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Abstract

We investigate the causal impact of education on life-expectancy using data for England and Wales
from the Health and Lifestyles Survey and how that impact is mediated through changes in health
behaviour (smoking, exercise, having breakfast). For identification of the educational gain in mor-
tality we employ a Regression Discontinuity Design implied by an increase in the minimum school
leaving age in 1947 (from 14 to 15) together with a principal stratification method for the mor-
tality hazard rate. This method allows us to derive the direct and indirect (through one or more
mediators) effect of education on the implied life-expectancy.

Basic maximum likelihood estimation of a standard Gompertz hazard model for the mortality
rate suggests that staying in school beyond age 15 years significantly increases life-expectancy by
more than 14 years, with large indirect effects running through smoking and exercise. In contrast,
estimates from the principal strata method indicate that the educational gain is much smaller (and
statistically insignificant) for those who were induced to remain in school beyond age 15. The direct
effect of education is even negative for females (but statistically insignificant). Neither, do we find
statistically significant indirect effects of education on mortality running through health behaviour.
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1 Introduction

A large literature has documented substantial associations between education and longevity and health
behaviours. It is commonly assumed that this educational gradient in mortality has a causal interpre-
tation. However, this assumption has been challenged in the literature. The association may partly
be explained by confounding factors, observed or unobserved variables, that affect both educational
attainment and mortality (Grossman, 2015). For example, education may encourage better health-
related decisions such as refraining from smoking or doing exercise. However, education and these
health behaviours may be endogenous and depend on uncontrolled confounders, such as cognitive
ability or parental background, that affects both the education attained, the health behaviours and
mortality (Mazumder, 2008, Clark and Royer, 2013, Fletcher, 2015, McCartney et al., 2013). Ignoring
that such common traits exist may render the association spurious and therefore change the policy
implications.

The most common approach to identify causal effects of education on health and mortality exploits
changes in compulsory schooling policies, usually increases in the minimum age or the legally permitted
grade to leave school, as instrumental variables for schooling attainment. All these studies use as
identification strategy that the changes in law induced people born in different years (or states) to
obtain different levels of schooling for reasons that are plausibly unrelated to factors that may influence
their health and mortality. If it is assumed that the change in compulsory schooling law only affected
health and mortality through its effect on education, one can estimate a causal effect of education
on health for those who comply with the new law and would not do otherwise. Estimates based on
these studies point towards a small effect (Mazumder, 2008, 2012, Jones et al., 2011, Van Kippersluis
et al., 2011, Fletcher, 2015, Meghir et al., 2018, Basu et al., 2018) or no effect (Albouy and Lequien,
2009, Clark and Royer, 2013, Jürges et al., 2013). Regression discontinuity does not require exclusion
restrictions and identification comes from the discontinuity in responses.

Only a few studies have attempted to identify the causal effect of education on mortality rates,
using either an inverse propensity weighting method (Bijwaard et al., 2017, Bijwaard and Jones, 2019)
or a structural modelling approach (Bijwaard et al., 2015a,b, 2019). However, a critical assumption
in propensity score weighting is that of no selection on unobservables. This may be hard to defend.
Although the structural models, in which interdependence between education, health, and cognitive
ability is explicitly modelled, account for unobserved correlated factors they assume a particular
structure. The compulsory schooling change provides a natural instrument to identify the causal effect
of education on the mortality rate. Although some studies using compulsory schooling law have looked
at the impact of education on mortality (Lleras-Muney, 2005, Clark and Royer, 2013, Van Kippersluis
et al., 2011), none have accounted for the dynamic selection and censoring inherent in a duration
outcome, such as age at death. We model the mortality hazard rate, the instantaneous probability
that an individual dies at a certain age conditional on surviving up to that age. Accounting for right-
censoring, when the individual is only known to have survived up until the end of the observation
window, and left-truncation, when only those individuals are observed who were alive at a certain
time, are easy to handle in hazard models (Van den Berg, 2001). A common way to accommodate the
presence of observed characteristics is to specify a proportional hazard model, in which the hazard
is the product of the baseline hazard, the age dependence, and a log-linear function of covariates.
Neglecting confounding in inherently non-linear models, such as the proportional hazard models,
leads to biased inference.

The Mixed Proportional Hazard (MPH) model has been the main model for duration data in
economics. However, no unambiguous solution to instrumental variable estimation of the inherently
non-linear MPH-model with endogenous covariates has been found. Bijwaard (2009) developed a con-
sistent estimator for the parameters of a semiparametric MPH model with an unspecified distribution
of the unobserved heterogeneity and with an endogenous variable for which an instrument exists. In
its simplest form, the estimator does not require nonparametric estimation of unknown densities. A
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limitation of this method is that the baseline duration dependence is restricted to a piecewise constant
function, which may be hard to implement for fast increasing hazard rates like the mortality hazard.
Another limitation is that the method is computationally intensive, because it is based on finding
the roots of a multidimensional step function which does not have a derivative. The instrumental
variable (IV) based methods of Terza et al. (2008) for non-linear models have been used recently for
duration models. However, Wan et al. (2015) and Wan et al. (2018) have shown that both their two-
stage predictor substitution (2SPS) and the two-stage residual inclusion (2SRI) methods are biased
in a Weibull proportional hazard framework, at least under the standard assumptions common in the
treatment evaluation literature.

The method we use is based on the principal stratification framework. This framework (Frangakis
and Rubin, 2002) is a general potential outcomes framework for causal inference with instruments
and/or intermediate variables. Principal stratification has its seeds in the instrumental variable meth-
ods as described in Angrist et al. (1996), and Imbens and Rubin (1997), and it has been developed
and formalized within the potential outcome approach to causal inference. The commonly applied
framework developed by Angrist et al. (1996) to define the Local Average Treatment Effect (LATE) in
a random experiment with non-compliance is a special case of the principal stratification framework.
A principal stratum consists of individuals having the same joint potential outcomes, independent of
the treatment assignment (Frangakis and Rubin, 1999, Zhang et al., 2009, Mealli and Mattei, 2012).
Therefore comparisons of potential outcomes under different treatment levels within a principal stra-
tum give well-defined causal effects. The principal strata are usually defined in term of four complier
types: (i) Always takers: individuals who take the treatment irrespectively of their assigned treatment
(ii) Never takers individuals who never take the treatment and (iii) Compliers individuals who only
take the treatment if assigned to treatment. The final complier type Defiers: individuals who only take
the treatment if not assigned to treatment, are ruled out using a monotonicity assumption. When
assuming a parametric baseline mortality hazard rate, estimation of the latent complier types and
their associated hazard rate is possible using maximum likelihood estimation of the implied mixture
model. We assume a Gompertz proportional mortality rate, which assumes an exponential increase
in the mortality rate by age. A Gompertz mortality rate is known to provide accurate mortality rates
for middle aged individuals (Gavrilov and Gavrilova, 1991). Similar methods for duration outcomes,
also based on principal stratification, have been developed by Cuzick et al. (2007), Lin et al. (2014)
and Wan et al. (2015).

Surprisingly little research in economics has investigated the underlying causal mechanism of edu-
cation on mortality in the presence of one or more intermediate variables. One exception is Bijwaard
and Jones (2019) who have investigated whether intelligence, as measured by an IQ test, mediates
the impact of education on the mortality rate. They use an inverse propensity method and, therefore,
assume no unmeasured confounders. The principal stratification framework is very useful when causal
estimands are defined in terms of intermediate outcomes, which are on the causal pathway between
the treatment and the primary outcome (Mealli and Mattei, 2012). However, mediation analysis with
an instrumental variable method is not straightforward. Four approaches exist in the literature to
achieve identification in a mediation model. The first approach assumes that the treatment is (as
good as) randomly assigned and that there exist no unobserved mediators. The second approach of
Imai et al. (2010a,b) assumes that there are no unobserved counfounders and both the treatment and
mediator are ignorable. These two approaches remove the need for an instrument and use matching
or propensity score methods to obtain causal effects. A third approach by Frölich and Huber (2017)
assumes the existence of two instruments, one for the treatment and one for the mediator. Finally, our
approach is related to the approach of Dippel et al. (2017) and only requires one instrument. Dippel
et al. (2017) postulate that identification of the total and mediated effects is achieved when we assume
that confounders which influence the treatment will influence the outcome only through the mediator.
This is equivalent to assuming that the instrument is also a valid instrument for the mediators, but
conditional on the treatment.
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The contribution of this paper is threefold. We study the causal impact of education on the
mortality rate using a change in compulsory schooling. Our second contribution is that, we decompose
this impact into a direct effect of education and an indirect effect running through health behaviours,
such as smoking exercise and breakfast. Finally, the paper provides a methodological innovation in
instrumental variable mediation analysis for hazard rate models, using the principal stratification
approach to motivate estimation of a mixture model.

Our empirical application using a simple Gompertz mortality rate model with education and health
behaviours included suggests that staying in school beyond age 15 years significantly increases life-
expectancy by more than 14 years and with a large indirect effect of education running through health
behaviours. This overestimates the educational gain of staying in school. Estimates from the principal
strata method indicate that the educational gain is much smaller (and statistically insignificant) for
those who were induced to remain in school. Both the direct effect of education and indirect effect
of education running through health behaviours are statistically insignificant in the principle strata
method.

2 Data

We use the British Health and Lifestyle Survey (HALS). This survey was conducted to collect data
on health behaviours of the British population, including smoking, alcohol consumption and exercise.
We use the first and second waves of the survey combined with the long-term follow-up of deaths.
The first wave was conducted in 1984–1985, with a response rate of 73%. In total 9003 individuals
(18–99 years old) were interviewed. In 1991–1992 a follow up survey was carried out for which 5352
individuals completed the interviews. Johnston et al. (2015) have used these data to investigate the
causal link between education and health knowledge. We use the same measure of schooling, the
age at which a respondent left secondary school, which ranges from 14 to 19 years old. Just as for
Johnston et al. (2015) our identification strategy utilises educational reforms that increased the legal
school leaving age in England and Wales from 14 to 15 (in contrast to Johnston et al. (2015) we only
focus on the 1947 reform) and remove all individuals living in Scotland from the sample.

