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Abstract

We use a set of biomarkers to measure inequality of opportunity (IOp) in health in the
UK. Applying a direct ex ante I0p approach, we find that inequalities in health
attributed to circumstances account for a non-trivial part of the total health variation.
For example, observed circumstances account for 20% of the total inequalities in our
composite measure of multi-system health risk, allostatic load. Shapley
decompositions show that apart from age and gender, education and childhood
socioeconomic status are sources of IOp. We propose an extension to the decomposition
of ex ante I0p to complement the mean-based approach, analysing the contribution of
circumstances across the quantiles of the biomarker distributions. This shows that,
for most of the biomarkers, the percentage contribution of socioeconomic
circumstances, relative to differences attributable to age and gender, increases
towards the right tail of the biomarker distribution, where health risks are more
pronounced.
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1 Introduction

Health inequality has many sources, not all of which are equally objectionable. The
existing literature focuses on socio-economic inequalities in health and variations
associated with differences in living conditions, access to health care, and health-related
lifestyle (e.g., Contoyannis and Jones, 2004; Baum and Ruhm, 2009). This literature
implicitly suggests a distinction between Jegitimate and illegitimate inequalities.
Building on Roemer’s (1998, 2002) influential formalisation of the concept of inequality of
opportunity (IOp), the “egalitarian” framework does not necessarily indicate equality of
the distribution of outcomes per se but emphasises the role of individual responsibility in
defining a “fair” distribution (Fleurbaey and Schokkaert, 2009, 2012; Ramos and Van de
Gaer, 2016; Roemer and Trannoy, 2016).

IOp has influenced the policy agenda in recent years (World Bank, 2005; NHS England,
2017) and a growing literature has addressed the measurement of IOp in health (e.g.,
Fleurbaey and Schokkaert, 2009; Garcia-Gomez et al., 2015; Jones et al., 2012, 2014;
Jusotet al., 2013; Li Donnietal., 2014, 2015; Rosa Dias, 2009, 2010; Trannoy et al., 2010).
However, most of the existing studies employ subjective self-reported health.! This was
recently acknowledged by Carrieri and Jones (2018), who propose a semiparametric
approach to decompose ex postI10p into the direct contribution of efforts and the direct
and indirect contribution of circumstances, using blood-based biomarkers in the Health
Survey for England.?

In this study, we use nationally representative UK data (Understanding Society) to
provide a comprehensive analysis of ex ante I0p in health and its underlining sources
using objective health indicators. We contribute to the literature in a number of ways.
First, we use nurse-collected and blood-based biomarkers to measure health: spanning
obesity, blood pressure, inflammatory biomarkers, blood glucose and cholesterol. These
health measures are more objective than self-reports of health. As well as capturing
different dimensions of health they are considered as “secondary” physiological responses
to stress, reflecting the process through which adverse circumstances may get “under the
skin” (Davillas et al., 2017; Turner et al., 2016). We use each biomarker separately and
we also construct a composite score as a proxy measure of wear and tear on the body;
similar composite health measures are often called the allostatic load.

1 Self-reported measures may be subject to significant misreporting, with the reporting bias
varying systematically with individual’s socioeconomic characteristics, posing significant
implications for the robustness of earlier IOp studies (e.g., Bago d'Uva et al. 2008). Some studies
have used mortality as the outcome (Balia and Jones, 2011; Garcia-Gomez et al., 2016). This avoids
the use of self-reported outcomes but it focuses on length rather than quality of life.

2 As will be discussed later, there are two approaches to IOp: the ex-ante and the ex-post approach
(eg., Fleurbaey and Schokkaert, 2009; Fleurbaey and Peragine, 2013; Li Donni et al., 2014). The
ex ante approach to IOp is based on the principle that there is equality of opportunity if all
individuals face the same opportunity set, prior to their efforts and outcomes being realised. The
ex-post approach seeks equality of outcomes among people who have exerted the same degree of
effort, regardless of their circumstances.



Second, we use these objective health measures to estimate both absolute measures of the
level of IOp and measures that express IOp as a fraction of the overall health inequality.
We adopt the direct ex ante parametric approach proposed by Ferreira and Gignoux
(2011). The advantage of the parametric approach is that, unlike nonparametric tests for
I0p (e.g., Lefranc et al., 2009; Rosa Dias, 2009), it does not suffer from a curse of
dimensionality, due to insufficient sample sizes for social types (groups of people sharing
identical circumstances).? Moreover, even in the presence of unobserved circumstances,
our IOp measures can be interpreted as the lower-bound estimates of overall IOp, i.e., of
the inequality due to all circumstances, not only those that are observed (Ferreira and
Gignoux, 2011).

Third, we decompose the direct exantemeasure of IOpinhealthintoits sources. Shapley-
decomposition techniques allow us to identify which circumstances are more relevant to
shaping IOp in health. Given that age and gender are the main drivers of variations in
health, Oaxaca-type decompositions are then used to analyse IOp in health differentials
by gender and across the adult lifespan. Our decomposition analysis explores whether
these IOp differences are attributed to differencesin the distribution of circumstances per
se (composition) or to differences in the relationship between circumstances and health
(association) across age groups and by gender.

