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1 Introduction

Many OECD countries present a mixed health insurance system where individuals benefit from a manda-

tory national health insurance (NHI), and can enhance their coverage in the supplementary health insur-

ance (SHI) market. SHI contracts tend to cover medical goods and services with higher prices, a signal

for possibly higher quality and reduced waiting times. In this context, estimating the impact of voluntary

SHI on healthcare consumption (moral hazard) becomes critical not only for private insurers but also for

regulators. Concerns are rising about the inflationary impact of SHI on medical prices and the role of

voluntary insurance in access to care. Estimating moral hazard in the SHI context is also methodologically

challenging. When insurance is voluntary, the estimated relationship between health insurance coverage

and healthcare consumption is influenced by endogenous selection and possible heterogeneity in moral

hazard. Individual characteristics, such as health status, age, gender, income, supply side constraints

or preferences are likely to explain both individuals’ consumption of healthcare and demand for health

insurance. Einav et al. (2013) distinguish two sources of selection: classical adverse selection and selection

on moral hazard. Classical adverse selection is linked to individual heterogeneity as regards demand for

healthcare. Basically, some individuals consume more healthcare than others and are also more likely to

buy insurance in order to reduce the financial risk associated with their healthcare expenditure. Selection

on moral hazard appears when there is individual heterogeneity as regards the behavioral response to
∗We gratefully acknowledge financial supports from the Health Chair - a joint initiative by PSL, Université Paris Dauphine,

ENSAE, MGEN and ISTYA under the aegis of the Fondation du Risque (FDR).
†Corresponding author, University of York. E-mail: mathilde.peron@york.ac.uk
‡PSL, Université Paris Dauphine

1



health insurance. In this case, some individuals might be more prone to buy insurance because they

expect an increase in their healthcare consumption due to better coverage.

Empirical contributions that aim to estimate the causal effect of insurance on healthcare use acknowl-

edge that there is heterogeneity in the demand for healthcare and control for classical adverse selec-

tion (Cameron et al. 1988, Coulson et al. 1995, Holly et al. 1998, Vera-Hernández 1999, Schellhorn 2001,

Buchmueller and Couffinhal 2004, Jones et al. 2006). In this literature, the response to health insur-

ance is often assumed to be homogeneous across individuals and moral hazard is estimated through a

single parameter associated with the price elasticity of demand for healthcare. In this framework, results

based on randomization such as the RAND Health Insurance Experiment (Manning et al. 1987, Newhouse

1993), or quasi-natural experiments (Chiappori et al. 1998) are usually considered as a gold standard. Of

course, randomization is an elegant solution to eliminate selection bias from the estimation of the impact

of insurance on care use. But this approach is not necessarily of interest when insurance is voluntary.

Because these analyses remove the endogenous choice component from the equation, they are not able to

estimate a potential selection on moral hazard and predict the impact of a voluntary insurance on health-

care consumption. The question of selection on moral hazard has been addressed empirically by Einav

et al. (2013). They use individual-level panel data from an American firm where employees can choose

among different level of coverage. They find heterogeneity on moral hazard together with selection on

moral hazard: individuals who buy more comprehensive coverage exhibit greater moral hazard.

Assuming that individuals select themselves in connection with their expected response to insurance can

be particularly relevant, especially when one wants to predict the effect of copayments and deductibles

on healthcare expenditure. Suppose that an insurer want to supply an additional contract with better

coverage. If they rely on average estimates of the price elasticity of demand1, they will underestimate the

increase in costs due to moral hazard. Indeed, contracts with more comprehensive coverage will attract

individuals whose healthcare consumption would increase more strongly. Conversely, if the insurer want

to introduce copayments to limit medical spending, they will overestimate the effect of such a decision:

higher copayments will firstly attract individuals who are less sensitive to healthcare prices. Of course,

these concerns are relevant only if the insurance under review is voluntary and not mandatory. Actually,

this situation deserves attention because it is often encountered: it concerns all the cases where individuals

can buy supplementary health insurance. However, the empirical literature address issues that are relevant
1That would be estimated, for instance, by a random assignment procedure like in the Rand experiment.
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mostly in the case of mandatory health insurance.

In this paper we investigate the relationships between the demand for healthcare, the decision to take out

health insurance and the behavioral response to better coverage with a structural model that specifies

individual heterogeneity in demand for healthcare and response to insurance (i.e. moral hazard). We set

the analysis in the French context where individuals can voluntarily take out SHI which covers medical

goods and services with higher prices than the basic healthcare benefits covered by mandatory NHI. We

especially focus on the demand for specialist who balance bill their patients, i.e. charge them more than

the regulated fee set by NHI. We estimate the causal effect of voluntary SHI on the demand of specialist

consultations with balance billing, taking into account both classical adverse selection and selection on

moral hazard. The econometric analysis is performed on a French database of 58,519 individuals observed

in 2012.

In France, the NHI offers universal, yet partial, coverage. Individuals can take out SHI to enhance their

coverage and limit out-of-pocket expenditure, either voluntary in the individual market or through their

employer. For ambulatory care, the NHI sets a regulated price and reimburses only a fraction of it to

patients (70% of the regulated fee for specialist consultations). On top of NHI copayments, patients

may also have to pay balance billing. Indeed, patients have the choice to visit two types of specialists:

‘sector 1’ (S1) specialists are mandated to charge the NHI regulated fee whereas ‘sector 2’ (S2) specialists

are allowed to balance bill, i.e. charge a fee that exceeds the regulated price, which is the basis for NHI

reimbursement. S1 and S2 specialists are supposed to provide the same medical service. However, because

S2 is restricted to physicians who have been practicing in a qualifying hospital setting, S2 consultations

can be associated by patients with a higher level of quality. Because they charge higher fees, waiting lists

are also likely to be shorter for S2 specialists. Almost 95% of the French population is covered by a SHI

contract, which covers at least the 30% NHI copayment. Still, there are important differences between

SHI contracts in terms of balance billing coverage: in polls, only 48.5% of SHI policyholders state that

they are well covered against balance billing (Célant et al. 2014).

In the specific context of demand for balance billing coverage we can expect both forms of selection,

e.g. classical adverse selection and selection on moral hazard. Indeed, in Dormont and Péron (2016)

we gave evidence of individual heterogeneity in balance billing consumption related to demand for more

comprehensive SHI coverage. Our estimates were based on a French panel data set of 43,111 individuals

observed in 2010 and 2012. In 2010, the whole sample was covered by the same SHI contract, with no
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coverage against balance billing. We were able to observe the same individuals in 2012 after 3,819 of

them had switched to other SHI contracts that cover balance billing. Using individual fixed effects and

instrument variables we were able to deal with the non-exogeneity of the decision to switch insurer and

estimate the change in balance billing consumption between 2010 and 2012 due to a better coverage. Our

estimates show that those who ask for better coverage consume, ceteris paribus, more balance billing than

the rest of the sample, even when they are not covered for balance billing. This would reveal classical

adverse selection in the demand for balance billing coverage. Heterogeneity in the response to better

coverage can be linked to unobservable individual heterogeneity, and to observable characteristics. First,

the response to a better balance billing coverage is likely to be influenced by unobservable individual

characteristics. Indeed, the demand for S2 visits relies strongly on perceived quality of care. Preferences

and beliefs, which are unobserved, are likely to be heterogeneous: they can explain both heterogeneous

response to a better coverage and decision to take out SHI resulting in selection on moral hazard. Second,

heterogeneity in moral hazard might as well be influenced by observable characteristics such as gender,

age, income or living area. In Dormont and Péron (2016) we found evidence of moral hazard only for

individuals living in areas where there are few specialists who do not balance bill their patients (S1

specialists)2. Turning to a possible impact of income, we can refer to Nyman’s contribution to the debate

on moral hazard (Nyman 1999, 2003). Traditional models of health insurance (Friedman and Savage

1948, Pauly 1968) see moral hazard as a pure price effect: because better insurance coverage reduces the

price faced by patients and assuming the negative price-elasticity of healthcare demand, patients with

insurance coverage should increase their healthcare consumption. However, Nyman considers that better

coverage also creates an income effect which releases the budget constraint and gives patients access to

care that they could not afford without insurance. Within this framework, low income individuals should

react more to an improvement in coverage than rich individuals.

