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Abstract  
While uncontrolled diabetes (UD) or poor glycaemic control is a widespread condition with 

potentially life-threatening consequences, there is sparse evidence of its effects on health care 

utilisation. We model the propensities to consume health care and UD by employing an 

innovative bivariate Latent Markov model which allows for dynamic unobserved 

heterogeneity, movements between latent states and the endogeneity of UD. We estimate the 

effects of UD on primary and secondary health care consumption using a panel dataset of rich 

administrative records from Spain and measure UD using a biomarker. We find that UD does 

not have a statistically significant effect on health care use. Furthermore, individuals appear to 

move across latent classes and increase their propensities to poor glycaemic control and health 

care use over time. Our results suggest that by ignoring time-varying unobserved heterogeneity 

and the endogeneity of UD, the effects of UD on health care utilisation might be overestimated 

and this could lead to biased findings. Our approach reveals heterogeneity in behaviour beyond 

standard groupings of frequent versus infrequent users of health care services. We argue that 

this dynamic latent Markov approach could be used more widely to model the determinants of 

health care use.   
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1. Introduction 

Diabetes mellitus (DM) is a major public health concern and one of the most widespread 

chronic conditions worldwide with a rapidly increasing prevalence, especially among low- and 

middle-income countries (IDF, 2015). According to the WHO (2016), we are currently 

experiencing a diabetes “epidemic” where the number of adults with DM has grown from 108 

million in 1980 to an estimated 422 million in 2014 and with DM projected to be the 7th leading 

cause of death by 2030. Furthermore, DM imposes a substantial economic burden to any health 

care system.2 Among individuals with DM, uncontrolled diabetes (UD) or poor glycaemic 

control is a prevalent condition, concerning between around 30 to 50 percent of patients. 

Glycaemic control is driven by a variety of factors such as genetic endowment; lifestyle; 

resistance to intensified medication (therapeutic resistance); and low treatment adherence. UD 

leads to sustained higher levels of blood sugar, which in turn increase the risk of life-threatening 

comorbidities such as kidney failure and stroke.   

A related problem is the extent to which UD may cause additional, yet avoidable, health care 

utilisation. Indeed, the medical literature often finds that individuals with poor glycaemic 

control tend to use more health care resources resulting in extra utilisation and added costs for 

the health system (e.g. Wagner et al., 2001; Gilmer et al., 2005; Mata-Cases et al., 2016). 

However, the majority of these studies employ empirical approaches often based on standard 

(linear) regression models applied to selected samples of US health insurance enrolees. Such 

samples tend to limit the generalisability of the results while previous empirical approaches do 

not account for potentially important issues which may affect the identification of the effect of 

DM on health care use such as individual-level unobserved heterogeneity and endogeneity 

concerns.  

The main objective of this paper is to jointly model the propensities towards poor glycaemic 

control and the use health care services via a bivariate Latent Markov (LM) model. This novel 

approach extends recent developments within the literature concerning latent class models (e.g. 

Bartolucci and Farcomeni, 2009) and allows accounting for the endogeneity of UD and time-

varying unobserved heterogeneity using dynamic latent classes. We apply this model to the 

relationship between UD and utilisation of primary and secondary health care services among 

                                                           
2 For example, in the US alone the estimated total costs of diagnosed DM increased by 41 percent in a five year 

period, from $174 billion in 2007 to an estimated $245 billion in 2012 (ADA, 2013). In the UK, the total cost of 

DM is around 10 percent of the NHS budget for England and Wales (UK Diabetes Global Health Community, 

2014). Similarly, DM absorbs around 8 percent of total public health expenditures in Spain with an estimated 

€5.1 billion for direct costs and €1.5 billion for diabetes-related complications (Lopez-Bastida et al., 2013). 
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individuals with type-2 diabetes. We employ six waves (2005-2010) of a longitudinal 

administrative dataset from Spain including detailed medical records of adult individuals with 

diabetes. We measure UD using glycated haemoglobin (HbA1c) levels, a biomarker providing 

an accurate average measurement of glucose (sugar) concentration which is commonly used 

by physicians to diagnose and monitor diabetes and its severity (e.g. International Expert 

Committee, 2009; Lyons and Basu, 2012). 

Differently from previous studies, we find that poor glycaemic control does not appear to 

increase health care use within individuals with diabetes. We also find that the association 

between UD and health care utilisation tend to disappear when controlling for unobserved 

heterogeneity. This may suggest that UD and health care consumption might be both driven by 

a series of unobserved factors. Furthermore, our bivariate LM model reveals the existence of a 

series of (latent) groups of individuals, which differ by their propensities towards poor 

glycaemic control and health care use. Interestingly, patients who present a high propensity to 

consume health care do not necessarily show a similar tendency to poor glycaemic control. Our 

estimates also indicate that individuals may switch groups over time often by increasing their 

propensities to poor glycaemic control and utilisation of primary and secondary care. This also 

suggests that unobserved heterogeneity is, in this case, time-varying and that ignoring this 

would lead to biased estimates and misleading policy implications.       

This paper offers several contributions to the literature. First, to the best of our knowledge, this 

is one of the first studies to employ a bivariate LM model with dynamic unobserved 

heterogeneity to explore the determinants of health care utilisation and the first to model the 

propensities to consume health care and poor glycaemic control simultaneously. Secondly, our 

latent class model allows switching latent class over time, thus enabling changes in behaviour 

among individuals with diabetes while also accounting for important underlying causes of 

utilisation such as the ageing process. Finally, this is also the only paper employing a latent 

class model to investigate the relationship between UD and health care utilisation. Overall, this 

paper provides new evidence to the literature on (uncontrolled) diabetes and health care use 

while also proposing a novel dynamic latent class approach.  