Finally, we relax the assumption of inequality neutrality within types, that is implied by
the conventional parametric approach, and extend the literature on the decomposition of
ex ante 10p, capitalising on the continuous nature of our health outcomes. We use the
recenteredinfluence function (RIF) approach to distributional analysis (Firpoet al., 2009),
to explore how the contribution of circumstances may vary across the distribution of
biomarkers. Shapley decompositions are implemented at different quantiles of the
biomarker distribution to explore the underlying sources of these inequalities, with a
particular focus on the right tails, where clinical concerns are typically focused. We also
apply Oaxaca-type decomposition techniques to analyse the contribution of circumstances
by gender and age at different biomarker quantiles, spanning the whole distribution of
our health measures.

2 Methods

Roemer (1998) assumes a responsibility cut by which factors associated with individual
attainments can be partitioned into: a) effortfactors, for which individuals should be held
partially responsible, and b) circumstances which are beyond individuals’ control.

3 Maintaining a reasonable number of observations within each social type is a challenging issue
given the usual sample sizes of social-science datasets and the relatively large number of
circumstances that empirical researchers wish to use to partition the population by types (Ferreira
and Gignoux, 2011; Carrieri and Jones, 2018).

4 For example, it has been shown that the association between education and health may follow
heterogeneous patterns by age and gender (e.g., Davillas et al., 2017; Baum and Ruhm, 2009). We
extend this literature by exploring whether the observed age and gender differences in IOp in
health may be driven by this heterogeneity or whether other sources may be more relevant.
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Following the IOp literature (Ferreira and Gignoux, 2011; Jusot et al., 2013; Rosa Dias,
2010; Carrieriand Jones, 2018), a generalised health production function for the health
outcome (y;) for each individual (i) can be defined as a function of a vector of
circumstances (C;) and of efforts (E;). Assuming that circumstances are not affected by
efforts, while efforts may be influenced by circumstances (Bourguignon et al., 2007;
Ferreira and Gignoux, 2011; Roemer, 1998, 2002), we can write:

yi = h(Ci,E(Cy,vy),u;) (1)

where v; and u; are unobserved error terms which capture the random variation in the

realised outcomes, sometimes labelled as ‘luck’in the IOp literature (Lefrancet al., 2009;
Lefranc and Trannoy, 2017).5 To be specific, v; represents random variationin effort that

is independent of C and wu; represents random variation in the outcome that is
independent of C and E.

In principle, the structural form (1) can be used in an ex postframework to decompose the
direct and indirect contribution of circumstances and efforts. Here we adopt an ex ante
approach and are interested in measuring overall IOp as a share oftotal inequality. Then,
assuming additive separability and linearity of h(. )and E(.), a linear reduced form can be
derived:

yi= Gy +eg 2)

where the coefficients ¢ reflect the total contribution of circumstances and include both

the direct effect of circumstances on health, and the indirect effect of circumstances
through efforts.

The exante approachtoIOpisbased on the principle that there isequality of opportunity
if all individualsface the same opportunity set regardless of their circumstances and prior
to the realisation of effort and the outcomes. The ex ante approach can be implemented
empirically using information on observed circumstances and does not require measures
of effort. These circumstances are used to measure the opportunity set for each individual
(e.g., Fleurbaey and Peragine, 2013; Aaberge et al., 2011). Two approaches have been
adopted to do this:

1. The first uses the mean of outcomes within types, E(y;|C;). This corresponds to the
approach suggested by Roemer (1998, 2002) and has been termed “utilitarian reward”.
This implies inequality neutrality within types. Jones et al. (2014) note the equivalence
between the mean and the area to the left of the distribution function, F(y;|C;), and they

5 In the Roemerian framework, the partial correlations between C and E should also be treated as
circumstances, embodying the indirect effect of the unjust circumstances on health that is
channelled through effort (see Ferreira and Gignoux, 2011; Rosa Dias, 2009). This is embodied in
the reduced form coefficients that capture both direct and indirect effects. However, the ethical
stance of the Roemer concept is open to debate. Examples of empirical methods to compare the
Roemer view with other more liberal perspectives are available elsewhere (Jusot et al., 2013).
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therefore use this as their criterion for health policy evaluation. This can therefore be
considered as a 'mean-based' approach, where equality of opportunity corresponds to
equality of mean outcomes across types (e.g., Lefranc et al., 2009; Ferreira and Gignoux,
2011).

11. The second approach uses a more general definition that interprets the full type-specific
conditional outcome distribution F(y;|C;) as the opportunity set (e.g., Ramos and Van de
Gaer, 2016, Lefranc et al., 2009; Lefranc and Trannoy, 2017). This goes beyond the mean-
based approach, focusing on differences in distributions across types, and allows for the
possibility ofinequality aversion within types such that, for example, more significance is
attached to inequalities across types at worse levels of health outcomes. The implications
of this second approach are explored using a distributional regression approach that is
described below.

Figure 1 illustrates these concepts for the case where there are just two values of
circumstances, represented by types 1 and 2. The ex ante approach compares the
distribution of outcomes conditional on type, as shown in the left-hand panel, and
interprets these distributions as the opportunity set for each type. In particular, the
mean-based approach focuses on differences in means across types, given by the area to
the left of the distribution functions and hence, in this case, shown by the dark shaded
area in the right-hand panel. Differences in means is regarded as a weak test for IOp. A
stronger test takes account of the shape of the distribution within types and, depending
on the degree of inequality aversion within types, may give more weight to horizontal
differences between the distributions at different levels of the outcome®. This motivates
our analysis of the contribution of circumstances at different points of the biomarker
distribution.

Figure 1. ExanteI0p and distribution functions.