In the econometric literature, selection on moral hazard is more generally known as selection on returns

or essential heterogeneity. Assuming that there is individual heterogeneity in treatment effects, essential

heterogeneity arises when individuals decide to take the treatment in relation with their expected response

to the treatment. Heckman and Vytlacil (2007) show that in the presence of essential heterogeneity,

instrumental variable (IV) methods, which are frequently used to control for endogenous selection, do not

estimate an average treatment effect (ATE), nor a treatment effect on treated. Indeed, IV methods only
2This is because the effect of insurance on the relative price of S1 and S2 consultations depends on the search and waiting

time costs associated with a S1 consultation, which are strongly influenced by S1 availability in each area
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estimate a local average treatment effect (LATE), specific to individuals who would react to the shock

induced by the instrument. In the presence of essential heterogeneity, this local effect cannot be extended

to the average population. Another consequence is that different instruments are likely to give different

estimates of the treatment effect because they rely on compliers with different reactions to the treatment.

Beyond the objective to estimate unbiased causal effects, we can question the relevance of estimating an

ATE in a context where individuals can decide to participate or not in the treatment. Indeed, in this case,

we pay more attention to the treatment effect of those who are more likely to take the treatment rather

than to the average effect on the whole population. Marginal treatment effects (MTE) estimators have

been developed to capture the impact of a treatment likely to vary within a population in correlation with

observed and unobserved characteristics, in a setting where individuals select themselves into treatment.

First defined by Bjorklund and Moffitt (1987), MTE have been comprehensively described by Heckman

and Vytlacil (2001) and Heckman et al. (2006). Empirically, MTE have been used to capture returns in

education (Carneiro et al. 2011), breast cancer treatment effects (Basu et al. 2007), the effect of family

size on children’s outcome (Brinch et al. 2017) or the marginal returns of universal chid care (Cornelissen

et al. 2017). Recently, Kowalski (2015) uses MTE in an experimental framework to assess the external

validity of the Oregon health insurance experiment.

MTE are the appropriate tools when one focuses on the effect of voluntary health insurance on balance

billing consumption. First, essential heterogeneity is only a concern if individuals can decide to take the

treatment and if unobservable characteristics can influence their outcome. In our setting, individuals can

choose their level of balance billing coverage while their preferences for higher quality of care, which are

unobservable to the econometrician, are likely to influence their balance billing consumption. Second,

MTE rely on a structural approach that links the output (the demand for balance billing), the decision

to take the treatment (take out SHI) and the treatment effect (moral hazard). This unified framework

identifies complex relationships between demand for higher quality of care and comprehensive SHI. It

allows to identify different motives of the demand for balance billing coverage, either to cover expected

expenditures or to increase balance billing consumption. Third, MTE fully take into account individual

heterogeneity in the response to treatment, due to both observable and unobservable characteristics. The

structural approach further associates the heterogeneous treatment effect to different mechanisms related

to income, supply side constraints or preferences. We are indeed able to give some ‘content’ to moral

hazard, especially in terms of access to S2 specialists, and go beyond the homogeneous price effect usually

reported in the literature.
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In this paper, we estimate the marginal treatment effect of SHI coverage on balance billing consumption.

We take into account observed and unobserved individual heterogeneity in the demand for S2 consultations

and in moral hazard. We also control for classical adverse selection and selection on moral hazard. Our

empirical analysis is built on a structural model that links (i) the demand for balance billing, (ii) the

decision to take out more comprehensive SHI and (iii) the behavioral response to better coverage. Thanks

to this unified framework we are able to give insights on the determinants of the demand for higher quality

of care and the role of health insurance in terms of access to care, especially for low income individuals.

Our database stems from administrative data provided by a French insurer, the Mutuelle Générale de

l’Education Nationale (MGEN). We use cross-sectional data which provide for 58,519 individuals infor-

mation on healthcare claims and reimbursements by the NHI and SHI in 2012. We are able to observe two

groups of individuals: MGEN-SHI subscribers and better-SHI subscribers. The former are not covered

for balance billing. The latter were previously covered by the same MGEN-SHI contract but decided in

2011 to switch towards another SHI insurer: in 2012 they benefit from balance billing coverage. The

better-SHI subscribers are used as a treatment group to estimate the heterogeneous effect of SHI coverage

on balance billing consumption and test for the existence of classical adverse selection and selection on

moral hazard.

We find evidence of individual heterogeneity in the response to better coverage and of selection on moral

hazard. Individuals with unobserved characteristics that make them more likely to take out better SHI

are also those who exhibit stronger moral hazard, i.e. a larger increase in balance billing per consultation.

We also find that individuals’ income is a strong determinant of balance billing consumption and influence

the behavioral response to better coverage. Without coverage, the poor consume less balance billing than

the rich but increase their consumption more sharply once covered for balance billing. They are also more

likely to subscribe to comprehensive coverage.

The fact that unobserved characteristics influence both the decision to take out SHI and the magnitude

of moral hazard is firstly a concern for insurers. Indeed, when providing comprehensive balance billing

coverage, insurers have to take into account that their contract is likely to attract individuals who are

more sensitive to healthcare prices and respond more sharply than average to better coverage. In a context

where SHI is voluntary, the inflationary impact of SHI coverage might be worsened by selection on moral

hazard. Our policy conclusions as regards the role of income are of different nature. We argue that the

negative effect of income on the demand for S2 consultations coupled with its positive effect on moral
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hazard reveals that insurance plays an important role in terms of access to care.

This paper is organized as follows. In section 2 we present our data and empirical strategy. The empirical

specification is developed in section 3. Results are presented in section 4. Section 5 concludes.

2 Data and empirical strategy

We use a data set from a French supplementary insurer: Mutuelle Générale de l’Education Nationale

(MGEN), which is a not-for-profit insurer who provides mandatory basic health insurance for teachers

and Ministry of education’s employees. MGEN also supplies supplementary health insurance in the

form of a unique3 contract (MGEN-SHI) which offers a minimal supplementary coverage: it covers only

copayments and not balance billing. People can subscribe to this MGEN-SHI on a voluntary basis,

or take out another SHI. For historical reasons, MGEN manages both basic (NHI) and supplementary

insurance (MGEN-SHI). Our data stemmed from administrative MGEN data: they provide, for each

policyholder, detailed information about her medical bills and reimbursements for basic health insurance

and for supplementary insurance when the individual is a MGEN-SHI subscriber.

In France, ambulatory care is mostly provided by self-employed physicians paid on a fee-for-service basis.

Since 1980, physicians can choose between two contractual arrangements with the regulator. If they join

"Sector 1", physicians are not permitted to balance bill. They agree to charge their patients the reference

fee (23e in 2012 for a routine visit), and get fiscal deductions in return. If they join "Sector 2", they

are allowed to set their own fees. Access to Sector 2 being strongly limited for GPs since 1990, most

of them belong to Sector 1: they are 87% in 2012. Hence the issue of balance billing concerns mostly

specialists. Balance billing adds 35% to the annual earnings of Sector 2 specialists. The average proportion

of specialists operating in Sector 2 amounts to 42% in 2012. This proportion varies dramatically across

specialties: for instance, the proportion of specialists operating in Sector 2 is 19% for cardiologists, 73%

for surgeons and 53% for ophthalmologists.

