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Abstract

Categories of self-assessed health (SAH) are often used as a measure of health status. However,
the difficulties with measuring overall health mean that the same individual may select into different
SAH categories even though their underlying health has not changed. Thus, their observed SAH
may involve misclassification, and the chance of misclassification may differ across individuals. As
shown in this paper, if neglected, misclassification can lead to substantial biases in not only the
estimation of the effects of SAH on outcomes, but also on the effects of other variables of interest,
such as education and income. This paper studies nonlinear regression models where SAH is a
key explanatory variable, but where two potentially misclassified measures of SAH are available.
In contrast to linear regression models, the standard approach of using one SAH measure as an
instrumental variable for the other cannot produce consistent estimates. However, we show that
the coefficients can be identified from the joint distribution of the outcome and the two misclassi-
fied measures without imposing additional structure on the misclassification, and we propose simple
likelihood-based approaches to estimate all parameters consistently via a convenient EM algorithm.
The estimator is applied to data from the Household, Income and Labour Dynamics in Australia
(HILDA) Survey, where we exploit the natural experiment that in some waves individuals were
asked the same question about their health status twice, and almost 30% of respondents change
their SAH response. We use the estimator to (i) obtain the first reliable estimates of the relation-
ship between SAH and long-term mortality and morbidity, and to () document how demographic
and socio-economic determinants shape patterns of misclassification of SAH.
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1 Introduction

Self-reported health (SAH) is one of the most frequently used health measures in population and
health-related surveys as well as in social science research (Au & Johnston, 2014). It is often asked
as a simple question, for instance, “in general, how would you rate your health?”, and respondents
can select from a few categories such as excellent, very good, good, fair or poor. Among all empirical
studies that involve the use of SAH, a particular field that is of great importance is the role of SAH in
predicting on mortality. Studies have found that SAH can predict survival within the entire population
(Idler & Angel, 1990; Kaplan et al., 2007; Doiron et al., 2015), the working age population (Miilunpalo
et al., 1997), the elderly population (DeSalvo et al., 2005; McCallum et al., 1994; Mossey & Shapiro,
1982), and other representative community samples (DeSalvo et al., 2006; Idler & Benyamini, 1997),

even after controlling for other specific illnesses, comorbidities and disability.

While there is strong evidence that poor compared to excellent self-reported health is associated with
increased mortality, most of the above-mentioned studies do not take into consideration the possible
measurement error or misclassification in SAH, which in turn will bias the estimated odds ratios of
people in different health-rating categories (Baker et al., 2004; Butler et al., 1987; Clarke & Ryan, 2006;
Black et al., 2016; Crossley & Kennedy, 2002). In this paper, we use the availability of a repeated
measure of self-perceived health to estimate models of future morbidity and mortality that adjust for
the potential misclassification of SAH. Our analysis takes advantage of the Household, Income and
Labour Dynamics in Australia (HILDA) Survey, which records the same individual’s SAH responses
in two different but similar questionnaires in the same wave, allowing us to quantify the extent of
measurement error in SAH in both questionnaire modes. We document response changes to the SAH
questions in waves where it was asked twice in two different modes, by face-to-face or over-the-phone

interview, and on a self-completion questionnaire.

In the presence of classical measurement error in a regressor, the instrumental variable method where
one mismeasured variable is used to instrument for another mismeasured variable can resolve the issue
of mismeaserument and obtain an unbiased estimate of the effect of the correctly measured variable.
However, the measurement error in categorical variables such as SAH is not classical because the error in
one misclassified variable will be correlated with the error in the other misclassified variable. Moreover,
health outcome models are often nonlinear, such as discrete choice, duration or count models. Thus,
conventional tools such as two stage least squares are not applicable. We build on recent advances in
the econometric literature on misclassification (Kane et al., 1999; Mahajan, 2006; Lewbel, 2007; Hu &
Schennach, 2008; Hu, 2008; Lindeboom & Kerkhofs, 2009; Battistin et al., 2014; Gosling & Saloniki,
2014) and show that under suitable independence conditions the coefficients of interest in the most
commonly used nonlinear parametric models are identified from the joint distribution of the outcome
and the two misclassified measures. Our approach is closely related to Hu (2008) and Battistin et al.
(2014) in that the identification leads to a finite mixture type model. With the exception of Hu (2008)
and Lindeboom & Kerkhofs (2009), this literature considers misreporting only in a binary regressor,
rather than a general categorical regressor. We further innovate in a number of ways. Our application

is the first in the literature to allow for flexible effects of a categorical regressor across individual



characteristics (interaction terms with the unobserved true health categories). Moreover, we are the
first to consider the estimation of a system of outcomes, rather than a single univariate outcome,
and this has advantages as it can significantly reduce small sample bias and improve efficiency. In our
application, for instance, we will jointly estimate the relationship between SAH and both mortality and,
conditional on survival, morbidity. We show how to implement these methods with simple likelihood-
based estimators via convenient and robust Expectation-Maximisation (EM) algorithms. In particular,
we show that using a penalised likelihood approach can further reduce potential low power issues. While
the approach we pursue is parametric in the outcome, it is extremely flexible in terms of allowing almost
any patterns of misclassification and where the level of misclassification may differ across individual

characteristics.

The estimation of models that correct for misclassification in categorical regressors is notoriously diffi-
cult as there can be relatively many misclassification parameters and, for some of the misclassification
errors, the information in the data available might be scarce. Almost nothing is known about the
finite sample performance of these estimators. To study this, we conduct an extensive Monte Carlo
simulation. The results of the simulation indicate that for more demanding misclassification models
with sample sizes of 1,000 observations, estimates can exhibit substantial small sample bias. For sam-
ple sizes of 10,000 observations, the coefficients of interest are estimated with essentially zero bias.
The results also show that using multivariate outcomes can reduce small sample biases significantly
due to both outcomes providing additional information which improves the precision with which the
misclassification is estimated. A second goal of the simulation is to compare the performance of the
consistent misclassification estimator to other potential approaches that are commonly employed by
practitioners. First, we compare it to ad-hoc measures to reduce misclassification bias such as using
the average of the two SAH measures as a regressor, or restricting the estimation to individuals who
reported the same SAH twice. We also compare estimators that use instrumental variables and control
function approaches to deal with misclassification. While these approaches are, in general, inconsistent
for non-linear models with discrete endogenous regressors, the approach of including first-stage predic-
tions into the second stage is used often by practitioners, nevertheless. The control function approach
has been shown to be consistent for some specific class of models (Terza et al., 2008), and its use has
been advocated as means to reduce endogeneity bias in some contexts (Basu & Coe, 2015; Wooldridge,
2014). However, our simulation results suggest that their use cannot be recommended, in general, for

the case of endogeneity stemming from misclassification bias.

In our application using the Household, Income and Labour Dynamics in Australia (HILDA) Survey, we
estimate the relationship between SAH, measured in 2001, on the 15-year mortality probability and the
development of chronic health conditions in 2016 using a sample of 12,908 individuals. SAH contains
five categories and is measured twice in 2001. Around 30 percent of respondents do not answer with
the same category. Our results represent the first reliable estimates of the mortality rate differences
between categories, which corrects for the impact of this misreporting on the effects of SAH. We find
that, compared to the naive approach using one SAH measure, the corrected estimates are between 10
to 20 percent larger. However, in models where the effect of health is heterogeneous with respect to

key regressors, differences can range from 30 to almost 100 percent. We find strong evidence for the



presence of misreporting, and for heterogeneity in misreporting behaviour across different population
subgroups. In particular, older individuals and low-income individuals tend to overstate their true
health status. Highly-educated individuals also overstate health, while individuals with low education

levels tend to understate it.

In Section 2 we introduce the econometric models and estimators in the setting of a logit model with
a binary health indicator. Section 3 contains simulation results, Section 4 the application, and Section

5 some concluding remarks.

2 Methods

To fix ideas, introduce notation, and give an intuition about the identification of the model, this section
starts out by discussing a minimal example of a logit model with a binary potentially misreported
regressor. The general model and our estimation approach is then introduced in Section 2.2, and we

discuss potential ways of improving the estimation by increasing statistical power in Section 2.3.

2.1 A logit model with misreported binary health

Consider the estimation of a simple logit model for mortality, an outcome we will use in our application
in Section 4. The outcome y; equals 1 if individual ¢ is alive 15 years after the initial survey, and 0
otherwise. We are interested in how health, i}, at the time of the initial survey, is related to mortality
y;. For now, let health be a binary variable: h; =1 indicates that individual 7 is in good health; and
h; =0 that 7 is in bad health. The key feature of the models we consider is that the true health status,
h}, is unknown; what is known instead is an individual’s self-reported health status, and this reported
health might be misclassified. Each individual reports his health twice, thus providing two potentially

misclassified measures of his health status. True health is related to mortality as follows:
yi=1(ahf+Bo+e >0), i=1,...,N, (1)

where a key object of interest is the unknown scalar coefficient a. The model includes a constant, Sy,
which we will later generalise to a K X 1 vector of covariates x; with conforming parameter vector 3.
The term ¢; is an IID logistically distributed idiosyncratic error. Thus, the probability of survival as

a function of health status is

h*
Py = 1Jif) = 2L o)

1+ exp(ahy + fo) = Mkl +fo). 2

If h} were observed, (2) would serve as the basis for a standard logit estimation; but since h} is
unobserved, this is infeasible. Instead, we consider conditions under which we can estimate o and fy

by using two potentially misclassified health measures.

Let the measures of reported health be denoted as hi; and hs;, corresponding to the first and second

response of the individuals, respectively. We define the following misclassification probabilities—i.e.,



conditional probabilities of misreporting true health—as

ot = P(hmi =0|hi =1) and 6yjy = P(hmi = 1{h; =0), form =1,2. (3)
We denote the distribution of the true health status as

P(h;=1)=m. (4)

The marginal distributions of the observed health measures can then be expressed as functions of the

parameters defined in equations (3) and (4):

Phmi = 1) = mi(1 — 8§) + (1 — m)alh. (5)

Not observing A}, we will identify and estimate the parameters of the outcome equation (2) using the
structure provided by equations (2) and (3), and the data (y;, h1j, he;). Specifically, we will use the
structure to derive the joint distribution of w;, h1;, he;. To be able to do this, we need to make some
assumptions about the relationship between the health measures and the outcome beyond the model

structure we just defined:

INDEPENDENCE ASSUMPTION (IA): Conditional on the true health status h}, the reported

measures, hi; and ho;, are independent of each other and of the outcome, ;.

The joint distribution of outcome and the two misreported health measures consists of the eight
probabilities P(y; =710, h1;=r1, ho; =72 |x;) = F(rg,r1,72), where rg € {0,1}, 1 € {0,1}, ro € {0,1}.
Then,

F(ro,r1,r2) = m F(ro,ry,ralhi=1) 4 (1 —m) F(ro,r1,r2|hi =0) (6)
= 7 Flrolhi =1) F(rafni =1) F(ro}hi =1)
+ (1 — ) F(ro|h;=0) F(r1|h; =0) F(r2|h; =0),

where

F(rmlhi =1) = (dg)" " (1= a5p)"™,

F(rm|h; =0) (&7j)™ (1= 6fjp) ™,
F(rolhi=1) = Ala+ o) (1—Ala+5))' ™",
F(rolhi=0) = A(Bo)™ (1—A(Bo)' ™.