6 In the context of our application to biomarkers the notion of inequality aversion within types may
be motivated by the fact that these are measured in physical units, y; , which may not correspond
to their social value, say w(y;). For example, rather than being linear, the function w(.) may give
different weight to outcomes above or below the clinical risk thresholds that are associated with
some of the biomarkers.



We begin with the mean-based framework. The direct approach, as in Ferreira and
Gignoux (2011), measures inequality in a counterfactual in which all inequalities are
attributable to circumstances. This involves defining a smoothed distribution from the
distribution of (health) outcomes (y;) and a partition of (k = 1,2..K) types by replacing
each individual health outcome yik with the relevant type-specific mean (u’i‘ )and, then,
using inequality indexes to measure I0p (Ferreira and Gignoux, 2011).7 In practice, the
mean-based direct parametric approach to measure ex ante 10p is based on using
predictions of E(y;|C;) from the reduced form as the counterfactual outcome:

yi=Cp (3)

where 1) represents the OLS estimates of the coefficients in equation (2) (Checci and
Peragine, 2010; Rosa Dias, 2010; Trannoy et al., 2010; Ferreira and Gignoux, 2011, Li
Donni et al., 2014; Abatemarco, 2015). The predicted health outcomes are the same for all
individuals with identical circumstances (Ferreira and Gignoux, 2011).Thus, IOp can be
estimated using an inequality measure (I(.)) applied to ¥;:

0, = 1(5’:) (4)

A relative measure of IOp, expressing IOp as a fraction of the overall health
inequality (I(y;)), can be obtained by:

1(3)
=— 5
L (¢! ®)

Following Ferreira and Gignoux (2011), we use the mean logarithmic deviation (MLD)
inequality index as our measure of inequality I(.). This is because of its path-independent
decomposability properties (Ferreira and Gignoux, 2011; Ramos and Van de Gaer, 2016;
Wendelspeiss Chavez Juarez and Soloaga, 2014).6 The MLD is zero when there is no
inequality, and takes on larger positive values asill-healthis distributed more unequally.
It should be explicitly noted here that our analysis does not account for unobserved
circumstances that are not available in the dataset. However, it has been shown that

7 The indirect approach (as in, for example, Bourguignon et al., 2007) uses the difference between
inequality in actual outcomes and a counterfactual in which there is no IOp, calculated using a
reference level of circumstances. We have opted for the direct approach in our analysis. Parametric
estimation shows that the direct and indirect approaches result in similar, but not exactly
identical, results (Ferreira and Gignoux, 2011); this is typical, given the functional form
assumptions that are relevant to parametric estimation models.

8 I(.) needs to satisfy the path-independent decomposability axiom in addition to other typical
axiomatic properties relevant to the measurement of inequality literature, i.e., symmetry, transfer
principle, scale invariance, population replication, and additive decomposability. This restricts the
eligible “path-independent decomposable” class of inequality measures to a single measure, the
MLD (Ferreira and Gignoux, 2011). Alternatively, under these axiomatic properties, one may
argue for the use of the variance as a measure of inequality. However the MLD is more appropriate,
given the ratio-scale nature of our health variables (Wendelspeiss Chavez Judrez and Soloaga,
2014).



equations (4)-(5) can be interpreted at least as the lower-bound estimates of inequality
due to all predetermined circumstances (Ferreira and Gignoux, 2011).

Shapley and Oaxaca Decompositions of IOp

We use the Shapley decomposition to explorethe contribution of each of the circumstances
to the total IOp in health (Shorrocks, 2013; Wendelspeiss Chavez Judrez and Soloaga,
2014; Fajardo-Gonzalez, 2016). Specifically, inequality measures (MLD) for all possible
permutations of the circumstance variables are estimated and, then, the average
marginal effect of each circumstance variable on the total IOp is calculated.?

Given that age and gender are the main sources of variation in health, we then use an
Oaxaca-type decomposition to further analyse gender and age differentials in IOp. 2° This
Oaxaca-type decompositioninvolves two steps (Wendelspeiss ChavezJuarezand Soloaga,
2014): i) we estimate IOp separately for each population sub-group (.e., by gender and
across age groups); ii) counterfactual IOp measures of one population sub-group (e.g.,
males, if targeting gender differences) are then estimated using the coefficients for
circumstances from the other group (females). Comparison of counterfactuals with the
original IOp measures allows us to explore whether IOp differences are attributed to
differences in the distribution of circumstances (composition) and/or to the heterogeneous
relationship between circumstances and health across the lifespan or by gender
(association).

Using distributional regressions to relax inequality neutrality within types

The methods described so far measure and decompose overall IOp in health using linear
parametric regression specifications and a counterfactual based on the conditional mean.
As noted above, this implies inequality neutrality within types. In our context this may
be too restrictive and, for example, we may wish to give greater weight to the contribution
of circumstances in the upper tail of the distribution of biomarkers, where individuals are
at greater risk of developing chronic health problems.

To assess the implications of relaxing inequality neutrality we propose a method of
decomposing the contribution of circumstances to the overall IO p at different pointsin the
distribution of the outcome. This makes use of unconditional quantile regression (UQR)
based on the RIF approach (Firpo et al., 2009) to decompose the contribution of
circumstances at specific quantiles of the biomarker distributions.

The RIF method works by providing alinear approximation of the unconditional quantiles
of each biomarker. Subsequently, the law of iterated expectations is applied to the
approximated quantile and used to estimate the marginal effect of circumstances through

9 The key advantage of the Shapley-decomposition, unlike other decomposition methods, is that it
is both path independent and exactly additive, with the different components sum up exactly to
the total IOp (Wendelspeiss Chavez Juarez and Soloaga, 2014).