Actually, we do not observe the coverage of balance billing for people who subscribed to another SHI

than MGEN-SHI. However, MGEN used to send a questionnaire to people who switched to another SHI.

This allows us to know, for people who have terminated a MGEN-SHI contract, if they have subscribed

to another SHI. For this reason, we selected, for year 2012, a sample of subscribers of MGEN-SHI and
3This is true for our observational period. From 2016 on, MGEN started to supply a choice between different contracts

for SHI.

7



of subscribers of another SHI, who were in 2010 subscribers of MGEN-SHI and have terminated their

contract in 2011. In this case, we know that their new coverage will be at least equal and probably

better than before, because MGEN-SHI coverage on balance billing is zero. We name this new contract

‘better-SHI’.

Our original sample was composed of 91,629 subscribers of MGEN-SHI and 8,249 subscribers of better-

SHI. We excluded individuals who live outside continental France as well as the top 1% of care users in

2012. Because in France balance billing concerns mostly specialists, our analysis focuses on the impact

of coverage of balance billing on the use of specialists. As a result, we only keep individuals who have at

least one visit to a specialist in 2012, with or without balance billing. Our final sample includes 58,519

individuals: 53,456 subscribers of MGEN-SHI and 5,063 subscribers of better-SHI, observed in 2012, who

have visited a specialist at least once in 2012.

2.1 Empirical strategy

The aim of this paper is to estimate the effect of health insurance on the consumption of balance billing

when moral hazard is heterogeneous. Allowing for heterogeneity in treatment effects potentially yields

essential heterogeneity. This term means that the assignment to treatment, or the choice to be treated,

is correlated with the treatment impact. In our case, some people would choose to take out better

supplementary insurance because they know their healthcare consumption will respond positively to

better coverage (selection on moral hazard). As stated by Heckman et al. (2006), when treatment effects

are likely to be heterogenous, it is reasonable to allow for a correlation between the choice for treatment

and the treatment impact. We therefore leave the differences in differences approach used in Dormont

and Péron (2016) to specify, on a cross section of individuals observed in 2012, a Generalized Roy model

for the issue at stake. It is a switching regression model that explains together the decision to take out

coverage for balance billing (better-SHI), and the demand for consultations with balance billing when the

individual is – or is not – covered for balance billing. From this model, we derive the marginal treatment

effect for someone who is at the margin, i.e. who is indifferent between being covered for balance billing

or not. We are able to estimate heterogenous moral hazard, driven both by observed and unobserved

characteristics such as income and preferences on the demand for balance billing, and test for selection

on moral hazard.

Our empirical strategy requires the use of an instrument to explain the decision to terminate MGEN-SHI
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contract in order to take out a better-SHI. A valid instrument must be correlated to the decision to quit

MGEN-SHI and be uncorrelated to the consumption of balance billing. The decision to retire in 2011 for

people younger than 55 years-old, that we used in Dormont and Péron (2016), is a reliable instrument.

The age threshold refers to a specific right for teachers and civil-servant who raised three or more children

to retire before 55. This right has been revoked in January 2012, creating an important incentive for

individuals meeting the criteria to retire in 2011. Figure 2 shows the number of individuals in our sample

who retired in 2010, 2011 and 2012. One can observe that the number of individuals retiring before 55

increased notably in 2011 compared to 2010 and dropped to almost 0 in 2012. Furthermore the decision

to retire is strongly linked to the decision to quit MGEN-SHI. In our sample, 368 individuals decided to

retire before 55 in 2011 and half of them quit MGEN-SHI the same year. Indeed, MGEN-SHI premiums

raise from 2.97% of wages before retirement to 3.56% of pensions after. We argue that this retirement

policy change creates an exogeneous shock that gives individuals incentives to terminate their MGEN-SHI

contract for a better-SHI, but has no reason to drive their balance billing consumption. We do not observe

eligibility (the number of children raised is not available) so we use the decision to retire before 55. 4

2.2 Basic features of the data

Our data provide, for each individual in 2012 the number of visits to a specialist Q, including the number

of visits to S2 specialists who charge balance billing, Q2, as well as the total amount of balance billing,

BB. We focus on four variables of interest: the number of specialist consultations, Q (with Q ≥ 1),

the proportion of S2 consultations, Q2/Q, the average balance billing per consultation, BB/Q and the

average balance billing per S2 consultation BB/Q2 (computed only for individuals who have at least

one S2 consultation in 2012). We are able to distinguish three dimensions in the demand for specialist

consultations: quantity of specialist consultations, quality in terms of choice between S1 and S2 specialists

and finally the average price per consultation to a S2 specialist, which might be linked to quality.

Given that our data do not provide the fee for each consultation, we compute for each individual an

annual average of balance billing per consultation. However, we are able to control for the individual’s
4Note that the condition of independence between the instrument and balance billing consumption is more demanding

with cross-sectional data than it was with panel data in Dormont and Péron (2016), where the specification of individual
fixed effects makes it possible to deal with time-invariant sources of non exogeneity. In this framework, the need of excluded
instruments was only dictated by possible unobservable health or information shocks that would have explained both the
switch of SHI and a ‘change’ in balance billing consumption. Here we need an instrument that is not correlated with the
‘level’ of balance billing consumption. As explained above, this condition is fulfilled for ‘retirement before the age of 55’. But
it is not the case for the fact of ‘moving out to another département’. We cannot use this variable as an instrument for our
cross-section analysis.
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needs regarding medical specialties. This is important because, as shown in Dormont and Péron (2016),

the availability of S1 and S2 specialists varies dramatically from a specialty to another in France. Gyne-

cologists, ophthalmologists, surgeons and ENT specialists5 charge balance billing in a larger proportion

than their colleagues. As a matter of fact, patients’ choice to visit a S2 is likely to be far more constrained

when they need to visit one of these specialties. We therefore use a dummy variable called ‘expensive

physicians’ (ExpPhy) which equals 1 when the individual visited one of these specialists at least once in

2012.

Our information on individual characteristics include gender, age, income and health status, all measured

in 2012. The impact of age is modelled with three age groups: 20-40, 40-60 and over 60 years old.

Our income variable is based on individuals’ wage or pension used by MGEN to compute MGEN-SHI

premiums. The dummy CD, which equals 1 if individuals have a chronic disease, is used as an indicator

of health status. Access to S1 or S2 specialists is not only a question of price (balance billing or not), but

also a question of geographical access (transportation costs) or waiting time. To measure the respective

availability of S1 or S2 specialists, we use the ‘specialist : population ratios’ (SPR) provided by national

statistics in 2012. The SPR is the number of specialists either in S1 (SPR1) or in S2 (SPR2) per 100,000

inhabitants in each département.

