on health and educational outcomes are larger for males
than for females. This finding contrasts with the seminal work of Maccini and Yang (2009),
but it is in line with the recent contribution of Dinkelman (2017). A distinctive feature
of the present study is its focus on a country with no known son preferences, so gender
bias in household resource allocation is unlikely to drive the differences observed in the
treatment effects. Rather, my findings are consistent with the literature on “fragile males”
that postulates a more central role of in utero conditions for male. In contrast, I find larger
effects on employment for females than for males, consistent with Maccini and Yang (2009).
This finding is consistent with the notion of a different mechanism affecting employment,
but it may also reflect the much larger scope for improvements in this outcome for females
given the relatively low employment rates among this group.

To gain insights into the mechanisms underlying these results, I explore heterogeneities
in treatment effects across different groups. The results are substantially larger among
individuals born in malarious areas, consistent with the notion that exposure to infectious
and parasitic diseases may be an important mechanism. Contrary to what many observers
have argued, I find limited evidence supporting the agricultural income channel. Indeed,
the effects of rainfall shocks are the same between individuals born in areas with low and
high fraction of population depending on agricultural and farming activities. While perhaps
surprising, this finding is line with suggestive evidence in Rocha and Soares (2015) that
agricultural income is not the major driver of the relationship between in utero rainfall
shocks and infant health in Brazil. Future studies performing more subgroup analysis in
different settings would provide a more definitive understanding of the importance of the

agricultural income channel.
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Figure 1: Distribution of census and DHS birth years
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(a) Census and DHS mortality sample
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(b) Census and DHS investment sample

Notes. Figure 1 shows the birth years where the DHS and Census samples cover roughly the same
cohorts.

Figure 2: Normal rainfall across time and place
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Notes. Figure 2 presents the percentage of municipalities with normal rainfall conditions in each month.
Author’s calculation based on data from the Terrestrial Air Temperature and Terrestrial Precipitation:
1900-2010 Gridded Monthly Time Series, Version 3.02.
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Figure 3: Effects of prenatal rainfall on disabilities
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Notes. Local regressions of outcomes on fraction prenatal in normal rainfall. To produce these plots,
the outcomes and the prenatal rainfall exposure are both regressed on all other explanatory variables in
equation (1). The residual terms from the outcome regression is then locally regressed on the residual
from the prenatal rainfall regression using a locally weighted polynomial regression with Epanechnikov
kernel functions. The degree of the polynomial is zero, meaning local-mean smoothing. The bandwidth is
obtained using the Rule-of-Thumb method, which minimizes the conditional weighted mean integrated
squared error. 95% confidence intervals are based on standard errors that block-bootstrap the local
regressions at the grid level.
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Figure 4: Effects of prenatal rainfall on socioeconomic outcomes
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Notes. Local regressions of outcomes on fraction prenatal in normal rainfall. To produce these plots,
the outcomes and the prenatal rainfall exposure are both regressed on all other explanatory variables in
equation (1). The residual terms from the outcome regression is then locally regressed on the residual
from the prenatal rainfall regression using a locally weighted polynomial regression with Epanechnikov
kernel functions. The degree of the polynomial is zero, meaning local-mean smoothing. The bandwidth is
obtained using the Rule-of-Thumb method, which minimizes the conditional weighted mean integrated
squared error. 95% confidence intervals are based on standard errors that block-bootstrap the local
regressions at the grid level.
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Table 1: Summary statistics

Mean Standard Min Max

deviation
Any disability 0.06 0.13 0 1
Number of disabilities 0.08 0.17 0 4
Mental disability 0.01 0.04 0 1
Physical disability 0.02 0.08 0 1
Vision disability 0.03 0.09 0 1
Hearing/speech disability 0.01 0.06 0 1
Years of schooling 7.95 3.11 0 17
Mliteracy 0.07 0.14 0 1
Employment 0.58 0.26 0 1
Fraction normal rainfall (in utero) 0.69 0.18 0 1
Fraction normal rainfall - 3rd trimester  0.69 0.29 0 1
Fraction normal rainfall - 2nd trimester  0.69 0.29 0 1
Fraction normal rainfall - 1st trimester  0.69 0.29 0 1
Fraction floods (in utero) 0.14 0.15 0 1
Fraction droughts (in utero) 0.17 0.16 0 1

Notes. The data are collapsed to municipality-of-birth x month-of-birth x year-
of-birth level. Sample restricted to 2005 Census data on individuals born between
1942 and 1981. The total number of municipality x month x year observations
is 232962. Sample includes 524 municipalities.
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Table 2: The effects of early rainfall shocks on later-life outcomes

Any Number of  Mental Physical Vision  Hearing/speech  Years of Illiteracy ~ Employment

disability ~disabilities disability disability disability disability Schooling
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel (a): Full gestational period
Normal rainfall -0.002 -0.0039 -0.0012 -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127
[0.0027]  [0.0038]  [0.0008]  [0.0014]* [0.0021] [0.0012] [0.0524]  [0.0020]***  [0.0047]***
Panel (b): Effects of rainfall in each trimester
3rd trimester -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
(0.0012]  [0.0018]  [0.0005]  [0.0009]  [0.0011] [0.0007] [0.0283]  [0.0011]  [0.0030]%*
2nd trimester -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
(0.0015]  [0.0019]  [0.0005]  [0.0010]  [0.0010] [0.0007] [0.0268] [0.0013] 0.0028]
1st trimester -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013]  [0.0019]  [0.0005]** [0.0009]  [0.0011] [0.0006] [0.0266]** [0.0011***  [0.0029]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Normal rainfall is the frac-
tion of months during the 9 months before birth that the normal rainfall indicator equals one. 1st trimester is the fraction of months during the
6-8 months before birth that the normal rainfall indicator equal one. 2nd trimester is the fraction of months during the 3-5 months before birth
that the normal rainfall indicator equal one. 3rd trimester is the fraction of months during the 0-2 months before birth that the normal rainfall
indicator equal one. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific
linear time trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust
for precision with which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance:
*p < 0.10 ¥ p < 0.05, ¥*** p < 0.01.
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Table 3: The effects of prenatal floods and droughts on later-life outcomes