2. Background 

Previous analyses within the medical literature consistently find that poor glycaemic control is 

associated with higher health care utilisation and increased medical costs (e.g. Wagner et al., 
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2001; Shetty et al., 2005; Oglesby et al., 2006).3 However, most of these studies are based on 

standard regression models such as linear, log-linear and Generalised Linear Models (GLM) 

applied to specific samples of US health insurance enrolees. These approaches tend to ignore 

potentially important modelling issues such as individual-level unobserved heterogeneity and 

the endogeneity of UD. Furthermore, with the exception of Gil et al. (2017), the economic 

literature has traditionally focused on the effects of DM on the labour market, including 

earnings, hours of work and absenteeism (Rizzo et al., 1996; Kahn, 1998; Latif, 2009; Zhang 

et al., 2009; Minor, 2010) while overlooking the impact of DM or UD on health care use.  

The analysis of the determinants of health care utilisation has received considerable attention 

within the empirical literature. Early studies employ hurdle (e.g. Pohlmeier and Ulrich, 1995; 

Windmeijer and Santos-Silva, 1997; Schellhorn et al., 2000; Jimenez-Martin et al., 2002; Van 

Ourti, 2004) and finite mixture models (e.g. Deb and Trivedi, 1997; Deb and Holmes, 2000; 

Deb and Trivedi, 2002; Jimenez-Martin et al., 2002; Atella et al., 2004) to explore the factors 

influencing health care use mainly on cross-sectional data. More recent studies exploit panel 

data and propose latent class models which account for individual-level unobserved 

heterogeneity (e.g. Bago d’Uva, 2005) as well combinations of hurdle and latent class models 

(e.g. Bago d’Uva, 2006; Bago d’Uva and Jones, 2009).  

Latent class models present a series of attractive modelling features. First, the use of latent 

classes allows modelling unobserved heterogeneity without imposing restrictive assumptions 

on the distribution of the individual effects. Secondly, latent classes provide information on the 

structure of the underlying unobserved heterogeneity by identifying two (or more) groups of 

individuals, which typically differ in their propensities to use health care (e.g. ‘infrequent 

users’ versus ‘frequent users’ as in Bago d’Uva, 2006). However, most previous latent class 

models used to investigate the determinants of health care use, often assume that individual-

level unobserved heterogeneity is time-invariant. Importantly, this implies that individuals are 

not allowed to move between classes over time. In this paper, we relax this assumption and 

                                                           
3 For example, Wagner et al. (2001) employ linear and log-linear models on health insurance claims data of adult 

patients with diabetes from a large Health Maintenance Organisation (HMO) in the state of Washington (1992-

1997) to analyse the relationship between uncontrolled diabetes, health care use and related costs. They find that 

sustained reductions of blood sugar levels (measured via the biomarker HbA1c) are correlated with lower 

utilisation, including hospitals’ admission rates, primary and specialist visits, and significant costs savings. 

Similarly, Shetty et al. (2005) and Oglesby et al. (2006) use Generalised Linear Models (GLM) on data concerning 

patients with type-2 DM drawn from the US Health Core Managed Care Database (1998-2003). Overall, their 

analyses find that, depending on their specific treatment between 41 to 66 percent of patients present a 

“suboptimal” control of their conditions. They also find that the direct medical costs of treating patients with 

diabetes are substantially higher among those with suboptimal glycaemic control. 
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propose a Latent Mark model that accounts for time-varying unobserved heterogeneity, 

movements between classes and the endogeneity of UD.  

3. Empirical approach 

Compared to previous studies, our LM approach presents two main innovations. First, we 

employ a bivariate specification to account for the endogeneity of UD via the inclusion of 

unobserved heterogeneity modelled as discrete latent classes. Traditionally, the majority of 

latent class models used to analyse health care consumption relied on univariate (single 

equation) specifications with time-invariant unobservables (e.g. Bago d’Uva, 2005, 2006; Deb 

and Trivedi, 1997). Secondly, we allow unobserved heterogeneity to be time-varying and thus 

enable individuals to move among latent classes over time. This accounts for changes in 

behaviour concerning both the propensities to use health care and poor glycaemic control 

between time periods. 

 

In the presence of longitudinal data, the relationship between uncontrolled diabetes, 𝑈𝐷𝑖𝑡, and 

health care utilisation, 𝐻𝐶𝑖𝑡, for an individual i at time t, where 𝑡 = 1, … , 𝑇𝑖, could be modelled 

by a standard panel data specification: 

 

𝐻𝐶𝑖𝑡 =  𝛼𝑖 + 𝜷𝒙𝑖𝑡 + 𝛾𝑈𝐷𝑖𝑡 + 𝜂𝑖𝑡                                                                                            (1) 

 

where 𝛼𝑖 is the time-invariant individual level unobserved heterogeneity; 𝒙𝑖𝑡 is a vector of 

observed individual characteristics; and 𝜂𝑖𝑡 should capture the idiosyncratic error/shock, 𝜀𝑖𝑡,  

but could also include residual time-varying individual unobserved heterogeneity (𝐻𝑖𝑡). The 

effects of UD on health care use, 𝛾, could be estimated by such as model if 𝑈𝐷𝑖𝑡 is uncorrelated 

with the time-varying individual level unobservable component, 𝐻𝑖𝑡, or simply by assuming 

that 𝐻𝑖𝑡 is negligible. While the latter assumption is often conveniently invoked in order to 

employ standard panel data techniques, in most cases this may be unrealistic/untenable. Hence, 

it might be reasonable to assume that the unobserved time-varying factors affecting health care 

utilisation may also simultaneously affect UD.4 Importantly, if time-varying unobserved 

heterogeneity is not properly accounted for, the estimation of 𝛾 might be biased.  In order to 

disentangle the genuine effect of UD on health care consumption and the role of time-varying 

                                                           
4 For instance, the propensity to consume health care and the one leading to poor glycaemic control might be 

driven by a third set of common factors, including risk preferences or underlying (unobservable) health risks (i.e. 

changes in the risk/probability of developing specific health conditions as an individual ages). 
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unobserved heterogeneity, we jointly model the propensities to poor glycaemic control and 

health care use by employing a bivariate LM model. This allows treating time-varying 

unobserved heterogeneity, 𝐻𝑖𝑡, non-parametrically by including a vector of individual-specific 

parameters which follows a first-order Markov process. The potential endogeneity of UD is 

accounted for by jointly modelling 𝑈𝐷𝑖𝑡 and 𝐻𝐶𝑖𝑡. 