Table 1 displays the characteristics of the 58,519 individuals of our final sample: there is a high proportion

of women (72.5%), the average age is close to 58 years, the average income amounts to e2,500 and 22%

have a chronic disease. In comparison, the average wage is in France equal to e2,1576 and 19.5%7 of

people have a chronic disease. These characteristics derive from the fact that (i) MGEN covers teach-

ers and civil servant who have a certain education level and are mostly women; (ii) we have restricted

our sample to those who visited a specialist at least once in 2012. Compared to MGEN-SHI holders,

better-SHI holders are on average 12 years younger, count more women (82% vs 72.5%) and less indi-

viduals with chronic disease (9.4% vs 22%). To sum up, those who decided to quit MGEN-SHI are on

average younger and healthier. This is a common result in the literature on switching behavior: in the

USA (Buchmueller and Feldstein 1997, Strombom et al. 2002), Switzerland (Dormont et al. 2009) or in

the Netherlands (Duijmelinck and van de Ven 2016), switchers are invariably younger and also tend to

be healthier. We discuss the motivations to subscribe to better-SHI further in the paper.
5Ear, Nose and Throat specialists
6Average net mensual wage in 2012; source: INSEE
7source: ESPS survey
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Table 2 displays statistics about the use of specialist visits and balance billing in 2010 and 2012 for

MGEN-SHI holders and future better-SHI holders (who are covered by MGEN-SHI in 2010 and better-

SHI in 2012)8. Of course, in 2012, better-SHI holders are likely to have a better coverage for balance

billing than MGEN-SHI holders. Whereas the total number of visits (Q) is not significantly different

between MGEN-SHI and better-SHI holders, the latter consume significantly more balance billing, both

in quantity (Q2 = 1.7 for better-SHI holders vs 1.3 for MGEN-SHI holders) and price (BB/Q2 = 26.1 vs

24.2). Consequently, better-SHI holders’ mean consumption of balance billing, (BB), amounts to e46.9

in 2012, which is 42.6% higher than for MGEN-SHI holders.

These differences might reflect adverse selection, as well as moral hazard and, if there is heterogeneity

in moral hazard, possible selection on moral hazard. Actually, our data design enables us to observe the

use of balance billing by better-SHI subscribers in 2010, before they take out better coverage. In 2010,

all individuals in our sample, including future better-SHI, are all MGEN-SHI holders, hence not covered

for balance billing. Table 2 shows that in 2010 the future better-SHI holders, who will quit MGEN-SHI

the next year, consumed more balance billing than those meant to stay under MGEN-SHI contract. This

reveals classical adverse selection: those who ask for better coverage consume more balance billing than

others.

3 Empirical specification

The aim of this paper is to estimate the effect of health insurance on the consumption of balance billing

when moral hazard is heterogeneous. Assuming that moral hazard may be related to the decision to choose

a better coverage for balance billing, we estimate MTE to capture heterogeneity in response to health

insurance and to test for essential heterogeneity. Also, our estimation strategy enables us to evaluate the

effect of observable characteristics, such as income, on the consumption of balance billing, on the demand

for better SHI coverage and on moral hazard.

3.1 Model

We consider the following Generalized Roy model that specifies the two potential levels of balance billing

consumption (Y0, Y1) which are observed if the individual takes out respectively better-SHI (treated)

(D = 1) or MGEN-SHI (not treated) (D = 0). Indeed, D is equal to 1 if the individual chooses to take
8This comparison is not possible for all the 58,519 individuals observed in 2012 since only 43,612 of them used at least a

specialist visit in 2010.
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out better-SHI in 2011. In 2012, people covered by better-SHI benefit from balance billing coverage whilst

MGEN-SHI enrollees (those who stayed) do not. Taking out better-SHI has an impact on unobserved

heterogeneity (from U0 to U1) and on the effect of covariates X (from β0 to β1). In the general case, it

is assumed that U0, U1 and V are independent of Z, conditional on X. In addition, the probability of

treatment is a non-trivial function of Z, conditional on X : Pr(D|X = x, Z = z) 6= Pr(D|X = x) (Basu

et al. 2007).

The choice equation (4) explains the individual’s decision to take out another SHI to enjoy better coverage

(better-SHI) than the one provided by MGEN-SHI. This enables us to understand coverage choices’

determinants and provides the propensity scores that are used to identify MTE. The choice of taking out

better-SHI is modeled as a function of observables Z and unobservables V, and linked to the observed

outcome Y through a latent variable D∗. The decision depends on the sign of the continuous latent

variable D∗.

Y = DY1 + (1−D)Y0 (1)

Y1 = Xβ1 + U1 (2)

Y0 = Xβ0 + U0 (3)

D∗ = γZ − V = γ1X + γ2EarlyRetiree− V (4)

D =

 1 if D∗ > 0

0 if D∗ ≤ 0
(5)

In equations (2) to (4) X is a vector of covariates which includes individuals’ gender, age, income and

whether they suffer from a chronic disease. It includes also local availability of specialists of sector 1

(S1, not allowed to charge balance billing) and 2 (S2, allowed to charge balance billing) and for the

individual’s needs as regards medical specialty (the proportion of S2 specialists is particularly high for

ophthalmologists, gynaecologists and ENT).

In equation (4), EarlyRetiree is our excluded instrument: the decision to retire before 55 years old is

correlated with the decision to subscribe to better-SHI, but not with the consumption of balance billing.

V is an unobservable random variable corresponding to the individual idiosyncratic disutility of choos-

ing better-SHI (linked with unobservable individual characteristics such as disutility of administrative
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switching costs, belief that sector 2 doctors provide better quality of care, and risk aversion, i.e. utility

of coverage for given risk level).

The propensity score P (Z) is the probability of receiving treatment conditional on Z:

P (Z) ≡ Pr(D = 1|Z = z) = Pr(V < γZ|Z = z) = FV (γZ)

where FV is the cumulative distribution function of V , hence a monotonic and absolutely continuous

function. An individual chooses to take out better-SHI if the latent variable D∗ is positive:

D = 1⇔ D∗ > 0⇔ γZ > V ⇔ FV (γZ) > FV (V )⇔ P (Z) > FV (V )

Defining UD = FV (V ), the condition to be treated is that the propensity score is greater than UD :

P (Z) > UD.

Without a loss of generality we can assume that UD is a uniformly distributed random variable between 0

and 1. In this case the pth quantile of UD is p and different values of UD correspond to different quantiles

of V.

The propensity score must be interpreted as the incentive to take out better-SHI, for given covariates Z.

As for UD, it can be seen as the individual idiosyncratic disutility of switching to better-SHI. Conditionally

on her characteristics z, which provide a propensity score p, an individual will ultimately take out better-

SHI if her disutility uD is lower than p (and be indifferent if uD = p). For the econometrician, variables

Z are observed and realizations uD are not observed. Given that values of UD are quantiles of V, it is

possible to compare P (Z) and UD on the same interval [0, 1] on the horizontal axis of a diagram that

plots the idiosyncratic disutility against the treatment effect (Figure 1).

3.2 Marginal Treatment Effects

In our model, the decision to take out better-SHI and its impact on balance billing consumption vary across

individuals. MTE capture the treatment effect (Y1 − Y0) for the ‘marginal individual’ who is indifferent

between being treated or not, conditional on her observed characteristics X = x. By definition, the

marginal individual has a propensity score equal to her disutility of taking the treatment: UD = p.

MTE ≡ E(Y1 − Y0|X = x, UD = p) (6)
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We follow the method suggested by Heckman and Vytlacil (2001) and generally known as Local IV. This

method identifies MTE as the derivative of the conditional expectation of the outcome E(Y |X = x, Z = z),

with respect to the propensity score P (Z). First, note that

E(Y |X = x, Z = z) = E{Y |X = x, P (Z) = p} (7)

The observed outcome can be written as:

E{Y |X = x, P (Z) = p} = E(Y0|X = x) + E(Y1 − Y0|X = x,D = 1)p (8)

= E(Y0|X = x) +
∫ p

0
E(Y1 − Y0|X = x, UD = uD)duD (9)

As a consequence,

∂E{Y |X = x, P (Z) = p}
∂p

= E(Y1 − Y0|X = x, UD = p) (10)

Expression (10) shows how the derivative of E(Y |X = x, Z = z) identifies marginal treatment effect, i.e

the expected treatment effect conditional on X and UD9.

