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Abstract

While uncontrolled diabetes (UD) or poor glycaemic control is a widespread condition with
potentially life-threatening consequences, there is sparse evidence of its effects on health care
utilisation. We model the propensities to consume health care and UD by employing an
innovative bivariate Latent Markov model which allows for dynamic unobserved
heterogeneity, movements between latent states and the endogeneity of UD. We estimate the
effects of UD on primary and secondary health care consumption using a panel dataset of rich
administrative records from Spain and measure UD using a biomarker. We find that UD does
not have a statistically significant effect on health care use. Furthermore, individuals appear to
move across latent classes and increase their propensities to poor glycaemic control and health
care use over time. Our results suggest that by ignoring time-varying unobserved heterogeneity
and the endogeneity of UD, the effects of UD on health care utilisation might be overestimated
and this could lead to biased findings. Our approach reveals heterogeneity in behaviour beyond
standard groupings of frequent versus infrequent users of health care services. We argue that
this dynamic latent Markov approach could be used more widely to model the determinants of
health care use.
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1. Introduction

Diabetes mellitus (DM) is a major public health concern and one of the most widespread
chronic conditions worldwide with a rapidly increasing prevalence, especially among low- and
middle-income countries (IDF, 2015). According to the WHO (2016), we are currently
experiencing a diabetes “epidemic” where the number of adults with DM has grown from 108
million in 1980 to an estimated 422 million in 2014 and with DM projected to be the 7™ leading
cause of death by 2030. Furthermore, DM imposes a substantial economic burden to any health
care system.> Among individuals with DM, uncontrolled diabetes (UD) or poor glycaemic
control is a prevalent condition, concerning between around 30 to 50 percent of patients.
Glycaemic control is driven by a variety of factors such as genetic endowment; lifestyle;
resistance to intensified medication (therapeutic resistance); and low treatment adherence. UD
leads to sustained higher levels of blood sugar, which in turn increase the risk of life-threatening

comorbidities such as kidney failure and stroke.

A related problem is the extent to which UD may cause additional, yet avoidable, health care
utilisation. Indeed, the medical literature often finds that individuals with poor glycaemic
control tend to use more health care resources resulting in extra utilisation and added costs for
the health system (e.g. Wagner et al., 2001; Gilmer et al., 2005; Mata-Cases et al., 2016).
However, the majority of these studies employ empirical approaches often based on standard
(linear) regression models applied to selected samples of US health insurance enrolees. Such
samples tend to limit the generalisability of the results while previous empirical approaches do
not account for potentially important issues which may affect the identification of the effect of
DM on health care use such as individual-level unobserved heterogeneity and endogeneity

concerns.

The main objective of this paper is to jointly model the propensities towards poor glycaemic
control and the use health care services via a bivariate Latent Markov (LM) model. This novel
approach extends recent developments within the literature concerning latent class models (e.g.
Bartolucci and Farcomeni, 2009) and allows accounting for the endogeneity of UD and time-
varying unobserved heterogeneity using dynamic latent classes. We apply this model to the
relationship between UD and utilisation of primary and secondary health care services among

2 For example, in the US alone the estimated total costs of diagnosed DM increased by 41 percent in a five year
period, from $174 billion in 2007 to an estimated $245 billion in 2012 (ADA, 2013). In the UK, the total cost of
DM is around 10 percent of the NHS budget for England and Wales (UK Diabetes Global Health Community,
2014). Similarly, DM absorbs around 8 percent of total public health expenditures in Spain with an estimated
€5.1 billion for direct costs and €1.5 billion for diabetes-related complications (Lopez-Bastida et al., 2013).



individuals with type-2 diabetes. We employ six waves (2005-2010) of a longitudinal
administrative dataset from Spain including detailed medical records of adult individuals with
diabetes. We measure UD using glycated haemoglobin (HbALlc) levels, a biomarker providing
an accurate average measurement of glucose (sugar) concentration which is commonly used
by physicians to diagnose and monitor diabetes and its severity (e.g. International Expert
Committee, 2009; Lyons and Basu, 2012).

Differently from previous studies, we find that poor glycaemic control does not appear to
increase health care use within individuals with diabetes. We also find that the association
between UD and health care utilisation tend to disappear when controlling for unobserved
heterogeneity. This may suggest that UD and health care consumption might be both driven by
a series of unobserved factors. Furthermore, our bivariate LM model reveals the existence of a
series of (latent) groups of individuals, which differ by their propensities towards poor
glycaemic control and health care use. Interestingly, patients who present a high propensity to
consume health care do not necessarily show a similar tendency to poor glycaemic control. Our
estimates also indicate that individuals may switch groups over time often by increasing their
propensities to poor glycaemic control and utilisation of primary and secondary care. This also
suggests that unobserved heterogeneity is, in this case, time-varying and that ignoring this

would lead to biased estimates and misleading policy implications.

This paper offers several contributions to the literature. First, to the best of our knowledge, this
is one of the first studies to employ a bivariate LM model with dynamic unobserved
heterogeneity to explore the determinants of health care utilisation and the first to model the
propensities to consume health care and poor glycaemic control simultaneously. Secondly, our
latent class model allows switching latent class over time, thus enabling changes in behaviour
among individuals with diabetes while also accounting for important underlying causes of
utilisation such as the ageing process. Finally, this is also the only paper employing a latent
class model to investigate the relationship between UD and health care utilisation. Overall, this
paper provides new evidence to the literature on (uncontrolled) diabetes and health care use

while also proposing a novel dynamic latent class approach.