10 A stated by Wendelspeiss Chévez Juarez and Soloaga (2014), the Oaxaca-type decomposition
technique works for absolute measures of IOp. For the relative IOp measures such decompositions
do not make sense, as the difference might be also due to the total inequality. However, correcting
for that would bring us back the case of the absolute measure.
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a regression of the RIF on the circumstance variables. The total contribution of
circumstances, at each quantile g, can be then obtained by:

RIF(y;;q.) = Cia™ + ¢f (6)
where a” are the coefficients at different quantiles and & stands for the error term. This
is illustrated by Figure 2, which shows how the RIF regressions aim to capture differences
attributable to circumstances at specific quantiles of the distribution, represented here by

the horizontal line at the 60t? percentile.

Figure 2. Distributional regressions.

Type 2

RIF_0.6

Then the counterfactuals used in the direct approach are given by:
yE = Cia® (7)

The variation in these fitted values, which capture the role of circumstances since
counterfactuals (y7) are the same for all individuals with identical circumstances (in line
with the concept of the direct ex anteIOp), can be summarized using an inequality index
(here we again use the MLD, as in equation 4). As the RIF equations are additive and
linear, the Shapley and Oaxaca-type decompositions can be then applied to this index to
explore the contribution of each circumstance variable as well as differentials in their
contribution by gender and age at different quantiles of biomarker distribution.

3 Data

The data come from Understanding Society (UKHLS), a longitudinal, nationally
representative study of the UK. We use the General Population Sample (GPS) component
of UKHLS, a random sample of the general population. As part of wave 2 (2010-2011),
nurse-measured and non-fasted blood-based biomarkers were collected for the GPS. The



wave 2 nurse visits included 15,632 respondents, while blood-based biomarkers impose
further restrictions on the sample since they require the successful collection and
processing of blood samples.!! Exclusion of missing data on covariates reduces the
potential sample to a maximum of 14,068 and 9,005 individuals with valid nurse-collected
measurements and blood-based biomarkers, respectively.

Biomarkers

We focus on physical measurements and blood-based biomarkers that are associated with
major chronic conditions such as obesity, diabetes and coronary heart disease. Our nurse-
collected measurements are the waist-to-height ratio (WHR), defined as waist
circumference over height, to measure adiposity and systolic blood pressure (SBP). Our
blood-based biomarkers reflect ‘fat in the blood’, ‘sugar in the blood’ and markers for
inflammation. The cholesterol ratio, the ratio of total cholesterol (T'C) over high-density
lipoprotein (HDL), is our ‘fat in the blood’ biomarker. Glycated haemoglobin (HbAlc) is a
standard diagnostic test for diabetes. C-reactive protein (CRP) is our inflammatory
biomarker. CRP rises as part of the immune response to infection and mainly indicates
systemic inflammation. We exclude CRP values over 10mg/L, as they may reflect acute
rather than chronic infections (Davillas et al., 2017).

In addition to each of the specific markers, we also combine them in a composite measure,
which gives an overall assessment of a respondent’s physiological condition. We construct
an index of multi-system risk, often called allostatic load (e.g., Davillas and Pudney,
2017). Specifically, our composite measure combines all six nurse-collected and blood-
based biomarkers considered in our study: WHR, SBP, HbAlc, CRP, TC and HDL
cholesterol. HDL cholesterol, considered as the “good” cholesterol, is converted to negative
values to reflectill health, to be consistent with the other biomarkers. We then transform
each of these biomarkers into z-scores and sum them (Davillas and Pudney, 2017; Vie et
al., 2014). Since our inequality measure is only defined for positive values of the outcome
(Wendelspeiss Chavez Juirez and Soloaga, 2014), the resulting index (A) is rescaled as:
allostatic load = A— min(A4) + 1. Higher values of allostaticload indicate worse health.

Circumstances

The choice of measured circumstance factors follows the recent empirical literature,
informed by the normative framework for health equity and the UK policy and legal
context (Carrieri and Jones, 2018; Rosa Dias, 2009, 2010; Jusot et al., 2013). Our
circumstance variables embody the ethical position of the responsibility cut, defining
illegitimate sources of health inequality!2.

Drawing on the socio-legal context in the UK, the Equality Act of 2010 defines protected
characteristics that include age, sex and race. We treat sex and age (dummies for 10-year

11 Respondents were eligible for nurse visits if they were aged 16+, lived in England, Wales, or
Scotland, and were not pregnant. Blood sample collections were further restricted to those who
had no clotting disorders and no history of fits.

12 There is unlikely to be universal agreement on the choice of circumstance variables. An
advantage of the parametric approach to decomposition 1is that, given the assumptions made, the
contribution of each of the variables can be identified separately.
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intervals between 16 and 75 and a dummy for 75+) as circumstances (Carrieri and Jones,
2018).13 Nationality and linguistic background is proxied by a dummy for speaking
English at home during childhood.