Note that a high value of P (Z) = p identifies MTE at a value of UD = uD that is high. In other words,

the fact that individuals with a high propensity score are indifferent between taking out better-SHI or

staying with MGEN-SHI implies that they have a very high idiosyncratic disutility of switching towards

better-SHI (uD). Therefore, MTE with high p values identify returns for individuals who are less likely

to take out better-SHI. Conversely, MTE with low values of p identify returns for individuals prone to

take out better-SHI.

Ideally, a continuous instrument with sufficient variation conditional within all X = x would allow for

a fully non-parametric estimation of the MTE, conditional on X, and would produce a separate MTE

curve for each value of X. However, our instrument EarlyRetiree is a binary instrument (1 if individuals

retired before 55 in 2011, 0 otherwise) and in this case, further assumptions are required to identify

MTE (Cornelissen et al. 2016).
9The ATE, by contrast, is the average treatment effect, conditional on X. Note that the ATE can be constructed as a

weighted average of MTE by integrating over UD (Heckman and Vytlacil 2001, Heckman et al. 2006), providing that the
support of UD covers [0, 1]: AT E ≡ E(Y1 − Y0|X = x).
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A first assumption is to condition the outcome on X in a parametric linear way and model potential

outcomes as Y1 = xβ1 + U1 and Y0 = xβ0 + U0 and the selection equation as D∗i = γZ − V .

A second assumption is to assume that the shape of the MTE curve is independent of observed char-

acteristics X. Only the intercept of the MTE curve is allowed to vary with X. This is implied by the

full independence assumption (X,Z) |= (U0, U1, V1), which is stronger than the conditional independence

assumption Z |= (U0, U1, V1)|X necessary for fully non-parametric approach.

The linear separability and the full independence assumptions imply that the MTE is additively separable

into an observed and unobserved component. Combining (8) with the linear expressions of Y1 and Y0,

one obtains:

E{Y |X = x, P (Z) = p} = xβ0 + x(β1 − β0)p+K(p) , (11)

with K(p) = E{U0|P (Z) = p}+ E{U1 − U0|P (Z) = p}p (12)

K(p) is a nonlinear function of the propensity score. It serves here as a control function, as defined

by Heckman and Robb (1985). It takes into account the fact that the difference between the outcome and

the specification on the right-hand side is a function of p. Hence, a regression applied on (11) consistently

estimates parameters (β0, β1). Note that the fact that K(p) does not depend on X reflects the assumption

that the slope of the MTE curve does not depend on observable characteristics.

The MTE are computed as the partial derivative of the conditional expectation of Y with respect to

P (Z) :

∂E{Y |X = x, P (Z) = p}
∂p

= x(β1 − β0) + ∂K(p)
∂p

(13)

Writing the control function K(p) as a polynomial in p , equation (11) becomes:

E{Y |X = x, P (Z) = p} = xβ0 + {x(β1 − β0)}p+
ϑ∑
i=1

φip
i (14)

As mentioned above, implementing the local IV method with a binary instrument implies that identi-

fication relies crucially on the full independence assumption (X,Z) |= (U0, U1, V1). Alternatively, Brinch
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et al. (2017) propose a separate approach. They assume additive separability between the observed and

unobserved component in the expected outcomes conditional on UD = u. The conditional expectations of

Y1 and Y0 are then estimated separately and the MTE is derived from MTE(x, u) = E(Y1|X = x, UD =

u)−E(Y0|X = x, UD = u). One advantage of this method is to allow for fully non-parametric estimation

of the MTE with a binary instrument, as used in Kowalski (2015). A linear MTE can also be identified

based on the binary instrument only, without relying on the functional form of the covariates. Using the

Stata program recently made available by Andresen et al. (2018), we are able to check that our results

are robust to the separate approach.

3.3 Estimation

The estimation of MTE by the local IV method requires three steps. In a first stage we estimate the

propensity score for each individual, P̂ (z) = Pr(γZ > V |Z = z) = p. The propensity score is fitted

by a probit model10. As noted is section 3.1, Z includes covariates X and our excluded instrument

EarlyRetiree. We then determine the common support, i.e. the values of P̂ (z) = p for which we have

positive frequencies of individuals who decided to take out better-SHI (D = 1) and of individuals who

remained MGEN-SHI enrollees (D = 0).

In a second step, we perform OLS on equation (14), assuming that the function K(p) is a polynomial of

degree 3:

y = xβ0 + {x(β1 − β0)}p+ φ1p+ φ2p
2 + φ3p

3 (15)

y is the log-transformation of one of our four variable of interest: Q the number of specialists consultations,

Q2/Q the proportion of S2 consultations in the total of visits to a specialist, BB/Q the average amount

of balance billing per visit, BB/Q2 the average amount of balance billing per S2 visit. As for the choice

equation, x is a vector of covariates which includes individuals’ gender, age, income, chronic disease, local

availability of S1 and S2 specialists, and individual’s needs regarding ophthalmologists, gynaecologists and

ENT. Subscript 1 (respectively, 0) refers to better-SHI enrollees (respectively, to MGEN -SHI enrollees).

Better-SHI enrollees benefit from balance billing coverage, but this is not the case for MGEN-SHI enrollees.

According to the Roy model, when an individual chooses to switch from MGEN-SHI to better-SHI, her

behavior switches from Y0 = Xβ0 + U0 to Y1 = Xβ1 + U1.

10The results are robust to the use of a Logit model. It is preferable not to consider a linear probability model because it
does not allows to constrain the range of P̂ (z) to be (0, 1), see Brave et al. (2014).
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In a third step, the parametric estimator of MTE is computed for given values x as

MTE{x, p} = x(β1 − β0) + φ1 + φ2p+ φ3p
2 (16)

In our setting, MTE capture the effect of having better balance billing coverage for the individual ‘at

the margin’, who is indifferent between subscribing to better-SHI or remaining enrolled in MGEN-SHI

(UD = p).

Alternatively, we compute a semiparametric estimator of MTE by running a local polynomial regression

of ỹ on p with:

ỹ = y − xβ̂0 − {x(β̂1 − β0)}p. (17)

Note that the semiparametric approach differs only in the estimation of the unobserved component K(p).

Furthermore, the semiparametric estimator can only be estimated on the common support of the propen-

sity score. Precisely, the common support assumption requires that there exist positive frequencies of

P̂ (z) for individuals that receive (D = 1) and do not receive (D = 0) the treatment. It is worth noting

that, although a parametric estimator of MTE can be estimated on the whole range [0, 1], its precision

also crucially depends on the common support (Brave et al. 2014). Therefore, our interpretation of the

results will be limited to the common support.

To run the estimations, we use the Stata command margte (Brave et al. 2014) with a polynomial of degree

3 to estimate the parameters of the MTE. We use an epanechikov kernel function in the semiparametric

estimation. Standard errors are computed using bootstrap (50 reps). Parametric and semiparametric

MTE are computed at mean values of x as in equations (18) and (19):

MTE{x, p} = x(β1 − β0) + φ1 + φ2p+ φ3p
2 (18)

MTE{x, p} = x(β1 − β0) + ∂̂K(p)
∂p

(19)

3.4 Interpretation of the estimates

Our empirical specification allows for a detailed analysis as regards the impacts of observable character-

istics:
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• β0 captures the impacts of observed individual characteristics on the demand for S2 consultations

without balance billing coverage;

• γ captures the impact of observed characteristics on the decision to switch;

• In addition, we estimate the change (β1 − β0) in the impact of observed characteristics on balance

billing consumption which is due to better coverage.

Note that in our model the fact that the impacts of regressors can be modified by better coverage is a

source of heterogeneity in moral hazard that comes in addition to the heterogeneity linked to unobserved

characteristics. Suppose that (β1 − β0) < 0 for income. This would mean that low-income people react

more strongly to insurance.