Figure 1 shows how the 1947-reform affects the school leaving age, the probability of leaving school
before the age of 15 and the probability to survive until the end of the survey (July 1st, 2009), for
all individuals and for males and females separately. The 1947-reform clearly had a large effect on
school leaving around the age of 15. Survival seems to increase around the 1947-reform cut-off, but
this might be caused by a period effect. We therefore include a linear trend in the days from the
cut-off moment (1-1-1933), which may differ before and after the cut-off, in our analysis.1

Longitudinal follow-up of the date and cause of death is available up to July 2009 in the Seventh
Death Revision of the HALS. We observe the respondents from their survey interview till July 1st,
2009 or till death, which allows us to construct the mortality hazards. Figure 2 depicts the Kaplan-
Meier survival curves for individuals born 25 years before or after the cut-off birth of the 1947 reform.
According to a log-rank test of survival difference the survival of individuals who left school before
age 15 (1947-reform) differs significantly from the survival of individuals who stayed longer in school
(also for males and females separately).

Figure 3 depicts the relation between education (leaving school before or after age 15) and the
(possible) mediators, smoking, exercise, obesity, good sleep patterns , and having breakfast. It shows
clearly that those who stay in school beyond age 15 have better health behaviours.

1We also include season of birth dummies, region of birth dummies, a non-white dummy, and when analysing all
individuals, a gender dummy as control variables in our analyses.
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Figure 1: Age left school and survival to 2009, 1947 reform
Dots represent average schooling and survival from survey entry to survey end by quarter of birth (year of
birth for survival)
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Figure 2: Survival from first survey till end by age left school, only individuals born 25 years before
or after the cut-off birth of the 1947 reform
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3 Methodology

We seek to find the impact of improving education, measured by staying longer in school (beyond
age 15), on mortality. We are especially interested in disentangling this effect of education into a
direct effect and an indirect effect (operating through health behaviours) on mortality. We assume a
Gompertz proportional hazard mortality rate, which postulates that the (baseline) hazard increases
exponentially with age, λ(t|D,X)) = eβ0+αt+β′X+γD. We will use the (implied) life expectancy as the
outcome of interest.2 Assuming that the estimated Gompertz hazard holds, the life expectancy can
be very well approximated by (Lenart, 2014)

LE(D|α, β, γ) = − exp

(

1
α
exp

[

β0 + β′X + γDD
]

)

×
(

β0 + β′X + γDD − ln(α) + 0.5772
)

/α (1)

where 0.5772 is the Euler constant.
When we assume a Mixed Proportional Hazard (MPH) model with Gamma distributed unobserved

heterogeneity (with unit mean and variance σ2) the life expectancy can be approximated by (Missov,
2013)

LE(D|α, β, γ) =

[

(

1− σ2

α
eβ0+β′X+γDD

)−
1
σ2

×
(

ln(α)− β0 − β′X − γDD − ln(σ2)
)

−

1
σ2 −1
∑

j=1

1
j

(

1− σ2

α
eβ0+β′X+γDD

)j−
1
σ2

]

/α (2)

3.1 Standard mediation analysis

Traditionally, causal mediation analysis has been formulated within the framework of linear structural
equation models (LSEM) (Baron and Kenny, 1986). The LSEM assumes the following two equations:
Let Y be the outcome, mortality, D the ‘treatment’, higher education , M the mediator, e.g. smoking
behaviour, and X other included covariates.

M = βM0 + β′
MX + γMD + ǫM (3)

Y = βY 0 + β′
Y X + γDD + θMM + ǫY (4)

where the error terms ǫM and ǫY are assumed to be mutually independent, with variance σ2
M and σ2

Y .
Then, the direct effect of education, D, is γD and the indirect effect, running through the mediator,
is θM · γM . Note that this simple multiplication does not hold for a non-linear model.

3.2 Principle strata hazard rate model

The identification of the causal effect of health on mortality is complicated by the potential endogeneity
of education. The association between health and education may partly be explained by confounding
factors such as cognitive ability and parental background, which affect both education choices and
health (McCartney et al., 2013). For this reason the coefficient of education (and the mediators) in
a standard (proportional) hazard models for the mortality rate, such as a Gompertz model, is likely
to be upward biased. To address this endogeneity we use a fuzzy regression discontinuity design, as
implied by the change in school leaving age of the 1947-reform in England and Wales.

A method using people born just around a threshold to identify causal effects is known as Regression
discontinuity design (RDD), (Imbens and Lemieux, 2008, Lee and Lemieux, 2010). The basic idea

2In principle the direct and indirect effect can also be defined in terms of hazard (ratios). But these effects depend
on age, t, and are therefore difficult to interpret.
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behind RDD is that assignment to treatment (in our case continue schooling after age 15) is determined,
either completely or partly, by the value of the instrument (the change in law) being on either side of
a fixed threshold. Because people born before the reform could still stay in school beyond age 15 we
have a fuzzy RDD. We use a local, separate for each side of the threshold, linear regression to account
for distance from the threshold (Gelman and Imbens, 2019).

The fuzzy RDD we have can be viewed as an instrumental variable method, with being affected
by the change in the law (i.e. born after 1-4-1933) used as instrument for staying longer in school
(beyond age 15). Define for the policy change (treatment assignment) the (potential) binary variable
D(z), with Z = 1 if an individual was affected by the policy change and zero otherwise and D = 1
if the individual stayed in school to age 15 or beyond. We seek to investigate the role of mediation
factors (health behaviours) on the impact of education on mortality. These mediators are possibly
affected by education. We use the principal strata formulation of the problem (Frangakis and Rubin,
2002). This implies we have four (latent) complier types for education: always takers are individuals
who always stay longer in school irrespectively of whether they were affected by the policy change;
never takers are individuals who never stay in school beyond age 15 and, Compliers are individuals
who only stay longer in school because they were induced to do so through the policy change. We
assume that Defiers, individuals who only stay in school beyond age 15 because they were not induced
through the policy change, do not exist. Our work is novel in that we consider inherently non-linear
hazard models, instead of linear models. We assume that the (potential) hazard depends on the
complier-type. We also assume that the value, i.e. the probability that individual exhibits ‘good’
health behaviour Pr(M = 1|c), and the impact of the mediator depends on the complier-type.

We assume the complier type influences only the scale of the mortality rate,γd1 and γd0 and through
the mediators Mj, θjd1 and θjd0. Thus, the potential hazard for an individual of complier type d is

λ(d)(t|·) = vλ0(t;α) exp

(

γd1Z + γd0(1 − Z) +

m
∑

j=1

Mj

[

θjd1Z + θjd0(1 − Z)
]

+ β′X

)

(5)

where d = {a(lways), n(ever), c(omplier)} are the complier types. We either assume that v ≡ 1
(PH-model) or that v follows a unit mean Gamma distribution with variance σ2 (MPH-model).

We impose some (standard, Imbens and Rubin (1997) ) additional assumptions3:
Weak exclusion restriction: requires that the treatment assignment (and mediators) are unrelated
to potential outcomes for never-takers and always-takers. This implies that the effect of always-
takers and of never-takers is independent of treatment assignment (or education level for the mediator
effects). Thus, (γd1 = γd0 = γd and θjd1 = θjd0 = θjd for d = {a, n}; j = 1, . . . ,m. Note that this
restriction is inherent to the RDD, the policy change only effects the outcome through the induced
change in treatment (prolonging the time in school). Classical instrumental variable analysis requires
an exclusion restriction (Angrist et al., 1996). Still, for compliers both the education effect and the
mediator effect may differ by the instrument value Z. Implying that those who are induced to stay
longer in school behave differently than those who were not induced.

For identification of the LATE (sometimes called the compliers average causal effects (CACE),
(Mealli and Mattei, 2012)), we already made the monotonicity assumptions, ruling out defiers: Mono-
tonicity Angrist et al. (1996): D(1) ≥ D(0).
Mediator assumption

Z 6 ⊥ M |D and Z⊥λ
(d)(t|M)|D (6)

Figure 4 provides a graphical illustration of the relationship between the instrument, education,
the mediator(s) and the mortality rate using a directed acyclic graph, where each arrow represents a

3We also impose the stable unit treatment value assumption (SUTVA), which requires that the mortality of an
individual is not affected by the instrument assigned to other individuals, the education attained or health behaviour of
other individuals.
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causal path (Pearl, 2000, 2012). It states that the instrument Z, the change in compulsory schooling
law, influences the education choice D, which influences the mediator(s) M . Both education and
the mediator(s) influence the mortality hazard λ. The model allows for three sources of endogenous
effects: an unmeasured confounder UD that causes D and M , an unmeasured confounder UM that is
caused by D and causes M and λ and, an unmeasured confounder Uλ that causes M and λ.
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Figure 4: Mediation model with an instrument

3.3 Estimation of principle strata hazard rate model

Based on the assumption of a known functional form of the baseline hazard, e.g. Weibull (λ0(t) =
αtα−1) or Gompertz (λ0(t) = eαt), it is very easy to derive the likelihood function contribution of
individual i with 3 mediators, see Appendix A for the full likelihood

Li =
∏

Zi

∏

Di

∏

M1i

∏

M2i

∏

M3i

[

λi

(

ti|Zi,Di,M1i,M2i,M3i

)δiS
(

t|Zi,Di,M1i,M2i,M3i

)

]I
(

Zi,Di,M1i,M2i,M3i

)

(7)

with S
(

t|Zi,Di,M1i,M2i,M3i

)

is the survival rate at age t for an individual with Zi,Di,M1i,M2i,M3i,
e.g.,

S(t|Z = 0,D = 0,M1 = 1,M2 = 0,M3 = 1) = pnpnm1
(1− pnm2

)pnm3
exp

(

−

∫ t

0
λ0(s)e

β′X+θ1n+θ3nds
)

+

pcp0m1
(1− p0m2

)p0m3
exp

(

−

∫ t

0
λ0(s)e

β′X+γ0+θ10+θ30ds
)

where pn, pc are the complier-type probabilities for never-takers and compliers and pnmj
= Pr(Mj =

1|never taker) and p0mj
= Pr(Mj = 1|complier, Z = 0) for j = 1, 2, 3. All these probabilities are

estimated jointly together with the other parameters of the model. This implies that our model is a
latent class model with the complier types as latent classes.
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Regression discontinuity designs identify a treatment effect locally around the threshold. Standard
in the literature is a local continuity assumption, implying that persons close to threshold are compa-
rable except for assignment variable. The standard approach to account for divergence is to include
a local polynomial of the running variable, in our case the date of birth, estimated separately at each
side of the threshold. Gelman and Imbens (2019) argue that a linear polynomial, and not higher order
polynomials, is the best approach. We, therefore, include linear functions of the birthdate from April
1933, for each side of the threshold, in the Gompertz model.