The Equality Act does not directly encompass socioeconomic status (SES) among its
protected characteristics but this has been a concern of the existing literature on IOp.
Childhood SES is regarded as an important source of IOp in health, being beyond
individual’s control and exerting a lasting effect on individual’s adult health (Jusot et al.,
2013; Rosa Dias, 2009, 2010). We use both parental occupational status and education to
proxy childhood SES. The occupational status of the respondent’s mother and father,
when the respondent was aged 14, is measured using two categorical variables (one for
each parent) with six categories: not working (reference category), four occupation skill
levels and a category for missing data.'* Given the high correlation between mother’s and
father’s education, we combine them creating a measure capturing the highest parental
education level (Kenkel et al., 2006). This is a five category variable measured as: left
school with no/some qualification (reference category), post-school qualification/certificate
(e.g., an apprenticeship), degree (university or other higher-education degree) and a
missing data category.!®

The legal and policy context in the UK also frames the notion of an age of responsibility.
This age varies across different dimensions such as criminal responsibility and age of
consent. Young people aged over 18 are treated as an adult by the law. Here we make the
normative assumption that the level of secondary schooling achieved by age 18 is beyond
individual’s responsibility, influenced by parental and environmental factors during
individual’s earlier life, and therefore individuals’ own education constitutes a
circumstance (Jones et al., 2012; Carrieri and Jones, 2018). Education is measured as:
no/basic qualification (reference), O-Level, A-Level/post-secondary and degree.
Descriptive statistics for circumstances and biomarkers are available in Tables A1l and
A2 (Appendix).

4 Results

4.1. Mean-based measures of exanteIOp

Table 1 presents inequality results for the different biomarkers and for allostatic load.
Column [a] shows the total inequality, measured by the MLD. Observed circumstances

13 A recent policy report suggests actions to advance equality of opportunity in health, particularly
relevant to patient’s age and gender, characteristics that are “protected” under the Equality Act
(NHS England, 2017).

14 Occupational skill levels are based on the skill level structure of the Standard Occupational
Classification 2010.

15 Comparison of summary statistics for the biomarkers reveals similar results for our working
sample and the sample restricted to non-missing parental information (Table A2, appendix),
suggesting that the use of missing categories or the exclusion of missing data on parental
characteristics should have limited implications for our analysis.
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account for a non-trivial part of the total inequalities as our results from the mean-based
ex antelOp measures show (columns [b]-[c]). The contribution of measured circumstances
to the total inequality is lowest for CRP (4%), it is higher for cholesterol ratio (11%) and
waist-to-height ratio (17%) and around 20% for systolic blood pressure, HbAlc and
allostatic load.6

Table 1. Total inequality and I0p (MLD indexes).

I0p Sample
Total inequality Absolute I0p % of total sizg
[a] [b] inequality [c=b/a]
* %% %%k
Waist-to-height ratio O(.81010601) (‘()6083807) 16.9% 14,068
Systolic blood 0.0087*** 0.0017%** o
pressure (0.0001) (0.00007) 19.8% 11,865
*RNX *TRK
Cholesterol ratio 0(85080310) 0{8006040 4) 11.0% 9,005
*k %k *ok ok
HbAle “(0.0008 0.0002 19.5% 8,468
0.4244%** 0.0161%** o
CRP (0.005) (0.0020) 3.9% 8811
_ 0.0547%%* 0.0111%** .
Allostatic load (0.001) (0.0006) 20.2% 6,242
Bootstrapped standard errors in parenthesis (500 replications).

***P<0.01

We then explore the contribution of each of the circumstances to IOp using the Shapley-
decomposition (Figure 3). Age and gender (in combination) account for the largest part of
the IOp in almost all the biomarkers (except CRP), and age accounts for the dominant
contribution; this is in line with literature on the role of age and gender on explaining
variations in health (e.g., Baum and Ruhm, 2009). Individuals’ education and parental
occupational status are the second and third sources of IOp, while parental education is
the fourth contributor. Respondents’ education, parental occupation and parental
education account for 12%, 7% and 6% of the total IOp in allostatic load, respectively.

Given that age and gender are the main sources of variation in health, an Oaxaca-type
decomposition is used to explore differentials in the IOp in health between women and
men and across age groups to better understand the underlying sources of these
differences. Table 2 presentsthe Oaxaca-type decomposition of IOp in allostatic load by
gender. The main diagonal represents IOp measures estimated separately by gender,
while the remaining values are counterfactual IOp estimates; the upper right (lower left)
value is the counterfactual estimate of the IOp for women (men) computed using the
coefficients on circumstances estimated for men (women). In this case, variationin the
counterfactual outcome within groups reflects all of the measured circumstances other
than gender itself.

16 Although different techniques and biomarkers are employed by Carrieri and Jones (2018), our
results regarding HbAlc (the only biomarker in common) are comparable, with IOp accounting for
13-19% of the total (including the unexplained) inequalities in HbAlc in their analysis of the
Health Survey for England.
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Figure 3. Shapley decomposition of circumstances to 10p.

WHR

SBP

Cholesterol ratio

HbA1c

CRP

Allostatic load

20% 40% 60% 80% 100%

O

% contribution of circumstances to 1Op

B Age B Gender
I Childhood language [ Parental occupation
P Parental education [ Individual's education

Table 2. Oaxaca-type decomposition of IOp (MLD) by gender: Allostatic load

Coefficients for
Distribution of Women Men
circumstances
Women 0.0135 0.0060
Men 0.0127 0.0059