In what follows, we first examine the estimates obtained for β0, γ and (β1 − β0). Then we compare

their signs to identify the situations of classical adverse selection (relationship between β0 and γ) and the

situations of selection on moral hazard (relationship between (β1 − β0) and γ).

As regards essential heterogeneity, Heckman et al. (2006) propose a simple test to explore the assumption

of a variable treatment effect due to unobservable characteristics. The joint significance of the polynomial

coefficients φ1, φ2, φ3 in equation (15) reveals the presence of essential heterogeneity. Indeed, the signs

of φ2 and φ3 determine the slope of the curve that characterizes the relationship between the treatment

effect and the value of UD. Precisely, φ1 = φ2 = φ3 = 0 would mean that the treatment effect does

not vary with unobservable characteristics, i.e. that there is no evidence of essential heterogeneity. On

the contrary, depending on the values of φ2 and φ3, one can find that individuals with a low (or high)

disutility to switch benefit more (or less) from better balance billing coverage.

Because the common support is not defined for all values of UD between 0 and 1, we are not able to compute

an ATE with the semiparametric approach. Note that although parametric MTE are estimated on [0, 1],

their precision strongly decreases for UD > 0.35 which makes the value of MTE difficult to interpret for

higher values of UD. So, in any case, we restrict our analysis of MTE on the values corresponding to the

common support.

4 Results

Results are presented in Tables 3 to 7. Table 3 displays the effects of observable individual characteristics

on the demand for better-SHI. Table 4 displays the effect of observed characteristics on consumption for
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balance billing without coverage and on moral hazard. Table 5 summarizes the influence of observed

characteristics and gives evidence of adverse selection and selection on moral hazard. Tables 6 and 7

show evidence of heterogeneity on moral hazard. Figures 4 and 5 display respectively parametric and

semiparametric MTE over UD evaluated at mean values of x with 95% confidence intervals computed

from a non-parametric bootstrap.

4.1 Influence of observed characteristics: consumption of balance billing without

coverage

The determinants of the amount of balance billing paid by patient who do not benefit from insurance

coverage are captured by the coefficients β0 (Table 4). Income, medical needs and availability of S1 and

S2 specialists appear as the main determinants. The average amount of balance billing per consultation

significantly increases with income: a 10% increase in income drives up BB/Q by 5.3%. Individuals aged

of 60 years old and more, those who suffer from a chronic disease or visit gynaecologists, ophthalmologists

or ENT specialists consume also more balance billing than others. The availability of S1 and S2 specialists

has also a very strong impact on the amount of balance billing paid by patients. BB/Q is 18% higher for

patients living in départements where the number of S1 specialists is low and 56% higher for those who

lived in départements where S2 specialists are numerous.11

4.2 Influence of observed characteristics: demand for better coverage

The effects of observed individual characteristics on the probability of subscribing to better-SHI are

captured through the coefficients γ in the first step of the estimation (Table 3). We find that in our

sample, young and healthy (with no chronic disease, CD=0) individuals are more likely to quit MGEN-

SHI. Low income individuals are more likely to take out better-SHI than high income. Individuals who

live in départements where there are few S1 specialists or a lot of S2 specialists are also more likely to

take out better-SHI.

4.3 Influence of observed characteristics: shift in the impact of better coverage

We find that better coverage induces significant changes (β1−β0) in the impacts of regressors, resulting in

heterogeneous moral hazard linked to observed characteristics (Table 4): the reaction to better coverage
11For the sake of interpretation, we use three categories for SPR1: low SPR1 includes the first third of départements in terms

of SPR1 (SP R1 ∈ [20, 41[), medium SPR1 the second third (SP R1 ∈ [41, 52[), high SPR1 the last third (SP R1 ∈ [52, 56]).
We proceed with the same method for SPR2 but only present two categories: low SPR2 includes the first third of départements
in terms of SPR2 (SP R2 ∈ [2, 15[); medium and high SPR2 includes the second and last third (SP R2 ∈ [15, 29]).
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appears to be significantly heterogenous between different levels of income, age, genders, availibility of

S1 specialist. More precisely, the effect of insurance on balance billing consumption is consistently and

significantly decreasing with income: the poor react more to insurance than the rich. They increase more

strongly their proportion of S2 visits and consult more expensive S2 specialists. Women react also more

to a better coverage as concerns their number of consultations. The increase in quantity of consultations,

Q, is 89% higher for women than for men. However, because the effect on the ratio Q2/Q is also 19%

lower for women, it seems that the quantity effect is mainly due to an increase in S1 visits. Compared to

40-60 years old, individuals over 60 react more to balance billing coverage. Finally, consistently with our

results in Dormont and Péron (2016), moral hazard on BB/Q is 156% higher (+e21.11) in départements

with low SPR1 and 178% higher (+e25.36) in départements with high SPR2.

4.4 Influence of observed characteristics: relationships between balance billing con-

sumption, demand for insurance and reaction to better coverage

Classical adverse selection means that patients with a higher balance billing consumption without coverage

are more likely to take out better coverage: it can be captured through the relationship between γ and

β0. Selection on moral hazard means that patients with a stronger reaction to balance billing coverage

are more likely to take out better coverage: it can be captured through the relationship between γ and

(β1 − β0). Table 5 summarizes our findings for different explanatory variables: it shows that classical

adverse selection and moral hazard do not always go in the same direction.

Selection on moral hazard appears clearly as regards income. Indeed, the impact of income on the decision

to take out better coverage is negative (γ < 0), while the impact of better coverage on the use of balance

billing, BB/Q, is higher for people with low income (β1 − β0 < 0). Otherwise, with no coverage for it,

low income people use less balance billing (β0 > 0). To sum up, low income individuals do not use very

much balance billing when they are not covered (low classical adverse selection) but react strongly to

health insurance and are more likely to switch (selection on moral hazard). This findings that low income

people react more to an improvement in coverage seems to us particularly interesting. Assuming that

all individuals have the same marginal rate of substitution between medical services and consumption

of other goods, such a result can be seen as an empirical evidence of Nyman’s interpretation of moral

hazard (Nyman 1999, 2003). Poor people would react more to coverage than others because better

coverage not only changes the relative price of consultations with balance billing, but also releases their

budget constraint.
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Table 5 shows also that individuals living in départements with few S1 specialists show both classical

adverse selection and selection on moral hazard, which explains their high motivation to switch. On the

contrary, old individuals who also consume a lot of balance billing and would react strongly to health

insurance are less likely to switch. The switching costs are probably too high considering that, for

individuals over 60, MGEN premiums are on average lower than the competition which generally uses

age-based premiums.

4.5 Heterogeneity in moral hazard depending on unobserved characteristics

Is moral hazard heterogeneous depending on unobserved characteristics? Is it related to the decision

to quit MGEN-SHI? A simple test of joint significance on the terms of the propensity score polynomial

shows that we have to reject the hypothesis of a homogenous treatment effect (Table 6). Furthermore,

the signs of p and p2 give us the form of the MTE function depending on UD. Table 7 compares IV

estimates, as well as semiparametric estimates of ATE and MTE for different values of p. Figure 5 plots

the semiparametric MTE depending on UD with 95% confidence intervals and all covariates at their

mean value. Because the common support is relatively restricted (Figure 3), roughly for p included in

[0.02, 0.35], we cannot interpret the MTE results for UD > 0.35. Similarly, Figure 4 plots parametric

MTE depending on UD with 95% confidence intervals and all covariates at their mean value. Results are

very close to semiparametric estimates.