2. Background

Previous analyses within the medical literature consistently find that poor glycaemic control is

associated with higher health care utilisation and increased medical costs (e.g. Wagner et al.,



2001; Shetty et al., 2005; Oglesby et al., 2006).> However, most of these studies are based on
standard regression models such as linear, log-linear and Generalised Linear Models (GLM)
applied to specific samples of US health insurance enrolees. These approaches tend to ignore
potentially important modelling issues such as individual-level unobserved heterogeneity and
the endogeneity of UD. Furthermore, with the exception of Gil et al. (2017), the economic
literature has traditionally focused on the effects of DM on the labour market, including
earnings, hours of work and absenteeism (Rizzo et al., 1996; Kahn, 1998; Latif, 2009; Zhang
et al., 2009; Minor, 2010) while overlooking the impact of DM or UD on health care use.

The analysis of the determinants of health care utilisation has received considerable attention
within the empirical literature. Early studies employ hurdle (e.g. Pohlmeier and Ulrich, 1995;
Windmeijer and Santos-Silva, 1997; Schellhorn et al., 2000; Jimenez-Martin et al., 2002; Van
Ourti, 2004) and finite mixture models (e.g. Deb and Trivedi, 1997; Deb and Holmes, 2000;
Deb and Trivedi, 2002; Jimenez-Martin et al., 2002; Atella et al., 2004) to explore the factors
influencing health care use mainly on cross-sectional data. More recent studies exploit panel
data and propose latent class models which account for individual-level unobserved
heterogeneity (e.g. Bago d’Uva, 2005) as well combinations of hurdle and latent class models
(e.g. Bago d’Uva, 2006; Bago d’Uva and Jones, 2009).

Latent class models present a series of attractive modelling features. First, the use of latent
classes allows modelling unobserved heterogeneity without imposing restrictive assumptions
on the distribution of the individual effects. Secondly, latent classes provide information on the
structure of the underlying unobserved heterogeneity by identifying two (or more) groups of
individuals, which typically differ in their propensities to use health care (e.g. ‘infrequent
users’ versus ‘frequent users’ as in Bago d’Uva, 2006). However, most previous latent class
models used to investigate the determinants of health care use, often assume that individual-
level unobserved heterogeneity is time-invariant. Importantly, this implies that individuals are

not allowed to move between classes over time. In this paper, we relax this assumption and

3 For example, Wagner et al. (2001) employ linear and log-linear models on health insurance claims data of adult
patients with diabetes from a large Health Maintenance Organisation (HMO) in the state of Washington (1992-
1997) to analyse the relationship between uncontrolled diabetes, health care use and related costs. They find that
sustained reductions of blood sugar levels (measured via the biomarker HbAlc) are correlated with lower
utilisation, including hospitals’ admission rates, primary and specialist visits, and significant costs savings.
Similarly, Shetty et al. (2005) and Oglesby et al. (2006) use Generalised Linear Models (GLM) on data concerning
patients with type-2 DM drawn from the US Health Core Managed Care Database (1998-2003). Overall, their
analyses find that, depending on their specific treatment between 41 to 66 percent of patients present a
“suboptimal” control of their conditions. They also find that the direct medical costs of treating patients with
diabetes are substantially higher among those with suboptimal glycaemic control.



propose a Latent Mark model that accounts for time-varying unobserved heterogeneity,

movements between classes and the endogeneity of UD.
3. Empirical approach

Compared to previous studies, our LM approach presents two main innovations. First, we
employ a bivariate specification to account for the endogeneity of UD via the inclusion of
unobserved heterogeneity modelled as discrete latent classes. Traditionally, the majority of
latent class models used to analyse health care consumption relied on univariate (single
equation) specifications with time-invariant unobservables (e.g. Bago d’Uva, 2005, 2006; Deb
and Trivedi, 1997). Secondly, we allow unobserved heterogeneity to be time-varying and thus
enable individuals to move among latent classes over time. This accounts for changes in
behaviour concerning both the propensities to use health care and poor glycaemic control

between time periods.

In the presence of longitudinal data, the relationship between uncontrolled diabetes, UD;;, and
health care utilisation, HC;., for an individual i at time t, where t = 1, ..., T}, could be modelled

by a standard panel data specification:

HCy = a; + Bxit + yUD; + 15t (1)

where «; is the time-invariant individual level unobserved heterogeneity; x;; is a vector of
observed individual characteristics; and n;, should capture the idiosyncratic error/shock, &;;,
but could also include residual time-varying individual unobserved heterogeneity (H;;). The
effects of UD on health care use, y, could be estimated by such as model if UD;; is uncorrelated
with the time-varying individual level unobservable component, H;;, or simply by assuming
that H; is negligible. While the latter assumption is often conveniently invoked in order to
employ standard panel data techniques, in most cases this may be unrealistic/untenable. Hence,
it might be reasonable to assume that the unobserved time-varying factors affecting health care
utilisation may also simultaneously affect UD.* Importantly, if time-varying unobserved
heterogeneity is not properly accounted for, the estimation of y might be biased. In order to

disentangle the genuine effect of UD on health care consumption and the role of time-varying

4 For instance, the propensity to consume health care and the one leading to poor glycaemic control might be
driven by a third set of common factors, including risk preferences or underlying (unobservable) health risks (i.e.
changes in the risk/probability of developing specific health conditions as an individual ages).



unobserved heterogeneity, we jointly model the propensities to poor glycaemic control and
health care use by employing a bivariate LM model. This allows treating time-varying
unobserved heterogeneity, H;;, non-parametrically by including a vector of individual-specific
parameters which follows a first-order Markov process. The potential endogeneity of UD is

accounted for by jointly modelling UD;; and HC;;.