The second equality in (6) follows from the independence assumption (IA). To see an example of one

of the expressions in (6), consider F(1,1,1):

F(l,l,l) = P(yl = 1,h1i == 1,h2i = 1‘1‘1) = 7I'F‘(1,1,1|h;< = 1) + (1 —7'1')}7(1,1,1|h;< = O)
= mA(at o) (1= o) (1=dg)  +  (1=m) A(Bo) Oyjg Ofjo-

4



The model fulfils a necessary condition for identification since the data provides seven linearly indepen-

dent quantities F'(rg, 1, r2), which we can map to the seven parameters of the model: «, Sy, 7, (%Il’ 5}‘0, 5§|1, )

To obtain a unique solution and identify the parameters, we require for each measure that the proba-

2
1]0°
bility of reporting truthfully be greater than the probability of misreporting:

o111 > Ogft and 900 > 1jo» (7)

m m
/12 %1]0

in which probabilities of misreporting and correctly reporting are switched.

which amounts to assuming that ¢ < 0.5.! With this condition, we rule out the mirror solution

Thus, under IA and the no-mirror-solution condition, the system is just-identified, paving the way for
estimation. If only one health measure, say hi;, was available, the joint distribution (y;, h1;) would
consist of three independent probabilities. However, there would be five parameters to estimate—
, (53'1, 5h0, «, Bo— and the system would be under-identified. Similarly, with two health measures but
without the outcome y; it would also be impossible to identify the misclassification probabilities. There
would only be the three independent probabilities of the joint distribution of (hy;, ha;) to estimate the

four parameters 6}, 6%, 62

2 . :
o117 9110, 9911+ 01)0 (or five, including ).

Introducing covariates is straightforward. The constant [y can be replaced by a linear index )83,
where x; is a K X 1 vector of covariates with conforming coefficient vector 3. The joint distribution in
(6) and the corresponding expressions are then simply to be taken conditional on @;. The number of
parameters to be estimated is then 6 4+ K (the five probabilities m, 53“, 5(2)|1, 5h0, (5%0,
of interest a, as well as the K elements in 3). In this case the system is over-identified since there will

the key parameter

be at least (14 25~1) x 7 different values of F(rg,71,72|x;), the number (14 25~1) x 7 corresponding

to the minimal case of a constant and K — 1 linearly independent binary regressors.

Having covariates, it is also possible to revisit the independence assumption. The independence as-
sumption is strong, but it might be reasonable in some contexts. For instance, in the field of health
economics, Gosling & Saloniki (2014) invoke it in an application to misreported binary disability sta-
tus. The independence assumption can easily be violated though. For example, if men and women
have different misreporting probabilities the assumption does not hold because the two misreported
measures will be dependent through the impact of gender. Thus, a way to weaken this assumption is
to explicitly make the misclassification probabilities dependent on z; and only require independence

to hold conditional on some z;.

CONDITIONAL INDEPENDENCE ASSUMPTION (CIA): Conditional on the true health status
h; and on observed variables x;, the reported measures, hy; and hg;, are independent of

each other and of the outcome, y;.

Is the model still identified under CIA and the no-mirror-solution condition (7)? Consider first the
case of discrete regressors a;. In this case, we know from above that we could identify the parameters

for each subsample defined by one particular set of values of x;. Thus, the identification of the model

!See Hu (2008) for alternative identifying assumptions.



under CIA is equivalent to the identification of each subsample under the constraint that « is the same

across subsamples.

When some of the regressors are continuous, the model is no longer identified without further assump-
tions. One way to proceed is to use the framework of Hu (2008), where semiparametric identification
is achieved under quite general additional assumptions on the misclassification. However, having such
a flexible framework for the misclassification also has the tradeoff of increasing small sample bias and
becoming computationally intensive when there are multiple regressors over which the level of misclas-
sifications may vary. Instead, we proceed by using a more parametric, and hence restrictive, approach
for the misclassification, which has the advantage of reducing the impact of small sample bias and
easily being able to incorporate many regressors in the misclassification equations. With our approach
one can also easily increase the flexibility of the parametric form in the misclalssification equations to
test the sensitivity of the results to a particular functional form. We assume that the misclassification

probabilities are known functions of the regressors,

op = A(—exp(@ivg)),  and Gy = A(— exp(zivT)). (8)

The logistic function coupled with the negative exponential function in (8) enforces the (0,0.5)-bounds
under the no-mirror-solution condition on the misclassification probabilities. Similarly, we assume that

true health is also a known function of the regressors,

. exp iU;TI
7 = P(h} = 1]z;) = 1+>£p(:v)n) (9)

That is, we assume true health conditional on covariates to be of the logit form.

2.2 The general model and its estimation
The general model with categorical health

For our application, we are interested in extending the framework in two important directions. First,
we want to be able to deal flexibly with categorical health measures with more than two categories.

Second, we want to be able to model interaction effects in unobserved health.

For concreteness, let us assume health has five outcomes, h} € {0,1,2,3,4}, as this is the case in our
application of Section 4. As before, two potentially misclassified measures, hy;, ho; are observed. The

model is now
yi=1(d a+xB+e>0), i=1,...,N (10)

with a = (a1, a2, 3, 04)" and df = (d5;, d5;, d%;, d};). The elements of the latter are indicators of a

particular true health status:

dj; = 1(h; =j), forj=1,2,34.



Le. there are 4 + K parameters from the outcome equation (10). There are now twenty misreporting

probabilities per measure h,,;, m = 1,2, which we denote as
ﬁbj = P(hmi = k|h; =j) Vi, k=0,1...,4, and j # k.

In addition, there are four parameters of the distribution of the true health status, = = (w1, w2, 73, 74)’,
where m; = P(h} = j). All in all, these are 44 parameters. Thus, the grand total is 48 + K parameters

to be estimated. Without covariates, for instance, that is 49 parameters.

As before, we can base identification and estimation on the joint distribution of (y;, his, ho;). The
joint probabilities P(y; = ro, h1; = 71, ho; = r2| @) = F(ro,7m1,7r2) are now defined for ro € {0,1},
r1 € {0,1,2,3,4}, ro € {0,1,2,3,4}. Thus, the joint distribution has 2 x 5 x 5 = 50 support points,
of which the last one is not linearly independent. The other 49 points will provide the necessary
equations to identify the 49 parameters in the case without covariates. With covariates, the system
is overidentified as before. The pendant to equation (6) in the ordinal case and other details of the

general model are given in the appendix (Appendix A.1).

The condition to avoid mirror solutions in the case with multiple categories of SAH is that the prob-

ability of truthfully reporting a health level j (5]”[7) is larger than any probability of misreporting it:

m m -
jli > Okl Ik, (11)
which is a generalisation of the condition (7) for the case of two categories. To implement this constraint

in the estimation, we use multinomial logit-based expressions similar to the ones above (see Appendix

A).

The model with a categorical regressor (10) is an important generalisation with respect to the binary
case. The only similar application of a model for categorical regressors in the literature (Hu, 2008)
imposes linearity in the effect of the categorical regressor, whereas (10) allows the effect of A} to be
completely flexible. With our proposed approach we can even go one step beyond and also accom-
modate interaction terms between all or some of the regressors @; and unobserved health. The model

with interactions in true categorical health status is

J J
y =1 Zdjz%+Zd:}xkzaj,x+$;ﬁ+5z >0), ¢=1,...,N, (12)

j=1 j=1
for some variable of interest zp; such as education. To gain an intuition for the identification of the
interaction effect, we imagine again that the regressors are discrete and that «; is fully saturated.
In that case, the interaction effects are obtained by simply estimating the model separately by each

subsample without imposing the restriction that the slopes on a; be the same across subsamples.

Before discussing estimation of the model, we note that the approach, which we have presented for a

logit binary outcome, can be extended to many common nonlinear models that follow the form

f(yz‘h;k?wl) :g(dfla+$;,3; w)v (13)



where f(-|-) is a functional of the conditional distribution of y; given true health A} (captured by the
indicator variables in d;) and «x;, and g(+) is a known nonlinear function, which might include ancillary
parameters w. Typical examples for f(y;|h}, ;) include it being a survival rate (probability) as in this
application, the time until developing a health condition (hazard rate), the number of doctor visits
(count), or expenditures for health care (nonlinear expectation). Appendix A.2 presents details for

Poisson count and Weibull duration models.

Estimating the model via the EM algorithm

The model can be estimated in a number of ways based on based on the joint distribution function
(6), which takes the form of a finite mixture (FM) or latent class model. Appendix A.3 presents a
GMM estimator. We found that, especially in models with categorical health and several regressors,
maximum likelihood estimation via the Expectation-Maximisation (EM) algorithm was substantially

faster and more stable, making it our estimator of choice.

The maximum likelihood estimator of the model is

N N
6 = 0(0;yi, hii, hai, i) = 1772 n(F (o, m1,72)), 14
argmgX; (091, hui, hoi, ;) argmgX; DD > L In(F(ro, r1,72)) (14)

ro 1 T2
where 0 collects all the parameters: «, 3, 1, and 'yZ‘Lj for m = 1,2 and j # k. Maximisation can, in
principle, proceed by a standard Newton-Raphson procedure. However, as in the case of GMM, finite
mixture models can be difficult to estimate by direct maximum likelihood. We obtain the parameters
via the EM algorithm, a more stable alternative, by iterating between the maximisation or M-step,

and the expectation or E-step. The nth iteration of the M-step is

~

N

0" = argmgxz;&(& Yi, P, hoi, i, 07), (15)
1=

where

4i(+) (16)

0ji (ln F(yilh; =j, ®i) + In F(hy;|h] = j, 2;) + In F(hoi|h] = j, 2;) + Inmj; — hlﬁ)?i),

M=

<
Il
=)

and all F'(-]-) correspond to terms like those defined in (6), and the w7, are estimates of the posterior
probabilities P(h* = j|y;, h1i, hoi, ;). In the (n+1)th iteration of the E-step, we update these posterior
probabilities as follows:

r FRE(yalhy =) F™(h by =) F (hail B} =)

7 E?:o Ly En(yi|ht=3) Fr(hy|ht =3) Fr(holhi=7)

(17)

where all F(-|-) correspond to terms similar to the ones in (6) and are evaluated at 0.

The increased stability and speed of EM comes from the fact that, first, as opposed to the likelihood
0;(+), in £;(-) of the M-step, the logarithm goes through the sum of the finite mixture components of the



joint distribution F'(y, h1, he); and, second, these components depend on separate sets of parameters,
meaning that each can be estimated separately: the first term in the parentheses, F'(y;|h} =7, ;) is a
function only of (e, 3); the second and third are functions of all the 7119|j and 'yi‘j vectors (with j # k),

respectively; and m; = w(«;) is a function only of 7.

2.3 Improving finite sample performance

A potential issue in the estimation of models with a flexible parametrisation of the misclassification
system as proposed here is that in finite samples there might be low statistical power to estimate
the misclassification probabilities given that they (i) depend on potentially many parameters (if the
dimension of x; is large), (ii) are potentially small, and (iii) are identified from potentially low frequency

cells of the joint distribution of (y;, hi; hy;)-

When there is low statistical power, the likelihood function may not be maximised at the mean of the
likelihood function and thus the estimated parameters will not be normally distributed around the true
parameter values but instead be biased. This bias in the misclassification probabilities then in turn
biases the estimated parameters of the outcome equation. In the most extreme case, the likelihood
function may be maximised for the sample at hand when misclassification is set to zero, which may
manifest itself as a convergence problem in the maximum likelihood procedure as parameters will tend

to infinity.