 

Bivariate Latent Markov Model   

A LM model assumes that: i) the individual-specific random parameter defining unobserved 

heterogeneity follows a first-order Markov process with latent states U(u), for 𝑢 = 1, … , 𝑘; and 

ii) such latent states make 𝑈𝐷𝑖𝑡 and 𝐻𝐶𝑖𝑡 conditionally independent given the set of observable 

characteristics, 𝒙𝑖𝑡. The latter is a form of local independence assumption implying that, given 

the set of observable covariates in equation (1), any source of residual association between 

𝑈𝐷𝑖𝑡 and 𝐻𝐶𝑖𝑡 is accounted for by the latent states parameters.  More specifically, a LM model 

is built around three sets of parameters. The first set of parameters describes how the joint 

distribution of 𝑈𝐷𝑖𝑡 and 𝐻𝐶𝑖𝑡 depends on the observable characteristics and the latent Markov 

process U. As a result, equation (1) can now be written as a system: 

𝑈𝐷𝑖𝑡 =  ∑ 𝛼1𝑖𝑡(𝑢)𝑈𝑖𝑡(𝑢)𝑘
𝑢=1 + 𝜷𝟏𝒙𝑖𝑡 + 𝜀1𝑖𝑡                                                                                            

𝐻𝐶𝑖𝑡 =  ∑ 𝛼2𝑖𝑡(𝑢)𝑈𝑖𝑡(𝑢)𝑘
𝑢=1 + 𝜷𝟐𝒙𝑖𝑡 + 𝛾𝑈𝐷𝑖𝑡 + 𝜀2𝑖𝑡                                                            (2) 

                                                                                             

where 𝑈𝑖𝑡(𝑢) represents a set of k mutually exclusive dummy variables defining latent states 

membership in each time period; 𝛼1𝑖𝑡 and 𝛼2𝑖𝑡 capture the relative contributions of time-

varying unobserved heterogeneity in determining 𝑈𝐷𝑖𝑡 and 𝐻𝐶𝑖𝑡, respectively; 𝛾 is the effect 

of uncontrolled diabetes on health care consumption, while 𝜀1𝑖𝑡 and 𝜀2𝑖𝑡 are idiosyncratic error 

terms, which we explicitly allow to be correlated in order to capture any residual unobserved 

heterogeneity. The two remaining sets of parameters model the underlying distribution of the 

random parameter vector 𝛼𝑖𝑡 with elements [𝛼1𝑖𝑡,𝛼2𝑖𝑡]. More specifically, the second set of 

parameters includes the initial probabilities 𝜋𝑢1 = Pr (𝛼𝑖1 = 𝑈(𝑢)|𝑥𝑖) with u = 1, . . . , k, which 

are produced by a multinomial logit specification. These can be interpreted as the standard 

class membership probabilities in the first time period. The third set of parameters comprises 

the transition probabilities between different latent states. Since this is a first-order Markov 

process, these depend on the previous time period such as 𝜋𝑣𝑡|𝑢𝑡−1
= Pr (𝛼𝑖𝑡 = 𝑈(𝑣)|𝛼𝑖𝑡−1 =

𝑈(𝑢)), with t = 2, . . . , T, and u,v = 1, . . . , k. That is, differently from previous latent class 

models, unobserved heterogeneity is modelled as a Markov process and this allows individuals 
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switching between latent classes over time. The joint distribution of the latent process 𝑼𝑖 may 

be written as: 

 

 Pr(𝑼𝑖 = 𝒖) = 𝜋𝑢1 ∏ 𝜋𝑣𝑡|𝑢𝑡−1

𝑇𝑖
𝑡>1                                                                                             (3) 

 

where 𝒖 = (𝑢1, … , 𝑢𝑇). Equation (3) shows that individuals are allowed switching between 

classes.  We estimate the system in (2) by employing a logit model for 𝑈𝐷𝑖𝑡 and an ordered 

logit model for 𝐻𝐶𝑖𝑡.5 Estimation of the three sets of parameters is implemented by an EM 

algorithm (Dempster et al., 1977). The corresponding log-likelihood of our model can be 

written as: 

 

ℓ(𝜽) = ∑ ∑ {∑ 𝑤𝑖𝑡𝑢 log[𝑓(𝒚𝑖𝑡|𝑢𝑖𝑡 , 𝒙𝑖𝑡)]𝑇𝑖
𝑡 + 𝑤𝑖1𝑢 log[𝜋𝑢1] + ∑ 𝑧𝑖𝑢𝜈log (𝜈 𝜋𝑢𝜐)}𝑘

𝑢𝑖                (4) 

 

where 𝑤𝑖𝑡𝑢 is a dummy variable which equals 1 if individual i is in latent state u at time t, while 

 𝑧𝑖𝑢𝜈 equals the number of times individual i moves from state u to state 𝜈 (from t >1). The EM 

algorithm alternates Expectation and Maximization steps until convergence. The E-step 

computes expected values of variables 𝑤𝑖𝑡𝑢 and  𝑧𝑖𝑢𝜈 using posterior probabilities. The 

subsequent M-step maximises the expected values with respect to 𝜽.6  

4. Data 

We employ individual-level longitudinal data drawn from administrative records of patients 

followed over six consecutive years (2005-2010) in six primary care centres and two hospitals 

in the municipality of Badalona (north-east of Barcelona), Spain, serving a population of 

around 104,000 individuals. As in Spain health care is primarily delivered by a national health 

                                                           
5 More specifically, the dependent variable for 𝑈𝐷𝑖𝑡 is a binary variable defining the presence of UD among 

individuals with diabetes while the dependent variables for 𝐻𝐶𝑖𝑡  include the following ordered categories: 