In regression discontinuity design there is always a trade-off between bias (a small window) and
variance (a large window). We choose a window of 10 years. In Section 5 we discuss the results for a
window of 15 years and for smaller windows.

3.4 Causal quantities

We use the (implied) life expectancy as the outcome of interest. In causal mediation analysis, re-
searchers are typically interested in decomposing the treatment effects on the outcome into two ef-
fects: the indirect effect that operates through the mediator and the direct effect that does not operate
through the mediator. When using instrumental variables usually only the Local Average Treatment
Effect (LATE) for the compliers is identified Angrist et al. (1996). First we define the local direct,
ζ(d), and indirect, ξ(d), effects with three mediators for d = 0, 1 as (using (1)

ζ(d) =
[

LE
(

1,M1(d),M2(d),M3(d)
)

− LE
(

0,M1(d),M2(d),M3(d)
)

|complier
]

(8)

ξ1(d) =
[

LE
(

d,M1(1),M2(d),M3(d)
)

− LE
(

d,M1(0),M2(d),M3(d)
)

|complier
]

(9)

ξ2(d) =
[

LE
(

d,M1(d),M2(1),M3(d)
)

− LE
(

d,M1(d),M2(0),M3(d)
)

|complier
]

(10)

ξ3(d) =
[

LE
(

d,M1(d),M2(d),M3(1)
)

− LE
(

d,M1(d),M2(d),M3(1)
)

|complier
]

(11)

The derivation of these causal quantities are given in Appendix B. Additionally we have the quantity
of local mediated interaction for d = 0, 1

IM(d) =
[

LE
(

d,M1(1),M2(1),M3(1)
)

+2LE
(

d,M1(0),M2(0),M3(0)
)

−LE
(

d,M1(1),M2(0),M3(0)
)

− LE
(

d,M1(0),M2(1),M3(0)
)

− LE
(

d,M1(0),M2(0),M3(1)
)

|complier
]

(12)

The local average mediated interaction measures the interactive effect of both mediators, see Taguri
et al. (2018).

The local average indirect effect of Mj , ξj(d), represents the average change in the outcome among
the compliers when mediator Mj was changed from the value that would have been realised under the
treatment condition to the value that would have been realised under the control condition while the
treatment remains at value d. The local average direct effect, ζ(d), represents the average change in
the outcome among the compliers when the treatment was changed from the control condition to the
treatment condition while the mediator remains at the value that would have been realised under the
treatment condition d. Note that the the sum of local direct, the local indirect effects and the local
mediated interaction equals the ‘standard’ LATE:

LATE =
[

LE
(

1,M1(1),M2(1),M3(1)
)

− LE
(

0,M1(0),M2(0),M3(0)
)

|complier
]

= ζ(0) + IM(1) +

3
∑

j=1

ξj(1) = ζ(1) + IM(0) +

3
∑

j=1

ξj(0) (13)
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4 Results

4.1 Basic Gompertz model

Before we report the results of the principle strata Gompertz model we discuss the results of using
a standard Gompertz model (with or without gamma distributed unobserved heterogeneity) for the
mortality rate when education (a dummy for staying in school beyond age 15) is one of the included
variables. We also include three health behaviours that may be associated with education: smoking
(never smoking), doing exercise and having a good breakfast and their interaction with education.
All the estimates use the mortality data of individuals born in a bandwidth of 10 years around
April 1933. Table C.1 in Appendix C provides the full parameter estimates. Including these three
health behaviours in the hazard rate makes the effects of staying in school beyond age 15 statistically
insignificant. The health behaviours all decrease the mortality hazard (all are statistically significant
for the sample of males and females together and for the sample of females, never smoking and
breakfast are significant for the sample of males). None of the interactions between staying in school
beyond age 15 and the health behaviours are statistically significant.

Based on these estimated parameters we calculate the implied life-expectancy for each education
and health behaviour combination and the implied total, direct and indirect effects (similar to equa-
tions (8) to (12)). Table 1 reports these estimated educational gains on the implied life-expectancy.
We find a rather large total effect of education (staying in school beyond age 15) of fourteen (females)
to nineteen (males) additional years. However, the direct effect of education is much smaller and not
statistically significant.

The main impact of education seems to run through changes in health behaviour. Smoking explains
six to eleven years of increasing life expectancy, exercise explain four and a half to eight years, and
having breakfast explains (not statistically significant for males) three to five years. For all three
groups (males and females together, and males or females separately) the MPH model with gamma
distributed unobserved heterogeneity gives lower educational gains than the PH model.
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Table 1: Estimated educational gain in life-expectancy at age 18 basic Gompertz model

all males females
PH MPHb PH MPHb PH MPHb

Total effect 17.787∗∗ 17.025∗∗ 21.276∗∗ 19.252∗∗ 14.704∗∗ 14.501∗∗

(2.641) (2.294) (4.528) (3.503) (3.104) (2.894)
direct effect

Direct effect D = 1 −0.922 −2.579 2.294 −1.460 −3.444 −3.905
(3.533) (3.423) (5.850) (5.450) (4.386) (4.346)

Direct effect D = 0 2.609 3.183 3.593 5.649 1.894 1.705
(1.884) (1.971) (3.107) (3.149) (2.336) (2.530)
indirect effect, D = 1

never smoking 8.270∗∗ 7.940∗∗ 9.719∗∗ 8.364∗∗ 7.119∗∗ 7.707∗∗

(1.846) (1.574) (3.296) (2.443) (2.124) (2.010)
exercise 6.636∗∗ 5.892∗∗ 8.623∗∗ 6.419∗∗ 4.755+ 4.511+

(1.897) (1.599) (3.174) (1.682) (2.261) (2.044)
breakfast 4.508∗∗ 4.057∗∗ 3.197 1.964 5.492∗∗ 5.129∗∗

(1.639) (1.478) (2.701) (2.167) (2.020) (1.951)
indirect effect, D = 0

never smoking 7.433∗∗ 7.637∗∗ 8.905∗∗ 10.645∗∗ 6.249∗∗ 5.659+

(1.852) (1.850) (3.266) (3.091) (2.150) (2.314)
exercise 7.032∗∗ 7.916∗∗ 6.209+ 6.917+ 7.339∗∗ 8.191∗∗

(1.985) (1.984) (3.027) (3.012) (2.619) (2.691)
breakfast 4.236∗∗ 4.047+ 3.856∗∗ 3.144 4.554+ 4.0551+

(1.409) (1.595) (2.162) (2.546) (1.843) (2.080)
mediation interaction effect

IM(0) 0.008∗∗ 0.005+ 0.011 0.006 0.006+ 0.004
(0.003) (0.003) (0.006) (0.005) (0.003) (0.003)

IM(1) −4.237∗∗ −4.047+ −3.857 −3.144 −4.555+ −4.551+

(1.411) (1.596) (2.169) (2.549) (1.845) (2.081)

a never smoking, exercise and breakfast as mediation factors, linear local trend in month-year of birth
(from 1-4-1933). Separate trend before and after the reform.

b Gamma unobserved heterogeneity. Regional, season of birth dummies, a non-white dummy, and
a gender dummy (only in all) are also included. The bandwidth around 1-4-1933 included in the
estimation is 10 years. The window of included births is twice the bandwidth. +p < 0.05 ∗∗p < 0.01
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4.2 Principle strata Gompertz model

The standard Gompertz model presented above does not account for endogeneity of staying in school.
The principle strata Gompertz model described in Section 3.2 that exploits the policy reform of 1947
as an instrument for staying in school seeks to solve this endogeneity issue. The full estimation results
are given in Table D.1 in Appendix D here we only discuss the relevant coefficients for compliers: γ
and θ for compliers with Z = 0 or Z = 1. None of the complier coefficients of education (γ1 vs γ0)
or the mediator effects of the health behaviours differ significantly. The estimated mediator (health
behaviour) probabilities by complier type are also important for the education gain and are reported
in Table D.2 in Appendix D. The never-takers probability is very small (around 8%). In principle
the data should not contain never-takers, as starting from 1947 everybody had to remain in school
till the age 15. In Section 5 we test the robustness of our results when we either discard the people
who leave school before age 15 after 1947 or assume that those people remain in school. About 60%
of the people are compliers, which is the subpopulation of our (local) treatment effects. Although
the mediator probabilities are always higher for the compliers with Z = 1 (induced to stay longer in
school) than for the compliers with Z = 0 (no mandatory stay in school till the age of 15) they only
differ significantly between these two compliers for having breakfast.