Bivariate Latent Markov Model

A LM model assumes that: i) the individual-specific random parameter defining unobserved
heterogeneity follows a first-order Markov process with latent states U(u), foru = 1, ..., k; and
ii) such latent states make UD;; and HC;; conditionally independent given the set of observable
characteristics, x;;. The latter is a form of local independence assumption implying that, given
the set of observable covariates in equation (1), any source of residual association between
UD;; and HC;; is accounted for by the latent states parameters. More specifically, a LM model
is built around three sets of parameters. The first set of parameters describes how the joint
distribution of UD;; and HC;; depends on the observable characteristics and the latent Markov

process U. As a result, equation (1) can now be written as a system:

UDy = YX_y ay;e(WUir (W) + B1Xic + €1
HCyy = YX_1 azie (WU (W) + Baxie + YUDy + €244 2

where U;;(u) represents a set of k mutually exclusive dummy variables defining latent states
membership in each time period; a;;; and a,;; capture the relative contributions of time-
varying unobserved heterogeneity in determining UD;; and HC;;, respectively; y is the effect
of uncontrolled diabetes on health care consumption, while &,;; and &,;; are idiosyncratic error
terms, which we explicitly allow to be correlated in order to capture any residual unobserved
heterogeneity. The two remaining sets of parameters model the underlying distribution of the
random parameter vector a;; with elements [a,;;,a,;:]. More specifically, the second set of
parameters includes the initial probabilities r,,; = Pr(a;; = U(u)|x;) withu=1, ..., k, which
are produced by a multinomial logit specification. These can be interpreted as the standard
class membership probabilities in the first time period. The third set of parameters comprises
the transition probabilities between different latent states. Since this is a first-order Markov
process, these depend on the previous time period such as 7, ,,_, = Pr(a;; = U(v)|aj—q =
U)),witht=2,...,T,anduyv =1, ...,k Thatis, differently from previous latent class

models, unobserved heterogeneity is modelled as a Markov process and this allows individuals

6



switching between latent classes over time. The joint distribution of the latent process U; may

be written as:

Pr(U; =u) = my, H:;1 Ty ueq 3)

where u = (u4, ..., ur). Equation (3) shows that individuals are allowed switching between
classes. We estimate the system in (2) by employing a logit model for UD;, and an ordered
logit model for HC;,.> Estimation of the three sets of parameters is implemented by an EM
algorithm (Dempster et al., 1977). The corresponding log-likelihood of our model can be

written as:

3(9) = Zi 25{2? Wity log[f(yitluitf xit)] + Wity log[ﬂ:ul] + Zv Ziuvlog( T[uu)} (4)

where w;;, is adummy variable which equals 1 if individual i is in latent state u at time t, while
Z;,v €quals the number of times individual i moves from state u to state v (from t >1). The EM
algorithm alternates Expectation and Maximization steps until convergence. The E-step
computes expected values of variables w;,, and z;,, using posterior probabilities. The

subsequent M-step maximises the expected values with respect to 6.8
4. Data

We employ individual-level longitudinal data drawn from administrative records of patients
followed over six consecutive years (2005-2010) in six primary care centres and two hospitals
in the municipality of Badalona (north-east of Barcelona), Spain, serving a population of

around 104,000 individuals. As in Spain health care is primarily delivered by a national health

5 More specifically, the dependent variable for UD;, is a binary variable defining the presence of UD among
individuals with diabetes while the dependent variables for HC;, include the following ordered categories:
0,1,2,..>55 for GP visits and 0,1,2...> 33 for specialist visits, respectively. Here, we follow Cameron and Trivedi
(1998) who suggest that ordered discrete models could be employed as an alternative to count data models. In any
case, the inclusion of a count data model such as Poisson or Negative Binomial would require extending this
bivariate Latent Markov approach well beyond the scope of this paper.

8 Further details on the EM algorithm and the estimation of this model are reported in Bartolucci and Farcomeni
(2009) and Li Donni (2018).



care service with free universal access, data from these health care centres should be

representative of the way the health system operates in the whole country.’

Our data includes a rich set of information about patients’ use of health care resources,
including number of GP visits and specialist care.® The data also encompasses information on
a battery of diagnostic tests, measurements of height and weight (used to build an individual’s
body mass index, BMI); patient’s chronic and diagnosed health conditions (classified
according to the International Classification of Primary Care codes, second edition, ICPC-2);
type of healthcare professional(s) contacted; and the main reason for their visit. Moreover, the
dataset includes standard individual level socio-demographic characteristics such as age,
gender, marital status, immigration (Spanish or EU national versus non-EU national) and
employment status (active vs retired), place of birth and residence and health-behaviours

(alcohol and tobacco use).