Any Number of  Mental Physical Vision  Hearing/speech ~ Years of Illiteracy ~ Employment
disability disabilities  disability disability disability disability Schooling
(1) (2) 3) 4) (5) (6) (7 (8) (9)
Panel (a): Full gestational period
Floods 0.002 0.0046 0.0023 0.0034 -0.0003 -0.0008 -0.1197 0.0085 -0.0153
[0.0033]  [0.0048]  [0.0012]* [0.0020*  [0.0027] [0.0013] [0.0624]*  [0.0020]*%*  [0.0067]**
Droughts 0.0021 0.0033 0.0002 0.0019 -0.0008 0.002 -0.0568 0.0035 -0.0106
[0.0033] [0.0045] [0.0010] [0.0017]  [0.0025] [0.0016] [0.0637] [0.0028] [0.0054]**
Panel (b): Effects of rainfall in each trimester
3rd trimester - floods 0.0009 0.0022 0.0002 0.0015 0.0000 0.0005 -0.0114 0.0025 -0.0088
[0.0017]  [0.0026]  [0.0007]  [0.0012]  [0.0014] [0.0008] [0.0405]  [0.0017]  [0.0038]**
2nd trimester - floods 0.0011 0.0003 0.0004 0.001 0.0002 -0.0012 -0.0349 0.0015 -0.007
[0.0019] [0.0025] [0.0006] [0.0014]  [0.0015] [0.0009] [0.0354] [0.0017] [0.0039]*
1st trimester - floods 0.0000 0.0020 0.0017 0.0009 -0.0005 -0.0001 -0.0725 0.0045 0.0004
[0.0017] [0.0026]  [0.0008]**  [0.0012]  [0.0015] [0.0008] [0.0369]*  [0.0016]*** [0.0035]
3rd trimester - droughts  -0.0005 -0.0025 -0.0010 -0.0003 -0.0005 -0.0008 0.0316 0.0005 -0.0119
[0.0017]  [0.0022]  [0.0007]  [0.0011]  [0.0014] [0.0009] [0.0324]  [0.0015]  [0.0037)%**
2nd trimester - droughts ~ 0.0013 0.0030 0.0007 0.0017 -0.0005 0.0011 -0.0098 0.0002 0.0017
[0.0019]  [0.0025]  [0.0007]  [0.0011]  [0.0013] [0.0009] [0.0335]  [0.0019) [0.0040]
1st trimester - droughts 0.0013 0.0026 0.0005 0.0004 0.0002 0.0015 -0.0787 0.0029 -0.0008
[0.0017] [0.0024] [0.0006] [0.0011]  [0.0013] [0.0008]* [0.0324]**  [0.0015]** [0.0035]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-
birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Floods (droughts) is the fraction of months
during the 9 months before birth that the floods (droughts) indicator equals one. 1st trimester floods (droughts) is the fraction of months during the 6-8
months before birth that the floods (droughts) indicator equal one. 2nd trimester floods (droughts) is the fraction of months during the 3-5 months before
birth that the floods (droughts) indicator equal one. 3rd trimester floods (droughts) is the fraction of months during the 0-2 months before birth that
the floods (droughts) indicator equal one. Flood and drought shocks are defined as + 1 standard deviations with respect to the historical monthly mean
of each municipality. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear
time trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust for precision with
which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05,

*EE ) < 0,01
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Table 4: The effects of early rainfall shocks on later-life outcomes
selective fertility

Any Number of  Mental  Physical Vision  Hearing/speech  Years of Mliteracy ~ Employment

disability ~disabilities disability ~disability —disability disability Schooling
(1) 2 ®3) 4) (5) (6) (M) 3 9)
Months 0-2 before birth 0.0000 0.0005 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0015 0.0104
[0.0012] [0.0017] [0.0005]  [0.0009]  [0.0011] [0.0006] [0.0285] [0.0011] [0.0030]***
Months 3-5 before birth -0.0012 -0.0018 -0.0006 -0.0014 0.0001 0.0000 0.0198 -0.0008 0.0022
[0.0015] [0.0019] [0.0005]  [0.0010]  [0.0010] [0.0007] [0.0266] [0.0013] [0.0028]
Months 6-8 before birth -0.0007 -0.0024 -0.001 -0.0006 0.0001 -0.0008 0.0761 -0.0036 0.0001
[0.0014] [0.0019] [0.0005]*  [0.0009]  [0.0011] [0.0006] [0.0265]***  [0.0011]*** [0.0029]
Months 9-11 before birth -0.0007 -0.0007 -0.0003 -0.0002 0.0000 -0.0002 0.0204 -0.0016 0.0014
[0.0013] [0.0018] [0.0005]  [0.0007]  [0.0010] [0.0006] [0.0310] [0.0014] [0.0025]
Months 12-14 before birth ~ -0.0013 -0.0011 0.0000 -0.0006 -0.0006 0.0000 -0.0044 0.0012 0.0033
[0.0016] [0.0020] [0.0004]  [0.0009]  [0.0014] [0.0006] [0.0269] [0.0013] [0.0027]
Months 15-17 before birth ~ -0.0005 0.0000 -0.0002 -0.0002 0.0012 -0.0009 0.0177 0.0003 -0.0004
[0.0014] [0.0021] [0.0006]  [0.0007]  [0.0010] [0.0007] [0.0283] [0.0014] [0.0028]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-birth
x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Estimates represent the effects of exposure to normal
rainfall conditions in different trimesters during and before pregnancy. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-
birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations
by the cell size to adjust for precision with which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids).
Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table 5: The effects of prenatal and postnatal rainfall shocks on later-life outcomes

Any Number of  Mental Physical Vision  Hearing/speech  Years of Illiteracy ~ Employment
disability ~disabilities disability —disability ~disability disability Schooling
1) 2) ®3) 4) () (6) (M) (®) 9)
Months 1-12 after birth ~ 0.0027 0.0036 0.0007 0.0003 0.0015 0.0011 0.0844 -0.0056 0.0000
[0.0021] [0.0028] [0.0007] [0.0013]  [0.0016] [0.0009] [0.0508]*  [0.0019]*** 0.0000
Months 0-2 before birth ~ -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0133 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] [0.0007] [0.0283] [0.0011] [0.0030]***
Months 3-5 before birth ~ -0.0013 -0.0019 -0.0006 -0.0014 0.0002 -0.0001 0.0184 -0.0006 0.0022
[0.0014] [0.0019] [0.0005] [0.0010]  [0.0010] [0.0007] [0.0269] [0.0013] [0.0028]
Months 6-8 before birth ~ -0.0008 -0.0025 -0.0011 -0.0006 0.0001 -0.0009 0.0753 -0.0035 0.0001
[0.0013] [0.0019]  [0.0005)**  [0.0009]  [0.0011] [0.0006] [0.0265]***  [0.0011]*** [0.0029]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-
birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Estimates represent the effects of exposure to
normal rainfall conditions before and after birth. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects,
municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size
to adjust for precision with which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance:
*p < 0.10 ¥* p < 0.05, *** p < 0.01.
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Table 6: The effects of early rainfall shocks on later-life outcomes
gender heterogeneities