To overcome convergence such issues and reduce the small sample/low statistical power bias we suggest
implementing a penalised likelihood estimation, which rules out extreme misclassification probabili-
ties. For each of the ten components in (16) related to the misclassification probabilities (that is,

In F(hpmi|hi=j, ;) for m=1,2and j =0,...,4), we add a ridge penalty to their objective function:

t

N YA (18)

7y = argmax y S F(hilhf =, 2) -
Iy

N t /
= arg n;aniji <Z 1(h™ =k)In 6%.(331‘,72’?].)) N Y (19)
J i k

where vj" contains all the parameter vectors ’YZ\L]‘ for a given j and m such that j # k. The scalar ¢ is
a tuning parameter which determines the weight given to the penalty. However, as with all penalised
likelihood estimations, by penalising is introducing bias in the other direction such that a too harsh a

penalty (too large t) may increase bias.

Apart from penalisation, a second possible avenue for reducing low power issues is using more than
one outcome variable, say y, = (y14,¥2;). If more than one possible outcome which is dependent
on true SAH is available, then joint estimation of the outcomes can be beneficial for the accuracy
of the estimation and minimising bias in small samples. We propose pooling outcomes and treating
them as independent but potentially correlated. The connection between the two (or more) models
is that the true unobserved SAH is obviously the same for each observation across both models and

thus the misclassification parameters are also the same, which can be imposed as a restriction to



reduce the loss of degree of freedoms relative to the case of separate estimation.? Adapting the EM

algorithm is straightforward. In equations (15)-(17), the terms F'(y;|h} = j, x;) are simply replaced by
F(yiilh; =37, 2:) F(y2i|h] =j, ).

3 Monte Carlo experiments

While the estimators presented in the last section are comsistent if the assumptions are met, they
are biased in finite samples. The estimation of the many parameters relating to the misreporting
probabilities, for instance, can pose a challenge in practice. We examine the finite sample performance
of these estimators in a Monte Carlo simulation study. The interest lies primarily in the quality of
the estimates of o and 3, the parameters of the outcome equation. To benchmark the performance
of the estimators that adjust for misclassification of SAH, we compare their performance to the ideal
estimator that uses the true SAH status, and which is infeasible in practice as true SAH is unobserved.
On the other end of the spectrum, we compare the performance of the proposed estimators to the

naive estimators that just use either the first or the second observed misreported SAH measure.

We start by examining four potential competitor estimators, which address the misclassification in an
ad-hoc way and are sometimes encountered in the literature. We then consider our proposed finite
mixture (FM) estimator in more detail. We are particularly interested in the possibility of improving
FM’s performance by using a penalised FM (PFM) variant. We consider how estimating interaction
effects, facing an increased number of categories of health, or jointly estimating two outcome variables
affect the finite sample performance of the FM and PFM estimators, and we explore how the estimators

perform under misspecification of the misclassification system.

3.1 Simulation design

The baseline design we use is a simple data generating process (DGP) with a single, uniformly-
distributed covariate and a binary health indicator. That is, ; = (1,;), where x; ~ U(0,1), and
true health A] is drawn from a Bernoulli distribution with probability m;. We draw ¢; from a logistic

distribution; survival status y; (=1 if alive) is then generated as
yi = 1(ah; + Bo+ Bz +e; >0). (20)

We use the four misreporting probabilities 5(1)|1, 53“, 5%‘0 and 5%0 to generate the two reported health

measures hi; and ho;. Specifically, for observations with h; = 1 we draw h,,; from a Bernoulli dis-

tribution with probability 1 — 671; and for observations with h = 0 we draw h.,,; from a Bernoulli
distribution with probability (5%. Thus, jointly, the four misreporting probabilities, the parameter

governing the distribution of true health, and the parameters of the outcome equation «, By, 51 deter-

mine endogenously the distribution of the survival outcome y;, and the distribution of the reported

2 In the EM algorithm both outcomes are also used to estimated the posterior probabilities of the true SAH cate-
gory. Note, we are not proposing a seemingly-unrelated-regression-type approach that exploits efficiency gains through

correlated errors in the outcomes.
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health measures h,,;. The parameter values are specified as a« = 1, fg = 0 and B; = 1. Misreporting

probabilities are parametrised as
K = A(— exp(’y,?l‘jconst + 7i[;8lope z;)), m=12 j#k=0,1,

with all four slope parameters ')/Z‘Ljslope =1, and the four constants *yé|lconst:—0.25, ’yg‘lconst:—o.% ,

fyllmconst:O, and 'yf‘oconst:—O.S. The distribution of A is given by
i = A(no + mwy),
with n;=1.5 and ng=-0.1342.

The simulation DGP implies that the marginal probability of being in good health is P(h* = 1) = 0.7.
Similar to the survey data used in our application, the reported health measures in this DGP have
distributions which are broadly but not exactly similar to each other— P(hy = 1) = 0.61 and P(hy =
1) = 0.57—while at the same time there is a substantial share of conflicting answers: P(hy # ha)=0.37.

The average misreporting probabilities are about 0.21 (55‘1), 0.31 (5(2)“)), 0.16 (5%“))) and 0.26 (5%0)).

We use two sample sizes, N = {1000; 10000} and replicate the estimations 500 times.

3.2 Simulation results

To benchmark the performance of the estimators that adjust for misclassification of SAH, throughout
the simulations we compare their performance to the ideal estimator that uses the true SAH status,
and which is infeasible in practice as true SAH is unobserved. In tables, we denote this estimator as
“h;”. On the other end of the spectrum, we compare the performance of the proposed estimators to
the naive estimator that just uses one observed misreported SAH measure. In practice, we use the

first measure for this estimator, and consequently we denote it in tables as “h;”.

We begin our simulation experiments by assessing the performance of four potential competitor es-
timators, which address the misclassification in an ad-hoc way. First, we experiment by using the
average of the two SAH measures as the regressor in the models (“h”). If the measurement error were
classical, this approach would produce an (unbiased) SAH measure with less measurement error, thus
mitigating some of the bias. A second simple ad-hoc way of addressing the misclassification is to drop
all individuals from the estimation sample whose second response to the SAH question is different from
the first (“f:L”). This leaves a sample of individuals with what sometimes is called “consistent responses”.
It is clear that this is also a procedure leading to biased estimates, since some of the individuals in such
a sample will have misreported their SAH status twice. Moreover, this procedure results in a reduced
sample size and, therefore, less precise estimates. Nevertheless, similar to the averaging of the SAH

responses, the severity of the misclassification problem might be mitigated by this approach.

The last two estimators included in the simulation correspond to approaches that mimic two-stage least
squares in linear models. They consist in using one SAH measure as an instrument for the other. Both

estimators use the same first stage in which one SAH measure is regressed on the other. The first of
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Table 1: SIMULATION RESULTS: AD-HOC MISCLASSIFICATION APPROACHES FROM THE LITERATURE

¥ hy h h hy é

N =1,000

Bias 0.004 -0.459 -0.259 -0.243 0.632 0.675
RMSE 0.152 0.482 0.321 0.307 0.953 0.989

3 const Bias -0.007 0.258 0.162 0.163 -0.262 -0.276
RMSE 0.167 0.303 0.234 0.265 0.452 0.465

3 slope Bias 0.014 0.169 0.152 0.054 -0.138 -0.134
RMSE 0.271 0.317 0.308 0.346 0.359  0.359

o |

N =10,000

Bias 0.002 -0.457 -0.259 -0.245 0.602 0.643
RMSE 0.050 0.460 0.268 0.253 0.647 0.686

3 const Bias -0.002 0.260 0.165 0.158 -0.245 -0.258
RMSE 0.049 0.265 0.172 0.171 0.272 0.284

leope Bias 0.003 0.156 0.141 0.057 -0.144 -0.140
RMSE 0.084 0.177 0.164 0.120 0.179 0.176

ol

these estimators then includes the first-stage predictions as the regressor in the outcome model (“ﬁl”).
This approach is inconsistent, in general, for nonlinear models, but it is often applied by practitioners.
The second estimator includes the first-stage residuals as an additional regressor along the mismeasured
SAH response in the outcome model (“é;”). This is a version of the control function approach and is
valid for nonlinear models under certain conditions. In general, for instance, the endogenous regressor
(here, SAH) needs to be continuous. There are, however, specific forms of endogeneity under which
the control function approach is consistent with a discrete endogenous regressor (see, for instance, the
setup used in Terza et al., 2008). And even when it is inconsistent, the control function approach has
been advocated as a potentially useful remedy that might not cure the problem but reduce it in some
circumstances (Basu & Coe, 2015; Wooldridge, 2014).3

The results in Table 1 show that the infeasible estimator in column “h*” is virtually unbiased. The
naive estimator which uses the misreported SAH measures, depicted in column “h;”’, is severely biased.
The average estimate of « is about 45 percent below its true value of 1 in both sample sizes, illustrating
the pernicious effects of misreporting. The following two columns show the results obtained by using
the two common ad hoc fixes for reducing misreporting bias, averaging the two available measures,
and keeping only observations with the same reported SAH across both measures. The bias in the
estimated « is about -75 percent for both estimators. Thus, these procedures not only fail to improve

over the estimation using a single reported measure, but they even worsen the bias.

The columns “h;” and “é;” report the results for the possible ad hoc methods related to IV estimation.
All estimated parameters, including the slope of x, are very distorted overestimating the true value on
average by about 63 and 67 percent. Thus, such approaches, while well-suited to measurement error

in linear models, cannot be recommended as solutions to the measurement error problem at hand. We

3The control function approach might also be useful if the focus is on testing rather than estimation. Some tests

might be valid even when the estimator is inconsistent (Wooldridge, 2014; Staub, 2009).
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Table 2: SIMULATION RESULTS: BASELINE DGP

N =1,000 N = 10,000
h* hi FM PFM h* hy FM PFM
o) Bias 0.004 -0.459 0.041 0.018 0.002 -0.457 0.008 0.005

RMSE 0.152 0.482 0.286 0.267 0.050 0.460 0.085 0.083

3 const  Bias -0.007 0.258 0.004 0.073 -0.002 0.260 -0.010 -0.000
RMSE 0.167 0.303 0.349 0.247 0.049 0.265 0.118 0.098

Bslope Bias  0.014 0.169 0.017 -0.012 0.003 0.156 0.012 0.021
RMSE 0.271 0.317 0457 0.306 0.084 0.177 0.154 0.124

7] const  Bias -0.127 -0.313 0.036  0.003
RMSE 1.142  0.591 0.393  0.289

7 slope  Bias -0.013 -0.002 -0.064 -0.120
RMSE 1.560  0.552 0.517  0.363

‘y%lo const Bias -0.005 -0.064 0.039 0.034
RMSE 1.649  0.349 0.373  0.252

:711|0 slope Bias -0.272  -0.624 0.010 -0.199
RMSE 5.787  0.735 0.612 0.424

'Ay%'o const Bias -0.218 0.149 -0.012  0.048
RMSE 1.560  0.351 0.323 0.227

’y%m slope Bias -0.027 -0.538 0.022 -0.156
RMSE 9.004 0.672 0.547  0.380

fygll const Bias 0.109  0.224 -0.010  0.007
RMSE 0.964  0.395 0.249  0.195

‘yéll slope Bias 0.063 -0.162 0.028  0.031
RMSE 1.342  0.379 0.337  0.246

’3/(2”1 const Bias 0.024  0.388 -0.029 0.044
RMSE 0.770  0.482 0.235 0.194

4, slope  Bias 0.100  -0.342 0.049 -0.016
RMSE 1.056  0.489 0.281 0.221

see that for all these four ad-hoc approaches the estimated root mean squared error (RMSE) is driven
primarily by the bias. As these biases do not vanish with larger sample sizes, the RMSE approach the

bias as variances shrink with increasing V.