Given the main objective of our study, we focus on a sub-sample of individuals diagnosed with
type-2 diabetes mellitus (DM), aged 16 years or over, who had at least one contact with the
aforementioned health care centres during the study period.® Diabetic patients were identified
via the corresponding ICPC-2 code or alternatively through a mean value of the glycated
haemoglobin (HbALc) test > 6.5% (> 48 mmol/mol). This test is routinely used by physicians
to diagnose and monitor diabetes and provides an accurate measure of glucose concentration
up until the previous 8 weeks (Goldstein et al. 2004; IEC, 2009; Lyons and Basu, 2012).

We define uncontrolled type-2 diabetes (UD) using a binary variable which equals 1 if the
within year mean HbA1c level is equal or above 7.5%. This is the threshold actually employed
by physicians to identify poor glycaemic control in our dataset. However, since there is no
universal consensus within the medical literature about the HbAlc thresholds which identify

UD, we also estimate our models using a slightly lower value of blood sugar concentration

" More specifically, only individuals in employment would face a 40% co-payment for prescribed medicines,
whereas pensioners would be completely exempted. Patients with chronic conditions would have a reduced co-
payment of 10% and civil servants would only pay 30% of the market price regardless of their employment status.
During the same period, drugs provided to hospitalised patients were free of charge.

8 We focused on utilisation as it represents the largest component of diabetes-related medical costs. For example,
Mata-Cases et al. (2016) find that in Catalonia hospital care, medications and primary care are the main drivers
of costs for both patients with type-2 diabetes and non-diabetic patients.

® This sample may include patients with type-2 DM with zero utilisation (no GP or specialist visits) in some of
these years. These might be patients who had some positive use only in selected years. Note that, given the
differences between type-1 and type-2 diabetes and related treatments, we dropped all individuals with type-1
diabetes. Individuals transferred or moved to other health centres and patients from other areas were excluded
from our analysis.



(7%).% Given our definition of UD, we restricted our sample to individuals with at least one
within year mean HbAlc value. Following this criteria, we obtained a sample of 2,455 patients
with type-2 DM. 1

Descriptive statistics

Table 1 reports variable definitions and some basic descriptive statistics for both the sample of
patients with type-2 DM and the one including individuals with uncontrolled diabetes
(HbAlc>=7.5%). Our dataset reveals that around 27 percent of patients are not controlling
adequately their blood sugar levels, despite the well-known potential detrimental effects. In the
sample of patients with diagnosed diabetes, the mean number of GP visits per year is around
17.2 while this falls to 4.9 per year for specialist visits. As expected, these increase among
individuals with UD to 18.8 and 5.3, respectively. Patients with UD appear to be more active
in the labour market (23 vs 19 percent); to engage more frequently in risky-health behaviours
(smoking, 21.3 vs 17.1 percent; drinking: 3.4 vs 2.6 percent); and suffer from higher levels of
depression (21.5 vs 17.6) than diabetic patients with an adequate control.

(Table 1 around here)

5. Results

We estimated our Latent Markov specification for an increasing numbers of latent states for
each of the two measures of health care utilisation: GP and specialist visits. We do this by first
estimating a model with the no heterogeneity (i.e. k=1) followed by models estimated with an
increasing number of latent states. This allows establishing the specific number of latent classes

for each outcome in our final specifications. Results are reported in Table 2.

(Table 2 around here)

This table shows the log-likelihoods obtained from equation (4) together with the total number
of parameters and the Bayesian information criterion (BIC) for all models estimated by
imposing an increasing number of latent states. Given the nature of our variables and the
objective of our analysis, it would be more appropriate to rely on the BIC rather than the Akaike

Information Criterion (AIC), as the BIC tends to penalise model complexity more heavily.

10 Results obtained using a lower threshold appeared to be very similar and are available upon request.

1t might be argued that excluding patients without positive within year HbAlc could potentially bias our
estimates since in our data these patients tend to present lower frequency of utilisation. Yet, these individuals also
appeared to be overall healthier than the remaining patients with diabetes with full HbAlc information and
ultimately this may contribute to their lower levels of health care consumption.



According to these criteria, the specifications with the lowest BIC are the ones with four classes
for GP visits and five classes for specialist. Below we report estimates for the three set of
parameters produced by our LM model. These include estimates and partial effects of UD on
GP and specialist visits; time-varying latent propensities to poor glycaemic control (UD) and

health care use; and transition probabilities between latent states over time.

Partial effects

Tables 3 and 4 report estimated coefficients and average partial effects (APE) obtained using
a bivariate Latent Markov model. The left hand-side of each table reports estimates for the logit
model for UD while the right-hand side includes results for the jointly estimated ordered logit

model for GP and specialist visits, respectively.
(Tables 3 and 4 around here)

In these tables, the effect of UD on the number of both GP and specialist visits is positive but
only weakly statistically significant (at 10% significance level, see Table 3) or not statistically
significant (Table 4). This appears to suggest that low levels of glycaemic control do not
increase health care use within our population of individuals with type-2 diabetes. Moreover,
the absence of any residual association between UD and health care consumption (for both GP
and specialist visits) implies that, after controlling for (time-varying) unobservables, the
association between UD and health care use tend to disappear. This lends some further support
to the idea that UD and health care utilisation might be jointly driven by a third set of common
time-varying unobserved factors and that UD may not be a genuine determinant of health care

use.?