Any Number of Mental Physical Vision  Hearing/speech  Years of Illiteracy ~ Employment

disability ~disabilities  disability  disability disability disability Schooling
(1) 2) ®3) (4) (®) (6) () 8) ©)
Panel (a): Males
3rd trimester  0.0005 0.0001 0.0005 -0.0011 0.0004 0.0003 -0.0528 0.0006 0.0054
[0.0020] [0.0026] [0.0008] [0.0014]  [0.0016] [0.0009] [0.0374] [0.0015] [0.0042]
2nd trimester  -0.0009 -0.0015 -0.0014 -0.0013 0.0018 -0.0006 0.0461 -0.0001 0.0002
[0.0022] [0.0028] [0.0006)**  [0.0015]  [0.0014] [0.0010] [0.0376] [0.0018] [0.0036]
1st trimester ~ -0.0006 -0.0033 -0.0022 0.0003 0.0002 -0.0016 0.1223 -0.0051 0.0025
[0.0021] [0.0026]  [0.0008]***  [0.0013]  [0.0017] [0.0009]* [0.0399]%**  [0.0017]*** [0.0032]
N 204728 204728 204728 204728 204728 204728 204728 204728 204728

Panel (b): Females

3rd trimester  -0.0006  0.0006 0.0003 0.0000  0.0002 0.0000 0.0202 -0.0031 0.0155
[0.0016]  [0.0023]  [0.0007]  [0.0011]  [0.0012] [0.0008] (0.0384]  [0.0018]*  [0.0043]***
ond trimester  -0.0014  -0.0021 0.0002  -0.0014  -0.0012 0.0003 -0.0026 -0.0015 0.0038
[0.0017]  [0.0022]  [0.0006]  [0.0010]  [0.0012] [0.0009] [0.0339) [0.0018) [0.0042)
Ist trimester  -0.0008  -0.0016 0.0000  -0.0015  0.0001 -0.0001 0.0385 -0.0024 -0.0017
[0.0018]  [0.0024]  [0.0006]  [0.0012]  [0.0014] 0.0007) [0.0352] 0.0017) [0.0043]
N 207544 207544 207544 207544 207544 207544 207544 207544 207544

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-
of-birth x year-of-birth level. Sample includes 524 municipalities. 1st trimester is the fraction of months during the 6-8 months before birth that the
normal rainfall indicator equals one. 2nd trimester is the fraction of months during the 3-5 months before birth that the normal rainfall indicator
equals one. 3rd trimester is the fraction of months during the 0-2 months before birth that the normal rainfall indicator equals one. All regressions
control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends, average temper-
ature in 9 months before birth, and race. The regressions weight the observations by the cell size to adjust for precision with which the cell means
are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table 7: The effects of early rainfall shocks on later-life outcomes
heterogeneities in treament effects (1)

Any Number of  Mental Physical Vision — Hearing/speech ~ Years of  Illiteracy ~Employment
disability ~disabilities ~disability ~disability disability disability Schooling

1) (2) (3) 4 (5) (6) ) () 9)
Normal rainfall -0.0002  -0.0003  -0.0006  -0.0014  0.0019 -0.0001 0.0708  -0.0045 0.0135
[0.0027]  [0.0036]  [0.0008]  [0.0016]  [0.0021] [0.0012] 0.0530]  [0.0023]%%  [0.0048)***
Normal rainfall x Malaria risk 20.0024  -0.0052  -0.0018  -0.0023  0.0007 -0.0018 01168  -0.0045 0.006

[0.0021]  [0.0029)*  [0.0008]** [0.0015]  [0.0016] [0.0009]%*  [0.0498)** [0.0021]**  [0.0047)

Normal rainfall x Rural population  0.0016 0.0002 -0.001 0.0008 0.0003 0.0001 0.0267 -0.0019 0.0012
[0.0029] [0.0040] [0.0010] [0.0017]  [0.0025] [0.0013] [0.0735] [0.0029] [0.0062]
Normal rainfall x Population -0.0006 -0.0034 -0.0004 -0.0015 -0.0009 -0.0006 0.0566 -0.0029 -0.0002
[0.0021] [0.0031] [0.0006] [0.0011]  [0.0016] [0.0010] [0.0375] [0.0017]* [0.0049]
Normal rainfall x Income 0.0007 0.0013 -0.0017 0.0016 0.0005 0.0009 -0.0681 -0.0005 -0.0004
[0.0029] [0.0041] [0.0011] [0.0019]  [0.0025] [0.0013] [0.0662] [0.0031] [0.0059]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-birth x year-
of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Normal rainfall is the fraction of months during the 9 months before
birth that the normal rainfall indicator equals one. Rural population rate, income and population at the municipality level are computed from the 1973 Census.
Malaria risk at the municipality level is obtained from Bleakley (2010). Each municipality-specific variable are normalized to have mean 0 and standard deviation 1.
All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends, average temperature
in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust for precision with which the cell means are estimated. Robust
standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table 8: The effects of early rainfall shocks on later-life outcomes
heterogeneities in treament effects (2)

Any Number of ~ Mental Physical Vision Hearing/speech ~ Years of  Illiteracy ~Employment

disability ~disabilities disability ~disability — disability disability Schooling
M 2 ®3) 4 (5) (6) (M) (8) (9)
Floods 0.0006 0.0012 0.0015 0.0022 -0.0018 -0.0008 -0.1244 0.0083 -0.0181
(0.0034]  [0.0047)  [0.0012]  [0.0021]  [0.0028] [0.0014] [0.0658]*  [0.0032]**  [0.0067]***
Floods x Malaria risk 0.0026 0.0055 0.002 0.0017 0.0007 0.001 -0.1121 0.0036 -0.0079
[0.0031]  [0.0040]  [0.0010]** [0.0019]  [0.0021] 0.0012) [0.0601)*  [0.0029] [0.0061]
Floods x Rural population -0.0033 -0.0017 0.0011 -0.0009 -0.0007 -0.0013 -0.0212 0.0039 0.0113
[0.0039] [0.0051] [0.0013] [0.0022] [0.0034] [0.0017] [0.0826] [0.0036] [0.0077]
Floods x Population 0.0033 0.008 0.0014 0.0022 0.0038 0.0005 -0.0378 0.0021 -0.0007
[0.0027] [0.0046]* [0.0011] [0.0016]  [0.0019]** [0.0015] [0.0455] [0.0019] [0.0054]
Floods x Income -0.0063 -0.0082 0.001 -0.0032 -0.0037 -0.0023 0.0753 0.0027 0.0157
[0.0036]*  [0.0052] [0.0014] [0.0022] [0.0032] [0.0018] [0.0760] [0.0033] [0.0078]**
Droughts 0.0001 -0.0002 -0.0002 0.0008 -0.0018 0.0009 -0.0278 0.0012 -0.0102
[0.0033] [0.0043] [0.0010] [0.0018] [0.0025] [0.0014] [0.0629] [0.0030] [0.0054]*
Droughts x Malaria risk 0.0022 0.005 0.0016 0.0028 -0.0019 0.0025 -0.1224 0.0053 -0.0049
[0.0023] [0.0030] [0.0009]*  [0.0016]*  [0.0019] [0.0011]** [0.0570]**  [0.0023]** [0.0048]
Droughts x Rural population  -0.0004 0.001 0.0009 -0.0007 0.0000 0.0008 -0.0294 0.0004 -0.0104
[0.0032] [0.0044] [0.0012] [0.0019] [0.0027] [0.0015] [0.0861] [0.0034] [0.0065]
Droughts x Population -0.0014 0.0002 -0.0003 0.001 -0.0012 0.0007 -0.0701 0.0036 0.0008
[0.0023] [0.0031] [0.0007] [0.0013] [0.0019] [0.0010] [0.0453] [0.0021]* [0.0052]
Droughts x Income 0.0033 0.0036 0.0022 -0.0005 0.0018 0.0001 0.0639 -0.0012 -0.0106
[0.0033] [0.0046] [0.0013]*  [0.0021] [0.0026] [0.0014] [0.0765] [0.0038] [0.0066]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-birth x
year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Floods/droughts is the fraction of months during the 9
months before birth that the floods/droughts indicator equals one. Rural population rate, income and population at the municipality level are computed from
the 1973 Census. Malaria risk at the municipality level is obtained from Bleakley (2010). Each municipality-specific variable are normalized to have mean 0 and
standard deviation 1. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time
trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust for precision with which
the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table 9: The effects of early rainfall shocks on postnatal investment