IOp in allostatic load is higher for women (MLD=0.0135) than for men (MLD=0.0059).
Our counterfactual estimates suggest that these gender differences are mainly due to
gender differences in the association between circumstances and allostatic load and to a
lesser extent due to differences in the distribution of circumstances. For example, the
counterfactual IOp estimate for men using the coefficients on circumstances for women
(MLD=0.0127) differs substantially from the original IOp for men (MLD=0.0059) but is
much closer to the IOp for women (MLD=0.0135), suggesting that the largest part of the
10p differential can be attributed to gender differences in the coefficients.
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Table 3 presentsthe corresponding Oaxaca-type decomposition results of IOp in allostatic
load by age group. We find that IOpin allostatic load varies substantially across the adult
lifespan, being higher for the 26-35 and 36-45 age groups compared to younger and older
ages. These results extend existing evidence, suggesting that cross sectional age-specific
health inequalities increase with age up to a limit and then inequality begins to narrow
most likely due to the age-as-leveller hypothesis (Baum and Ruhm, 2009; Davillas et al,
2017). As before, comparison of the counterfactual with the original IOp values for each
age group shows that the observed IOp differences can be mainly attributed to association
rather than to compositional differences due to differences in circumstances.

Table 3. Oaxaca-type decomposition of IOp (MLD) across the lifespan: Allostatic load

Coefficient of age group

Distribution of 16-25 26-35 36-45 46-55 56-65 66-75 76+
circumstances

16-25 0.0066 0.0090 0.0072 0.0056 0.0023 0.0016 0.0013
26-35 0.0072 0.0097 0.0091 0.0072 0.0029 0.0016 0.0015
36-45 0.0072 0.0090 0.0081 0.0066 0.0026 0.0014 0.0014
46-55 0.0082 0.0086 0.0077 0.0063 0.0025 0.0013 0.0014
56-65 0.0078 0.0075 0.0071 0.0058 0.0023 0.0015 0.0013
66-75 0.0092 0.0068 0.0070 0.0058 0.0022 0.0016 0.0015
76+ 0.0083 0.0064 0.0064 0.0056 0.0019 0.0016 0.0013

4.2. Distributional analysis of the contribution of circumstances

Unconditional quantile regression (UQR) models are estimated to measure the
contribution of measured circumstances across the biomarker distribution and Shapley
decomposition analysis is then used to explore the contribution of circumstances at each
quantile (Table 4); a graphical illustration is presented in Figure A1 (Appendix).

Our results show the presence of systematic variation attributable to circumstances for
all health outcomes across the whole distribution (as shown by the MLD indexes). The
most striking result from the Shapley decomposition shows that the percentage
contribution of socioeconomic circumstances, measured by parental occupation, education
and individual’s education, increases towards the right tail of the biomarker distribution
for most of the biomarkers. For example, the contribution of parental occupation for
allostatic load increases from 6% (25t quantile) to 18.5% (95th quantile). It is also notable
that, in most cases, the relative contribution of age and sex declines, relative to that
attributed to socioeconomic factors, in the right hand tails, where individuals are most at
risk of health problems. For example, the joint contribution of age and gender for
allostatic load at the 25th quantile is 82%, while socioeconomic circumstances (parental
occupation, parental education and own education) account for 17%; the corresponding
contributions are almost equal (around 50%) at the top quantiles (Q90, Q95).
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Table 4. Contribution of circumstances (MLD) at different biomarker quantiles and

Shapley decomposition.
Waist to height ratio Q25 Q50 Q75 Q90 Q95
MLD index 0.0040%** 0.0025%** 0.0014%** 0.0011%*** 0.0008%***
% contribution to IOp
Age 68.89% 61.81% 52.93% 36.32% 34.00%
Gender 12.73% 7.75% 1.27% 0.55% 1.99%
Childhood language 0.40% 0.44% 0.35% 0.28% 0.27%
Parental occupation 5.64% 9.37% 12.77% 15.71% 15.41%
Parental education 5.29% 6.90% 7.69% 8.69% 8.90%
Individual's Education 7.07% 13.69% 24.98% 38.35% 39.31%
Systolic blood pressure Q25 Q50 Q75 Q90 Q95
MLD index 0.0020%** 0.0022%** 0.0020%** 0.0020%** 0.0020%**
% contribution to IOp
Age 41.87% 57.46% 73.00% 77.04% 77.38%
Gender 45.11% 29.58% 9.42% 3.12% 0.65%
Childhood language 4.19% 2.11% 1.66% 1.11% 0.80%
Parental occupation 2.79% 3.45% 5.49% 7.79% 7.32%
Parental education 1.74% 2.60% 3.17% 3.32% 2.79%
Individual's Education 4.29% 4.80% 7.25% 7.64% 11.11%
Cholesterol ratio Q25 Q50 Q75 Q90 Q95
MLD index 0.0039%** 0.0075%** 0.0090%** 0.0101%** 0.0076***
% contribution to IOp
Age 34.28% 31.99% 29.98% 22.16% 25.27%
Gender 55.15% 59.30% 63.68% 70.73% 64.48%
Childhood language 0.03% 0.09% 0.12% 0.16% 0.01%
Parental occupation 3.71% 3.67% 2.30% 1.92% 4.01%
Parental education 3.38% 1.88% 0.84% 0.43% 0.89%
Individual's Education 3.43% 3.07% 3.05% 4.61% 5.34%
HbAlc Q25 Q50 Q75 Q90 Q95
MLD index 0.0015%** 0.0022%** 0.0029%** 0.0064*** 0.0177%**
% contribution to IOp
Age 81.01% 78.23% 71.19% 64.85% 55.94%
Gender 0.65% 0.68% 1.48% 3.88% 12.64%
Childhood language 1.04% 0.59% 1.14% 2.00% 3.43%
Parental occupation 6.63% 6.80% 7.07% 8.09% 7.63%
Parental education 5.20% 4.15% 4.28% 4.43% 3.14%
Individual's Education 5.40% 9.55% 14.91% 16.74% 17.21%
CRP Q25 Q50 Q75 Q90 Q95
MLD index 0.0356%** 0.0313*%** 0.0239%** 0.0138%** 0.0073%**
% contribution to IOP
Age 46.10% 33.57% 20.79% 19.11% 14.43%
Gender 1.00% 7.70% 15.25% 12.72% 4.49%
Childhood language 0.27% 0.23% 0.72% 0.71% 0.70%
Parental occupation 13.11% 13.60% 23.99% 21.77% 34.50%
Parental education 14.43% 14.33% 11.65% 11.59% 15.21%
Individual's Education 25.09% 30.57% 27.59% 34.09% 30.67%
Allostatic load Q25 Q50 Q75 Q90 Q95
MLD index 0.0323%** 0.0121%** 0.0059%** 0.0045%** 0.0034%**
% contribution to IOP
Age 58.63% 55.02% 54.06% 49.98% 46.49%
Gender 23.78% 23.02% 13.57% 4.11% 3.78%
Childhood language 0.24% 0.20% 0.26% 0.74% 0.76%
Parental occupation 6.08% 5.78% 8.18% 12.28% 18.54%
Parental education 4.67% 4.47% 6.51% 7.93% 10.45%
Individual's Education 6.60% 11.52% 17.43% 24.97% 19.94%