0,1,2,..>55 for GP visits and 0,1,2…> 33 for specialist visits, respectively. Here, we follow Cameron and Trivedi 

(1998) who suggest that ordered discrete models could be employed as an alternative to count data models. In any 

case, the inclusion of a count data model such as Poisson or Negative Binomial would require extending this 

bivariate Latent Markov approach well beyond the scope of this paper.   
6 Further details on the EM algorithm and the estimation of this model are reported in Bartolucci and Farcomeni 

(2009) and Li Donni (2018). 
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care service with free universal access, data from these health care centres should be 

representative of the way the health system operates in the whole country.7  

Our data includes a rich set of information about patients’ use of health care resources, 

including number of GP visits and specialist care.8 The data also encompasses information on 

a battery of diagnostic tests, measurements of height and weight (used to build an individual’s 

body mass index, BMI); patient’s chronic and diagnosed health conditions (classified 

according to the International Classification of Primary Care codes, second edition, ICPC-2); 

type of healthcare professional(s) contacted; and the main reason for their visit. Moreover, the 

dataset includes standard individual level socio-demographic characteristics such as age, 

gender, marital status, immigration (Spanish or EU national versus non-EU national) and 

employment status (active vs retired), place of birth and residence and health-behaviours 

(alcohol and tobacco use). 

Given the main objective of our study, we focus on a sub-sample of individuals diagnosed with 

type-2 diabetes mellitus (DM), aged 16 years or over, who had at least one contact with the 

aforementioned health care centres during the study period.9 Diabetic patients were identified 

via the corresponding ICPC-2 code or alternatively through a mean value of the glycated 

haemoglobin (HbA1c) test ≥ 6.5% (≥ 48 mmol/mol). This test is routinely used by physicians 

to diagnose and monitor diabetes and provides an accurate measure of glucose concentration 

up until the previous 8 weeks (Goldstein et al. 2004; IEC, 2009; Lyons and Basu, 2012).  

We define uncontrolled type-2 diabetes (UD) using a binary variable which equals 1 if the 

within year mean HbA1c level is equal or above 7.5%. This is the threshold actually employed 

by physicians to identify poor glycaemic control in our dataset. However, since there is no 

universal consensus within the medical literature about the HbA1c thresholds which identify 

UD, we also estimate our models using a slightly lower value of blood sugar concentration 

                                                           
7 More specifically, only individuals in employment would face a 40% co-payment for prescribed medicines, 

whereas pensioners would be completely exempted. Patients with chronic conditions would have a reduced co-

payment of 10% and civil servants would only pay 30% of the market price regardless of their employment status. 

During the same period, drugs provided to hospitalised patients were free of charge. 
8 We focused on utilisation as it represents the largest component of diabetes-related medical costs. For example, 

Mata-Cases et al. (2016) find that in Catalonia hospital care, medications and primary care are the main drivers 

of costs for both patients with type-2 diabetes and non-diabetic patients. 
9 This sample may include patients with type-2 DM with zero utilisation (no GP or specialist visits) in some of 

these years. These might be patients who had some positive use only in selected years. Note that, given the 

differences between type-1 and type-2 diabetes and related treatments, we dropped all individuals with type-1 

diabetes. Individuals transferred or moved to other health centres and patients from other areas were excluded 

from our analysis. 
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(7%).10 Given our definition of UD, we restricted our sample to individuals with at least one 

within year mean HbA1c value. Following this criteria, we obtained a sample of 2,455 patients 

with type-2 DM.11 

Descriptive statistics  

Table 1 reports variable definitions and some basic descriptive statistics for both the sample of 

patients with type-2 DM and the one including individuals with uncontrolled diabetes 

(HbA1c>=7.5%). Our dataset reveals that around 27 percent of patients are not controlling 

adequately their blood sugar levels, despite the well-known potential detrimental effects. In the 

sample of patients with diagnosed diabetes, the mean number of GP visits per year is around 

17.2 while this falls to 4.9 per year for specialist visits. As expected, these increase among 

individuals with UD to 18.8 and 5.3, respectively. Patients with UD appear to be more active 

in the labour market (23 vs 19 percent); to engage more frequently in risky-health behaviours 

(smoking, 21.3 vs 17.1 percent; drinking: 3.4 vs 2.6 percent); and suffer from higher levels of 

depression (21.5 vs 17.6) than diabetic patients with an adequate control. 

(Table 1 around here) 

5. Results  

We estimated our Latent Markov specification for an increasing numbers of latent states for 

each of the two measures of health care utilisation: GP and specialist visits. We do this by first 

estimating a model with the no heterogeneity (i.e. k=1) followed by models estimated with an 

increasing number of latent states. This allows establishing the specific number of latent classes 

for each outcome in our final specifications. Results are reported in Table 2. 

 

(Table 2 around here) 

 

This table shows the log-likelihoods obtained from equation (4) together with the total number 

of parameters and the Bayesian information criterion (BIC) for all models estimated by 

imposing an increasing number of latent states. Given the nature of our variables and the 

objective of our analysis, it would be more appropriate to rely on the BIC rather than the Akaike 

Information Criterion (AIC), as the BIC tends to penalise model complexity more heavily. 

                                                           
10 Results obtained using a lower threshold appeared to be very similar and are available upon request. 
11  It might be argued that excluding patients without positive within year HbA1c could potentially bias our 

estimates since in our data these patients tend to present lower frequency of utilisation. Yet, these individuals also 

appeared to be overall healthier than the remaining patients with diabetes with full HbA1c information and 

ultimately this may contribute to their lower levels of health care consumption. 
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According to these criteria, the specifications with the lowest BIC are the ones with four classes 

for GP visits and five classes for specialist. Below we report estimates for the three set of 

parameters produced by our LM model. These include estimates and partial effects of UD on 

GP and specialist visits; time-varying latent propensities to poor glycaemic control (UD) and 

health care use; and transition probabilities between latent states over time.     