Was child ever # months Ln(# months Breastfed for more BCG DPT Polio Measles
breastfed? breastfed  breastfed + 1) than six months

(1) @) ®3) 4) () (6) (7) (8)

Panel (a): Full gestational period

Normal rainfall -0.0322 -0.4878 -0.0512 -0.0633 -0.0869 0.0002 -0.0226 -0.0167

[0.0110]*%%  [0.4555] [0.0396] [0.0241) %+ [0.1337] [0.0118]  [0.0264]  [0.0254]

N 29924 27888 27888 28063 30470 30489 30488 30488

Panel (b): Effects of rainfall in each trimester

3rd trimester -0.0111 0.009 -0.0156 -0.0091 -0.0163 -0.004 0.0035 0.0082

[0.0066]* [0.2045) [0.0185) [0.0121] [0.0591] [0.0057] [0.0111]  [0.0121]

2nd trimester -0.0076 -0.4022 -0.0227 -0.0285 0.0509 0.0016 0.0037 0.0042

[0.0070] [0.2397]* [0.0216] [0.0135] [0.0580]  [0.0065]  [0.0119]  [0.0114]

1st trimester -0.0139 -0.0705 -0.0123 -0.0249 -0.1325 0.0025 -0.0316 -0.0309
[0.0070)**  [0.2155] [0.0197) [0.0137)* [0.0591)**  [0.0061] [0.0115%%* [0.0114]*+*

N 29924 27888 27888 28063 30470 30489 30488 30488

Notes. Demographic Health Surveys: 1986, 1990, 1995, 2000, 2004-05, and 2009-10 waves. The sample consists of children in families that have
been living in the current municipality for a greater time than child’s age. Children in the five main capitals of the country are excluded. De-
pendent variable in column (1) is dummy variable indicating whether the child was ever breastfed. Columns (2)-(3) represent the duration of
breastfeeding by using linear and log-linear regressions, respectively. Dependent variable in column (4) is a dummy variable indicating whether
the child was breastfed for more than six months. Dependent variables in columns (5)-(8) are dummies indicating whether the child has all the
recommended vaccination doses for specific diseases. Normal is the fraction of months during the 9 months before birth that the normal indi-
cator equals one. 1st trimester is the fraction of months during the 6-8 months before birth that the normal rainfall indicator equal one. 2nd
trimester is the fraction of months during the 3-5 months before birth that the normal rainfall indicator equal one. 3rd trimester is the fraction
of months during the 0-2 months before birth that the normal rainfall indicator equal one. All regressions control for municipality fixed effects,
month-of-birth X year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, mother’s
age at first birth, indicators for mother’s education level, an indicator for marital status (married), an indicator for child’s sex, and birth order.
The regressions use the data at the child level. Robust standard errors (in brackets) are clustered at the grid level (255 grids). The number of
municipalities in the sample is 443. Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.

43



For Online Publication:
Early Rainfall Shocks and Later-Life Outcomes:
Evidence from Colombia*

Bladimir Carrillo

November 24, 2017

*Contact: bladimir.bermudez@ufv.br, address: DER, UFV.

44



A  APPENDIX

Table A.1: Summary statistics - Demographic Health Surveys

Mean Standard Min Max

deviation

Neonatal mortality 0.016 0.12 0 1
Infant mortality 0.024 0.15 0 1
Was child ever breastfed? 0.93 0.25 0 1
# months breastfed 12.33 9.08 1 59
Breastfed for more than six months 0.64 0.48 0 1
BCG immunization 0.94 0.23 0 1
DPT immunization 0.67 0.47 0 1
Polio immunization 0.73 0.44 0 1
Measles immunization 0.70 0.46 0 1
Specific doses

Polio 1 0.89 0.32 0 1
Polio 2 0.81 0.40 0 1
Polio 3 0.67 0.47 0 1
DPT 1 0.91 0.28 0 1
DPT 2 0.82 0.39 0 1
DPT 3 0.74 0.44 0 1

Notes. Demographic Health Surveys (1986, 1990, 1995, 2000, 2004-05, 2009-
10). The sample consists of children in families that have been living in the
current municipality for a greater time than child’s age. Children in the five
main capitals of the country are excluded. Neonatal and infant mortality
outcomes focus on births that occurred less than ten years prior to the date
of the survey. This includes children born between 1976 and 2010. Breast-
feeding and vaccination outcomes is based on a sample of children under five.
This includes births that occurred between 1981 and 2010.
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Table A.2: The effects of early rainfall shocks on cohort size

Baseline Younger cohorts Older cohorts
(1) (2) (3) (4) (5) (6)
Panel (a): full sample
Normal rainfall — 0.0068 -0.0026 0.0068
[0.0127] [0.0155] [0.0165]
Floods -0.0315 -0.0267 -0.025
[0.0175]* [0.0193] [0.0278]
Droughts 0.0133 0.0295 0.0053
[0.0140] 0.0202] [0.0184]
N 232962 232962 128301 128301 104661 104661

Panel (b): males

Normal rainfall  0.0071 0.0026 -0.011
[0.0162] [0.0221] [0.0264]
Floods -0.0401 -0.0256 -0.0459
[0.0200]** [0.0273] [0.0353]
Droughts 0.0198 0.0185 0.0486
[0.0199] [0.0278] [0.0310]
N 204728 204728 117122 117122 87606 87606

Panel (c¢): females

Normal rainfall  0.0157 -0.0009 0.0303
[0.0168] [0.0215] [0.0250]
Floods -0.0235 -0.026 -0.0099
[0.0250] [0.0286] [0.0413]
Droughts -0.0093 0.0256 -0.0438
[0.0185] [0.0282] [0.0308]
N 207544 207544 118908 118908 88636 88636