Yet, a number of observed variables appear to be important drivers of utilisation. For example,
in Table 3 (UD and GP visits), gender and age display positive and highly statistically
significant coefficients with APE of around 0.056 and 0.004. This implies that women and
older individuals present an increased probability of an additional GP visit of 5.6 and 0.4
percentage points (pp), respectively. As expected, a battery of health conditions including
asthma, COPD, dementia, depression, and the occurrence of cancer also increase the average

annual probability of an additional GP visit with the largest quantitative effects estimated for

2 Following Gil et al. (2017) we also estimated our models by interacting UD with the gender variable in order
to capture potential systematic gender-related differences. Results do not differ substantially and the estimated
interaction terms for both models (GP and specialist visits) are not statistically significant. Estimates are available
upon request.

10



COPD and depression (14.3 and 9.3pp). Similarly, being employed decreases by 7.9pp the
probability of a further annual GP visit as well as a higher BMI, although only by 0.6pp.
Interestingly, only a handful of conditions such as COPD (7.7pp), depression (3.8pp) and
cancer (4.8pp) seem to significantly increase the probability of a further annual visit to a
specialist (Table 4). Also, being employed (-2.9pp), tobacco consumption (2.0pp) and living
within health areas 4 (-3.1pp) and 7 (-7.2pp) seem to decrease the same probability.:

Being a non-EU immigrant (19.2pp); living within a family or a partner (3.7pp); being a smoker
(4.3pp); a higher BMI (2.9pp); and a series of diagnosed conditions such as dementia (16.8pp);
depression (5.2pp); as well as living within specific health administrative areas (areas 4-7 with
APE of 4.1, 6.6, 10.4 and 8.2pp, respectively) all appear to significantly increase the probability
of poor glycaemic control in our LM model including UD and GP visits. Conversely, women
(-2.0pp); being affected by psychosis (-8.6pp); and older age (-0.2pp) decrease the probability
of poor control. As for our specification including UD and specialist visits, only variables
related to specific health behaviours, such as smoking (4.3pp) and BMI (2.6pp), living within
health areas 6 (6.4pp) and 7 (4.8pp), and more importantly dementia (23.2pp), increase the
probability of UD. In addition, older individuals (-0.3pp) and living in health area 2 (-5.1pp)

are less prone to poor glycaemic control.

Time-varying unobserved heterogeneity

Tables 5 and 6 report estimated intercepts «, and a, described in equation (2) for each of the
estimated latent states for models with primary care (GP visits) and secondary care (specialist
visits). We exploit these parameters to recover the conditional average probabilities for each
model (last two columns of the tables). These could be interpreted as the propensities to poor

glycaemic control (UD) and a more frequent use of health care between latent states.'*
(Table 5 and 6 around here)

Table 5 reveals that there are four unobserved types of individuals with type-2 diabetes with

varying propensities to UD and health care use (GP visits). More specifically, types 1 and 4

13 Given the complexity of the decision-making process leading to a specialist visit, which include both a patient
and the GP or the health care provider more generally, it is not surprising that the probability of an additional visit
would mainly depend on the occurrence of major health conditions. Furthermore, the effects of the different
administrative health areas on health care utilisation might reflect broader differences in socioeconomic status
between individuals living in such areas as well as the other geographical factors, including proximity to hospitals
and primary care centres.

14 That is, a utilisation higher than the median quantity of health care for each latent state with the median values
corresponding to 15 and 3 visits for GP and specialist visits, respectively.

11



display similar high propensities towards health care consumption (around 57 and 59 percent,
respectively). However, these two types differ markedly in their propensities to poor glycaemic
control, i.e. type 4 presents a much higher propensity to UD (around 87 percent) if compared
to type 1 (about 6.5 percent) as well as types 2 and 3. Moreover, whereas types 2 and 3 share
similar propensities to UD (around 32 and 23 percent), type 2 individuals appear much more
likely to use health care than type 3 (95 versus 12.2 percent). This implies that not all
individuals with a higher propensity to health care consumption present an equally high
propensity to poor glycaemic control. Combinations of high propensities to health care
consumption and adequate glycaemic control could point towards the presence of
conscientious/risk adverse patients who tend to use more health care to better control their
condition. Equally, types with combinations of high propensities to UD and GP visits (type 4)
might include potentially less risk adverse individuals who are not adequately following their

prescribed health care treatments, ultimately resulting in extra utilisation.

The model estimated for secondary care presents five latent states (Table 6). Individuals in
latent state 1 show relatively low propensities to both UD and specialist visits (around 11.5 and
19.2 percent) while individuals in latent states 3 and 4 present low propensities to UD (10 and
9.3 percent) but much larger ones to health care use (about 80 and 98 percent), thus also
potentially revealing the presence of conscientious/risk adverse individuals. Yet, type 5
includes individuals with large propensities to UD and secondary care. This might confirm the
existence of (less risk adverse) patients not effectively controlling their blood sugar levels and
more prone to consume secondary care. Still, it should be kept in mind that the propensities to
additional GP and specialist visits should not be directly compared, as within the Spanish health

care system access to secondary care would require a GP referral.