  

Partial effects 

Tables 3 and 4 report estimated coefficients and average partial effects (APE) obtained using 

a bivariate Latent Markov model. The left hand-side of each table reports estimates for the logit 

model for UD while the right-hand side includes results for the jointly estimated ordered logit 

model for GP and specialist visits, respectively.  

(Tables 3 and 4 around here) 

In these tables, the effect of UD on the number of both GP and specialist visits is positive but 

only weakly statistically significant (at 10% significance level, see Table 3) or not statistically 

significant (Table 4). This appears to suggest that low levels of glycaemic control do not 

increase health care use within our population of individuals with type-2 diabetes. Moreover, 

the absence of any residual association between UD and health care consumption (for both GP 

and specialist visits) implies that, after controlling for (time-varying) unobservables, the 

association between UD and health care use tend to disappear. This lends some further support 

to the idea that UD and health care utilisation might be jointly driven by a third set of common 

time-varying unobserved factors and that UD may not be a genuine determinant of health care 

use.12   

Yet, a number of observed variables appear to be important drivers of utilisation. For example, 

in Table 3 (UD and GP visits), gender and age display positive and highly statistically 

significant coefficients with APE of around 0.056 and 0.004. This implies that women and 

older individuals present an increased probability of an additional GP visit of 5.6 and 0.4 

percentage points (pp), respectively. As expected, a battery of health conditions including 

asthma, COPD, dementia, depression, and the occurrence of cancer also increase the average 

annual probability of an additional GP visit with the largest quantitative effects estimated for 

                                                           
12 Following Gil et al. (2017) we also estimated our models by interacting UD with the gender variable in order 

to capture potential systematic gender-related differences. Results do not differ substantially and the estimated 

interaction terms for both models (GP and specialist visits) are not statistically significant. Estimates are available 

upon request.  
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COPD and depression (14.3 and 9.3pp). Similarly, being employed decreases by 7.9pp the 

probability of a further annual GP visit as well as a higher BMI, although only by 0.6pp. 

Interestingly, only a handful of conditions such as COPD (7.7pp), depression (3.8pp) and 

cancer (4.8pp) seem to significantly increase the probability of a further annual visit to a 

specialist (Table 4). Also, being employed (-2.9pp), tobacco consumption (2.0pp) and living 

within health areas 4 (-3.1pp) and 7 (-7.2pp) seem to decrease the same probability.13  

Being a non-EU immigrant (19.2pp); living within a family or a partner (3.7pp); being a smoker 

(4.3pp); a higher BMI (2.9pp); and a series of diagnosed conditions such as dementia (16.8pp); 

depression (5.2pp); as well as living within specific health administrative areas (areas 4-7 with 

APE of 4.1, 6.6, 10.4 and 8.2pp, respectively) all appear to significantly increase the probability 

of poor glycaemic control in our LM model including UD and GP visits. Conversely, women 

(-2.0pp); being affected by psychosis (-8.6pp); and older age (-0.2pp) decrease the probability 

of poor control. As for our specification including UD and specialist visits, only variables 

related to specific health behaviours, such as smoking (4.3pp) and BMI (2.6pp), living within 

health areas 6 (6.4pp) and 7 (4.8pp), and more importantly dementia (23.2pp), increase the 

probability of UD. In addition, older individuals (-0.3pp) and living in health area 2 (-5.1pp) 

are less prone to poor glycaemic control.    

Time-varying unobserved heterogeneity  

Tables 5 and 6 report estimated intercepts  𝛼1 and 𝛼2 described in equation (2) for each of the 

estimated latent states for models with primary care (GP visits) and secondary care (specialist 

visits). We exploit these parameters to recover the conditional average probabilities for each 

model (last two columns of the tables). These could be interpreted as the propensities to poor 

glycaemic control (UD) and a more frequent use of health care between latent states.14 

 (Table 5 and 6 around here) 

Table 5 reveals that there are four unobserved types of individuals with type-2 diabetes with 

varying propensities to UD and health care use (GP visits). More specifically, types 1 and 4 

                                                           
13 Given the complexity of the decision-making process leading to a specialist visit, which include both a patient 

and the GP or the health care provider more generally, it is not surprising that the probability of an additional visit 

would mainly depend on the occurrence of major health conditions. Furthermore, the effects of the different 

administrative health areas on health care utilisation might reflect broader differences in socioeconomic status 

between individuals living in such areas as well as the other geographical factors, including proximity to hospitals 

and primary care centres.     
14 That is, a utilisation higher than the median quantity of health care for each latent state with the median values 

corresponding to 15 and 3 visits for GP and specialist visits, respectively.  



 

12 
 

display similar high propensities towards health care consumption (around 57 and 59 percent, 

respectively). However, these two types differ markedly in their propensities to poor glycaemic 

control, i.e. type 4 presents a much higher propensity to UD (around 87 percent) if compared 

to type 1 (about 6.5 percent) as well as types 2 and 3. Moreover, whereas types 2 and 3 share 

similar propensities to UD (around 32 and 23 percent), type 2 individuals appear much more 

likely to use health care than type 3 (95 versus 12.2 percent). This implies that not all 

individuals with a higher propensity to health care consumption present an equally high 

propensity to poor glycaemic control. Combinations of high propensities to health care 

consumption and adequate glycaemic control could point towards the presence of 

conscientious/risk adverse patients who tend to use more health care to better control their 

condition. Equally, types with combinations of high propensities to UD and GP visits (type 4) 

might include potentially less risk adverse individuals who are not adequately following their 

prescribed health care treatments, ultimately resulting in extra utilisation.  