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981.
Younger cohorts refers to individuals born between 1942 and 1960, while older cohorts
refers to those born between 1961 and 1981. The data are collapsed to municipality-
of-birth x month-of-birth x year-of-birth level. ~Sample includes 524 municipalities.
Normal/ floods/droughts is the fraction of months during the 9 months before birth that
the normal/ floods/droughts indicator equals one. All regressions control for municipality-
of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific lin-
ear time trends, average temperature in 9 months before birth, and race. The regressions
weight the observations by the cell size to adjust for precision with which the cell means are
estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids).
Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.3: The effects of early rainfall shocks on neonatal and infant mortality

Full sample Males Females
(1) (2) (3) (4) (5) (6)
Panel (a): dependent variable is neonatal mortality
Normal rainfall -0.0065 -0.0128 -0.0005
[0.0040] [0.0059]** [0.0050]
Floods 0.0108 0.0168 0.0062
[0.0055]** [0.0076]** [0.0072]
Droughts 0.003 0.0095 -0.0043
[0.0054] [0.0085] [0.0068]
N 61220 61220 31264 31264 29956 29956

Panel (b): dependent variable is infant mortality

Normal rainfall -0.0026 -0.0102 0.0049
[0.0047] [0.0071] [0.0056]
Floods -0.0001 0.0131 0.0003
[0.0059] [0.0097] [0.0083]
Droughts 0.0059 0.0079 -0.0093
[0.0066] [0.0098] [0.0076]
N 61220 61220 31264 31264 29956 29956

Notes. Demographic Health Surveys: 1986, 1990, 1995, 2000, 2004-05, and 2009-10 waves. The
sample consists of children in families that have been living in the current municipality for a
greater time than child’s age. Children in the five main capitals of the country are excluded.
The sample includes births that occurred less than ten years prior to the date of the survey.
This includes children born between 1976 and 2010. Normal/ floods/droughts is the fraction
of months during the 9 months before birth that the normal/ floods/droughts indicator equals
one. All regressions control for municipality fixed effects, month-of-birth x year-of-birth fixed
effects, municipality-specific linear time trends, average temperature in 9 months before birth,
mother’s age at first birth, indicators for mother’s education level, an indicator for marital sta-
tus (married), an indicator for child’s sex, and birth order. The regressions use the data at the
child level. Robust standard errors (in brackets) are clustered at the grid level (256 grids). The
number of municipalities in the sample is 446. Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.

47



Table A.4: The effects of early rainfall shocks on neonatal and infant mortality

heterogeneity
Neonatal mortality Infant mortality
(1) 2 3) 4)
Normal rainfall -0.0074 -0.003
[0.0050] [0.0056]
Floods 0.011 0.0097
[0.0077] (0.0094]
Droughts 0.0071 -0.0003
[0.0079] [0.0089]
Normal rainfall x Married -0.0015 -0.0042
[0.0064] [0.0079]
Normal rainfall x High education 0.0125 0.0111
[0.0101] [0.0104]
Normal rainfall x Teenage 0.0001 0.0007
[0.0019] [0.0023]
Floods x Married 0.0104 0.0103
[0.0094] [0.0126]
Floods x High education -0.0148 -0.0124
[0.0130] [0.0140]
Floodsl x Teenage -0.0027 -0.0094
[0.0072] [0.0087]
Droughts x Married -0.0048 0.0000
[0.0076] [0.0086]
Droughts x High education -0.0124 -0.0114
[0.0131] [0.0138]
Droughts x Teenage -0.0024 0.0029
[0.0065] (0.0078]

Notes. Demographic Health Surveys: 1986, 1990, 1995, 2000, 2004-05, and 2009-10
waves. The sample consists of children in families that have been living in the current
municipality for a greater time than child’s age. Children in the five main capitals of
the country are excluded. The sample includes births that occurred less than ten years
prior to the date of the survey. This includes children born between 1976 and 2010.
The total number of observations is 61220. Normal/ floods/droughts is the fraction
of months during the 9 months before birth that the normal/floods/droughts in-
dicator equals one. Teenage is an indicator for mothers who were under the age of
20 at the time they give their first birth. High education is an indicator for moth-
ers with some college or more. All regressions control for municipality fixed effects,
month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends,
average temperature in 9 months before birth, mother’s age at first birth, indicators
for mother’s education level, an indicator for marital status (married), an indicator
for child’s sex, and birth order. The regressions use the data at the child level. Robust
standard errors (in brackets) are clustered at the grid level (256 grids). The number of
municipalities in the sample is 446. Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.

48



Table A.5: The effects of early rainfall shocks on later life outcomes

alternative standard errors

Any Number of  Mental Physical Vision  Hearing/speech  Years of Illiteracy ~ Employment
disability ~disabilities  disability ~disability disability disability Schooling
) (2 () ) (5) (6) (M (8) 9)
Panel (a): Full gestational period

Normal rainfall -0.002 -0.0039 -0.0012 -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127
SE clustered by grid level [0.0027]  [0.0038]  [0.0008]  [0.0014]*  [0.0021] 0.0012] [0.0524]  [0.0020]%**  [0.0047]***
Conley SE (cuttof of 100 km)  [0.0025]  [0.0034]  [0.0008]  [0.0016]  [0.0019] [0.0011] [0.0409]%*  [0.0030]*  [0.0039]**
Conley SE (cuttof of 500 km)  [0.0024]  [0.0034]  [0.0008]  [0.0017]  [0.0019)] [0.0011] [0.0386]*F  [0.0030]*  [0.0038]***

Panel (b): Effects of rainfall in each trimester

3rd trimester -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
SE clustered by grid level [0.0012]  [0.0018]  [0.0005]  [0.0009]  [0.0011] 0.0007] 0.0283] [0.0011]  [0.0030)%**
Conley SE (cuttof of 100 km)  [0.0015]  [0.0020]  [0.0005]  [0.0010]  [0.0011] 0.0007] (0.0250]  [0.0017]  [0.0024]**
Conley SE (cuttof of 500 km) [0.0015] [0.0020] [0.0005] [0.0009]  [0.0011] [0.0007] [0.0255] [0.0017] [0.0023]***

2nd trimester -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022

SE clustered by grid level [0.0015]  [0.0019]  [0.0005]  [0.0010]  [0.0010] 0.0007] 0.0268] [0.0013] [0.0028]

Conley SE (cuttof of 100 km)  [0.0014]  [0.0020]  [0.0005]  [0.0009]  [0.0011] 0.0006] 0.0242] [0.0017] [0.0024]

Conley SE (cuttof of 500 km)  [0.0016]  [0.0021]  [0.0005]  [0.0010]  [0.0012] 0.0006] (0.0242]  [0.0016] [0.0024]

1st trimester -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001

SE clustered by grid level [0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] [0.0006] [0.0266]***  [0.0011]*** [0.0029]