In Table 2 we present estimates from the proposed finite mixture (FM) estimator, as well as its
variant, the penalised finite mixture (PFM) estimator, for the same set of replications as in Table 1.
For reference, we have reprinted the infeasible (h}) and naive (h1) estimators. The FM estimator in
samples of N=1,000 is able to greatly reduce the bias from h; from 46 to 4 percent for a.. In samples
of N=10,000, the bias is less than 1 percent. The RMSE in the DGP with N=1,000 is about twice as
large as that of the infeasible estimator. The other parameters of the outcome model, 8y and 3;, are

estimated similarly well.

However, at N=1,000, there are larger biases, ranging up to about 20 percent, for the parameters of
the misclassification system; and even when the biases are small, the RMSE can still be substantial. It

is for this issue that we see the advantages of the PFM estimator most clearly. It achieves reductions
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Table 3: SIMULATION RESULTS: DGP WITH INTERACTION EFFECT IN HEALTH

N =1,000 N = 10,000
h* hi FM PFM h* hy FM PFM

& const Bias -0.004 -0.606 0.234 -0.020 0.008 -0.596 0.020 0.002
RMSE 0.284 0.669 0.966 0.560 0.090 0.602 0.186 0.177

& slope Bias 0.025 -0.374 -0.251 0.117 -0.011 -0.409 -0.018 0.012
RMSE 0.560 0.660 1.392 0.966 0.178 0.442 0.295 0.286

Bconst Bias -0.001 0.326 -0.138 0.055 -0.003 0.324 -0.015 -0.009
RMSE 0.212 0.380 0.820 0.349 0.063 0.330 0.149 0.131

B slope Bias -0.001 0.508 0.215 -0.007 0.006 0.514 0.018 0.024
RMSE 0.426 0.643 1.161 0.583 0.129 0.528 0.222  0.203

in the RMSE of these parameters that range from 50 to almost 90 percent. This improvement in the
estimation of the misclassification system also translates into uniformly lower RMSE in the estimates
of the outcome parameters, and sometimes also in bias reductions. For the estimate of «, for instance,

PFM reduces FM’s bias of 4 percent to less than 2 percent.

The DGP with a binary outcome, which we chose as our baseline, is the most difficult case for correcting
misclassification, as the additional information stemming from the outcome that identifies the whole
system is sparsest. Table Al in the Appendix explores other nonlinear outcome models where there
is more information in the dependent variable: counts and durations. In both these cases, the results

indicate that FM and PFM perform even better.

Next we make things even harder for the estimators by simulating from a DGP where the impact of
SAH on the outcome varies with z. The ability to easily specify interaction effects is a hallmark of our

approach. Thus, the outcome equation (20) has been augmented with an interaction effect:
yi = L(ahi + azhizi + o + iz + & > 0), (21)

where o is the coefficient on the new interaction between health and x, which in the simulation is set
to ap =1. Table 3 shows the results from this DGP, where for space reasons, only the parameters of
the outcome model are depicted. That this is a more challenging DGP can be clearly seen by observing
the RMSE at N=1,000 for the infeasible estimator, which almost doubles for the constant in a (and

quadruples for the slope in «, i.e. the interaction coefficient) relative to RMSE of « in the baseline.

The FM estimator, while still improving substantially over the naive approach, displays visible biases.
The estimate of both main and interaction effect of SAH have biases in absolute value of about 25
percent with N=1,000. These largely disappear with the larger sample size, where they are only about
2 percent. However, the PFM estimator is able to obtain improved estimates already in the smaller
sample size, with biases of about 2 and 12 percent for main effect and interaction, yielding reductions
in RMSE of about 50 and 40 percent relative to FM. At N=10,000, however, where FM works well,
the advantages of PFM over FM in this DGP are only marginal.

We conclude this section on the main results from the simulation by considering the case of a multi-

14



Table 4: SIMULATION RESULTS: MULTIVARIATE DGP FOR y = (y1,92)’, N = 1,000

p= 1.00 075 050 025 0.00

M
Bias 0.059 0.039 0.015 0.007 0.001
RMSE 0.309 0.289 0.283 0.286 0.281

3 const Bias 0.007 0.010 0.027 0.033 0.033
RMSE 0.354 0.326 0.313 0.312 0.304

leope Bias 0.004 0.017 0.008 0.003 0.004
RMSE 0.474 0.439 0.423 0.423 0.420

o

PFM
& Bias 0.045 0.029 0.009 0.001 -0.001
RMSE 0.284 0.265 0.262 0.266 0.263

Bconst Bias 0.044 0.044 0.059 0.064 0.065
RMSE 0.249 0.233 0.228 0.227 0.230

Bslope Bias  0.000 0.011 0.002 0.002 -0.000
RMSE 0.338 0.314 0.318 0.315 0.322

variate outcome. In Table 4 we present some results from estimations with two outcomes. We simulate

two binary outcomes from the specification:

yii = L(ahi+ B+ pfix+ey>0)
Yoi = ]l(ahf+50+51w+52¢>0).

This is a setup in the vein of “seemingly unrelated regressions”. The true coefficients have been specified
as having the same values across the two outcome equations, but this is merely for convenience and
the estimated coefficients are allowed to vary in estimation (i.e. they are not constrained to be the
same across equations). As explained previously, the gain from considering y; and y9 jointly is that,
since the parameters of the misclassification probabilities are the same across both outcomes, we are,
very loosely speaking, doubling the sample size available to estimate these parameters. The extent
in which pooling both outcomes adds information depends on the degree of the dependence between
the two errors, €; and 2. In the worst case, 1 = €2 and joint estimation will bring no advantage.
Since the only link between the two outcome equations is through the misreporting probabilities, for
all the approaches except our proposed method this multivariate DGP for (y1,y2) amounts to separate,
equation-by-equation estimation, a case indistinguishable from that of Tables land 2. Since the DGP
is symmetric for y; and ys, we only present estimates for equation y;. The table presents results for
N=1,000 for the cases where the correlation between the errors e; and €5 is equal to 1, 0.75, 0.50, 0.25,
and 0.

The case p=1 is the same as the baseline, and indeed we get very similar results. As the correlation
decreases, the estimators are mostly progressively more successful at reducing the biases in general,
although not uniformly (the bias in 5’0 increases, for instance). However, the RMSE is reduced in
all cases, with the magnitude of the reduction for FM ranging from about 10 to 20 percent. Similar,

although often slightly larger reductions in RMSE achieved for the parameters of the misclassification
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Table 5: SIMULATION RESULTS: MISSPECIFIED FUNCTIONAL FORM OF MISCLASSIFICATION, N=500

Scenario 1 Scenario 2
h* h1 NPIV FM PFM h* h1 NPIV FM PFM
Q Bias 0.012 -0.520 -0.124 0.087 0.070 0.015 -0.491 -0.108 0.062 0.070

RMSE 0.157 0.538 0.409 0.309 0.375 0.160 0.509 0.318 0.253 0.233

3 const Bias 0.000 0.275 0.061 -0.012 0.008 -0.001 0.263 0.052 0.006 -0.016
RMSE 0.104 0.290 0.238 0.138 0.129 0.104 0.279 0.205 0.132 0.137

3 slope Bias -0.011 -0.150 -0.138 0.014 0.020 -0.014 -0.094 -0.071 0.015 0.017
RMSE 0.165 0.210 0.332 0.220 0.230 0.165 0.176 0.307 0.234 0.197

system (see results in Appendix Table A2).

3.3 Misspecification

So far we have evaluated the performance of the FM and PFM estimators in DGPs where they correctly
specify the misclassification system. We now evaluate these proposed parametric estimators in a DGP
where the misclassification probabilities are misspecified. We use the setup of Hu (2008), and also
compare our estimator against the nonparametric instrumental variables (NPIV) estimator introduced
in that paper. We have argued that the FM/PFM estimators may have two potential advantages
despite the drawback of fully specifying the functional form of the misclassification probabilities and
the true health distribution. First, by using flexible specifications of the linear indices m;’y%, many
functional forms may be approximated well. Second, compared to more nonparametric approaches,
even if FM/PFM might be biased, they might still be preferable in RMSE. Here, we give some evidence

of the second point. That is, we don’t explore potential improvements by specifying polynomials of x;

in the linear indices.

The DGP in Hu (2008) is for a probit outcome y;, a binary misclassified regressor h}, and a normally
distributed covariate x;. Importantly, misclassification does not follow our logit-based functional forms.
Rather, it is a partially linear function with kinks (see Hu, 2008, p.45, for details) for details. We adjust
our outcome model to be a probit, but leave the misclassification probabilities and 7; as logistic. Table
5 shows our results for FM and PFM from our simulation from this DGP, with N=500 and 200
replications as in the original paper, next to the A}, hy and NPIV results from the paper. Scenarios

m

1 and 2 depicted in the table correspond to two variants of the DGP in which the probabilities 50‘1

depend negatively (Scenario 1) or positively (Scenario 2) on the regressor ;.

While NPIV substantially reduces the bias of the naive estimator, for instance from about 50 percent
to 12 percent for & in Scenario 1, FM and PFM reduce the bias even further, and they also have the
lowest RMSE of the feasible estimators presented.
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Table 6: SIMULATION RESULTS: DGP WITH MULTINOMIAL HEALTH (h* =0,1...,4)

N =1,000 N = 10,000

h* hy FM PFM h* hi FM PFM

a1 Bias 0.056 -0.298 0.166 0.105 0.017 -0.293 0.039 0.013
RMSE 0.392 0.379 0.786 0.738 0.094 0.302 0.175 0.169

Qg Bias 0.033 -0.521 0.095 0.057 0.005 -0.534 0.028 0.012
RMSE 0.301 0.570 0.381 0.574 0.093 0.539 0.157 0.149

a3 Bias 0.065 -0.741 0.161 0.147 0.003 -0.754 0.019 0.001
RMSE 0.307 0.772 0.533 0.612 0.082 0.758 0.155 0.145

G Bias -0.123 -0.926 0.078 0.127 0.003 -0.937 0.027 0.010

RMSE 0.285 0951 0.453 0.571 0.087 0.940 0.130 0.131

Bconst Bias -0.026  0.648 -0.123 -0.082 -0.011 0.660 -0.030 -0.009
RMSE 0.241 0.670 0.419 0.517 0.077 0.662 0.128 0.124

3 slope Bias 0.110 0.133 0.150 0.039 0.005 0.165 0.005 0.019
RMSE 0.266 0.264 0.275 0.278 0.071 0.180 0.073 0.077

3.4 Extension to multinomial health

To conclude our simulation study, we present results from a DGP with a discrete SAH measure with

five categories, h* = 0,...,4. We simulate from the following DGP:
yi = 1(oa by + a2 hy; + a3 ha; + auhy + Bo + Bra + & > 0), (22)
where we specify a = (a1, ag, as, ayq)’ = (0.5, 1.0, 1.5, 2.0)". The parameters Sy and 31 are set to -1

and 1. We specify the misreporting probabilities as

exp(— exp("yﬁjcons‘c + 7i;8lope x;))

m

5 .. =
klii =™ 1 4 >kt €XD(— exp('y]’c"”‘jconst + Vg|;slope x;))

. forj#k,

and set all slope parameters equal to 1, ’yl’;‘”‘jslopezl, and specify the constants as 'y%const = 0.25|7—k|.
The marginal distribution of true health is specified as 7 = (0.10,0.15,0.20, 0.25,0.30) by setting

exp(n;const + 7n;slope x;)

i j=1,2,34,

14 2?21 exp(n;const + n;slope ;)
with slopes equal to 1.0, 2.0, 2.0 and 2.5, and constant chosen such as to yield the marginal distribution

specified above.