The model estimated for secondary care presents five latent states (Table 6). Individuals in 

latent state 1 show relatively low propensities to both UD and specialist visits (around 11.5 and 

19.2 percent) while individuals in latent states 3 and 4 present low propensities to UD (10 and 

9.3 percent) but much larger ones to health care use (about 80 and 98 percent), thus also 

potentially revealing the presence of conscientious/risk adverse individuals. Yet, type 5 

includes individuals with large propensities to UD and secondary care. This might confirm the 

existence of (less risk adverse) patients not effectively controlling their blood sugar levels and 

more prone to consume secondary care. Still, it should be kept in mind that the propensities to 

additional GP and specialist visits should not be directly compared, as within the Spanish health 

care system access to secondary care would require a GP referral.      

Changes between latent states over time 

Our bivariate LM model enables us to investigate whether individuals move between latent 

states, therefore changing their propensities to UD and health care use over time. Tables 7 and 

8 report estimated transition probabilities between latent states across consecutive time periods.  

(Tables 8 and 9 around here) 

The rows of each matrix contain previous (t -1) latent states whereas the columns represent 

current latent states. Both matrices show a symmetric structure, especially the one computed 

for the model with UD and GP visits (Table 7) i.e., individuals present high probabilities of 

remaining in the same latent state in the following period with the largest “persistence” 
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identified for individuals in state 2. However, both tables suggest the presence of transitions 

between latent states across time.15 For example, in Table 7 individuals in latent state 1 at t -1 

present probabilities of moving towards latent states 2, 3 and 4 in the subsequent period of 

around 2, 4.3 and 5.9 percent, respectively. This implies that individuals with a high propensity 

to GP visits and a low propensity to poor glycaemic control (latent state 1) in one period could 

change their behaviour over time and present substantially higher propensities to UD and GP 

visits (latent states 2 and 4) as well as higher propensities to UD and a lower propensity to GP 

visits (latent state 3) in subsequent periods. Similarly, individuals in latent state 4 could migrate 

to latent states 1 (3.8), 2 (2.9) and 3 (0.7) and present a much lower propensity to poor 

glycaemic control while still having a high propensity to consume health care (especially in 

latent state 2).  

Estimated transitions probabilities in Table 8 also suggest that there might be changes in the 

propensities to UD and specialist visits between consecutive periods. These movements appear 

to be concentrated among patients initially in latent state 1 (low propensities to UD and health 

care use) who could move to type 3 (16 percent; still low UD but very high health care use) 

and to a lesser extent to types 2 (7 percent; very high UD and higher health care use) and 4 (0.2 

percent; low UD and also very high health care use) in subsequent periods. Type 2 individuals 

(very high UD and low health care use) might also fluctuate, especially towards state 5 (15.7 

percent; very high UD and health care use) while type 3 (low UD and high health care use) 

have increased probabilities to switch to type 4 (8 percent; low UD and very high health care 

use). Overall, the estimated transitions appear to suggest further increases in the propensities 

to UD or health care use, mostly among patients with already higher propensities for these.  

The dynamics of the time-varying unobserved heterogeneity can be explored further by 

computing the year-specific probabilities of each latent state (Figures 1 and 2).  

(Figures 1 and 2 about here) 

As for our specification including primary care (Figure 1), while probability of being in latent 

state 1 is the highest in all periods, it also appears to decline over time. Conversely, the 

                                                           
15 We formally tested the hypothesis that the transition matrix is diagonal, i.e. that unobserved heterogeneity for 

UD and health care use is time-invariant. Accordingly, this was tested using a standard Likelihood Ratio (LR) test 

where the restricted model assumes that the transition matrix is diagonal. The LR statistics for the models of GP 

and specialist visits distributed as a 𝜒2 with 12 and 20 degree of freedom were 141.05 and 280.03 respectively, 

thereby strongly rejecting the null hypothesis of diagonal transition matrices. This also confirms that unobserved 

heterogeneity is not time-invariant.   
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probabilities of being in latent states 2, 3 and 4 appear to slightly increase over time. Overall, 

this appears to suggest that individuals tend to become more inclined to poor glycaemic control 

and health care use over time (apart from individuals in latent state 3 who present a higher 

propensity to UD, but a comparatively lower propensity to additional GP visits). The same 

probabilities computed for the model with UD and secondary care (Figure 2) display a 

substantial and constant decrease in the probability of being in latent state 1 as well as similar 

consistent increase in the probability of being in latent state 3 (low UD and very high health 

care use) over time. Furthermore, the probabilities of being in the remaining latent states also 

appear to increase between 2006 and 2010, especially the one for latent class 4 (very high 

propensities to UD and health care use). 

6. Conclusions and discussion 

This paper proposes a bivariate Latent Markov (LM) model to explore the relationship between 

uncontrolled diabetes (UD) and health care utilisation on a sample of patients with diabetes 

drawn from longitudinal administrative data collected in Spain. Our approach offers a series of 

substantial and innovative modelling features, which enable accounting for time-varying 

unobserved heterogeneity; changes in individuals’ behaviours over time via switches between 

latent classes; and the endogeneity of uncontrolled diabetes. Until now, these potentially 

important issues have been largely ignored, especially by the previous medical literature 

concerned with UD. Furthermore, whilst UD is a widespread condition with potentially severe 

health consequences, there is still sparse evidence on its effects on health care utilisation 

outside the US and within the economic literature. Finally, previous latent class models used 

to investigate the determinants of health care utilisation do not generally account for dynamic 

unobserved heterogeneity.  

We estimate our LM model to quantify the effects of UD on the consumption of both primary 

and secondary health care. Contrary to previous evidence based on univariate models, we find 

that UD does not appear to have a significant effect on GP or specialist visits. Moreover, the 

association between UD and health care use tend to disappear when controlling for 

unobservable factors, suggesting that these may drive part of their otherwise perceived 

association. Our specifications also suggest that such unobserved factors are time-varying by 

rejecting time-invariant unobservables and identifying the presence of individuals switching 

between latent classes over time. These movements between classes show a tendency towards 

higher propensities to poor glycaemic control and health care use, potentially reflecting 



 

15 
 

changes in behaviours. Our models also reveal differences in the propensities to poor glycaemic 

control and health care utilisation between latent states. This suggests the presence of 

heterogeneity in behaviours involving UD and health care use within our sample of patients, 

which may go beyond the standard groupings of “frequent” versus “infrequent” users. 