Based on the estimated coefficients of the model we calculate the life expectancy for the compliers
and the implied education gain (using equations (8) to (12)). Table 2 presents these educational gains
in life-expectancy. It is only for the sample of males with the PH model, that we find a statistically
significant educational gain (LATE) on life expectancy, this is of about fifteen years. Using a MPH
model with gamma distributed unobserved heterogeneity we do not find any significant educational
gain. All the direct and indirect effects of education are also statistically insignificant when using the
principle strata Gompertz model.
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Table 2: Estimated educational gain in life-expectancy at age 18 principle strata Gompertz model

all males females
PH MPHb PH MPHb PH MPHb

LATE 7.591 4.660 15.013+ 11.317 −0.086 −1.208
(4.730) (4.101) (7.168) (6.814) (5.699) (5.815)
direct effect

dir(1) −0.017 1.156 7.244 9.658 −5.972 −5.728
(3.514) (3.402) (5.586) (5.013) (4.117) (4.205)

dir(0) −0.017 1.156 7.239 9.660 −5.971 −5.730
(3.512) (3.403) (5.584) (5.013) (4.116) (4.206)
indirect effect, D = 1

never smoking 4.690 2.561 2.437 −0.118 5.144 4.435
(2.850) (2.108) (3.657) (2.352) (3.647) (3.462)

exercise 1.982 1.022 3.186 0.963 0.983 0.833
(1.606) (1.374) (3.012) (2.365) (1.819) (1.769)

breakfast 0.936 −0.079 2.144 0.814 −0.241 −0.748
(2.391) (2.249) (4.509) (4.193) (2.633) (2.836)
indirect effect, D = 0

never smoking 4.690 2.561 2.440 −0.118 5.143 4.437
(2.850) (2.108) (3.660) (2.351) (3.647) (3.464)

exercise 1.982 1.021 3.189 0.962 0.983 0.833
(1.606) (1.373) (3.014) (2.364) (1.819) (1.770)

breakfast 0.936 −0.079 2.146 0.813 −0.241 −0.748
(2.392) (2.248) (4.513) (4.190) (2.633) (2.836)
mediation interaction effect

IM(0) 0.001 −0.000 0.017 −0.000 0.000 0.000
(0.001) (0.001) (0.027) (0.001) (0.001) (0.001)

IM(1) −0.001 0.000 −0.013 0.000 −0.000 −0.000
(0.001) (0.001) (0.021) (0.001) (0.001) (0.001)

a never smoking, exercise and breakfast as mediation factors, linear local trend in
month-year of birth (from 1-4-1933). Separate trend before and after the reform.

b Gamma unobserved heterogeneity. Regional, season of birth dummies, a non-white
dummy, and a gender dummy (only in all) are also included. The bandwidth around
1-4-1933 included in the estimation is 10 years. The window of included births is
twice the bandwidth. +p < 0.05 ∗∗p < 0.01
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5 Robustness

In this section we check how robust our results are to a different choice of the ‘third’ mediator’, to the
choice of the bandwidth and to excluding never takers.

The reason we chose smoking, exercise and breakfast behaviour as potential mediators of education
on mortality is because only these three behaviours showed a statistically significant relation with
staying in school beyond age 15, see Table C.2 in Appendix C. We tested whether the estimated
educational effects change when using another health behaviour as a third mediator (still using smoking
and exercise behaviour as mediators). Table E.1 in Appendix E presents the estimated total, direct
and indirect effects of education on the life-expectancy using sleeping-well, prudent alcohol use or not
being obese as the third mediator. For males we find a statistically significant total effect of education
when using a PH model for all three alternative mediators. However, the effect is much smaller and
statistically insignificant when using a MPH model with gamma distributed unobserved heterogeneity.

A common issue in using fuzzy regression discontinuity designs is the choice of the bandwidth
of whom to select around the threshold. There is always a trade-off between bias (a small window)
and precision (a large window). We had chosen a window of 10 years around the threshold of born
in April 1933. Table E.2 in Appendix E presents the educational gains in life-expectancy implied
by re-estimating the complier model using different bandwidths, 15, 9, 8 or 7 years. Note that the
MPH model with gamma unobserved heterogeneity did not converge in all cases. For all bandwidths
smaller than 10 years all estimated education effects remain statistically insignificant, but close to the
reported effects in Table 2. Choosing a larger bandwidth of 15 years would increase the estimated
educational effects. The total educational gain (LATE) would be statistically significant for males
and females together (eleven years for the MPH model) and for males only( twelve years). The effect
of education running through smoking would be significant using a 15 year bandwidth for males
and females together (seven years) and for females only (six years). The effect of education running
through exercise would be significant for males and females together (two years) and for males only
(four years). We consider, however, a bandwidth of 15 years around the policy change too large.

Another issue is that we identified a few, 8%, never-takers although in principle they should not
exist. We, therefore, check the implication of either (1) removing those people born after April 1933
who leave school before age 15 from the analyses or (2) assuming that those people have stayed
beyond age 15 in school. Again we re-estimate the principle strata Gompertz model and calculate
the implied educational gains. Table E.3 in Appendix E presents these estimated educational gains
with adjustment for never takers. Removing the never-takers from the analyses has little effect on
the estimated educational gains. Only for males the total effect drops a little (and is not statistically
significant for the PH model anymore). Assuming that the never-takers remain in fact beyond age 15
in school has a larger (but still rather small) impact on the estimated educational gains. All of the
estimated educational gains (total, direct and indirect) for the MPH model with gamma distributed
unobserved heterogeneity remain statistically insignificant.

6 Conclusion

We investigate the causal educational gain in life-expectancy and how it is mediated through differ-
ence in health behaviour (smoking, exercise, having breakfast), using data for England and Wales
from the Health and Lifestyle Survey. For causal identification of the educational gain we employ a
Regression Discontinuity Design implied by the increase in the minimum school leaving age in 1947
(from 14 to 15) together with a principal stratification method for the mortality hazard rate. The
principal stratification framework is a general potential outcomes framework for causal inference with
instruments and/or intermediate variables. It defines complier types (always takers, compliers and
never takers) for both educational attainment, depending on the schooling reform, and the level of the
mediators, depending on the education attainment. This method allows us to derive the direct and
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indirect (through one or more mediators) effect of education on the implied life-expectancy.
Our empirical analysis using a simple Gompertz mortality rate model suggests that staying in

school beyond age 15 years significantly increases life-expectancy by more than 14 years and with
a large indirect effects of education running through health behaviours. This overestimates the ed-
ucational gain of staying in school. Estimates from the principal strata method indicate that the
educational gain is much smaller (and statistically insignificant) for those who were induced to remain
in school beyond age 15. The direct effect of education is statistically insignificant and even nega-
tive for males and females together and for the model using only females. Neither do we find any
statistically significant indirect effects of education running through changes in health behaviour.

We also conducted a few robustness test, allowing for a different choice of the ‘third’ mediator’,
smaller bandwidths around the threshold and ruling out never-takers.

The new principle strata hazard rate model we introduced here could be used for other applications
with a duration outcome and a suitable instrument for the endogenous treatment and mediators. The
method can also be adjusted for parametric baseline hazards other than the Gompertz.
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Appendix A Likelihood

Based on the assumption of a Gompertz4 functional form of the baseline hazard and three mediators
it is very easy to derive the likelihood function contribution of individual i.

Li =
∏

Zi

∏

Di

∏

M1i

∏

M2i
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M3i

[

λi
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S(t|Z = 1,D = 1,M1,M2,M3) = pa(1−pam1
)1−M1(pam1

)M1(1−pam2
)1−M2(pam2

)M2(1−pam3
)1−M3(pam3

)M3

× exp
(

−

∫ t

0
eαns+γn+β′X+

∑
j θjaMjds

)

+

pc(1− p1m1
)1−M1(p1m1

)M1(1− p1m2
)1−M2(p1m2

)M2(1− p1m3
)1−M3(p1m3

)M3

× exp
(

−

∫ t

0
eα1s+γ1+β′X+

∑
j θj1Mjds

)

(A.4)

and pf = Pr(complier = f), f = {a, c, n} and pnmj
= Pr(Mj = 1|complier type = n), pamj

=

Pr(Mj = 1|complier type = a), p1mj
= Pr(Mj = 1|complier type = c, Z = 1) and p0mj

= Pr(Mj =

1|complier type = c, Z = 0).5 The hazard rate λ(t|Z = z,D = d,M1,M2,M3) = −∂ log S(t|Z =
z,D = d,M1,M2,M3)/∂t.

4It is straightforward to derive the likelihood for other known baseline hazards.
5Note that it is possible to allow the probabilities to depend on observed exogenous variables, Xc, which may be

different from X.
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Appendix B Derivation of causal quantities

Given:

f
(

D(1),M1

(

D(1)
)

,M2

(

D(1)
)

,M3

(

D(1)
)

)

− f
(

D(0),M1

(

D(0)
)

,M2

(

D(0),M3

(

D(1)
))

)

=
[

f
(

1,M1(1),M2(1),M3(1)
)

·D(1) + f
(

0,M1(0),M2(0),M3(0)
)

·
(

1−D(1)
)

]

−
[

f
(

1,M1(1),M2(1),M3(1)
)

·D(0) + f
(

0,M1(0),M2(0),M3(0)
)

·
(

1−D(0)
)

]

=
[

f
(

1,M1(1),M2(1),M3(1)
)

− f
(

0,M1(0),M2(0),M3(0)
)

]

·
[

D(1)−D(0)
]

This implies that:

E
[

f
(

D(1),M1

(

D(1)
)

,M2

(

D(1),M3

(

D(1)
)

)

− f
(

D(0),M1

(

D(0)
)

,M2

(

D(0),M2

(

D(0)
)

)]

=

= E
[

f
(

1,M1(1),M2(1),M3(1)
)

−f
(

0,M1(0),M2(0),M3(0)
)

∣

∣

∣
D(1)−D(0) = 1

]

·Pr
[

D(1)−D(0) = 1
]

and the Local Average Treatment Effect is given by:

LATE = E
[

f
(

1,M1(1),M2(1),M3(1)
)

− f
(

0,M1(0),M2(0),M3(0)
)

∣

∣

∣
complier

]

(B.1)

Given:

f
(

D(1),M1

(

D(z)
)

,M2

(

D(z)
)

,M3

(

D(z)
)

)

− f
(

D(0),M1

(

D(z)
)

,M2

(

D(z)
)

,M3

(

D(z)
)

)

=
[

f
(

1,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

·D(1) + f
(

0,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

·
(

1−D(1)
)

]

−
[

f
(

1,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

·D(0) + f
(

0,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

·
(

1−D(0)
)

]

=
[

f
(

1,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

− f
(

0,M1

(

D(z)
)

,M2

(

D(z)
)

M3

(

D(z)
))

]

·
[

D(1)−D(0)
]

we derive the local direct effect:

ζ(d) = E
[

f
(

1,M1(d),M2(d),M3(d)
)

− f
(

0,M1(d),M2(d),M3(d)
)

∣

∣

∣
complier

]

(B.2)

Given:

f
(

D(z),M1

(

D(1)
)

,M2

(

D(z)
)

,M3

(

D(z)
)

)

− f
(

D(z),M1

(

D(0)
)

,M2

(

D(z)
)

,M3

(

D(z)
)

)

=
[

f
(

D(z),M1(1),M2(D(z)),M3(D(z))
)

·D(1) + f
(

D(z),M1(0),M2(D(z)),M3(D(z))
)

·
(

1−D(1)
)

]

−
[

f
(

D(z),M1(1),M2(D(z)),M3(D(z))
)