The MTE of better health insurance on Q2/Q, BB/Q and BB/Q2 is decreasing in UD. This shows

selection on moral hazard: individuals who are more likely to take out better coverage have a stronger

reaction to health insurance because of unobserved characteristics. We find the contrary for the MTE of

better health insurance on Q which is increasing in UD: those who are the less prone to take out better

coverage show moral hazard in the number of specialist consultations only (of any sector, 1 or 2).

To interpret this result, we need to go back to the model specified in equation (4). UD corresponds to

quantiles of V . For a given propensity score, the decision to take out better SHI depends on the value

of V (Zγ > V ). The lower V , the higher the probability of choosing better-SHI. V can be linked with

unobserved individual characteristics such as disutility (V1) of administrative switching costs, belief (V2)

that sector 2 doctors provide better quality of care, or risk aversion (V3). Assuming for simplicity that

risk aversion is homogenous across individuals, the decision depends on V1 − V2: better-SHI subscription

is restrained by the disutility of switching costs (V1) but encouraged by faith in better quality (V2).
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Following this interpretation, individuals who are the more prone to switch for better SHI are those with

the stronger faith in the quality of care provided in sector 212.

Our findings give empirical support for such a story: the highest impact of better coverage on balance

billing consumption (BB/Q) is observed for the first switchers. For the first decile of UD (i.e. of V ),

they increase their balance billing per consultation by e111.9 (Table 7). Then MTE decrease for higher

values of UD and become non significant for values between 0.2 and 0.3 (Figure 5). Similar results are

found for log(Q2/Q), log(BB/Q), and log(BB/Q2), which are all variables measuring the use of sector

2 consultations.

The reverse is found for log(Q), i.e. the number of specialist consultations (either in sector 1 or 2). For

this variable, MTE are increasing with UD as concerns the parametric estimation and are increasing with

UD but generally non significant in the semiparametric estimation. In any case, they are not significant

for low values of UD. These individuals do not believe that sector 2 specialists provide better quality of

care (or do not value this quality). Hence the disutility of administrative costs delays their decision to

take out better-SHI. Also, the improvement in coverage has no impact on their use of sector 2 specialists.

If any significant impact, it is only on the number of consultations without distinction between sectors.

Obviously, this interpretation is based on a story on the ‘content’ of the unobserved components of the

decision to subscribe to better-SHI. Nevertheless, the contrast between the decreasing profiles of MTE

regarding balance billing use (Q2/Q, BB/Q and BB/Q2) and the increasing or flat profile of MTE

regarding the use of specialist consultations provide a strong support to our econometric approach. In

any case, our results are consistent with the expected effect of heterogeneous beliefs in the quality of

sector 2 specialists.

4.6 Robustness checks

In our sample, we observe that compliers, i.e. individuals who respond to the exogenous change in

retirement rules and switch towards better SHI, are only women aged between 38 and 55 years-old. Note

that the age boundaries are consistent with the specific rules of early retirement (agents need at least

15 years of experience, and after 55 other rules apply). Nevertheless, one may be concerned that the

characteristics of our compliers are driving the results. To check their robustness we restrict the sample,
12In our specification, Z is by definition uncorrelated with V , U1 and U0, while V can be correlated with the unobserved

components, U1 and U0, in the demand for balance billing or for consultations. While there is only one V driving the decision
to switch, U1 and U0 are different for each of our four variables of interest Q, Q2/Q, BB/Q and BB/Q2.
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and therefore the control group, to women aged between 35 and 60. As for the results presented above,

we use the local IV method and estimate parametric MTE. In the case of a restricted sample, the best

specification seems to be a linear MTE. However the results remain very similar in sign, magnitude and

significance (Table A1, column 2). The poor still show a higher impact of insurance on balance billing

consumption and we find evidence of heterogeneity and selection on moral hazard.

We also test the robustness of our results to the separate approach developed by Brinch et al. (2017)

(see subsection 3.2). We use the command mfete made available by Andresen et al. (2018) and estimate

semiparametric MTE, with a polynomial of degree 2. Table A1 shows that estimates obtained from

the separate approach are consistent with our results based on the local IV method. We find evidence of

heterogeneity and selection on moral hazard, only the negative impact of income on moral hazard appears

to be smaller, although still significant.

5 Conclusion

When insurance is voluntary, some individuals may buy insurance because they expect an increase in

their consumption due to better coverage. Defined as ‘selection on moral hazard’ by Einav et al. (2013),

this phenomenon is likely to play a preponderant role in a context of supplementary health insurance,

where subscription is voluntary.

In this paper we investigate the relationships between healthcare use, decision to take out supplementary

health insurance and response to better coverage. We use a model that specifies individual heterogeneity

in demand for healthcare and in moral hazard. We focus on the demand for specialists who balance

bill their patients, i.e. charge them more than the regulated fee set by NHI. Indeed, the demand for

specialists who balance bill relies on preferences and beliefs in quality of care. Individuals are likely to be

heterogeneous in their preferences and beliefs, while these unobserved characteristics both drive demand

for care and decision to take out SHI, resulting in selection on moral hazard.

In the econometric literature, selection on moral hazard is generally known as ‘essential heterogeneity’.

Marginal treatment effects estimators have been developed to capture the impact of a treatment likely

to vary across individuals. We use MTE to estimate the causal effect of SHI coverage on balance billing

consumption on a French database of 58,519 individuals observed in 2012.

We find evidence of individual heterogeneity in the response to better coverage and of selection on moral
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hazard. Individuals with unobserved characteristics that make them more likely to subscribe to compre-

hensive SHI are also those who exhibit stronger moral hazard, i. e. a larger increase in balance billing per

consultation. Regarding the influence of observed characteristics, we also find that individuals’ income is

a determinant of balance billing consumption and influences the behavioral response to better coverage.

Without coverage, the poor consume less balance billing than the rich but increase their consumption

more sharply once covered. They are also more likely to take out comprehensive coverage.

In a context where SHI is voluntary, the inflationary impact of SHI coverage on balance billing might

be worsened by selection on moral hazard. Our policy conclusions as regards the role of income are of

different nature. The negative effect of income on the demand for balance billing consultations coupled

with its positive effect on moral hazard provides evidence that insurance plays an important role in terms

of access to care for low-income individuals.

24



Tables and Figures

Figure 1: Treatment choice for given propensity score P (Z) and values of disutility UD
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Figure 2: Frequency of individuals retiring in 2010, 2011 and 2012, by age
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Table 1: Number of MGEN-SHI and better-SHI holders and individual characteristics in 2012 for indi-
viduals with at least one visit to a specialist (Q ≥ 1)

N Women Age Income Chronic Disease
% mean (sd) mean (sd) %

MGEN-SHI holders 53,456 72.5 57.7 (15.2) 2,499 (764) 22
better-SHI holders 5,063 82∗∗∗ 45.2∗∗∗ (13.3) 2,406∗∗∗ (712) 9.4∗∗∗

∗∗∗ Significantly different from MGEN-SHI holders, pv<0.01
MGEN sample: 58,519 individuals with at least one specialist consultation in 2012

Table 2: Number of specialist visits and amount of balance billing in e in 2010 and 2012 for individuals
with at least one visit to a specialist (Q ≥ 1) in 2010 and 2012

Q Q2 Q2/Q BB BB/Q BB/Q2
mean (sd) mean (sd) mean (sd) mean (sd) mean (sd) mean (sd)

In 2010
MGEN-SHI 3.6 (4.6) 1.5 (2.8) 44% (0.43) 35.1 (79.5) 10.4 (12.6) 22.8 (11.6)
Future better-SHI 3.7 (4.6) 1.8∗∗∗ (3.0) 52%∗∗∗ (0.43) 47.5∗∗∗ (88.0) 13.2∗∗∗ (13.6) 24.7∗∗∗ (11.6)