This DGP is more challenging not only in that it has more parameters, but also in that misreporting
is much more prevalent. About 61 percent of individuals report different values for hy and ho. For
roughly half of these, 31 percent, the discrepancy between the first and second SAH measure is 1.
Discrepancies of 2, 3, and 4 occur in 18, 9, and 3 percent of individuals. The 6,%#. vary between about
2 and 20 percent. To the best of our knowledge, this is the first simulation evidence of this type of

DGP of a categorical regressor with flexible effects.

The results of the simulation for the parameters of the outcome model are collected in Table 6. Again,

that this is a more challenging DGP can be seen in the biases and RMSE that are apparent in the
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infeasible estimator. We see that at N=1,000, FM and PFM show some visible biases, in the order of
about 8 to 16 percent. However, in the larger sample size these biases have all but disappeared, with

the maximum bias in FM being less than 4 percent and that in PFM less than 2 percent.

To summarise, the simulation results in this section illustrated a number of issues which inform our
application of the estimation to real world data. First, none of the inconsistent estimators can be
recommended in general. Second, the performance of the FM estimator can often be substantially
improved, especially in smaller samples by using the penalised version. Third, the performance might
also be improved by combining outcomes and estimating them jointly. Fourth, the estimator is able
to estimate the effects of interest reliably even under challenging circumstances such as many health
categories, interaction effects, and severe misreporting, in samples of about 10,000 observations. In
the next section, we will estimate a joint logit-logit model for mortality and morbidity using two

five-category SAH measures and a sample of over 12,000 individuals.

4 Estimating the effects of SAH on mortality and morbidity

In this section we present estimates of the association between SAH and two outcomes measured
15 years later: mortality (whether the individual is deceased) and, if the individual is not deceased,
whether he or she developed any chronic conditions in the 15-years period. We first present the HILDA
data in Section and have a close look at the categorical self-reported health measures in HILDA, for
which repeated measures are available in some waves (Section 4.1). We then estimate our joint model
and discuss the estimates from the outcome equations in Section 4.2 and the estimates from the

misclassification system in Section 4.3.

4.1 Descriptive statistics

The HILDA Survey is a yearly household-based longitudinal survey in Australia that began in 2001
(Summerfield et al., 2014). The survey covers a broad range of social and economic topics such as
household formation, income, work and health, and most questions are repeated every year in each
wave. Responses of individuals aged 15 or above are published and the non-response reasons are
recorded where they are known. Wave 1 of the survey covers a total of 7,682 households and 13,969
responding individuals. These individuals were followed up in the later waves and new household mem-
bers joining the original sample were also included. A further 2,153 household and 4,009 individuals
were added as a top-up sample in 2011. Overall, there are roughly about 13,000 respondents in each
wave of the HILDA Survey from 2001 to 2013. In 2014, the survey sample was matched to the National
Death Index so that details of individuals’ year and age of death are now available in HILDA for all

those originally in the survey, including the non-responders.

In waves 1, 9 and 13 of the survey, the SAH question is asked twice for each individual. The question is

first asked as a part of the Person Questionnaire that is conducted by an interviewer face-to-face or over
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Table 7: DESCRIPTIVE STATISTICS

Variable N Mean Std.Dev.

Covariates (Wave 1)

age/10 (years/10) 12,008 0.438  0.176
male (=1, if yes) 12,908 0.470 0.499
education/10 (years/10) 12,908 1.272 0.203
log HH income 12,908 3.135 0.654
chronic condition (=1 if any chronic conditions in 2001) 12,908 0.233 0.423
married (=1, if married or in a relationship) 12,908 0.642 0.479
overseas (=1, if born overseas) 12,908 0.243 0.429
not in labour force (=1, if yes) 12,908 0.344 0.475
unemployed (=1, if yes) 12,908 0.042 0.201
smoker (=1, if current or former smoker) 12,908 0.493  0.500

Outcomes (Wave 16)
dead (=1, if deceased by 2016) 12,908 0.109  0.312
cond (=1, if any new chronic conditions in 2016 since 2001) 7,340  0.161 0.368

the phone. The SAH question is the first question in the health section, followed by a number of other
health-related questions such as long-term conditions and disabilities. We designate this variable as
h1. Respondents are asked to choose their rating on a 5-option scale labelled as “Poor”, “Fair”, “Good”,
“Very Good”, and “Excellent” and which we code as 0, ..., 4. Then, individuals who have responded to
the Person Questionnaire are issued with the Self Completion Questionnaire, which is to be filled in by
the respondents themselves and collected by the interviewers after completion. In this questionnaire,
the same SAH question is asked again at the beginning of the SF-36 Health Survey. We designate this
variable as ho, and code it in the same way as hy. The dates of completing both questionnaires are
available in HILDA for waves 9 and 13. On average, the questionnaires were completed only 4.8 days
and 4.6 days apart in 2009 and 2013, respectively. The median for time between completion of the
two questionnaires is 1 day in both survey waves. Since the surveys were taken not too long apart, the
likelihood of an actual change in health is fairly low. As a result, we believe that most of the changes
to the answers of SAH questions are merely random changes that were unlikely due to changes in their

underlying true health status.

Ultimately, we are only interested in hq; and ho; for the first wave in 2001 because we want to study
long-term (15-year) mortality. There are 12,908 individuals with responses on hy; and hg;. Descriptive
statistics for selected demographic and socio-economic characteristics ofthese individuals are given in
Table 7. The top panel of Table 8 reports the joint-distribution (in percent of respondents) from the
two SAH questions. About 27.8 percent of respondents changed their health status between hy; and
hei, a finding which is similar to that reported by Clarke & Ryan (2006). It could be that this pattern
is specific to the first wave. However, the joint distributions of hi; and hg; in waves 9 (N=11,110) and

13 (N=14,993) are very similar to the one in wave 1 (middle and bottom panels of Table 8), and so is
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Table 8: JOINT DISTRIBUTION OF SRH MEASURES FROM PERSONAL QUESTIONNAIRE (h;) AND
SELF-COMPLETION (QUESTIONNAIRE (hg) IN HILDA

Wave 1, N = 12,908
ha
hi 0 1 2 3 4 Total
0 265 1.03 0.16 0.04 0.02 3.90
1 0.55 894 211 030 0.02 11.92
2 0.13 236 2164 397 0.52 28.62
3 0.04 053 7.23 25.67 2.03 35.50
4 0.02 0.09 090 574 13.33 20.07
Total 3.38 12.95 32.04 35.71 15.92 100.00

WavE 9, N = 11,110

ha

hy 0 1 2 3 4 Total
0 266 1.12 0.16 0.07 0.01 4.02
1 0.32 853 331 023 0.065 1244
2 0.08 220 2396 525 023 31.72
3 0.00 023 6.24 2755 205 36.08
4 0.00 0.05 053 4.28 1089 15.74
Total 3.06 12.12 34.20 37.38 13.23 100.00

Wave 13, N = 14,993

ha

hy 0 1 2 3 4 Total
231 121 019 0.04 0.01 3.75
054 938 372 034 001 14.00
0.11 240 2416 4.84 036 31.86
0.03 026 6.71 2736 206 36.42
4 0.00 0.02 042 393 9.60 1397
Total 2.98 13.27 35.20 36.50 12.05 100.00

W N = O

the share of respondents giving different answers for hy and hy: 26.4 and 27.2 percent for waves 9 and

13, respectively.

Although there is a consistent percentage of individuals who revised their health status in each wave,
the change was not driven by the same individuals over time. The correlation of switchers (individuals
who revised their response) in wave 1 and switchers in wave 9 is only 0.03 while the correlation of
switchers in wave 9 and switchers in wave 13 is only 0.05, which means the vast majority of the
switchers are actually new switchers from one wave to another. This increases our confidence that

switching displays are large amount of randomness.

Given the two questionnaires were completed around the same time for most people in each wave,
and the percentage of switchers stays consistent over time, we conjecture that at least one of the SAH
measures, if not both, is measured with some error. The marginal distributions of hy and ho given
in Table 8 also reveal that individuals are more likely to select the extreme categories— poor” (0)
and “excellent” (4)—when responding to an interview (h;) than a written questionnaire (hy). This

may suggest that compared to the self-completion mode the interviewing mode increases the chance
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Table 9: ESTIMATION RESULTS: LOGIT MODELS FOR CHANGES IN SAH RESPONSE: ANY CHANGE
(=1 1F hy # h2), UP (=1 IF hy < ha), AND DOWN (=1 IF h; > h2)

Dep. var. change up down
(1) (2) (3) (4) (5) (6)
age/100 0.69 -0.17 0.75 0.88 0.56 -0.79
(0.57)  (0.65) (0.83) (0.94) (0.66) (0.76)
age? /100 0.16 1.01 -0.36 -0.83 0.36 1.91**
(0.59)  (0.67) (0.86) (0.98) (0.68) (0.78)
male 0.05 0.05 0.23**  0.23** -0.07 -0.08
(0.04) (0.04) (0.06) (0.06) (0.05) (0.05)
education/10 -0.54**  -0.59** -0.45** -0.44** -0.48** -0.55**
(0.11)  (0.11)  (0.16) (0.16)  (0.13)  (0.13)
log HH income -0.13**  -0.13** -0.21** -0.16" -0.04  -0.07*
(0.03) (0.03) (0.04) (0.05) (0.04) (0.04)
chronic condition -0.14** 0.27** -0.39**
(0.05) (0.07) (0.06)
married 0.13** -0.02 0.19**
(0.05) (0.07) (0.06)
overseas 0.21** 0.22** 0.15**
(0.05) (0.07) (0.05)
not in labour force 0.03 0.11 -0.03
(0.05) (0.08) (0.06)
unemployed 0.05 0.10 0.01
(0.10) (0.14) (0.12)
smoker 0.03 -0.03 0.06
(0.04) (0.06) (0.05)
mean dep. var. 0.278 0.102 0.176
N 12,908 12,908 12,908

Standard errors in parentheses
* p<0.10, ** p < 0.05

that individuals misclassify into more extreme categories; or, alternatively, that compared to the self-
completion mode the interviewing mode reduces the chance that individuals misclassify into the middle

categories. Either or both cases could produce the observed joint distribution.

We begin our empirical investigation by applying a strategy used in the previous literature to char-
acterise the misclassification behaviour of individuals (Black et al., 2016). In Table 9, we present
estimates of logit models where the dependent variable is an indicator that an individual gave two
conflicting reports of SAH, 1(hy; # hg;) (Columns 1 and 2), an indicator that they gave a higher SAH
in the self-completion questionnaire, 1(h1; < hg;) (Columns 3 and 4), and that gave a higher SAH
in the personal questionnaire, 1(h1; < hg;) (Columns 5 and 6). Pairs of columns show results for a
minimal specification based only on age, sex, education and income, and a fuller specification which
in addition includes indicators for whether individuals suffered from any chronic conditions in 2001
(chronic condition), whether they were married or in a relationship (married), whether they were born

overseas (overseas), whether they were not in the labour force (not in labour force), whether they were
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unemployed (unemployed) and whether they were currently smokers or had been smokers in the past

(smoker).