·D(0) + f
(

D(z),M1(0),M2(D(z)),M3(D(z))
)

·
(

1−D(0)
)

]

=
[

f
(

D(z),M1(1),M2(D(z)),M3(D(z))
)

− f
(

D(z),M1(0),M2(D(z)),M3(D(z))
)

]

·
[

D(1)−D(0)
]

the local indirect effect of M1 is:

ξ1(d) = E
[

f(d,M1(1),M2(d),M3(d))− f(d,M1(0),M2(d),M3(d)
∣

∣

∣
complier

]

(B.3)

and from

f
(

D(z),M1(D(z)),M2

(

D(1),M3(D(z))
)

)

− f
(

D(z),M1(D(z)),M2

(

D(0)
)

,M3(D(z))
)

=
[

f
(

D(z),M1(D(z)),M2(1),M3(D(z))
)

·D(1) + f
(

D(z),M1(D(z)),M2(0),M3(D(z))
)

·
(

1−D(1)
)

]

−
[

f
(

D(z),M1(D(z)),M2(1),M3(D(z))
)

·D(0) + f
(

D(z),M1(D(z)),M2(0),M3(D(z))
)

·
(

1−D(0)
)

]

=
[

f
(

D(z),M1(D(z)),M2(1),M3(D(z))
)

− f
(

D(z),M1(D(z)),M2(0),M3(D(z))
)

]

·
[

D(1)−D(0)
]
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the local indirect effect of M2 is:

ξ2(d) = E
[

f(d,M1(d),M2(1),M3(d))− f(d,M1(d),M2(0),M3(d)
∣

∣

∣
complier

]

(B.4)

Finally, given:

f
(

D(z),M1(D(z)),M2

(

D(z),M3(D(1))
)

)

− f
(

D(z),M1(D(z)),M2

(

D(z)
)

,M3(D(0))
)

=
[

f
(

D(z),M1(D(z)),M2(D(z)),M3(D(1))
)

·D(1)+f
(

D(z),M1(D(z)),M2(D(z)),M3(D(0))
)

·
(

1−D(1)
)

]

−
[

f
(

D(z),M1(D(z)),M2(D(z)),M3(D(1))
)

·D(0)+f
(

D(z),M1(D(z)),M2(D(z)),M3(D(0))
)

·
(

1−D(0)
)

]

=
[

f
(

D(z),M1(D(z)),M2(D(z)),M3(D(1))
)

−f
(

D(z),M1(D(z)),M2(D(z)),M3(D(0))
)

]

·
[

D(1)−D(0)
]

the local indirect effect of M3 is:

ξ3(d) = E
[

f(d,M1(d),M2(d),M3(1))− f(d,M1(d),M2(d),M3(1)
∣

∣

∣
complier

]

(B.5)

This results in the following estimation equations :

ζ(1) = p11p
1
2p

1
3

[

LE(c)(1, 1, 1, 1|1) − LE(c)(0, 1, 1, 1|1)
]

(B.6)

+ (1− p11)p
1
2p

1
3

[

LE(c)(1, 0, 1, 1|1) − LE(c)(0, 0, 1, 1|1)
]

+ p11(1− p12)p
1
3

[

LE(c)(1, 1, 0, 1|1) − LE(c)(0, 1, 0, 1|1)
]

+ p11p
1
2(1− p13)

[

LE(c)(1, 1, 1, 0|1) − LE(c)(0, 1, 1, 0|1)
]

+ (1− p11)(1 − p12)p
1
3

[

LE(c)(1, 0, 0, 1|1) − LE(c)(0, 0, 0, 1|1)
]

+ (1− p11)p
1
2(1− p13)

[

LE(c)(1, 0, 1, 0|1) − LE(c)(0, 0, 1, 0|1)
]

+ p11(1− p12)(1− p13)
[

LE(c)(1, 1, 0, 0|1) − LE(c)(0, 1, 0, 0|1)
]

+ (1− p11)(1 − p12)(1− p13)
[

LE(c)(1, 0, 0, 0|1) − LE(c)(0, 0, 0, 0|1)
]

ζ(0) = p01p
0
2p

0
3

[

LE(c)(1, 1, 1, 1|0) − LE(c)(0, 1, 1, 1|0)
]

(B.7)

+ (1− p01)p
0
2p

0
3

[

LE(c)(1, 0, 1, 1|0) − LE(c)(0, 0, 1, 1|0)
]

+ p01(1− p02)p
0
3

[

LE(c)(1, 1, 0, 1|0) − LE(c)(0, 1, 0, 1|0)
]

+ p01p
0
2(1− p03)

[

LE(c)(1, 1, 1, 0|0) − LE(c)(0, 1, 1, 0|0)
]

+ (1− p01)(1 − p02)p
0
3

[

LE(c)(1, 0, 0, 1|0) − LE(c)(0, 0, 0, 1|0)
]

+ (1− p01)p
0
2(1− p03)

[

LE(c)(1, 0, 1, 0|0) − LE(c)(0, 0, 1, 0|0)
]

+ p01(1− p02)(1− p03)
[

LE(c)(1, 1, 0, 0|0) − LE(c)(0, 1, 0, 0|0)
]

+ (1− p01)(1 − p02)(1− p03)
[

LE(c)(1, 0, 0, 0|0) − LE(c)(0, 0, 0, 0|0)
]
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ξ1(1) = p12p
1
3

[

p11LE
(c)(1, 1, 1, 1|1) − p01LE

(c)(1, 1, 1, 1|0) + (p01 − p11)LE
(c)(1, 0, 1, 1|1)

]

(B.8)

+ (1− p12)p
1
3

[

p11LE
(c)(1, 1, 0, 1|1) − p01LE

(c)(1, 1, 0, 1|0) + (p01 − p11)LE
(c)(1, 0, 0, 1|1)

]

+ p12(1− p13)
[

p11LE
(c)(1, 1, 1, 0|1) − p01LE

(c)(1, 1, 1, 0|0) + (p01 − p11)LE
(c)(1, 0, 1, 0|1)

]

+ (1− p12)(1− p13)
[

p11LE
(c)(1, 1, 0, 0|1) − p01LE

(c)(1, 1, 0, 0|0) + (p01 − p11)LE
(c)(1, 0, 0, 0|1)

]

ξ1(0) = p02p
0
3

[

p11LE
(c)(1, 1, 1, 1|1) − p01LE

(c)(1, 1, 1, 1|0) + (p01 − p11)LE
(c)(0, 0, 1, 1|0)

]

(B.9)

+ (1− p02)p
0
3

[

p11LE
(c)(1, 1, 0, 1|1) − p01LE

(c)(1, 1, 0, 1|0) + (p01 − p11)LE
(c)(0, 0, 0, 1|0)

]

+ p02(1− p03)
[

p11LE
(c)(1, 1, 1, 0|1) − p01LE

(c)(1, 1, 1, 0|0) + (p01 − p11)LE
(c)(0, 0, 1, 0|0)

]

+ (1− p02)(1− p03)
[

p11LE
(c)(1, 1, 0, 0|1) − p01LE

(c)(1, 1, 0, 0|0) + (p01 − p11)LE
(c)(0, 0, 0, 0|0)

]

ξ2(1) = p11p
1
3

[

p12LE
(c)(1, 1, 1, 1|1) − p02LE

(c)(1, 1, 1, 1|0) + (p02 − p12)LE
(c)(1, 1, 0, 1|1)

]

(B.10)

+ (1− p11)p
1
3

[

p12LE
(c)(1, 0, 1, 1|1) − p02LE

(c)(1, 0, 1, 1|0) + (p02 − p12)LE
(c)(1, 0, 0, 1|1)

]

+ p11(1− p13)
[

p12LE
(c)(1, 1, 1, 0|1) − p02LE

(c)(1, 1, 1, 0|0) + (p02 − p12)LE
(c)(1, 1, 0, 0|1)

]

+ (1− p11)(1− p13)
[

p12LE
(c)(1, 0, 1, 0|1) − p02LE

(c)(1, 0, 1, 0|0) + (p02 − p12)LE
(c)(1, 0, 0, 0|1)

]

ξ2(0) = p01p
0
3

[

p12LE
(c)(1, 1, 1, 1|1) − p02LE

(c)(1, 1, 1, 1|0) + (p02 − p12)LE
(c)(0, 1, 0, 1|0)

]

(B.11)

+ (1− p01)p
0
3

[

p12LE
(c)(1, 0, 1, 1|1) − p02LE

(c)(1, 0, 1, 1|0) + (p02 − p12)LE
(c)(0, 0, 0, 1|0)

]

+ p01(1− p03)
[

p12LE
(c)(1, 1, 1, 0|1) − p02LE

(c)(1, 1, 1, 0|0) + (p02 − p12)LE
(c)(0, 1, 0, 0|0)

]

+ (1− p01)(1− p03)
[

p12LE
(c)(1, 0, 1, 0|1) − p02LE

(c)(1, 0, 1, 0|0) + (p02 − p12)LE
(c)(0, 0, 0, 0|0)

]

ξ3(1) = p11p
1
2

[

p13LE
(c)(1, 1, 1, 1|1) − p03LE

(c)(1, 1, 1, 1|0) + (p03 − p13)LE
(c)(1, 1, 1, 0|1)

]

(B.12)

+ (1− p11)p
1
2

[

p13LE
(c)(1, 0, 1, 1|1) − p03LE

(c)(1, 0, 1, 1|0) + (p03 − p13)LE
(c)(1, 0, 1, 0|1)

]

+ p11(1− p12)
[

p13LE
(c)(1, 1, 0, 1|1) − p03LE

(c)(1, 1, 0, 1|0) + (p03 − p13)LE
(c)(1, 1, 0, 0|1)

]

+ (1− p11)(1− p12)
[

p13LE
(c)(1, 0, 0, 1|1) − p03LE

(c)(1, 0, 0, 1|0) + (p03 − p13)LE
(c)(1, 0, 0, 0|1)

]

ξ3(0) = p01p
0
2

[

p13LE
(c)(1, 1, 1, 1|1) − p03LE

(c)(1, 1, 1, 1|0) + (p03 − p13)LE
(c)(0, 1, 1, 0|0)

]

(B.13)