Bootstrapped standard errors in parenthesis.

***P<0.01

13



Decomposition by gender and age

Figure 4 presents gender differentials in the contribution of circumstances for allostatic
load, based on Oaxaca-type decompositions implemented at various quantiles using the
RIF method. Figure 2 shows that the gender differentials at different quantiles of the
distribution favour men; this echoes the analysis that uses estimates at the mean (Table
2). However, we find that these gender differentials decreasein magnitude towards the
higher quantiles of the distribution of allostatic load, along with the absolute magnitude
of the variation in outcomes across circumstances.

Figure 4. Gender differentials in IOp across the distribution of allostatic
load.

Allostatic load

.02 .03 .04

Inequality of Opportunity (MLD index)
.01

Q25 Q50 Qrs Q90 Q95

[ women Men

—=e— |Op differences: women - men

Table 5 presents the corresponding counterfactual decomposition estimates at different
quantiles of the allostatic load. These results confirm our previous evidence (Table 2),
revealing that, where gender differentials in IOp are evident, these differences can be
attributed to differences in association rather than to gender differences in the
composition of circumstances.

Table 5. Oaxaca-type decomposition of IOp (MLD) by gender across the allostatic load distribution.

Q25 Q50 Q75 Q90 Q95
Coefficient for Coefficient for Coefficient for Coefficient for Coefficient for
Distribution of Women Men Women Men Women Men Women Men Women  Men
circumstances
Women 0.0430 0.0148 0.0128 0.0079 0.0069 0.0045 0.0049 0.0047 0.0039 0.0038
Men 0.0407 0.0146 | 0.0121 0.0076 0.0064 0.0044 0.0045 0.0040 | 0.0037 0.0036

Oaxaca-type decompositions of the contribution of circumstances by age are also
implemented across quantiles of the distribution of allostatic load. Figure 5 presents the
MLD indexes estimated separately for each age group using the fitted RIF values for each
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quantile (equation 7). We find that moving to the right tails of the allostatic load
distribution, the inverted U-shaped pattern of IOp by age (observed for our “mean-based”
IOp analysis; Table 3) becomes less evident, with IOp gradually increasing with age. The
cumulative advantage hypothesis (e.g., Kim and Durden, 2007), rather than the age-as-
leveller, seems to exert the dominant role when the focus is on the right tail of the
distribution, suggesting that adverse circumstances and health disadvantages
accumulate over time, suggesting a more pronounced role of circumstances in health as
people age.

As before, comparison of the counterfactual with the original IOp values for each age
group reveals that the observed IOp differences can be mainly attributed to association
effects rather than to composition effects due to differencesin circumstances (Table A3,

Appendix).
Figure 5. I0p by age groups at different quantiles
of allostatic load.
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5 Conclusions

Using UK nationally representative data we explore ex ante I0p in health and its
underlying sources using objective biomarkers. We find that IOp accounts for anon-trivial
part of the total variation in health. For example, 20% of the total inequality in allostatic
load is attributed to IOp. Shapley-decomposition techniques show that apart from age and
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gender, parental education, parental occupational status and own educational attainment
are important sources of IOp.

We propose an extension to the decomposition of ex ante I0p using the RIF method. This
analysis allows us to decompose IOp and its sources across quantiles of the biomarker
distribution. We find the presence of systematic contributions of circumstances for all
biomarkers across the whole distribution. A mixed pattern is observed on how the
contribution of circumstances evolves towards the right tails across different biomarkers,
highlighting the importance of considering the multidimensional nature of health. In most
cases, the contribution of age and sex declines relative to socioeconomic circumstances in
the right tails, the part of the distribution where health risks are more pronounced.
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Appendix

Table Al. Circumstance variables

used in the analysis.