Conley SE (cuttof of 100 km)  [0.0015]  [0.0020]  [0.0005**  [0.0009]  [0.0011] 0.0006] 0.0247)%%*  [0.0017]**  [0.0024]

Conley SE (cuttof of 500 km)  [0.0015]  [0.0021]  [0.0005]** [0.0009]  [0.0012] 0.0007] 0.0243]%%  [0.0018**  [0.0023]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x month-of-birth x year-
of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Normal rainfall is the fraction of months during the 9 months before
birth that the normal rainfall indicator equals one. 1st trimester is the fraction of months during the 6-8 months before birth that the normal rainfall indicator
equals one. 2nd trimester is the fraction of months during the 3-5 months before birth that the normal rainfall indicator equals one. 3rd trimester is the fraction
of months during the 0-2 months before birth that the normal rainfall indicator equals one. All regressions control for municipality-of-birth fixed effects, month-of-
birth x year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions weight the
observations by the cell size to adjust for precision with which the cell means are estimated. Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.6: The effects of early rainfall shocks on later-life outcomes
controlling for conflict intensity (1)

Any Number of  Mental  Physical Vision  Hearing/speech ~ Years of  Illiteracy =~ Employment

disability ~disabilities disability disability disability disability Schooling
) 2 ®3) 4) (5) (6) (7 8) )
Panel (a): Baseline

Normal rainfall ~ -0.002 -0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127

[0.0027] [0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] [0.0524]  [0.0020]***  [0.0047]***
Panel (b): Add guerrilla and paramalitary attacks X linear time trends

Normal rainfall ~ -0.002 -0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127

[0.0027] [0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] (0.0523]  [0.0020]***  [0.0047]***
Panel (¢): Add guerrilla and paramalitary massacres X linear time trends

Normal rainfall ~ -0.002 -0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127

[0.0027] [0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] [0.0523]  [0.0020]***  [0.0047]***
Panel (d): Add guerrilla and paramalitary political kidnappings x linear time trends

Normal rainfall ~ -0.002 -0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127

[0.0027] [0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] (0.0523]  [0.0020]***  [0.0047]***
Panel (e): Add the complete set of interactions

Normal rainfall ~ -0.002 -0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127

[0.0027] [0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] [0.0523]  [0.0020]***  [0.0047]***

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Normal rainfall is the
fraction of months during the 9 months before birth that the normal rainfall indicator equals one. Guerrilla and paramalitary attacks refer to
the annual average number of attacks perpetrated by either guerrilla or paramalitary groups in a given municipality between 1988 and 2005.
The same logic is used for political kidnappings and massacres. All regressions control for municipality-of-birth fixed effects, month-of-birth x
year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions
weight the observations by the cell size to adjust for precision with which the cell means are estimated. Robust standard errors (in brackets) are
clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.7: The effects of early rainfall shocks on later-life outcomes

controlling for conflict intensity (2)

Any Number of  Mental Physical Vision  Hearing/speech  Years of Illiteracy ~ Employment
disability ~ disabilities disability ~ disability disability disability Schooling
) 2 ®3) (4) (5) (6) (7 3) 9)
Panel (a): Baseline
3rd trimester  -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] [0.0007] (0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0015] [0.0019] [0.0005] [0.0010]  [0.0010] (0.0007] (0.0268] [0.0013] [0.0028]
1st trimester -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] [0.0006] [0.0266]***  [0.0011]*** [0.0029]
Panel (b): Add guerrilla and paramalitary attacks X linear time trends
3rd trimester ~ -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] [0.0007] [0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0014] [0.0019] [0.0005] [0.0010]  [0.0010] [0.0007] [0.0268] [0.0013] [0.0028]
1st trimester ~ -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] [0.0006] [0.0265]***  [0.0011]*** [0.0029]
Panel (c): Add guerrilla and paramalitary massacres X linear time trends
3rd trimester  -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] [0.0007] (0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0014] [0.0019] [0.0005] [0.0010]  [0.0010] [0.0007] (0.0268] [0.0013] [0.0028]
1st trimester ~ -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] (0.0006] [0.0265]***  [0.0011]*** [0.0029]
Panel (d): Add guerrilla and paramalitary political kidnappings x linear time trends
3rd trimester  -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] (0.0007] (0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0014] [0.0019] [0.0005] [0.0010]  [0.0010] [0.0007] [0.0268] [0.0013] [0.0028]
Ist trimester  -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] [0.0006] [0.0265]***  [0.0011]*** [0.0029]
Panel (e): Add the complete set of interactions
3rd trimester  -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009]  [0.0011] [0.0007] [0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0014] [0.0019] [0.0005] [0.0010]  [0.0010] [0.0007] (0.0268] [0.0013] [0.0028]
1st trimester ~ -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013] [0.0019]  [0.0005]**  [0.0009]  [0.0011] [0.0006] [0.0265]***  [0.0011]*** [0.0029]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. 1st trimester is the fraction
of months during the 6-8 months before birth that the normal rainfall indicator equals one. 2nd trimester is the fraction of months during the 3-5
months before birth that the normal rainfall indicator equal one. 3rd trimester is the fraction of months during the 0-2 months before birth that
the normal rainfall indicator equal one. Guerrilla and paramalitary attacks refer to the annual average number of attacks perpetrated by either
guerrilla or paramalitary groups in a given municipality between 1988 and 2005. The same logic is used for political kidnappings and massacres.
All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends,
average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust for precision with
which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p
< 0.05, *** p < 0.01.
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Table A.8: The effects of early rainfall shocks on later-life outcomes
alternative rainfall shock measures

Any Number of  Mental Physical Vision  Hearing/speech ~ Years of  Illiteracy ~Employment
disability ~disabilities disability ~—disability disability disability Schooling

(1) (2) (3) (4) (5) (6) (M) (8) (9)
Panel (a): Rainfall

Rainfall 0.0004 0.0018 0.0014 0.0005 0.0009 -0.001 -0.0737 0.0033 0.0049

0.0020]  [0.0037]  [0.0008*  [0.0015]  [0.0023] [0.0012] 0.0440%  [0.0030] [0.0053]
Panel (b): Rainfall shocks based on 10 and 90 percentiles

Floods -0.0004 0.0007 0.0009 0.0001 0.0000 -0.0002 -0.0357 0.0018 -0.0034
(0.0013]  [0.0018]  [0.0004]** [0.0008]  [0.0010] [0.0005] 0.0229]  [0.0012] [0.0025]

Droughts  -0.0004 -0.0005 -0.0001 -0.0003 -0.0004 0.0003 -0.0174 0.0011 -0.0034
(0.0011]  [0.0015]  [0.0004]  [0.0005]  [0.0009] [0.0005] (0.0205]  [0.0010]  [0.0018]*

Panel (c): Rainfall shocks based on SPI index

Floods 0.0008 0.0009 0.0003 0.0003 -0.0001 0.0004 -0.0194 0.0021 -0.0057
[0.0011]  [0.0015]  [0.0004]  [0.0006]  [0.0008] [0.0005] [0.0205]  [0.0009]%*  [0.0018]***