+ (1− p01)p
0
2

[

p13LE
(c)(1, 0, 1, 1|1) − p03LE

(c)(1, 0, 1, 1|0) + (p03 − p13)LE
(c)(0, 0, 1, 0|0)

]

+ p01(1− p02)
[

p13LE
(c)(1, 1, 0, 1|1) − p03LE

(c)(1, 1, 0, 1|0) + (p03 − p13)LE
(c)(0, 1, 0, 0|0)

]

+ (1− p01)(1− p02)
[

p13LE
(c)(1, 0, 0, 1|1) − p03LE

(c)(1, 0, 0, 1|0) + (p03 − p13)LE
(c)(0, 0, 0, 0|0)

]

with LE(c)(d,m1,m2,m3|z) is the expected life-expectancy given D(z) = d and M1 = m1,M2 = m2

and M3 = m3 for a complier and pzm = Pr(Mm = 1|complier, Z = z), z = 0, 1 m = 1, 2, 3. The local
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average treatment effect is estimated by:

LATE = p11p
1
2p

1
3LE

(c)(1, 1, 1, 1|1) − p01p
0
2p

0
3LE

(c)(1, 1, 1, 1|0) (B.14)

+ (1− p11)p
1
2p

1
3LE

(c)(1, 0, 1, 1|1) − (1− p01)p
0
2p

0
3LE

(c)(1, 0, 1, 1|0)

+ p11(1 − p12)p
1
3LE

(c)(1, 1, 0, 1|1) − p01(1− p02)p
0
3LE

(c)(1, 1, 0, 1|0)

+ p11p
1
2(1− p13)LE

(c)(1, 1, 1, 0|1) − p01p
0
2(1− p03)LE

(c)(1, 1, 1, 0|0)

+ (1− p11)(1 − p12)p
1
3LE

(c)(1, 0, 0, 1|1) − (1− p01)(1 − p02)p
0
3LE

(c)(1, 0, 0, 1|0)

+ (1− p11)p
1
2(1− p13)LE

(c)(1, 0, 1, 0|1) − (1− p01)p
0
2(1− p03)LE

(c)(1, 0, 1, 0|0)

+ p11(1 − p12)(1− p13)LE
(c)(1, 1, 0, 0|1) − p01(1− p02)(1− p03)LE

(c)(1, 1, 0, 0|0)

+ (1− p11)(1 − p12)(1− p13)LE
(c)(1, 0, 0, 0|1) − (1− p01)(1− p02)(1− p03LE

(c)(1, 0, 0, 0|0)

and the local mediated interactions can be derived from (13) and the equations above.
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Appendix C Additional tables: Simple Gompertz model

Table C.1: Estimated (mixed) proportional Gompertz mortality rate

all males females
PH MPHb PH MPHb PH MPHb

schoolage 15 −0.196 −0.331 −0.238 −0.650 −0.163 −0.184
(0.141) (0.209) (0.205) (0.381) (0.201) (0.275)

Never smoking −0.558∗∗ −0.795∗∗ −0.590∗∗ −1.225∗∗ −0.538∗∗ −0.612+

(0.134) (0.200) (0.207) (0.396) (0.179) (0.243)
exercise −0.528∗∗ −0.824∗∗ −0.411+ −0.796+ −0.632∗∗ −0.886∗∗

(0.145) (0.222) (0.196) (0.359) (0.218) (0.336)
breakfast −0.318∗∗ −0.421+ −0.256 −0.362 −0.392+ −0.492+

(0.104) (0.167) (0.141) (0.293) (0.156) (0.231)
schoolage 15 × −0.063 −0.031 −0.054 0.263 −0.075 −0.221
Never smoking (0.186) (0.243) (0.292) (0.446) (0.250) (0.338)
schoolage 15 × 0.030 0.211 −0.160 0.058 0.222 0.398
exercise (0.199) (0.263) (0.279) (0.430) (0.289) (0.378)
schoolage 15 × −0.020 −0.001 0.044 0.136 −0.081 −0.062
breakfast (0.159) (0.222) (0.227) (0.382) (0.227) (0.300)
τ1

c −0.018 −0.040 −0.017 −0.065 −0.015 −0.032
(0.014) (0.022) (0.020) (0.040) (0.021) (0.030)

τ2
c −0.054∗∗ −0.038 −0.063+ −0.023 −0.043 −0.035

(0.021) (0.025) (0.029) (0.041) (0.030) (0.035)
constant −8.714∗∗ −10.353∗∗ −7.738∗∗ −10.450∗∗ −9.500∗∗ −10.667∗∗

(0.403) (0.724) (0.543) (1.143) (0.597) (1.073)
α 0.075∗∗ 0.104∗∗ 0.066∗∗ 0.115∗∗ 0.086∗∗ 0.108∗∗

(0.006) (0.012) (0.008) (0.019) (0.008) (0.018)
σ2 1.044∗∗ 1.536∗∗ 0.970

(0.364) (0.531) (0.719)

b Gamma unobserved heterogeneity.
c Linear local trend in month-year of birth (from 1-4-1933). Separate trend before and after the reform.
The bandwidth around 1-4-1933 included in the estimation is 10 years. The window of included births
is twice the bandwidth. +p < 0.05 ∗∗p < 0.01
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Table C.1: Estimated (mixed) proportional Gompertz mortality rate (continued)

all males females
PH MPHb PH MPHb PH MPHb

wales 0.275 0.292 0.288 0.488 0.244 0.214
(0.169) (0.234) (0.240) (0.402) (0.241) (0.313)

north 0.448∗∗ 0.732∗∗ 0.599∗∗ 1.260∗∗ 0.310 0.453
(0.152) (0.233) (0.212) (0.429) (0.221) (0.303)

north west 0.264+ 0.351 0.274 0.572 0.274 0.260
(0.130) (0.182) (0.183) (0.325) (0.188) (0.241)

yorks/humber 0.005 −0.035 0.067 0.093 −0.048 −0.109
(0.164) (0.216) (0.235) (0.365) (0.232) (0.288)

west midlands 0.340+ 0.463+ 0.331 0.688 0.338 0.358
(0.150) (0.212) (0.213) (0.356) (0.213) (0.282)

east midlands 0.230 0.264 0.255 0.454 0.215 0.146
(0.156) (0.213) (0.212) (0.345) (0.235) (0.299)

east anglia −0.143 −0.237 −0.094 −0.159 −0.244 −0.363
(0.217) (0.284) (0.290) (0.452) (0.331) (0.409)

south west 0.155 0.166 0.295 0.530 −0.037 −0.128
(0.163) (0.219) (0.217) (0.365) (0.253) (0.314)

greater london 0.131 0.278 −0.005 0.072 0.222 0.477
(0.146) (0.208) (0.205) (0.315) (0.211) (0.348)

nonwhite −0.506 −0.693 −0.354 −0.671 −0.839 −0.940
(0.296) (0.361) (0.344) (0.468) (0.589) (0.668)

winter −0.023 −0.034 −0.122 −0.100 0.087 0.041
(0.105) (0.147) (0.150) (0.255) (0.150) (0.199)

spring −0.147 −0.168 −0.279 −0.419 −0.028 −0.038
(0.106) (0.147) (0.151) (0.255) (0.151) (0.196)

autumn −0.208 −0.165 −0.335+ −0.232 −0.065 −0.112
(0.111) (0.154) (0.153) (0.259) (0.166) (0.213)

male 0.321∗∗ 0.460∗∗

(0.077) (0.112)

b Gamma unobserved heterogeneity. The bandwidth around 1-4-1933 included in the
estimation is 10 years. The window of included births is twice the bandwidth. +p <

0.05 ∗∗p < 0.01
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Table C.2: Linear regression of staying in school beyond age 15 on mediator

whole sample Males only Females only
Never smoking 0.150∗∗ 0.129∗∗ 0.168∗∗

(0.025) (0.035) (0.035)
Exercise 0.101∗∗ 0.110∗∗ 0.099∗∗

(0.024) (0.036) (0.033)
Breakfast 0.116∗∗ 0.141∗∗ 0.096∗∗

(0.025) (0.038) (0.034)
Sleeping well 0.050 0.080+ 0.029

(0.026) (0.040) (0.035)
prudent alcohol 0.023 0.036 0.016

(0.016) (0.034) (0.011)
Not Obese 0.052∗∗ 0.021 0.072∗∗

(0.016) (0.021) (0.023)

a Linear local trend in month-year of birth (from 1-4-1933). Sep-
arate trend before and after the reform. The bandwidth around
1-4-1933 included in the estimation is 10 years. The window of
included births is twice the bandwidth. Regional, season of birth,
non-white dummies, and a gender dummy (only in whole sample)
are also included. +p < 0.05 ∗∗p < 0.01.
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Appendix D Parameters principle strata Gompertz model

Table D.1: Estimated coefficients education and mediators in principle strata Gompertz mortality
rate

all males females
PH MPHa PH MPHa PH MPHa

education
γa −9.025∗∗ −10.650∗∗ −7.984∗∗ −11.285∗∗ −10.181∗∗ −10.743∗∗

(0.443) (0.827) (0.599) (1.375) (0.687) (1.470)
γn −8.548∗∗ −10.105∗∗ −8.085∗∗ −11.417∗∗ −9.267∗∗ −9.774∗∗

(0.481) (0.833) (0.743) (1.460) (0.665) (1.358)
γ0 −8.768∗∗ −10.225∗∗ −7.697∗∗ −10.409∗∗ −9.933∗∗ −10.491∗∗

(0.420) (0.755) (0.555) (1.158) (0.661) (1.455)
γ1 −8.767∗∗ −10.342∗∗ −8.189∗∗ −11.568∗∗ −9.405∗∗ −9.927∗∗

(0.444) (0.800) (0.637) (1.382) (0.641) (1.364)
never smoking

θa −0.404+ −0.597+ −0.617+ −1.044+ −0.221 −0.313
(0.183) (0.246) (0.294) (0.474) (0.246) (0.348)

θn −0.238 −0.318 −0.348 −0.709 0.074 0.087
(0.540) (0.648) (1.156) (1.244) (0.578) (0.664)

θ0 −0.625∗∗ −0.876∗∗ −0.605+ −1.356∗∗ −0.663∗∗ −0.712+

(0.178) (0.252) (0.287) (0.518) (0.247) (0.298)
θ1 −1.311∗∗ −1.263∗∗ −0.889 −0.853 −1.601+ −1.598+