Changes between latent states over time
Our bivariate LM model enables us to investigate whether individuals move between latent
states, therefore changing their propensities to UD and health care use over time. Tables 7 and

8 report estimated transition probabilities between latent states across consecutive time periods.
(Tables 8 and 9 around here)

The rows of each matrix contain previous (t -1) latent states whereas the columns represent
current latent states. Both matrices show a symmetric structure, especially the one computed
for the model with UD and GP visits (Table 7) i.e., individuals present high probabilities of

remaining in the same latent state in the following period with the largest “persistence”

12



identified for individuals in state 2. However, both tables suggest the presence of transitions
between latent states across time.*> For example, in Table 7 individuals in latent state 1 at t -1
present probabilities of moving towards latent states 2, 3 and 4 in the subsequent period of
around 2, 4.3 and 5.9 percent, respectively. This implies that individuals with a high propensity
to GP visits and a low propensity to poor glycaemic control (latent state 1) in one period could
change their behaviour over time and present substantially higher propensities to UD and GP
visits (latent states 2 and 4) as well as higher propensities to UD and a lower propensity to GP
visits (latent state 3) in subsequent periods. Similarly, individuals in latent state 4 could migrate
to latent states 1 (3.8), 2 (2.9) and 3 (0.7) and present a much lower propensity to poor
glycaemic control while still having a high propensity to consume health care (especially in
latent state 2).

Estimated transitions probabilities in Table 8 also suggest that there might be changes in the
propensities to UD and specialist visits between consecutive periods. These movements appear
to be concentrated among patients initially in latent state 1 (low propensities to UD and health
care use) who could move to type 3 (16 percent; still low UD but very high health care use)
and to a lesser extent to types 2 (7 percent; very high UD and higher health care use) and 4 (0.2
percent; low UD and also very high health care use) in subsequent periods. Type 2 individuals
(very high UD and low health care use) might also fluctuate, especially towards state 5 (15.7
percent; very high UD and health care use) while type 3 (low UD and high health care use)
have increased probabilities to switch to type 4 (8 percent; low UD and very high health care
use). Overall, the estimated transitions appear to suggest further increases in the propensities

to UD or health care use, mostly among patients with already higher propensities for these.

The dynamics of the time-varying unobserved heterogeneity can be explored further by

computing the year-specific probabilities of each latent state (Figures 1 and 2).
(Figures 1 and 2 about here)

As for our specification including primary care (Figure 1), while probability of being in latent

state 1 is the highest in all periods, it also appears to decline over time. Conversely, the

5 We formally tested the hypothesis that the transition matrix is diagonal, i.e. that unobserved heterogeneity for
UD and health care use is time-invariant. Accordingly, this was tested using a standard Likelihood Ratio (LR) test
where the restricted model assumes that the transition matrix is diagonal. The LR statistics for the models of GP
and specialist visits distributed as a y2 with 12 and 20 degree of freedom were 141.05 and 280.03 respectively,
thereby strongly rejecting the null hypothesis of diagonal transition matrices. This also confirms that unobserved
heterogeneity is not time-invariant.
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probabilities of being in latent states 2, 3 and 4 appear to slightly increase over time. Overall,
this appears to suggest that individuals tend to become more inclined to poor glycaemic control
and health care use over time (apart from individuals in latent state 3 who present a higher
propensity to UD, but a comparatively lower propensity to additional GP visits). The same
probabilities computed for the model with UD and secondary care (Figure 2) display a
substantial and constant decrease in the probability of being in latent state 1 as well as similar
consistent increase in the probability of being in latent state 3 (low UD and very high health
care use) over time. Furthermore, the probabilities of being in the remaining latent states also
appear to increase between 2006 and 2010, especially the one for latent class 4 (very high
propensities to UD and health care use).

6. Conclusions and discussion

This paper proposes a bivariate Latent Markov (LM) model to explore the relationship between
uncontrolled diabetes (UD) and health care utilisation on a sample of patients with diabetes
drawn from longitudinal administrative data collected in Spain. Our approach offers a series of
substantial and innovative modelling features, which enable accounting for time-varying
unobserved heterogeneity; changes in individuals’ behaviours over time via switches between
latent classes; and the endogeneity of uncontrolled diabetes. Until now, these potentially
important issues have been largely ignored, especially by the previous medical literature
concerned with UD. Furthermore, whilst UD is a widespread condition with potentially severe
health consequences, there is still sparse evidence on its effects on health care utilisation
outside the US and within the economic literature. Finally, previous latent class models used
to investigate the determinants of health care utilisation do not generally account for dynamic

unobserved heterogeneity.

We estimate our LM model to quantify the effects of UD on the consumption of both primary
and secondary health care. Contrary to previous evidence based on univariate models, we find
that UD does not appear to have a significant effect on GP or specialist visits. Moreover, the
association between UD and health care use tend to disappear when controlling for
unobservable factors, suggesting that these may drive part of their otherwise perceived
association. Our specifications also suggest that such unobserved factors are time-varying by
rejecting time-invariant unobservables and identifying the presence of individuals switching
between latent classes over time. These movements between classes show a tendency towards

higher propensities to poor glycaemic control and health care use, potentially reflecting
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changes in behaviours. Our models also reveal differences in the propensities to poor glycaemic
control and health care utilisation between latent states. This suggests the presence of
heterogeneity in behaviours involving UD and health care use within our sample of patients,
which may go beyond the standard groupings of “frequent” versus “infrequent” users.
Ultimately, by ignoring time-varying unobserved heterogeneity and the endogeneity of
uncontrolled diabetes, the effects of UD on health care utilisation might be overestimated and

this could lead to biased findings and misleading policy implications.