The presence of some statistically significant estimates suggest that misclassification is related to co-
variates. In particular, consistent with the previous literature, low education and income are strongly
predictive of giving conflicting reports of health. However, insignificant estimates are harder to in-
terpret. There could be different types of misclassification patterns which ‘average out’, resulting in
the finding of insignificant effects on the variable “change” (1(h1; # ho;)). For instance, the regressor
male, has an effect on the dependent variable “up” (1(h1; < hg;)) despite not having effect on “change”.
However, more complex patterns can be completely undetectable with these dependent variables based
on the cross-tabulation of h; and hy. By estimating our finite mixture model, we can go beyond
these reduced-form patterns in misclassification and instead examine the underlying misclassification

probabilities which generate these patterns.

4.2 A joint model for mortality and development of new chronic conditions ad-

justing for misreported SAH

We estimate a simple model for mortality where the probability of being deceased within 15 years is
affected by age, gender, and basic indicators of socio-economic status such as education and household
income. Conditional on survival, we also estimate the development of any new chronic conditions
that individuals report having 15 years after the initial survey. There were 12,908 individuals in the
2001 survey of which 10.9%) were deceased by 2016. We can obtain information on the development of
new chronic conditions in 2013 for 7,340 individuals. Means and standard deviations for these outcome
variables are also reported in Table 7, along with those of the covariates. We use the same specifications
as before and estimate the two outcomes jointly using the penalised finite mixture estimator, using the

same x; specification to parametrise the misclassification probabilities according to equation (25).

Table 10 contains the estimates of the outcome parameters of our model. We present results from the
same two specifications as before: a reduced one which estimates the effect of true SAH on mortality
and chronic conditions controlling only for age, sex, education and income; and a more extended one
which controls for further socio-economic measures, as well as for health status in 2001 through the
presence of chronic conditions, and for risky behaviours through the presence of the smoker status. The
shorter specification results are depicted in Columns (1) and (3) for mortality and chronic conditions.
We pair each column of results with a column indicating the difference to the corresponding estimates
from the naive estimator which simply uses the first observed measure of SAH, hy. For the key
parameters of interest, the health coefficients «;, the differences to the naive approach are larger and
more statistically significant for mortality than for the new chronic condition indicator. Interestingly,
the differences in Column (2) for the mortality outcomes are increasing, indicating that not only is
there a statistically significant bias in the naive approach, but that that the pattern of the effect of
SAH on mortality is also biased. However, despite the large share of individuals with different answers
in hy and ho and, thus, the large implicit potential for bias which we documented in the simulations,

the magnitude of the statistically significant biases that we find are moderate, ranging mostly from
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Table 10: ESTIMATION RESULTS: SYSTEM PENALISED FINITE MIXTURE MODELS FOR MORTALITY
(DEAD: YES/NO) AND MORBIDITY (CHRONIC CONDITION: YES/NO)

System PFM System PFM
Dep. var./diff. PFM-naive  Dead diff. Cond. diff. Dead diff. Cond. diff.

(1) (2) (3) (4) (5) (6) (7) (8)

o -0.96**  -0.07 -0.23 0.07 -0.80**  -0.06 -0.15 0.01
(0.14) (0.06)  (0.17) (0.09) (0.14) (0.04)  (0.17)  (0.08)

a9 -1.42*  -0.11** -0.72** 0.03 -1.13**  -0.10"* -0.41** 0.03
(0.13) (0.05) (0.16) (0.08)  (0.15) (0.05)  (0.17)  (0.08)

a3 -1.84** -0.16** -1.10* -0.02 -1.46** -0.12* -0.71** -0.02
(0.14) (0.06)  (0.16) (0.08) (0.16) (0.06)  (0.18)  (0.08)

oy -2.18*  -0.26** -1.49** -0.11 -1.77* -0.24** -1.11** -0.16*
(0.19) (0.09) (0.19) (0.09) (0.20) (0.09)  (0.20) (0.09)

age/lOO -4.88**  -0.28*  5.82** -0.12  -3.90** -0.11 6.28** -0.08
(1.50) (0.10)  (1.29) (0.09) (1.56) (0.08)  (1.39) (0.09)

age2/100 13.94** 0.16 -2.55* 0.03 13.20** 0.04 -3.08** 0.00
(1.36) (0.10)  (1.36) (0.09) (1.44) (0.08)  (1.49) (0.10)

male 0.65** -0.00 -0.09  0.01* 0.58* -0.00 -0.12* 0.01
(0.08) (0.01) (0.07) (0.00) (0.08) (0.00)  (0.07)  (0.00)

education/10 -0.21 0.06** -0.63** 0.03** -0.12 0.03**  -0.52**  0.01
(0.22) (0.02) (0.18) (0.01) (0.22) (0.01)  (0.18) (0.01)
log HH. income -0.13**  0.03** -0.23** 0.02** -0.10* 0.01* -0.17** 0.01*
(0.06) (0.01)  (0.05) (0.00) (0.06) (0.00)  (0.06) (0.00)

chronic condition 0.27**  -0.03* 0.39" -0.00
(0.09) (0.02)  (0.09) (0.02)

married -0.38**  -0.01** -0.14* 0.00
(0.08) (0.00)  (0.08) (0.00)
overseas -0.25**  0.01** -0.05  0.01*
(0.09) (0.00)  (0.08) (0.00)

not in labour force 0.07 -0.02** 0.13 -0.00
(0.11) (0.01)  (0.09) (0.01)

unemployed 0.07 0.01 0.31* 0.01
(0.25) (0.01)  (0.17) (0.01)

smoker 0.60** 0.00 0.29** 0.00

(0.08)  (0.01)  (0.07)  (0.00)

N 12,908 7,340 12,908 7,340

Standard errors in parentheses
* p<0.10, " p < 0.05
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Figure 1: HETEROGENEITY IN THE EFFECT OF HEALTH ON MORBIDITY AND MORTALITY
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Notes: Data from HILDA waves 1 and 16 for individuals who responded to SRH questions in wave 1.

about 10 to 20 percent in both a as well as 3.

As a sensitivity analysis, we also estimated specifications where we replaced the continuous variables
age, education and household income by sets of dummy variables. The estimation results can be found
in Appendix Table A3 (and additional descriptive statistics for the discretised variables in Table A4).
We find broadly similar results to the ones in our baseline specification with continuous regressors,

althougg differences tend to be somewhat larger.

Finally, we also estimated specifications with interaction effects in true unobserved health. We run
four separate specifications where we interacted health with education, household income, sex, and age
(results for these specifications are in Table A5 in the appendix). We found little evidence for significant
differences to the naive approach for either income and age. However there where large and significant
differences in both mortality and chronic conditions for education, and in mortality for sex. These
differences ranged from roughly 30 to 100 percent. To examine the heterogeneity in these variables

further, Figure 1 visualises the estimates by comparing the effects for each true health category for
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male vs. women, and for low education (11 years) vs high education (18 years). Dots represent relative
changes in the odds of either dying (Panel (a)) or, conditional on surviving, developing a chronic
condition (Panel (b)) relative to a male in poor health (left-hand-side graphs) or relative to a person
with less than 12 years of education and in poor health (right-hand-side graphs). For instance, we
see from the top left graph that a female in poor health has, ceteris paribus, about 50 percent lower
odds of dying within 15 years than a male in poor health; however, both female and males in excellent
health have about the same odds of dying, and these are about 200 percent lower than those of the
male in poor health. The heterogeneity pattern between males and females in the effect of health on
chronic conditions is different. Here, for all health levels except “excellent”, the difference in the odds
of dying between males and females are approximately constant and about 100 percent, whereas for

“excellent” health the difference is over 150 percent.

Of particular interest are the results from the graphs that look for heterogeneous responses in education
(right-hand-side graphs). These graphs strongly suggest that there is no heterogeneity in the effect of
health across education on neither mortality nor on chronic conditions. However, for these results the
difference of the PFM estimates to the estimates of the naive estimator varies strongly with the level
of health. Thus, the naive estimator would have “detected” a pattern of heterogeneity with respect
to education in the effect of health on mortality and morbidity. The contrast to the PFM results
indicates that in reality these patterns showing up in the naive estimator are likely biases arising from

differences in misreporting across education levels.

Concluding, we found small statistical differences between the naive and the PFM approach in the
baseline specification. The moderate magnitude of these differences suggest that the use of SAH as a
control variable might not be compromised despite the large shares of inconsistent answers in SAH.
This is a result which might be useful to researchers who rely on including SAH in their empirical
analysis as a useful way of addressing omitted variable bias from health status. However, at the same
time, the larger biases found in the specifications with interaction effects also showed the limits of what
can be learned from SAH without addressing misclassification. For such more nuanced specifications,

relying on the naive approach can lead to substantially biased conclusions

4.3 SAH and misclassification

We use our estimates next to assess the extent of misclassification. First, Figure 2 shows the pos-
terior probabilities of belonging to different true health categories, that is P(h* = jlh1 = ki, he =
ko, dead, conditions, «x, é), averaged over each reported health category. We already commented on the
discrepancy between the two SRH in the best health category, with more people reporting being in
“excellent” health in face-to-face interviews (h;) than when filling out questionnaires privately (hz).
The figure suggests that the share of individuals in true excellent health is lower among responses
in the face-to-face interviews than in the privately filled-out questionnaires. Conversely, the share of
truthfully reported poor health status is higher in the face-to-face interviews, perhaps because such
a health status would also be evident to the interviewer. Both measures look most similar in their

composition of the reported middle category.
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Figure 2: POSTERIOR PROBABILITIES OF TRUE HEALTH STATUS FOR EACH REPORTED HEALTH
STATUS, N = 12,908
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Notes: Data from HILDA waves 1 and 16 for individuals who responded to SRH questions in wave 1.

While Figure 2 considers average probabilities, Figure Al in the appendix shows that there is con-
siderable heterogeneity in the individual probabilities of reporting health status truthfully. Using box
plots, Figure A1 documents the large dispersion in probabilities of reporting true health that exist in
the face-to-face SAH question for reported poor health, and in the self-completion SAH question for
reported excellent health. The three middle categories tend to be less dissimilar, although we find that
the face-to-face interview produces substantially lower probabilities of truthful reporting: For “good”
and “very good” health, for instance, the median probability for h; is below the first quartile of the hq
probabilities.

We have so far focussed on the probability of reporting truthfully. Now we take a closer look at the
ways people fail to report truthfully. In Figure 3 we show average marginal effects, or rather average
discrete effects, of four variables on the probabilities of reporting higher and lower health than the true
health status, for each level of true health. True health is on the x axis, and for every category the
bars in the upper part of a graph represent the probability of overstating health; and the bars in the
lower part of the graph, that of understating it. Overall, reporting better health than one’s true health

is more prevalent than reporting worse than true health.

The top left graph contrasts these probabilities by sex. The differences are small; men tend to have
larger probabilities of reporting better than true health, while women worse than true. The top right

graph considers differences by age. The average effect considered here is a change from age 40, which is

26



Figure 3: MARGINAL EFFECTS OF REPORTING UP (A, > h*) AND DOWN (h,, < h*), N = 12,908
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Notes: Data from HILDA waves 1 and 16 for individuals who responded to SRH questions in wave 1.

close to the sample average, to age 75. Older individuals have visibly higher misreporting probabilities
across the board; with only the exception of poor health, for which misreporting is slightly higher for
the younger age. It is interesting to note that the simple reduced form regressions largely missed the
effect of age on misreporting. The bottom left graph contrasts the effect of high education (18 years of
schooling) to that of low education (less than 12 years of schooling). While we see that the differences
by education are large, the signs are both positive and negative: The highly-educated overstate their
true health, while lowly-educated understate it. Finally, contrasting low income (average income in
lowest quintile) to high income (average in highest quintile), the bottom right graph suggests that low-
income tends to be associated with higher misreporting in both directions, but it is especially related
to overstating true health status in all categories (rather than understating it). As a complement to
this figure, Appendix Figure A2 shows similar marginal effects but on the probability of reporting
truthfully.
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5 Conclusions

In this paper, we considered nonlinear regression models where the key regressor is a categorical health
variable, and only potentially misclassified measures of SAH are available. We studied the finite sample
performance of an estimator that exploits the joint distribution of the outcome and two misclassified
health measures, under the assumption that all three variables are independent of each other conditional
on true health (that misclassification is not outcome dependent nor systematically related across the
two misclassified health measures). The results illustrated the superior performance of this estimator

against possible ad-hoc ways of dealing with the misclassification.