In 2012
MGEN-SHI 3.3 (3.4) 1.3 (2.1) 43% (0.43) 32.9 (68.1) 10.5 (13.4) 24.2 (11.7)
Better-SHI 3.3 (2.3) 1.7∗∗∗ (2.4) 51%∗∗∗ (0.43) 46.9∗∗∗ (81.5) 13.7∗∗∗ (14.3) 26.1∗∗∗ (12.2)
∗∗∗ Significantly different from MGEN-SHI holders, pv<0.01
MGEN sample: 43,612 individuals with at least one specialist consultation in 2010 and 2012
BB/Q2: subsample of 26,557 individuals with at least one S2 specialist consultation in 2010 and 2012
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Table 3: Effect of covariates and excluded instruments on the probability of taking out better coverage
(PROBIT)

Pr(QUIT = 1) coef.
γ
Women 0.08***
Log(income) -0.14***
20-40 0.60***
40-60 ref.
60+ -0.29***
CD -0.20***
Exp. Phy 0.09***
High SPR1 ref.
Med SPR1 0.01
Low SPR1 0.21***
Low SPR2 ref.
Med & High SPR2 0.24***
Excluded instrument
Early retirees 1.36***
N 58,519

pv < 0.01 ∗∗∗, pv < 0.05 ∗∗, pv < 0.1 ∗
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Figure 3: Common support
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Table 4: Effect of covariates on the consumption of balance billing and on moral hazard

log(Q) log(Q2/Q) log(BB/Q) BB/Q log(BB/Q2)
α0 0.70*** -0.68*** -4.40*** -52.63*** 0.26
β0
Women 0.10*** -0.01 0.00 0.13 0.05**
Log(income) 0.01 0.09*** 0.53*** 6.11*** 0.26***
20-40 0.25** -0.00 -0.11 -3.74** -0.24*
40-60 ref. ref ref. ref. ref.
60+ -0.21*** 0.02* 0.17*** 2.45*** 0.16***
CD 0.15*** 0.01 0.17*** 2.68*** 0.13***
Exp. Phy 0.16*** 0.14*** 0.81*** 4.22*** 0.16***
High SPR1 ref. ref ref. ref. ref.
Med SPR1 -0.13*** -0.01 -0.11*** -1.74*** -0.13***
Low SPR1 -0.03 0.05*** 0.18*** 0.22 -0.02
Low SPR2 ref. ref ref. ref. ref.
Med & High SPR2 0.12*** 0.12*** 0.56*** 2.73*** 0.13***
(β1 − β0)
Women 0.89*** -0.19*** -0.68*** -8.48*** -0.28*
Log(income) -0.08 -0.19*** -1.27*** -15.26*** -0.74***
20-40 0.16 -0.15 -0.75 -7.59 0.11
40-60 ref. ref ref. ref. ref.
60+ 3.01*** 0.69*** 4.35*** 48.34*** 0.47
CD 1.19*** -0.12 -0.49 -8.23*** -0.09
Exp. Phy -0.02 -0.01 0.15 8.48*** 0.43**
High SPR1 ref. ref ref. ref. ref.
Med SPR1 0.25** -0.03 -0.01 0.77 0.17
Low SPR1 0.07 0.22*** 1.56*** 21.11*** 0.69***
Low SPR2 ref. ref ref. ref. ref.
Med & High SPR2 0.39* 0.27*** 1.78*** 25.36*** 0.76***
N 58,519 58,519 58,519 58,519 33,332

pv < 0.01 ∗∗∗, pv < 0.05 ∗∗, pv < 0.1 ∗

Local IV method - run with margte command (Brave et al. 2014)
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Table 5: Obervables: summary of relationships between probability of switching, demand for S2 specialists
without coverage and moral hazard - average balance billing per consultation (BB/Q)

Switch Demand for BB Moral hazard
γ β0 (β1 − β0)

Women + NS -
Income - + -
60+ - + +
CD - + NS
Exp. phy. + + NS
Low SPR1 + + +
High SPR2 + + +

Table 6: Polynomial coefficients of parametric MTE and joint test of significance

log(Q) log(Q2/Q) log(BB/Q) BB/Q log(BB/Q2)
p 16.20*** -3.74** -27.20*** -433.62*** -16.93***
p2 -14.17*** 3.05** 21.89*** 325.62*** 12.12**

p-value 0.002 0.007 0.000 0.000 0.000

pv < 0.01 ∗∗∗, pv < 0.05 ∗∗, pv < 0.1 ∗

MTE{x, p} = x(β1 − β0) + φ1 + φ2p+ φ3p2
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Table 7: Capturing Moral hazard and the effect of unobserved characteristics: OLS, IV, empirical ATE
and semiparametric MTE

log(Q) log(Q2/Q) log(BB/Q) BB/Q log(BB/Q2)
OLS 0.02** 0.04*** 0.21*** 2.03*** 0.07***
IV -0.03 0.04 0.19 1.29 -0.06

Empirical ATE 0.72 0.56*** 3.21*** 30.22* 0.63

MTE p=0.1 -0.97 0.98** 7.04** 111.91** 3.69**
lower bound -2.56 0.34 3.76 81.89 1.13
upper bound 0.62 1.62 10.33 141.94 6.24

p=0.2 1.15** 0.43** 2.23** 23.40** 0.48
lower bound 0.05 0.09 0.49 1.78 -0.54
upper bound 2.24 0.76 3.96 45.01 1.50

p=0.3 2.58* 0.43 0.15 25.99 0.40
lower bound -0.04 -0.11 -0.10 -37.08 -1.97
upper bound 5.21 0.98 0.39 89.05 2.77

pv < 0.01 ∗∗∗, pv < 0.05 ∗∗, pv < 0.1 ∗

Empirical ATE: computed by margte command (Brave et al. 2014) on the common support only
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Figure 4: Parametric MTE - log(Q), log(Q2/Q), log(BB/Q), BB/Q, log(BB/Q2)
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Figure 5: Semiparametric MTE - log(Q), log(Q2/Q), log(BB/Q), BB/Q, log(BB/Q2)
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Figure 6: Empirical ATE on log(BB/Q)
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Appendix

Table A1: Robustness checks: separate approach and restricted sample

Separate approach [1] Restricted sample [2]
log(BB/Q) log(BB/Q)

β0
Women 0.00 –
Log(income) 0.37*** 0.52***
Age 0.01*** 0.01**
CD -0.02 0.03
Exp. Phy 0.86*** 0.78***
High SPR1 ref. ref.
Med SPR1 -0.10*** 0.00
Low SPR1 0.42*** 0.49***
Low SPR2 ref. ref.
Med & High SPR2 0.79*** 0.71***
(β1 − β0)
Women -0.03 –
Log(income) -0.13* -1.53***
Age -0.01** -0.03*
CD -0.04 0.00
Exp. Phy 0.10* 0.24
High SPR1 ref. ref.
Med SPR1 0.00 -0.39
Low SPR1 0.18*** 0.27
Low SPR2 ref. ref.
Med & High SPR2 0.15* 1.38 ***
Polynomial coefficient of MTE
p -13.8*** -3.24**
p2 14.33* –
Joint test of significance
p-value 0.0037 0.0069
N 58,519 18,530

pv < 0.01 ∗∗∗, pv < 0.05 ∗∗, pv < 0.1 ∗

[1] Semiparametric MTE of degree 2 - run with mtefe command (Andresen et al. 2018)
[2] Women aged 35-60 - local IV, parametric MTE of degree 1 - run with margte command (Brave et al. 2014)
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