Overall, our findings appear to challenge the conventional wisdom within the current literature
advocating that UD is one of main drivers of health care utilisation and related costs among
patients with diabetes. This may have important implications for physicians, policy makers and
more generally the development of diabetes management plans, potentially suggesting the need

to reconsider the causes of excess health care utilisation.
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Tables and figures

Table 1: Variables definition and descriptive statistics: 2005-2010

All sample Uncontrolled DM
(N=2455) Patients (N=655)
Variable Description Mean SD Mean SD
ub Uncontrolled Type-2 diabetes (*) 0.267 0.44 - -
Mean HbAlc Within year mean HbAlc value 6.983 0.95 8.47 1.00
GP visits Number of GP visits 17.194 9.74  18.804 10.65
Spec. visits Number of specialist visits 4.968 5.33 5.327 5.62
Gender 1= female, O otherwise 0.528 0.50 0.511 0.50
Age Age in years 66.534 9.78 66.423 10.34
Immigrant 1 = Non-EU immigrant, 0 otherwise 0.007 0.08 0.013 0.11
Employment 1 = Labour market active, 0 otherwise 0.191 0.39 0.229 0.42
Not living alone 1 = Not living alone, 0 otherwise 0.880 0.32 0.887 0.32
Alcohol 1 = Drink alcohol, 0 otherwise 0.026 0.16 0.034 0.18
Tobacco 1 = Smoker, 0 otherwise 0.171 0.38 0.213 0.41
BMI Body Mass Index (BMI) 30.169 4.82 30.52 511
Asthma 1 = Ashma, = otherwise 0.047 0.21 0.046 0.21
COPD 1 = COPD, 0 otherwise 0.054 0.23 0.054 0.22
Dementia 1 = Dementia, 0 otherwise 0.010 0.10 0.015 0.12
Psychosis 1 = Phycosis, 0 otherwise 0.010 0.10 0.011 0.11
Depression 1 = Depression, 0 otherwise 0.176 0.38 0.215 0.41
Cancer 1 = Malignant neoplasm, 0 otherwise 0.066 0.25 0.065 0.25
Area 1 1 = Health area 1 0.083 0.28 0.073 0.26
Area 2 1 = Health area 3 0.137 0.34 0.097 0.30
Area 3 1 = Health area 8 0.164 0.37 0.158 0.37
Area 4 1 = Health area 9 0.205 0.40 0.215 0.41
Area 5 1 = Health area 10 0.121 0.33 0.120 0.32
Area 6 1 = Health area 12 0.159 0.37 0.180 0.38
Area 7 1 = Health area 15 0.132 0.34 0.157 0.36

Note: (*) Uncontrolled type-2 diabetes mellitus is defined for HbAlc values > 7.5%.
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Table 2: Model selection criteria

g ~rwWOWDNPEFEL X

6

GP Specialist
LL #par BIC LL #par BIC
-39110.64 108 79064.31 -31957.58 86 64586.46
-37885.96 113 76653.98 -30884.95 91 62480.23
-37427.42 120 75791.56 -30269.26 98 61303.49
-37015.81 129 75038.58 -29959.95 107 60755.13
-37639.51 140 76371.84 -29747.98 118 60417.05
-29718.20 131 60458.96

Notes: k= latent classes; LL = log-likelihood; #par=number of estimated parameters; BIC=Bayesian Information
Criterion; GP = number of GP visits; Specialist = number of specialist visits.
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Table 3: Bivariate latent Markov model - UD and GP visits

uD GP

Coeff. SE Z APE Coeff. SE Z APE
ub 0.4791 0.28 1.69 0.0491
Gender -0.2047 0.10 -2.13 -0.0207  0.5471 0.07 7.31  0.0562
Age -0.0202 0.01 -3.45 -0.0020  0.0439 0.00 9.70  0.0045
Nationality 15442 0.39 396 0.1920 -0.2048 0.30 -0.67 -0.0211
Employment 0.1539 0.15 1.06 0.0157  -0.7657 0.11 -6.84 -0.0787
Not living alone 0.3898 0.15 2.67 0.0375 0.0181 0.10 0.17  0.0019
Alcohol 0.2046 0.24 0.87 0.0213 0.1384 0.17 0.80 0.0143
Tobacco 0.4079 0.12 353 0.0429 -0.1100 0.10 -1.15 -0.0113
BMI 0.2838 0.04 753 0.0287 -0.0582 0.02 -2.36  -0.0060
Asthma -0.0959 0.21 -0.46 -0.0095  0.6242 0.18 3.54  0.0637
COPD -0.0248 0.19 -0.13 -0.0025  1.4532 0.13 1155 0.1438
Dementia 1.3766 0.32 4.27 0.1678  0.6296 0.30 2.12  0.0642
Psychosis -0.9846 0.48 -2.07 -0.0858  0.0636 0.31 0.20  0.0066
Depression 0.4875 0.11 451 0.0517  0.9270 0.08 11.39  0.0938
Cancer 0.0822 0.15 055 0.0084 0.3164 0.11 2.76  0.0325
Area 2 -0.0385 0.22 -0.17 -0.0039 -0.1442 0.15 -0.93 -0.0149
Area 3 0.1632 0.20 0.80 0.0168 -0.0659 0.14 -0.47 -0.0068
Area 4 0.3962 0.19 2.04 0.0415 0.3170 0.14 2.29  0.0326
Area 5 0.6080 0.21 296 0.0658  0.1193 0.15 0.80 0.0123
Area 6 0.9367 0.20 475 0.1041  0.1995 0.14 1.38  0.0205
Area 7 0.7505 0.21 356 0.0823  0.4361 0.15 2.96  0.0447
Time trend yes yes
Residual correlation
Corr. -0.3186 0.2842 -1.1212