Droughts  0.0003 0.0011 0.0007 0.0007 0.0000 -0.0003 -0.0211 0.0024 -0.0041
[0.0011]  [0.0016]  [0.0004]  [0.0007]  [0.0008] [0.0004] (0.0184]  [0.0010]**  [0.0021]*

Notes. Panel (a) considers the natural log of rainfall 9 months before birth minus the natural log of historical mean rainfall. Panel (b)
defines flood (droughts) for a given month if rainfall was above (below) the 90th (10th) percentile of rainfall distribution for that calendar
month within municipality. Panel (c) follows the same logic of our baseline measures, but z-scores are computed using the Spatial Precip-
itation Index distribution. Panels (b) and (c) measures exposure to droughts and floods according to the frequency with which a given
shock occurs in the 9 months prior to the individual’s birth. Sample restricted to 2005 Census data on individuals born between 1942
and 1981. The data are collapsed to municipality-of-birth x month-of-birth x year-of-birth level. The total number of observations is
232962. Sample includes 524 municipalities. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth
fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions weight
the observations by the cell size to adjust for precision with which the cell means are estimated. Robust standard errors (in brackets) are
clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.9: The effects of early rainfall shocks on later-life outcomes

specific seasonal variation (1)

Any

disability

1)

Number of  Mental  Physical Vision  Hearing/speech ~ Years of  Illiteracy =~ Employment

Normal rainfall ~ -0.002
[0.0027]

Normal rainfall ~ -0.0021
[0.0027]

disabilities disability ~disability —disability disability Schooling
2 ®3) 4) (5) (6) (7 8) )
Panel (a): Baseline
-0.0039 -0.0012  -0.0026 0.0006 -0.0007 0.085 -0.0057 0.0127
[0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] [0.0524]  [0.0020]***  [0.0047]***
Panel (b): Controlling for municipality-of-birth x month-of-birth fized effects
-0.0038 -0.0012  -0.0024 0.0005 -0.0008 0.0835 -0.006 0.0125
[0.0038] [0.0008]  [0.0014]*  [0.0021] [0.0012] (0.0524]  [0.0020]***  [0.0047]***

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. Normal rainfall is the frac-
tion of months during the 9 months before birth that the normal rainfall indicator equals one. All regressions control for municipality-of-birth
x month-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9
months before birth, sex and race. The regressions weight the observations by the cell size to adjust for precision with which the cell means are
estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.10: The effects of early rainfall shocks on later-life outcomes
specific seasonal variation (2)

Any Number of ~ Mental Physical Vision — Hearing/speech  Years of Illiteracy ~ Employment
disability ~ disabilities disability ~ disability disability disability Schooling
1) (2) ®3) (4) (5) (6) (7) (8) 9)
Panel (a): Baseline
3rd trimester  -0.0001 0.0004 0.0005 -0.0005 0.0003 0.0002 -0.0126 -0.0014 0.0105
[0.0012] [0.0018] [0.0005] [0.0009] [0.0011] (0.0007] (0.0283] [0.0011] [0.0030]***
2nd trimester  -0.0012 -0.0018 -0.0006 -0.0014 0.0002 -0.0001 0.0207 -0.0007 0.0022
[0.0015] [0.0019] [0.0005] [0.0010] [0.0010] [0.0007] [0.0268] [0.0013] [0.0028]
1st trimester  -0.0007 -0.0025 -0.001 -0.0006 0.0001 -0.0009 0.077 -0.0037 0.0001
[0.0013]  [0.0019]  [0.0005]** [0.0009]  [0.0011] 0.0006] [0.0266)*** [0.0011]***  [0.0029]
Panel (b): Controlling for municipality-of-birth © month-of-birth fized effects
3rd trimester  -0.0002 0.0006 0.0004 -0.0002 0.0002 0.0003 -0.0098 -0.0014 0.0102
[0.0012] [0.0018] [0.0005] [0.0009] [0.0011] [0.0007] [0.0299] [0.0011] [0.0030]***
2nd trimester  -0.0013 -0.0019 -0.0006 -0.0014 0.0000 0.0000 0.0182 -0.0004 0.0016
[0.0015] [0.0019] [0.0005] [0.0010] [0.0010] [0.0007] (0.0267] [0.0013] [0.0027]
1st trimester ~ -0.0005 -0.0025 -0.001 -0.0008 0.0003 -0.001 0.0752 -0.0041 0.0008
[0.0013] [0.0019] [0.0005]*  [0.0009] [0.0011] [0.0006]* [0.0278]***  [0.0011]*** [0.0030]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations is 232962. Sample includes 524 municipalities. 1st trimester is the fraction
of months during the 6-8 months before birth that the normal rainfall indicator equals one. 2nd trimester is the fraction of months during the
3-5 months before birth that the normal rainfall indicator equals one. 3rd trimester is the fraction of months during the 0-2 months before birth
that the normal rainfall indicator equals one. All regressions control for municipality-of-birth x month-of-birth fixed effects, month-of-birth x
year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth, sex and race. The regressions
weight the observations by the cell size to adjust for precision with which the cell means are estimated. Robust standard errors (in brackets) are
clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.11: The effects of early rainfall shocks on later-life outcomes across time (1)

Any Number of  Mental  Physical Vision  Hearing/speech ~ Years of Illiteracy Employment

disability disabilities disability disability disability disability Schooling
1) 2) ®3) (4) (5) (6) (7 ®) ©)

Panel (a): Cohorts born during 1942-1960
Normal rainfall ~ -0.0034 -0.0071 -0.001 -0.0042 0.0007 -0.0026 0.0977 -0.0084 0.0073
[0.0053] [0.0067] (0.0014]  [0.0029]  [0.0041] [0.0022] [0.0958]  [0.0050]* [0.0076]

Panel (a): Cohorts born during 1961-1981
Normal rainfall ~ -0.0022 -0.0039 -0.0015  -0.0017  -0.0004 -0.0003 0.0255 -0.0016 0.0088
[0.0027] [0.0041] [0.0011]  [0.0018]  [0.0017] [0.0013] [0.0669] [0.0025] [0.0072]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations in panels (a) and (b) is 104661 and 128301, respectively. Sample in-
cludes 524 municipalities. Normal rainfall is the fraction of months during the 9 months before birth that the normal rainfall indicator equals
one. All regressions control for municipality-of-birth fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time
trends, average temperature in 9 months before birth, sex and race. The regressions weight the observations by the cell size to adjust for pre-
cision with which the cell means are estimated. Robust standard errors (in brackets) are clustered at the grid level (216 grids). Significance: *
p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.12: The effects of early rainfall shocks on later-life outcomes across time (2)