Our simulation results can provide guidance to other practitioners working with misclassified categorical
regressors. The use of ad-hoc methods such as averaging the responses or restricting the sample to
individuals with the same responses in both measures cannot be recommended in most cases; nor
can the use of two-stage prediction inclusion or residual inclusion. Sample sizes in the order of 10,000
observations seem to be necessary to achieve reliable estimates when using a misclassified regressor with
many categories and the dependent variable only has a few outcomes. Using a penalised estimator can
visibly improve the performance of the estimator. Using several dependent variables jointly can help
reduce finite sample bias. Finite sample bias is also expected to be smaller with dependent variables
with more possible outcomes, such as counts or durations, compared to, for instance, binary dependent
variables. Finally, in principle, estimates of the misclassification parameters from one study can be
used to adjust key outcome parameters from another study using the assumption that the nature of
misclassification will stay constant. This might be especially useful for exploring the sensitivity to
misclassification in studies which only have one mis-measured SAH measure or have small sample sizes

available.

We applied the misclassification estimator to survey data from HILDA, where repeated measures of
SAH made the degree of the misclassification problem visible in the high share of respondents exhibiting
different answers to the repeated health questions. The estimates we obtained adjusting for misclassifi-
cation thus represent the first reliable evidence of the association between SAH and long-term mortality
and morbidity. Compared to the naive approach of using observed SAH, the proposed estimator de-
livered results which indicated an impact of SAH which tended to be somewhat larger and less linear.
Large differences were obtained for some specifications with interaction effects, where the conclusions
drawn from the analysis would have been different if no adjustment for misclassification were made.
The analysis of the estimated misclassification probabilities revealed the pervasiveness of misreporting

and a substantial amount of heterogeneity in misreporting linked to observable characteristics.
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Appendix

A.1 General model with categorical health

The pendant to equation (6) in the case of an ordinal regressor h is

F(ro,r1,ma) = Y pj F(ro,r1,ralhf = j) (23)
=0

4
= > pj F(rolh = j)F(r1|hi = j)F(ra|h} = j),
§=0

where, naturally, mp = 1 — Z?Zl ;.

For F(rg|h}) we have:

F(rolhi = 7) Aoy +xiB)" (1—A (o) + m;ﬂ))l‘m for j =1,2,3,4
F(rolhi =0) = A(2}8)" (1-A(2}8))""

And for F(r,,|h"):

In this formula, there is always one 5% with j = k. These are defined as

= P(hmi = jlhf = §) =1=) &t (24)
k#j

The condition to avoid mirror solutions in the case with multiple categories of SAH is that the proba-
bility of truthfully reporting a health level j is larger than any probability of misreporting it:

;Tjj > 6]"{/’7'7/]7 vj? k?
which is a generalisation of the condition (7) for the case of two categories. To implement this constraint

in the estimation, we use the following parametrisation of misreporting probabilities:

exp(— exp(z;7}];))

, (25)
Lt D ey ©XP(— exp(@iyy;))

m
Opl; =

which in turn is a generalisation of (8). With covariates, the multinomial logit model is the natural

generalisation of (9), the model for true health conditional on @;:

exp(x;n;)

wii = P(h = jlz;) = :
S P S T ontainy

(26)
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A.2 Counts and durations: Poisson and Weibull models

The proposed approach can be extended to many common nonlinear models that follow the form
flyilhi, zi) = g(a b +z;8; w), (27)

where f(-|-) is a functional of the conditional distribution of y; given true health status h} and a
K x 1 vector of covariates x;, and ¢(-) is a known nonlinear function, which might include ancillary
parameters w. To avoid notational clutter, h} is binary. Typical examples for f(y;|h},x;) include
it being a survival rate (probability), the time until developing a health condition (hazard rate), the

number of doctor visits (count), or expenditures for health care (nonlinear expectation).

For instance, if y; follows a Poisson distribution we might use the specification

exp(—)\i))\i/i

, Ai=exp(ahi +xiB), (28)

where the left-hand-side of (28) corresponds to f(+|-) and the right-hand-side to g(-). We can use the
EM algorithm described in (15)-(17) to estimate this model directly, simply by replacing F'(y;|h}) in
those equations by P(y;|h!, x;) from (28). Alternatively, one could also base estimation of the Poisson

model on its expectation E(y;|h}, ;) = A\; and use the GMM approach based on moment conditions
E((yi . )\i)wi> —0, (29)
where, here, f(y;|h!, x;) = E(y;|h}, ;) and g(ahf +x,8) = \;.

Similarly, if y; was a duration and followed a Weibull distribution with parameters \; and w, we could
estimate the model using the EM algorithm. The corresponding F'(y;|h}) term in this case would
simply be the probability density function

Flyilhf @) = hwye texp(=My¥), A = exp(ah} + z;B). (30)

A.3 GMM estimator

To estimate the model by GMM, we use the indicator variables I;°"*"2, defined as
L™ = 1 (y; = ro, hig =71, hay = 12),

and which are equal to one if all their arguments are true, and equal to zero otherwise. We then base

estimation on the 7 x K moment conditions of the form
E( [1]°"" — Fi(ro,r1,7m2)| @i ) = 0, (31)

for seven unique values of the triplet (rg,r1,72) —e.g., (0,0,0), (0,0,1), (0,1,0), etc.—, and where
K is the number of regressors in x; including a constant. (The eighth variable, say Iilll, is lin-

early dependent of the other seven; as is F(1,1,1) of the other seven F(rg,r1,72). Thus, the eighth
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equation provides no additional information and is discarded.) We obtain, é, an estimate for 8 =

(o, B, p*, 5(1)|1, 53“, (5h0, (5%0), by solving the GMM minimisation problem

N
6 = argmin ; Q:(0)WxQ,(6), (32)

where the [7K X 1]-vector of moment conditions is

R
() (=]
— (e}

\
=
“O
“O
(@)

~
<o
=
o

Qi(e) =

~
S
=)
S

~
Sl
o
=

— — — — — — —

~ sN

= o

— —_

(e} _

i 5

e U e T N N

— o

[a— [a—

o —

N NI NN N NI N’
8

.

and Wy is a [TK x TK] positive definite weighting matrix with plim W. The weighting matrix Wy
may be specified as the identity matrix, or estimated in an optimal two-step approach. Note that the

i subscript for the joint probabilities F;(rg,r1,72) stems from the dependence of these terms on x;.
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A.4 Additional results

Table Al: SIMULATION RESULTS: COUNTS (POISSON) AND DURATIONS (WEIBULL) DGPS
Poisson, N = 1,000 Weibull, N = 1,000
h* hi FM PFM h* hi FM PFM

Bias -0.004 -0.469 0.001 -0.008 -0.000 -0.469 0.005 -0.007
RMSE 0.049 0474 0.073 0.073 0.072 0470 0.117 0.113

B const  Bias 0.001  0.197 -0.002 0.005 0.006 0.191 0.008 0.019
RMSE 0.055 0.210 0.101 0.095 0.076 0.193 0.141 0.117

leope Bias 0.006 0.126 -0.001 0.005 -0.002 0.129 -0.000 0.015
RMSE 0.058 0.173 0.085 0.077 0.113 0.134 0.198  0.155

joN

f) const  Bias 0.003  0.011 -0.034  -0.065
RMSE 0.316  0.278 0.514  0.375
7 slope  Bias 0.009 -0.043 0.036  -0.021
RMSE 0.459  0.403 0.773  0.522
A1jo const  Bias -0.028  0.113 -0.014  0.115
RMSE 0.483  0.287 0.629  0.317
) slope  Bias 0.118  -0.259 0.137  -0.366
RMSE 0.880  0.482 1234 0.572
41 const  Bias -0.028  0.209 -0.124  0.198
RMSE 0.448  0.326 0.728  0.338
A1 slope  Bias 0.043  -0.368 0.211 -0.417
RMSE 0.722  0.549 1.317  0.621
Fop const  Bias -0.022  0.063 0.024 0.131
RMSE 0.262  0.217 0.410  0.287
Jop, slope  Bias 0.034 -0.084 -0.002  -0.139
RMSE 0.363  0.299 0.580  0.363
4, const  Bias -0.042  0.156 -0.045  0.209
RMSE 0.366  0.286 0.442  0.334
45p slope  Bias 0.053  -0.209 0.072  -0.249
RMSE 0.485  0.390 0.584  0.433
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Table A2: SIMULATION RESULTS: FULL RESULTS—MULTIVARIATE DGP y = (y1,42)’, N = 1,000

FM PFM

p= 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00

& Bias 0.059 0.039 0.015 0.007 0.001 0.045 0.029 0.009 0.001 -0.001
RMSE 0.309 0.289 0.283 0.286 0.281 0.284 0.265 0.262 0.266 0.263

A3 const Bias 0.007 0.010 0.027 0.033 0.033 0.044 0.044 0.059 0.064 0.065
RMSE 0.354 0.326 0313 0.312 0.304 0.249 0.233 0.228 0.227 0.230

3 slope Bias 0.004 0.017 0.008 0.003 0.004 0.000 0.011 0.002 0.002 -0.000
RMSE 0.474 0439 0.423 0423 0.420 0.338 0.314 0.318 0.315 0.322

7 const Bias -0.145 -0.142 -0.153 -0.151 -0.118 -0.242 -0.223 -0.229 -0.229 -0.216
RMSE 1.157 1.093 1.038 1.009 0.987 0.652 0.587 0.578 0.554 0.544

7 slope Bias -0.009 0.013 0.028 0.089 0.035 -0.047 -0.047 -0.040 -0.035 -0.034
RMSE 1.562 1.509 1.446 1.400 1.395 0.676 0.643 0.627 0.611 0.613

'?11|0 const DBias -0.093 -0.087 -0.078 -0.121 -0.099 -0.072 -0.060 -0.070 -0.071 -0.061
RMSE 1.601 1525 1.384 1.385 1.321 0.444 0.412 0.394 0.378 0.372

&11|0 slope DBias 0.019 0.025 0.057 0.163 0.214 -0.479 -0.467 -0.454 -0.442 -0.435
RMSE 2811 2756 2594 2519 2477 0.741 0.726 0.706 0.696 0.684

’yflo const DBias -0.201  -0.267 -0.257 -0.297 -0.216 0.114 0.116 0.117 0.114 0.118
RMSE 1.645 1939 1598 1.998 1466 0455 0.414 0.406 0.394 0.387

ﬁ/ﬁo slope DBias 0.297 0.368 0.339 0417 0.312 -0.436 -0.426 -0.434 -0.435 -0.424
RMSE 2.525 2767 2500 2.842 2371 0.717 0.687 0.685 0.679 0.660

'Ayéu const DBias 0.094 0.114 0.108 0.096 0.073 0.148 0.131 0.130 0.131 0.125
RMSE 0.960 0.964 0.894 0.871 0.846 0.454 0.403 0.387 0.380 0.371

&6” slope DBias 0.066 0.015 0.026 0.027 0.054 -0.048 -0.041 -0.042 -0.045 -0.047
RMSE 1.310 1.287 1.235 1.209 1.214 0.489 0.459 0.451 0.447 0.443

'A}’gu const DBias 0.068 0.048 0.038 0.030 0.012 0.291 0276 0.281 0.276 0.265
RMSE 0.774 0.710 0.691 0.701 0.640 0.474 0.447 0.440 0.427 0.413

6/(2”1 slope DBias 0.050 0.088 0.063 0.062 0.070 -0.225 -0.219 -0.227 -0.226 -0.220
RMSE 1.044 0960 0.950 1.014 0.872 0.497 0.481 0.478 0470 0.461
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Table A3: ESTIMATION RESULTS: SPECIFICATION WITH DISCRETISED CONTINUOUS VARIABLES
System PFM System PFM
Dep. var./diff. PFM-naive  Dead diff. Cond. diff. Dead diff. Cond. diff.