Notes: this table displays coefficients and average partial effects (APE) obtained from a bivariate Latent Markov
Model. UD = uncontrolled diabetes; GP = number of GP visits; SE = standard errors; Z = z-score; APE = Average
Partial Effects. This specification includes the full set of covariates, health area fixed effects and time dummies.
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Table 4: Bivariate latent Markov model - UD and specialist visits

uD Specialist

Coeff. SE Z APE Coeff. SE Z APE
ub 0.5651 0.35 1.60 0.0477
Gender -0.1457 0.12 -1.20 -0.0128 0.0908 0.08 1.07 0.0076
Age -0.0293 0.01 -3.71 -0.0026 0.0084 0.01 1.56  0.0007
Nationality 1.9173 0.40 4.85 0.2293 0.5038 0.39 1.28  0.0425
Employment -0.0438 0.17 -0.26 -0.0038 -0.3414 0.11 -3.07 -0.0287
Not living alone 0.0874 0.18 0.48 0.0076 0.1770 0.11 1.61 0.0149
Alcohol 0.3888 0.31 1.27 0.0362  -0.0994 0.19 -0.53 -0.0084
Tobacco 0.4691 0.14 3.39 0.0430 -0.2376 0.10 -2.41  -0.0200
BMI 0.2997 0.04 6.85 0.0263 -0.0253 0.03 -0.90 -0.0021
Asthma 0.1853 0.24 0.77 0.0167 0.2358 0.14 1.64 0.0199
COPD -0.1163 0.25 -0.47 -0.0101 0.9211 0.14 6.48 0.0774
Dementia 1.9392 034 5.78 0.2319 0.3771 0.32 1.19 0.0318
Psychosis -0.5936 0.54 -1.10 -0.0481 -0.8028 0.34 -2.33  -0.0666
Depression 0.2235 0.14 1.63 0.0201 0.4475 0.08 533  0.0377
Cancer 0.2215 0.18 1.21 0.0201 0.5663 0.13 441 0.0478
Area 2 -0.6245 0.29 -2.17 -0.0510 -0.1759 0.15 -1.15 -0.0148
Area 3 0.0943 0.25 0.38 0.0084 -0.1526 0.16 -0.98 -0.0128
Area 4 0.1980 0.24 0.83 0.0177  -0.3770 0.15 -255 -0.0316
Area5 0.2514 0.26 0.98 0.0228 -0.0679 0.15 -0.44 -0.0057
Area 6 0.6779 025 274 0.0641 -0.2175 0.15 -1.44  -0.0183
Area 7 0.5137 0.25 2.09 0.0479  -0.8700 0.16 -5.41 -0.0724
Time trend yes yes
Residual correlation
Corr -0.5919 0.3567 -1.6593

Notes: this table displays coefficients and average partial effects (APE) obtained from a bivariate latent Markov
Model. UD = uncontrolled diabetes; Specialist = number of specialist visits; SE = standard errors; Z = z-score;
APE = Average Partial Effects. This specification includes the full set of covariates, health area fixed effects and

time dummies.
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Table 5: Latent states -
GP visits

Latent states

o, SE
1 4.6249 1.19
2 6.6825 1.20
3 6.1784 1.21
4 9.6861 1.22

Estimated intercepts
a3
6.3122
9.3181
3.6631
6.4020

SE
0.94
0.98
0.95
1.03

Conditional average probabilities

ub

0.0656
0.3181
0.2291
0.8721

GP
0.5683
0.9475
0.1220
0.5864

Notes: this table reports estimated o, and a, as described by eq. (2), and conditional average probabilities of

reporting UD=1 and reporting a number of annual GP visits higher than the median value of 15 visits.

Table 6: Latent states — specialist visits

Latent states

Ol SE
1 57392  1.40
2 10.4198 143
3 5.5758  1.39
4 54764 1.39
5 95282 142

Estimated intercepts

oz
-0.9789
-0.4554
2.0110
4.6897
3.2509

SE
0.90
1.05
0.90
0.91
1.05

ub
0.1152
0.8888
0.1007
0.0927
0.7812

0.1926
0.2806
0.7956
0.9815
0.9278

Conditional average probabilities
Specialist

Notes: this table reports estimated o, and a, as described by eq. (2), and conditional average probabilities of
reporting UD=1 and reporting a number of annual specialist visits higher than the median value of 3 visits.
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Table 7: Transition probabilities between latent states - UD and GP visits

Latent states 1 2 3 4
1 0.8774 0.0201 0.0435 0.0590
2 0.0003 0.9996 0.0000 0.0001
3 0.0067 0.0000 0.9800 0.0133
4 0.0379 0.0291 0.0073 0.9257

Table 8: Transition probabilities between latent states — UD and specialist visits

Latent states 1 2 3 4 5

1 0.7676 0.0694 0.1611 0.0020 0.0000

2 0.0157 0.7921 0.0350 0.0000 0.1572

3 0.0076 0.0187 0.8666 0.0791 0.0280

4 0.0035 0.0000 0.0283 0.9268 0.0414

5 0.0000 0.0331 0.0002 0.0268 0.9400
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Figure 1: Estimated year-specific probability of each latent state — GP visits
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Figure 2: Estimated year-specific probability of each latent state— specialist visits
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