Ultimately, by ignoring time-varying unobserved heterogeneity and the endogeneity of 

uncontrolled diabetes, the effects of UD on health care utilisation might be overestimated and 

this could lead to biased findings and misleading policy implications. 

Overall, our findings appear to challenge the conventional wisdom within the current literature 

advocating that UD is one of main drivers of health care utilisation and related costs among 

patients with diabetes. This may have important implications for physicians, policy makers and 

more generally the development of diabetes management plans, potentially suggesting the need 

to reconsider the causes of excess health care utilisation.   
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Tables and figures 

Table 1: Variables definition and descriptive statistics: 2005-2010 

  

All sample 

(N=2455) 

Uncontrolled DM 

Patients (N=655) 

Variable Description Mean SD Mean SD 

UD Uncontrolled Type-2 diabetes (*) 0.267 0.44 - - 

Mean HbA1c Within year mean HbA1c value 6.983 0.95 8.47 1.00 

GP visits Number of GP visits 17.194 9.74 18.804 10.65 

Spec. visits Number of specialist visits 4.968 5.33 5.327 5.62 

Gender 1= female, 0 otherwise 0.528 0.50 0.511 0.50 

Age Age in years 66.534 9.78 66.423 10.34 

Immigrant 1 = Non-EU immigrant, 0 otherwise 0.007 0.08 0.013 0.11 

Employment  1 = Labour market active, 0 otherwise 0.191 0.39 0.229 0.42 

Not living alone  1 = Not living alone, 0 otherwise 0.880 0.32 0.887 0.32 

Alcohol 1 = Drink alcohol, 0 otherwise 0.026 0.16 0.034 0.18 

Tobacco 1 = Smoker, 0 otherwise 0.171 0.38 0.213 0.41 

BMI Body Mass Index (BMI) 30.169 4.82 30.52 5.11 

Asthma  1 = Ashma, = otherwise 0.047 0.21 0.046 0.21 

COPD 1 = COPD, 0 otherwise 0.054 0.23 0.054 0.22 

Dementia 1 = Dementia, 0 otherwise 0.010 0.10 0.015 0.12 

Psychosis  1 = Phycosis, 0 otherwise 0.010 0.10 0.011 0.11 

Depression 1 = Depression, 0 otherwise 0.176 0.38 0.215 0.41 

Cancer 1 = Malignant neoplasm, 0 otherwise 0.066 0.25 0.065 0.25 

Area 1 1 = Health area 1 0.083 0.28 0.073 0.26 

Area 2 1 = Health area 3 0.137 0.34 0.097 0.30 

Area 3 1 = Health area 8  0.164 0.37 0.158 0.37 

Area 4 1 = Health area 9 0.205 0.40 0.215 0.41 

Area 5 1 = Health area 10 0.121 0.33 0.120 0.32 

Area 6 1 = Health area 12 0.159 0.37 0.180 0.38 

Area 7 1 = Health area 15 0.132 0.34 0.157 0.36 
           

Note: (*) Uncontrolled type-2 diabetes mellitus is defined for HbA1c values ≥ 7.5%. 
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Table 2: Model selection criteria        

 GP   Specialist   

k LL #par BIC LL #par BIC 

1 -39110.64 108 79064.31 -31957.58 86 64586.46 

2 -37885.96 113 76653.98 -30884.95 91 62480.23 

3 -37427.42 120 75791.56 -30269.26 98 61303.49 

4 -37015.81 129 75038.58 -29959.95 107 60755.13    

5 -37639.51 140 76371.84 -29747.98 118 60417.05    

6    -29718.20 131 60458.96    

Notes: k= latent classes; LL = log-likelihood; #par=number of estimated parameters; BIC=Bayesian Information 

Criterion; GP = number of GP visits; Specialist = number of specialist visits.  
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Table 3: Bivariate latent Markov model - UD and GP visits      

 UD       GP       

 Coeff. SE Z APE Coeff. SE Z APE 

UD     0.4791 0.28 1.69 0.0491 

Gender -0.2047 0.10 -2.13 -0.0207 0.5471 0.07 7.31 0.0562 

Age -0.0202 0.01 -3.45 -0.0020 0.0439 0.00 9.70 0.0045 

Nationality  1.5442 0.39 3.96 0.1920 -0.2048 0.30 -0.67 -0.0211 

Employment  0.1539 0.15 1.06 0.0157 -0.7657 0.11 -6.84 -0.0787 

Not living alone  0.3898 0.15 2.67 0.0375 0.0181 0.10 0.17 0.0019 

Alcohol 0.2046 0.24 0.87 0.0213 0.1384 0.17 0.80 0.0143 

Tobacco 0.4079 0.12 3.53 0.0429 -0.1100 0.10 -1.15 -0.0113 

BMI 0.2838 0.04 7.53 0.0287 -0.0582 0.02 -2.36 -0.0060 

Asthma  -0.0959 0.21 -0.46 -0.0095 0.6242 0.18 3.54 0.0637 

COPD -0.0248 0.19 -0.13 -0.0025 1.4532 0.13 11.55 0.1438 

Dementia 1.3766 0.32 4.27 0.1678 0.6296 0.30 2.12 0.0642 

Psychosis  -0.9846 0.48 -2.07 -0.0858 0.0636 0.31 0.20 0.0066 

Depression 0.4875 0.11 4.51 0.0517 0.9270 0.08 11.39 0.0938 

Cancer  0.0822 0.15 0.55 0.0084 0.3164 0.11 2.76 0.0325 

Area 2 -0.0385 0.22 -0.17 -0.0039 -0.1442 0.15 -0.93 -0.0149 

Area 3 0.1632 0.20 0.80 0.0168 -0.0659 0.14 -0.47 -0.0068 

Area 4 0.3962 0.19 2.04 0.0415 0.3170 0.14 2.29 0.0326 

Area 5 0.6080 0.21 2.96 0.0658 0.1193 0.15 0.80 0.0123 

Area 6 0.9367 0.20 4.75 0.1041 0.1995 0.14 1.38 0.0205 

Area 7 0.7505 0.21 3.56 0.0823 0.4361 0.15 2.96 0.0447 

Time trend yes    yes    

         