(0.484) (0.443) (0.680) (0.702) (0.663) (0.626)
no exercise

θa −0.378 −0.483 −0.467 −0.771 −0.233 −0.243
(0.201) (0.258) (0.313) (0.562) (0.267) (0.294)

θn −0.847 −1.003 −0.824 −1.123 −0.810 −0.934
(0.617) (0.678) (1.117) (1.320) (0.696) (0.776)

θ0 −0.459+ −0.741∗∗ −0.348 −0.754 −0.607+ −0.712
(0.190) (0.276) (0.251) (0.494) (0.309) (0.412)

θ1 −0.774+ −0.818+ −0.819 −0.727 −0.785 −0.858
(0.339) (0.368) (0.568) (0.738) (0.435) (0.485)
breakfast

θa −0.306 −0.401 −0.224 −0.214 −0.397 −0.470
(0.194) (0.272) (0.288) (0.514) (0.270) (0.351)

θn −0.572 −0.547 −0.828 −0.746 −0.317 −0.333
(0.443) (0.527) (0.796) (0.988) (0.482) (0.550)

θ0 −0.262 −0.379 −0.145 −0.264 −0.331 −0.379
(0.138) (0.207) (0.190) (0.404) (0.214) (0.267)

θ1 −0.366 −0.350 −0.297 −0.311 −0.400 −0.360
(0.262) (0.309) (0.399) (0.601) (0.362) (0.408)

α 0.075∗∗ 0.101∗∗ 0.068∗∗ 0.120∗∗ 0.088∗∗ 0.098∗∗

(0.006) (0.012) (0.008) (0.020) (0.009) (0.025)
σ2 0.963∗∗ 1.268∗∗ 0.654

(0.197) (0.227) (0.748)

a Gamma unobserved heterogeneity. The estimated coefficients of the control variables
are very similar to those reported in Table C.1 and are available upon request.
+p < 0.05 ∗∗p < 0.01
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Table D.2: Estimated complier and mediator probability in principle strata Gompertz model with
never smoking, exercise and breakfast as mediation factors

all males females
PH MPHa PH MPHa PH MPHa

Complier probability education
always-takers 0.344∗∗ 0.345∗∗ 0.311∗∗ 0.310∗∗ 0.375∗∗ 0.375∗∗

(0.015) (0.015) (0.021) (0.021) (0.021) (0.021)
never-takers 0.078∗∗ 0.078∗∗ 0.086∗∗ 0.086∗∗ 0.074∗∗ 0.074∗∗

(0.008) (0.008) (0.013) (0.013) (0.010) (0.010)
compliers 0.577∗∗ 0.577∗∗ 0.603∗∗ 0.604∗∗ 0.551∗∗ 0.551∗∗

(0.017) (0.017) (0.025) (0.025) (0.023) (0.023)
probability never smoking

always-takers 0.485∗∗ 0.487∗∗ 0.380∗∗ 0.381∗∗ 0.559∗∗ 0.559∗∗

(0.026) (0.025) (0.039) (0.039) (0.033) (0.033)
never-takers 0.259∗∗ 0.259∗∗ 0.239∗∗ 0.241∗∗ 0.273∗∗ 0.273∗∗

(0.046) (0.046) (0.067) (0.068) (0.064) (0.064)
compliers, Z = 0 0.295∗∗ 0.295∗∗ 0.222∗∗ 0.223∗∗ 0.363∗∗ 0.363∗∗

(0.041) (0.041) (0.057) (0.057) (0.058) (0.058)
compliers, Z = 1 0.410∗∗ 0.409∗∗ 0.337∗∗ 0.338∗∗ 0.434∗∗ 0.434∗∗

(0.053) (0.054) (0.081) (0.081) (0.072) (0.072)
probability exercise

always-takers 0.358∗∗ 0.358∗∗ 0.360∗∗ 0.359∗∗ 0.359∗∗ 0.359∗∗

(0.024) (0.024) (0.038) (0.039) (0.031) (0.031)
never-takers 0.236∗∗ 0.235∗∗ 0.230∗∗ 0.231∗∗ 0.232∗∗ 0.232∗∗

(0.034) (0.034) (0.065) (0.064) (0.059) (0.059)
compliers, Z = 0 0.205∗∗ 0.205∗∗ 0.169∗∗ 0.171∗∗ 0.237∗∗ 0.237∗∗

(0.036) (0.036) (0.049) (0.049) (0.052) (0.052)
compliers, Z = 1 0.314∗∗ 0.312∗∗ 0.336∗∗ 0.336∗∗ 0.294∗∗ 0.294∗∗

(0.048) (0.048) (0.074) (0.074) (0.065) (0.065)
probability breakfast

always-takers 0.797∗∗ 0.798∗∗ 0.807∗∗ 0.807∗∗ 0.791∗∗ 0.791∗∗

(0.021) (0.021) (0.031) (0.032) (0.027) (0.027)
never-takers 0.579∗∗ 0.579∗∗ 0.655∗∗ 0.653∗∗ 0.514∗∗ 0.514∗∗

(0.053) (0.053) (0.074) (0.074) (0.073) (0.073)
compliers, Z = 0 0.581∗∗ 0.580∗∗ 0.487∗∗ 0.486∗∗ 0.667∗∗ 0.667∗∗

(0.044) (0.044) (0.065) (0.065) (0.058) (0.058)
compliers, Z = 1 0.607∗∗ 0.606∗∗ 0.728∗∗ 0.727∗∗ 0.498∗∗ 0.498∗∗

(0.048) (0.048) (0.063) (0.063) (0.070) (0.070)

a Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01
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Appendix E Additional tables: Principle strata Gompertz robust-

ness

Table E.1: Estimated educational gain in life-expectancy at age 18 principle strata Gompertz model,
using different third mediator

third mediatora all males females
PH MPHb PH MPHb PH MPHb

LATE
sleeping well 11.252 5.741 15.252+ 11.124 3.632 −4.497

(6.403) (4.613) (6.925) (5.704) (8.078) (4.854)
prudent alcohol 7.398 4.138 14.177+ 11.161 0.907 −1.847

(4.681) (3.912) (6.539) (6.099) (6.335) (5.890)
not obese 9.276 4.904 16.259+ 11.808 1.274 −2.775

(4.974) (4.028) (7.021) (6.044) (6.115) (5.430)
direct effect, dir(1)

sleeping well 4.827 3.194 12.480 11.951 −6.471 −13.715+

(5.631) (5.157) (7.388) (6.345) (7.706) (6.413)
prudent alcohol 3.268 3.898 10.364 10.952 −20.785 −16.772

(4.763) (4.620) (6.260) (5.725) (18.977) (20.095)
not obese 3.320 2.364 11.298 5.498 −6.789 −5.281

(7.717) (7.705) (14.030) (9.586) (8.171) (7.570)
direct effect,dir(0)

sleeping well 4.826 3.195 12.478 11.950 −6.469 −13.717+

(5.630) (5.157) (7.390) (6.344) (7.703) (6.414)
prudent alcohol 3.267 3.897 10.361 10.953 −20.763 −16.787

(4.763) (4.618) (6.260) (5.724) (18.934) (20.148)
not obese 3.319 2.365 11.293 5.499 −6.787 −5.281

(7.716) (7.705) (14.0.6) (9.587) (8.167) (7.571)

a Never smoking and exercise included as first two mediation factors.
b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01
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Table E.1: continued
bandwidtha all males females

PH MPHb PH MPHb PH MPHb

indirect effect Never smoking, D = 1
sleeping well 8.145 4.236 3.539 0.587 9.001 6.208

(4.282) (2.498) (3.900) (2.441) (5.385) (2.871)
prudent alcohol 5.310 2.927 1.494 −0.554 6.779 5.114

(2.973) (2.133) (3.347) (2.282) (4.174) (3.322)
not obese 6.284 3.426 3.094 0.361 7.116 4.907

(3.119) (2.112) (3.666) (2.254) (4.051) (2.163)
indirect effect Never smoking, D = 0

sleeping well 8.146 4.237 3.536 0.588 9.003 6.207
(4.283) (2.499) (3.897) (2.442) (5.385) (2.954)

prudent alcohol 5.311 2.928 1.492 −0.554 6.780 5.112
(2.973) (2.133) (3.344) (2.283) (4.174) (3.320)

not obese 6.285 3.426 3.090 0.362 7.114 4.906
(3.120) (2.112) (3.663) (2.255) (4.051) (2.953)

indirect effect exercise, D = 1
sleeping well 1.927 0.975 1.765 0.115 2.216 1.684

(1.666) (1.359) (2.502) (1.727) (2.218) (1.992)
prudent alcohol 1.627 0.697 1.837 −0.006 1.840 1.502

(1.500) (1.264) (2.277) (1.628) (2.042) (1.986)
not obese 1.877 0.812 1.712 −0.409 1.823 1.116

(1.666) (1.339) (2.822) (1.768) (2.116) (1.905)
indirect effect exercise, D = 0

sleeping well 1.926 0.975 1.763 0.115 2.216 1.684
(1.667) (1.359) (2.500) (1.728) (2.218) (1.992)

prudent alcohol 1.626 0.697 1.836 −0.006 1.840 1.502
(1.499) (1.265) (2.275) (1.629) (2.043) (1.985)

not obese 1.876 0.812 1.710 −0.409 1.823 1.116
(1.665) (1.339) (2.819) (1.769) (2.116) (1.905)

indirect effect third mediator, D = 1
sleeping well −3.647 −2.664 2.146 −1.527 −1.117 1.327

(2.964) (2.511) (4.509) (2.970) (4.006) (3.387)
prudent alcohol 0.936 −3.382 0.485 0.768 13.059 8.319

(2.392) (3.792) (5.107) (4.471) (17.935) (19.448)
not obese −2.205 −1.698 0.161 6.356 −0.875 −3.516