Age groups

16-25

26-35

36-45

46-55

56-65

66-75

76+

Gender

Male

Female

Language at home during childhood
English at childhood

Other language at childhood

Mo ther occupation

1(low-skilled)

2

3

4(high-skilled)

Missing

Not working (reference)

Father occupation

1(low-skilled)

2

3

4(high-skilled)

Missing

Not working (reference)

Highest parental education
No/some qualification (reference)
Post-school qualification/certificate
Degree

Missing

Educational attainment
No/basic qualification (reference)
O-level

A-level/post-secondary

Degree

Mean

0.075
0.126
0.183
0.188
0.190
0.147
0.091

0.432
0.568

0.930
0.070

0.144
0.258
0.084
0.084
0.030
0.400

0.087
0.238
0.386
0.146
0.089
0.054

0.501
0.247
0.100
0.151

0.150
0.315
0.310
0.224

Table A2. Descriptive statistics for biomarkers
for the full and restricted samples.

Waist-to-height ratio
Systolic blood pressure
(mmhg

TC/HDL

HbA1lc (mmol/mol)
CRP (mg/L)

Allostatic load

Full sample Excluding missing parental data
Mean Std. err. Sample size Mean Std. err. Sample size
0.561 0.001 14,068 0.560 0.001 11,119
126.17 0.155 11,865 126.00 0.161 9,450
3.741 0.014 9,005 3.732 0.016 7,228
37.240 0.082 8,468 37.111 0.090 6,803
2.092 0.022 8,311 2.044 0.024 6,672
9.740 0.039 6,242 9.665 0.043 5,040




Table A3. Oaxaca-type decomposition of IOp (MLD index) across the lifespan at different quantiles of the allostatic load

distribution
Q25 Q90
Coefficient of age group Coefficient of age group
Distribution of 0 05 9635 3645 4655  56-65 6675 76+ | 1625 26:35  36-45 4655 5665 6675 76+
circumstances
16-25 0.0709 0.0547 0.0265 0.0174 0.0038 0.0017 0.0029 | 0.0007 0.0025 0.0017 0.0018 0.0040 0.0042 0.0175
26-35 0.0620 0.0613 0.0334 0.0213 0.0046 0.0013 0.0028 [ 0.0008 0.0020 0.0020 0.0021 0.0039 0.0052 0.0168
36-45 0.0600 0.0550 0.0302 0.0195 0.0046 0.0015 0.0026 [ 0.0009 0.0019 0.0020 0.0021 0.0039 0.0050 0.0127
46-55 0.0720 0.0487 0.0281 0.0186 0.0041 0.0013 0.0020 [ 0.0011 0.0023 0.0019 0.0020 0.0036 0.0049 0.0108
56-65 0.0771 0.0390 0.0264 0.0163 0.0037 0.0013 0.0019 [ 0.0010 0.0021 0.0019 0.0022 0.0035 0.0056 0.0078
66-75 0.0964 0.0351 0.0252 0.0154 0.0037 0.0014 0.0020 [ 0.0011 0.0021 0.0020 0.0024 0.0038 0.0054 0.0075
76+ 0.0917 0.0302 0.0246 0.0142 0.0035 0.0012 0.0019 | 0.0011 0.0020 0.0019 0.0026 0.0031 0.0055 0.0052
Q50 Q95
Coefficient of age group Coefficient of age group
Distribution of 0 o5 96.35 3645 4655  56-65 6675 76+ | 1625 926:35  36-45 4655 5665 6675 76+
clrcumstances
16-25 0.0069 0.0075 0.0092 0.0086 0.0032 0.0029 0.0030 | 0.0015 0.0020 0.0027 0.0030 0.0065 0.0025 0.0162
26-35 0.0075 0.0088 0.0103 0.0097 0.0036 0.0037 0.0032 [ 0.0019 0.0022 0.0027 0.0032 0.0053 0.0041 0.0124
36-45 0.0074 0.0084 0.0094 0.0095 0.0036 0.0029 0.0028 [ 0.0019 0.0021 0.0023 0.0033 0.0055 0.0040 0.0112
46-55 0.0089 0.0081 0.0087 0.0089 0.0033 0.0024 0.0022 | 0.0024 0.0024 0.0023 0.0034 0.0048 0.0033 0.0107
56-65 0.0091 0.0070 0.0085 0.0083 0.0032 0.0022 0.0021 | 0.0022 0.0022 0.0022 0.0044 0.0041 0.0041 0.0093
66-75 0.0100 0.0061 0.0086 0.0086 0.0031 0.0021 0.0021 | 0.0024 0.0023 0.0023 0.0054 0.0046 0.0041 0.0097
76+ 0.0098 0.0059 0.0082 0.0081 0.0029 0.0021 0.0019 [ 0.0024 0.0020 0.0020 0.0060 0.0040 0.0041 0.0084
Q75
Coefficient of age group
Distribution of
. 16-25 26-35 36-45 46-55 56-65 66-75 76+
clrcumstances
16-25 0.0026 0.0037 0.0029 0.0030 0.0020 0.0034 0.0022
26-35 0.0033 0.0028 0.0035 0.0039 0.0029 0.0043 0.0026
36-45 0.0033 0.0029 0.0031 0.0038 0.0026 0.0036 0.0024
46-55 0.0037 0.0030 0.0028 0.0034 0.0023 0.0034 0.0025
56-65 0.0033 0.0028 0.0026 0.0033 0.0021 0.0034 0.0022
66-75 0.0037 0.0027 0.0025 0.0034 0.0018 0.0033 0.0022
76+ 0.0041 0.0026 0.0022 0.0032 0.0017 0.0032 0.0020




Figure Al. Contribution of circumstances (MLD index) at different biomarker quantiles and
Shapley decomposition results.
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