Residual correlation                 

Corr.         -0.3186 0.2842 -1.1212   

Notes: this table displays coefficients and average partial effects (APE) obtained from a bivariate Latent Markov 

Model. UD = uncontrolled diabetes; GP = number of GP visits; SE = standard errors; Z = z-score; APE = Average 

Partial Effects. This specification includes the full set of covariates, health area fixed effects and time dummies.  
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Table 4: Bivariate latent Markov model - UD and specialist visits      

 UD       Specialist       

 Coeff. SE Z APE Coeff. SE Z APE 

UD     0.5651 0.35 1.60 0.0477 

Gender -0.1457 0.12 -1.20 -0.0128 0.0908 0.08 1.07 0.0076 

Age -0.0293 0.01 -3.71 -0.0026 0.0084 0.01 1.56 0.0007 

Nationality  1.9173 0.40 4.85 0.2293 0.5038 0.39 1.28 0.0425 

Employment  -0.0438 0.17 -0.26 -0.0038 -0.3414 0.11 -3.07 -0.0287 

Not living alone  0.0874 0.18 0.48 0.0076 0.1770 0.11 1.61 0.0149 

Alcohol 0.3888 0.31 1.27 0.0362 -0.0994 0.19 -0.53 -0.0084 

Tobacco 0.4691 0.14 3.39 0.0430 -0.2376 0.10 -2.41 -0.0200 

BMI 0.2997 0.04 6.85 0.0263 -0.0253 0.03 -0.90 -0.0021 

Asthma  0.1853 0.24 0.77 0.0167 0.2358 0.14 1.64 0.0199 

COPD -0.1163 0.25 -0.47 -0.0101 0.9211 0.14 6.48 0.0774 

Dementia 1.9392 0.34 5.78 0.2319 0.3771 0.32 1.19 0.0318 

Psychosis  -0.5936 0.54 -1.10 -0.0481 -0.8028 0.34 -2.33 -0.0666 

Depression 0.2235 0.14 1.63 0.0201 0.4475 0.08 5.33 0.0377 

Cancer 0.2215 0.18 1.21 0.0201 0.5663 0.13 4.41 0.0478 

Area 2 -0.6245 0.29 -2.17 -0.0510 -0.1759 0.15 -1.15 -0.0148 

Area 3 0.0943 0.25 0.38 0.0084 -0.1526 0.16 -0.98 -0.0128 

Area 4 0.1980 0.24 0.83 0.0177 -0.3770 0.15 -2.55 -0.0316 

Area 5 0.2514 0.26 0.98 0.0228 -0.0679 0.15 -0.44 -0.0057 

Area 6 0.6779 0.25 2.74 0.0641 -0.2175 0.15 -1.44 -0.0183 

Area 7 0.5137 0.25 2.09 0.0479 -0.8700 0.16 -5.41 -0.0724 

Time trend yes    yes    

         
Residual correlation                 

Corr         -0.5919 0.3567 -1.6593   

Notes: this table displays coefficients and average partial effects (APE) obtained from a bivariate latent Markov 

Model. UD = uncontrolled diabetes; Specialist = number of specialist visits; SE = standard errors; Z = z-score; 

APE = Average Partial Effects. This specification includes the full set of covariates, health area fixed effects and 

time dummies.  
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Table 5: Latent states - 

GP visits             

Latent states  Estimated intercepts  Conditional average probabilities  

 α1 SE α2 SE UD GP 

1 4.6249 1.19 6.3122 0.94 0.0656 0.5683 

2 6.6825 1.20 9.3181 0.98 0.3181 0.9475 

3 6.1784 1.21 3.6631 0.95 0.2291 0.1220 

4 9.6861 1.22 6.4020 1.03 0.8721 0.5864 

Notes: this table reports estimated α1 and α2 as described by eq. (2), and conditional average probabilities of 

reporting UD=1 and reporting a number of annual GP visits higher than the median value of 15 visits.   

 

 

 

Table 6: Latent states – specialist visits        

Latent states  Estimated intercepts  Conditional average probabilities  

 α1 SE α2 SE UD Specialist 

1 5.7392 1.40 -0.9789 0.90 0.1152 0.1926 

2 10.4198 1.43 -0.4554 1.05 0.8888 0.2806 

3 5.5758 1.39 2.0110 0.90 0.1007 0.7956 

4 5.4764 1.39 4.6897 0.91 0.0927 0.9815 

5 9.5282 1.42 3.2509 1.05 0.7812 0.9278 

       

Notes: this table reports estimated α1 and α2 as described by eq. (2), and conditional average probabilities of 

reporting UD=1 and reporting a number of annual specialist visits higher than the median value of 3 visits. 
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Table 7: Transition probabilities between latent states - UD and GP visits  

Latent states 1 2 3 4 

1 0.8774 0.0201 0.0435 0.0590 

2 0.0003 0.9996 0.0000 0.0001 

3 0.0067 0.0000 0.9800 0.0133 

4 0.0379 0.0291 0.0073 0.9257 

  

 

Table 8: Transition probabilities between latent states – UD and specialist visits  

Latent states 1 2 3 4 5 

1 0.7676 0.0694 0.1611 0.0020 0.0000 

2 0.0157 0.7921 0.0350 0.0000 0.1572 

3 0.0076 0.0187 0.8666 0.0791 0.0280 

4 0.0035 0.0000 0.0283 0.9268 0.0414 

5 0.0000 0.0331 0.0002 0.0268 0.9400 
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Figure 1:  Estimated year-specific probability of each latent state – GP visits  
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Figure 2:  Estimated year-specific probability of each latent state– specialist visits  
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