(6.571) (6.258) (13.136) (8.155) (6.709) (6.261)
indirect effect third mediator, D = 0

sleeping well −3.644 −2.666 2.144 −1.529 −1.117 1.327
(2.961) (2.514) (4.513) (2.973) (4.007) (3.386)

prudent alcohol 0.936 −3.385 0.484 0.769 13.069 8.312
(2.391) (3.796) (5.100) (4.474) (17.963) (19.415)

not obese −2.203 −1.699 0.161 6.358 −0.876 −3.516
(6.565) (6.262) (13.118) (8.155) (6.709) (6.261)

a Never smoking and exercise included as first two mediation factors.
b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01. We do not report the
mediated interaction because they are all close to zero, just as in Table 2.
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Table E.2: Estimated educational gain in life-expectancy at age 18 principle strata Gompertz model,
by bandwidth

bandwidtha all males females
PH MPHb PH MPHb PH MPHb

LATE
15 year 11.834∗∗ 10.559∗∗ 12.891+ 11.813∗∗ 8.028 4.509

(4.172) (3.880) (5.107) (4.530) (5.593) (4.263)
9 year 7.674 6.412 16.522 11.111 −2.015 −

(5.265) (5.709) (8.633) (6.427) (5.475) (−)
8 year 8.877 6.523 − 13.790 −2.368 −7.688

(5.928) (6.163) (−) (9.428) (5.932) (5.136)
7 year 8.181 5.896 13.367 11.096 1.688 −7.508

(6.108) (5.451) (10.219) (7.130) (7.423) (4.987)
direct effect, dir(1)

15 year 2.549 2.780 5.750 7.000 −3.718 −3.432
(3.983) (3.930) (5.242) (5.136) (5.250) (3.240)

9 year −0.899 2.792 7.014 11.605 −8.212 −
(3.774) (5.835) (6.012) (7.063) (4.365) ()

8 year 0.763 5.419 7.820 14.467 −8.150 −16.268+

(4.129) (6.963) (5.986) (7.098) (4.858) (7.444)
7 year 2.421 4.708 7.030 11.349 −4.260 −16.936+

(4.399) (6.251) (6.962) (7.418) (5.189) (6.859)
direct effect,dir(0)

15 year 2.548 2.781 5.748 7.004 −3.717 −3.433
(3.982) (3.932) (5.240) (5.137) (5.247) (3.242)

9 year −0.899 2.793 7.009 11.604 −8.211 −
(3.772) (5.835) (6.008) (7.060) (4.363) ()

8 year 0.763 5.419 7.810 14.465 −8.148 −16.268+

(4.127) (6.692) (5.980) (7.097) (4.857) (7.444)
7 year 2.420 4.708 7.027 11.348 −4.260 −16.936+

(4.398) (6.249) (6.960) (7.415) (5.188) (6.859)
indirect effect Never smoking, D = 1

15 year 7.976∗∗ 6.814∗∗ 3.552 2.411 10.639∗∗ 6.248+

(2.804) (2.548) (2.536) (2.125) (4.046) (2.857)
9 year 4.839 5.264 3.554 1.792 4.596 −

(2.935) (2.994) (4.204) (2.750) (3.126) ()
8 year 3.504 3.889 3.361 2.180 4.111 5.281

(2.791) (3.080) (4.492) (4.352) (3.286) (2.901)
7 year 2.523 2.684 0.440 −0.450 4.931 5.697

(2.720) (2.691) (2.322) (2.159) (4.409) (3.054)

a The bandwidth around 1-4-1933. The window of included births is twice the band-
width. Note that for some bandwidths the model did not converge (especially for
females)

b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01
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Table E.2: continued
bandwidtha all males females

PH MPHb PH MPHb PH MPHb

indirect effect Never smoking, D = 0
15 year 7.977∗∗ 6.816∗∗ 3.550 2.414 10.640∗∗ 6.248+

(2.804) (2.548) (2.537) (2.127) (4.046) (2.857)
9 year 4.839 5.265 3.551 1.793 4.597 −

(2.935) (2.995) (4.201) (2.751) (3.126) ()
8 year 3.503 3.889 3.554 2.180 4.110 5.281

(2.791) (3.080) (4.204) (4.352) (3.285) (2.901)
7 year 2.522 2.685 0.439 −0.451 4.932 5.697

(2.720) (2.691) (2.321) (2.161) (4.409) (3.054)
indirect effect exercise, D = 1

15 year 2.791+ 2.395+ 4.140+ 3.058 1.725 0.493
(1.219) (1.165) (2.055) (1.837) (1.489) (1.123)

9 year 2.653 1.725 3.343 0.306 1.600 −
(2.018) (1.729) (3.584) (1.960) (2.222) ()

8 year 3.636 1.715 − 2.025 0.317 1.325
(2.649) (2.339) () (3.056) (2.415) (2.187)

7 year 2.988 1.573 4.486 1.331 1.592 1.043
(2.867) (2.137) (5.596) (2.565) (2.996) (2.285)

indirect effect exercise, D = 0
15 year 2.270+ 2.396+ 4.138+ 3.062 1.725 0.493

(1.219) (1.165) (2.054) (1.839) (1.489) (1.223)
9 year 2.652 1.725 3.339 0.307 1.600 −

(2.017) (1.729) (3.581) (1.962) (2.223) ()
8 year 3.635 1.715 − 2.026 0.317 1.325

(2.648) (2.339) () (3.057) (2.415) (2.187)
7 year 2.987 1.574 4.483 1.333 1.592 1.043

(2.866) (2.137) (5.593) (2.568) (2.997) (2.285)
indirect effect breakfast, D = 1

15 year −1.483 −1.432 −0.548 −0.662 −0.619 1.200
(2.141) (2.056) (2.859) (2.652) (2.903) (2.230)

9 year 1.081 −3.369 2.618 −2.591 1.014 −
(2.530) (2.854) (4.921) (3.398) (2.299) ()

8 year 0.974 −4.498 5.133 −4.880 4.596 1.974
(2.867) (3.330) (5.394) (3.721) (3.126) (4.274)

7 year 0.251 −3.069 1.415 −1.132 4.596 2.688
(3.008) (3.082) (5.442) (3.820) (3.126) (4.160)

indirect effect breakfast, D = 0
15 year −1.482 −1.434 −0.548 −0.663 −0.619 1.200

(2.140) (2.059) (2.861) (2.657) (2.903) (2.230)
9 year 1.081 −3.372 2.615 −2.595 −0.001 −

(2.529) (2.860) (4.916) (3.406) (2.716) ()
8 year 0.974 −4.502 5.126 −4.884 4.596 1.974

(2.866) (3.337) (5.388) (3.724) (3.126) (4.274)
7 year 0.251 −3.073 1.414 −1.135 4.596 2.688

(3.007) (3.088) (5.438) (3.830) (3.126) (4.160)

a The bandwidth around 1-4-1933. The window of included births is twice the
bandwidth.

b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01. We do not report
the mediated interaction because they are all close to zero, just as in Table 2.
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Table E.3: Estimated educational gain in life-expectancy at age 18 principle strata Gompertz model
adjustment for Never takers

Removing Never takers
all males females

PH MPHb PH MPHb PH MPHb

LATE 7.410 4.502 12.276 8.363 2.434 1.916
(4.233) (3.641) (6.495) (5.111) (5.333) (5.788)
direct effect

dir(1) 0.246 1.205 6.146 8.005 −3.942 −3.923
(3.257) (3.171) (5.585) (4.804) (3.780) (3.816)

dir(0) 0.246 1.205 6.143 8.005 −3.941 −3.923
(2.256) (3.172) (5.583) (4.803) (3.779) (3.816)
indirect effect, D = 1

never smoking 4.780 2.665 2.540 0.103 5.687 5.365
(2.572) (1.879) (3.348) (2.094) (3.482) (3.654)

exercise 1.719 0.806 2.602 0.435 1.025 0.967
(1.484) (1.235) (2.637) (1.753) (1.726) (1.721)

breakfast 0.665 −0.173 0.992 −0.181 −0.336 −0.493
(2.209) (2.022) (4.159) (3.259) (2.438) (2.553)
indirect effect, D = 0

never smoking 4.780 2.665 2.538 0.103 5.687 5.634
(2.572) (1.880) (3.346) (2.095) (3.482) (3.653)

exercise 1.718 0.806 2.600 0.435 1.025 0.967
(1.483) (1.235) (2.635) (1.754) (1.726) (1.721)

breakfast 0.665 −0.174 0.991 −0.181 −0.336 −0.493
(2.210) (2.023) (4.155) (3.261) (2.438) (2.553)

a never smoking, exercise and breakfast as mediation factors
b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01. We do not report
the mediated interaction because they are all close to zero, just as in Table 2.
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Table E.3: Estimated educational gain in life-expectancy at age 18 principle strata Gompertz model
adjustment for Never takers (continued)

Assume Never takers have higher education
all males females

PH MPHb PH MPHb PH MPHb

LATE 5.331 2.975 12.883+ 9.436 −1.361 −2.294
(3.793) (3.406) (6.451) (6.163) (4.516) (4.963)
direct effect

dir(1) −0.202 0.799 6.442 8.771 −5.364 −5.378
(2.946) (2.941) (4.950) (4.502) (3.526) (3.612)

dir(0) −0.202 0.799 6.439 8.772 −5.364 −5.379
(2.945) (2.941) (4.948) (4.502) (3.525) (3.613)
indirect effect, D = 1

never smoking 3.468 1.825 1.768 −0.451 3.914 3.468
(2.160) (1.647) (3.018) (1.936) (2.681) (2.659)

exercise 1.331 0.562 2.638 0.555 0.606 0.508
(1.263) (1.086) (2.613) (2.081) (1.439) (1.424)

breakfast 0.736 −0.211 2.040 0.559 −0.517 −0.892
(1.999) (1.895) (3.976) (3.706) (2.207) (2.421)
indirect effect, D = 0

never smoking 3.467 1.825 1.767 −0.451 3.915 3.467
(2.160) (1.647) (3.016) (1.937) (2.682) (2.658)

exercise 1.330 0.562 2.635 0.555 0.606 0.508
(1.263) (1.087) (2.611) (2.082) (1.440) (1.424)

breakfast 0.735 −0.211 2.038 0.560 −0.517 −0.891
(1.998) (1.895) (3.973) (3.708) (2.208) (2.420)

a never smoking, exercise and breakfast as mediation factors
b Gamma unobserved heterogeneity. +p < 0.05 ∗∗p < 0.01. We do not report the
mediated interaction because they are all close to zero, just as in Table 2.
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