Any Number of  Mental Physical Vision  Hearing/speech ~ Years of  Illiteracy ~Employment
disability disabilities disability disability disability disability Schooling
(1) (2) ®3) (4) (5) (6) (7) (8) 9)
Panel (a): Cohorts born during 1942-1960
3rd trimester 0.0011 0.0008 0.0011 0.001 -0.0004 -0.0009 0.0041 -0.0039 0.0122
[0.0026] [0.0032] [0.0009] [0.0019] [0.0021] [0.0013] [0.0524] [0.0028] [0.0044]***
2nd trimester  -0.0033 -0.0039 -0.0009 -0.0034 0.001 -0.0005 0.0019 -0.0001 -0.0055
[0.0030] [0.0039] [0.0008]  [0.0015]**  [0.0023] [0.0014] [0.0527] [0.0028] [0.0053]
1st trimester ~ -0.0011 -0.0039 -0.0011 -0.0017 0.0001 -0.0012 0.0924 -0.0045 0.0011
[0.0028] [0.0039] [0.0008] [0.0020] [0.0022] [0.0012] [0.0411]**  [0.0023]** [0.0043]
Panel (a): Cohorts born during 1961-1981
3rd trimester ~ -0.0011 -0.0006 0.0000 -0.0014 0.0003 0.0006 -0.0359 0.0008 0.0075
[0.0015] [0.0021] [0.0006] [0.0009] [0.0010] [0.0008] [0.0404] [0.0013] [0.0037)**
2nd trimester  -0.0004 -0.0013 -0.0004 -0.0003 -0.0005 0.0000 0.0135 -0.0002 0.0042
[0.0014] [0.0018] [0.0006] [0.0012] [0.0008] [0.0008] [0.0348] [0.0015] [0.0034]
1st trimester  -0.0007 -0.0021 -0.0011 0.0001 -0.0002 -0.0008 0.0476 -0.0022 -0.0029
[0.0014] [0.0022] [0.0008] [0.0009] [0.0010] [0.0007] [0.0307] [0.0013]* [0.0040]

Notes. Sample restricted to 2005 Census data on individuals born between 1942 and 1981. The data are collapsed to municipality-of-birth x
month-of-birth x year-of-birth level. The total number of observations in panels (a) and (b) is 104661 and 128301, respectively. Sample includes
524 municipalities. 1st trimester is the fraction of months during the 6-8 months before birth that the normal rainfall indicator equal one. 2nd
trimester is the fraction of months during the 3-5 months before birth that the normal rainfall indicator equal one. 3rd trimester is the frac-
tion of months during the 0-2 months before birth that the normal rainfall indicator equal one. All regressions control for municipality-of-birth
fixed effects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends, average temperature in 9 months before birth,
sex and race. The regressions weight the observations by the cell size to adjust for precision with which the cell means are estimated. Robust
standard errors (in brackets) are clustered at the grid level (216 grids). Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.13: The effects of early rainfall shocks on postnatal investment
specific vaccines

Polio 1 Polio 2 Polio 3 DPT1 DPT2 DPT3

(1) (2) (3) (4) (5) (6)

Panel (a): Full gestational period

Normal rainfall -0.0075 -0.0059 -0.019 0.0072 -0.0069 -0.0279
[0.0176] [0.0232] [0.0251] [0.0158] [0.0228] [0.0262]
N 30488 30478 30478 30488 30476 30476

Panel (b): Effects of rainfall in each trimester

3rd trimester 0.0024 0.0001 0.0076 -0.0117  -0.005 0.0034
[0.0087] [0.0111] [0.0120] [0.0081] [0.0109] [0.0112]
2nd trimester 0.0069 0.0125 0.0038 0.0117  0.0126 0.0002
[0.0097] [0.0108] [0.0111] [0.0090] [0.0118] [0.0115]
1st trimester -0.0182 -0.0205 -0.0323 -0.0041 -0.0164 -0.0331

(0.0100*  [0.0101]** [0.0112]*** [0.0095] [0.0110] [0.0115]***

N 30488 30478 30478 30488 30476 30476

Notes. Demographic Health Surveys: 1986, 1990, 1995, 2000, 2004-05, and 2009-10 waves.
The sample consists of children in families that have been living in the current municipality
for a greater time than child’s age. Children in the five main capitals of the country are ex-
cluded. Dependent variables in each column are dummies indicating whether the child has all
the recommended polio or DPT vaccination dose. Normal is the fraction of months during the
9 months before birth that the normal indicator equals one. 1st trimester is the fraction of
months during the 6-8 months before birth that the normal rainfall indicator equal one. 2nd
trimester is the fraction of months during the 3-5 months before birth that the normal rainfall
indicator equal one. 3rd trimester is the fraction of months during the 0-2 months before birth
that the normal rainfall indicator equal one. All regressions control for municipality fixed ef-
fects, month-of-birth x year-of-birth fixed effects, municipality-specific linear time trends, av-
erage temperature in 9 months before birth, mother’s age at first birth, indicators for mother’s
education level, an indicator for marital status (married), an indicator for child’s sex, and birth
order. The regressions use the data at the child level. Robust standard errors (in brackets)
are clustered at the grid level (255 grids). The number of municipalities in the sample is 443.
Significance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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Table A.14: Prenatal rainfall and migration

Dependent variable:
was child born in the current municipality?

Rural Urban

(1) (2) (3) (4)

Panel (a): Ages 0-2 years

Normal rainfall  0.0128 0.0204
[0.0158] [0.0178]
3rd trimester 0.0091 0.0027
[0.0082] [0.0098]
2nd trimester -0.0022 0.014
[0.0065] [0.0098]
1st trimester 0.0059 0.0028
[0.0069] [0.0101]
N 586272 586272 965163 965163

Panel (b): Ages 0-5 years

Normal rainfall  0.0072 0.0087
[0.0085] [0.0101]
3rd trimester 0.0057 0.0033
[0.0042] [0.0065]
2nd trimester -0.0010 0.0092
[0.0044] [0.0065]
1st trimester 0.0026 -0.0050
[0.0049] [0.0054]
N 1194047 1194047 1988939 1988939

Notes. Sample restricted to 2005 Census data on children under
five. Individuals born in the five main capitals of the country are
excluded. Normal rainfall is the fraction of months during the 9
months before birth that the normal rainfall indicator equasl one.
1st trimester is the fraction is the fraction of months during the 6-
8 months before birth that the normal rainfall indicator equals one.
2nd trimester is the fraction of months during the 3-5 months before
birth that the normal rainfall indicator equals one. 3rd trimester is
the fraction of months during the 0-2 months before birth that the
normal rainfall indicator equals one. The regressions are at the child
level and are based on the expanded sample. All regressions control
for municipality-of-birth fixed effects, month-of-birth x year-of-birth
fixed effects, municipality-specific linear time trends, average tem-
perature in 9 months before birth, sex and race. Robust standard
errors (in brackets) are clustered at the grid level (216 grids). Sig-
nificance: * p < 0.10 ** p < 0.05, *** p < 0.01.
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