(1) 2) 3) (4) () (6) (7) (8)

o -0.93**  -0.06 -0.28* 0.00 -0.78**  -0.08 -0.16 -0.00
(0.13) (0.07) (0.17) (0.09) (0.13) (0.06) (0.17) (0.10)

Qo -1.40** -0.09 -0.77* -0.01 -1.12**  -0.14** -0.44** 0.00
(0.13) (0.06) (0.16) (0.08) (0.14) (0.06) (0.17) (0.09)

o3 -1.88**  -0.20** -1.14** -0.05 -1.45** -0.16** -0.74** -0.03
(0.14) (0.07) (0.16) (0.08) (0.15) (0.07) (0.17) (0.09)

o7 -2.13**  -0.21** -1.56** -0.16* -1.72** -0.25** -1.14** -0.17*
(0.19) (0.10) (0.18) (0.09) (0.20) (0.11) (0.20) (0.10)

age: 30s 1.09** 0.00 0.54** 0.01 1.27** -0.00 0.56** 0.01
(0.25) (0.01) (0.12) (0.01) (0.26) (0.01) (0.13) (0.00)

age: 40s 1.46**  -0.02*  0.84** -0.00 1.66**  -0.01*  0.86** -0.01
(0.24) (0.01) (0.12) (0.01) (0.25) (0.01) (0.12) (0.01)

age: 50s 2.19**  -0.06** 1.08** -0.01 2.41**  -0.03**  1.08** -0.00
(0.23)  (0.01) (0.12)  (0.01) (0.24)  (0.01) (0.13)  (0.01)
age: 60s 3.41**  -0.05** 1.43** -0.03** 3.61** -0.01 1.43**  -0.02**
(0.23) (0.01) (0.13) (0.01) (0.24) (0.01) (0.14) (0.01)
age: 70 plus 5.00**  -0.07** 1.69** -0.07** 5.16** -0.04** 1.72** -0.05**
(0.23) (0.01) (0.16) (0.02) (0.24) (0.01) (0.17) (0.01)

male 0.59** -0.00 -0.12* -0.00 0.58** 0.00 -0.15** 0.00
(0.08) (0.01) (0.07) (0.01) (0.08) (0.01) (0.07) (0.00)

education: year 12 0.11 0.05** -0.13 0.03** 0.14 0.04** -0.10 0.02**
(0.13) (0.01) (0.11) (0.01) (0.14) (0.01) (0.11) (0.01)

education: certificate -0.14 0.01 -0.05 0.00 -0.13 0.00 -0.03 -0.01
(0.09) (0.01) (0.08) (0.01) (0.09) (0.01) (0.08) (0.01)

education: bachelor -0.11 0.02*  -0.36™ 0.01** -0.07 0.01 -0.31** 0.00
(0.13) (0.01) (0.10) (0.01) (0.13) (0.01) (0.11) (0.01)

HH income, 2nd quint. -0.17* -0.01  -0.32** -0.02**  -0.06 -0.01  -0.25**  -0.01*
(0.10) (0.01) (0.10) (0.01) (0.10) (0.01) (0.11) (0.01)

HH income, 3rd quint. -0.25** 0.00 -0.30**  -0.00 -0.13 -0.00 -0.22**  -0.00
(0.11) (0.01) (0.11) (0.01) (0.12) (0.01) (0.11) (0.01)

HH income, 4th quint. -0.19 0.05**  -0.34** 0.01 -0.03 0.02**  -0.23** 0.00
(0.12) (0.01) (0.11) (0.01) (0.12) (0.01) (0.11) (0.01)

HH income, 5th quint. -0.44**  0.07** -0.41** 0.04** -0.26*  0.04** -0.29** 0.03**
(0.13)  (0.01) (0.11)  (0.01) (0.14)  (0.01) (0.12)  (0.01)

chronic condition 0.30**  -0.06**  0.40** -0.02
(0.09) (0.02) (0.09) (0.02)

married -0.563**  -0.01* -0.11 -0.01*
(0.08) (0.01) (0.08) (0.00)

overseas -0.24** 0.00 -0.02 0.01*
(0.08) (0.01) (0.08) (0.01)

not in labour force 0.20*  -0.03** 0.11 -0.00
(0.11) (0.01) (0.09) (0.01)

unemployed 0.05 -0.03* 0.27 -0.02
(0.26) (0.02) (0.17) (0.01)

smoker 0.49** -0.00 0.30** -0.00

(0.08)  (0.01)  (0.07)  (0.00)

N 12,908 7,340 12,908 7,340

Standard errors in parentheses
* p<0.10,** p<0.05
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Table A4: DESCRIPTIVE STATISTICS FOR ADDITIONAL DISCRETISED VARIABLES

Variable N Mean Std.Dev.

Covariates (Wave 1)

age: 30s (=1 if 30 years<age< 40 years 12,908 0.209 0.407
12,908 0.200 0.400
12,908 0.150 0.358

12,908 0.102 0.303

age: 40s (=1 if 40 years<age< 50 years
age: 50s (=1 if 50 years<age< 60 years

~— — — —

age: 60s (=1 if 60 years<age< 70 years

age: 70 plus (=1 if age> 70 years) 12,908 0.101 0.301
education: year 12 (=1 if highest education Year 12) 12,908 0.145 0.353
education: certificate (=1 if highest education certificate) 12,908 0.256 0.437
education: bachelor (=1 if highest education bachelor or higher) 12,908 0.178 0.382
HH income, 2nd quint. (=1 if HH income in 2nd quintile) 12,908 0.200 0.400
HH income, 3rd quint. (=1 if HH income in 3rd quintile) 12,908 0.200 0.400
HH income, 4th quint. (=1 if HH income in 4th quintile) 12,908 0.200 0.400
HH income, 5th quint. (=1 if HH income in 5th quintile) 12,908 0.200 0.400
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Table A5: ESTIMATION RESULTS: SYSTEM PFM SPECIFICATIONS WITH INTERACTIONS IN HEALTH

Interaction w. education Interaction w. log HH income

Dead diff. Cond. diff. Dead diff. Cond. diff.

educ -0.43 -0.11  -3.15** -1.06*  Inehi -0.16 0.05 -0.19  -0.07
(0.76)  (0.14)  (1.07)  (0.55) (0.18)  (0.04) (0.24) (0.11)

aq: educ  0.28 -0.07 3.49**  1.32* aq: Inehi 0.14 0.05 0.07 0.08
(0.90) (0.26)  (1.16) (0.68) (0.21)  (0.07) (0.27) (0.13)

aqp: cons  -1.12 0.03 -4.37**  -1.57* «aq: cons  -1.18*  -0.19 -0.35 -0.22
(1.09) (0.32) (1.41) (0.81) (0.58) (0.18) (0.79) (0.36)

asg: educ 0.43 0.46* 2.66**  1.17"*  «o: Inehi 0.01 -0.06 0.01 0.09
(0.83) (0.24) (1.10) (0.58) (0.20)  (0.06) (0.26) (0.12)

ao: cons  -1.64 -0.65** -3.61"* -1.37*  «»: cons -1.15** 0.09 -0.43  -0.24
(1.02) (0.30) (1.34) (0.70) (0.56)  (0.17) (0.75) (0.34)

«ag: educ 0.38 -0.05 2.57**  0.97* «a3: Inehi 0.03 -0.03 0.01 0.08
(0.85)  (0.26)  (1.10)  (0.58) (0.21)  (0.08) (0.26) (0.12)

as: cons -1.91% -0.04  -3.80** -1.15 ag: cons -1.51**  -0.02 -0.74  -0.24
(1.05) (0.34) (1.34) (0.71) (0.60) (0.23) (0.76) (0.34)

ay: educ  -0.02 0.05 2.49**  1.12* ay: Inehi 0.18 -0.09  -0.05 0.08
(1.03) (0.37)  (1.18) (0.64) (0.28) (0.12) (0.29) (0.13)

ay: cons  -1.70 -0.27  -4.09**  -1.49*  ay: cons -2.31** 0.04 -0.95 -0.39
(1.29)  (0.48)  (1.45) (0.78) (0.87) (0.38) (0.88) (0.40)

N 12,908 12,908 7,340 7,340 N 12,908 12,908 7,340 7,340

Interaction w. male Interaction w. age

Dead diff. Cond. diff. Dead diff. Cond. diff.

male 0.55** -0.04 -0.17 -0.04 age -3.18 -4.19 9.04 1.76
(0.24)  (0.05)  (0.30) (0.12) (6.44) (3.30) (7.38) (3.96)

ar: male  -0.10  -0.03 0.18 0.07  agesq 13.17* 348  -847  -1.92
(0.28)  (0.09) (0.34) (0.16) (5.70)  (2.66) (7.61) (3.78)
ay: cons  -0.74**  -0.04 -0.24 -0.03 oq: age 0.86 4.90 -3.62 -1.56
(0.21)  (0.06) (0.23) (0.12) (7.33)  (4.52) (7.96) (5.22)

o male 0.26 0.17** -0.20 0.01 oq: agesq  -1.47 -4.12 4.72 1.56
(0.27)  (0.09) (0.32)  (0.13) (6.43) (3.67) (8.22) (5.07)

ao: cons -1.27**  -0.19**  -0.34 0.01 Q1: cons -0.76 -1.46 0.38 0.35
(0.22)  (0.07)  (0.23) (0.11) (2.06) (1.36) (1.88)  (1.30)
az: male  0.03 -0.05 0.11 0.08  «a2: age 1.83 3.00  -247  -2.73
(0.29) (0.11) (0.32) (0.13) (6.99) (3.57) (7.71)  (5.50)

agz: cons  -1.46**  -0.08 -0.77**  -0.05  «2:agesq -2.18  -244 519 3.01
(0.23)  (0.09) (0.23)  (0.11) (6.19) (2.96) (7.96) (5.34)

oy: male  -0.63* -0.20 0.55 0.25 Qp: cons -1.38 -0.97  -0.52 0.60
(0.33)  (0.16)  (0.37)  (0.16) (1.95)  (1.06) (1.82)  (1.36)
a4: cons -1.43**  -0.13  -1.37** -0.29** «g3: age -4.55 3.51 -3.01 -1.55
(0.28)  (0.12)  (0.27)  (0.13) (6.95) (3.61) (7.73) (6.82)

N 12,908 12,908 7,340 7,340 a3: agesq 3.63 -2.92 6.65 1.81

(6.25)  (3.05) (8.00) (6.66)

- i as: cons  -0.10  -1.10  -0.91  0.31
p <0.10,™ p <0.05 (1.90)  (1.05) (1.82) (1.68)
Qay: age -0.43 7.64* -6.67 -3.73
(8.05)  (4.08) (8.19) (10.13)

a4 agesq  -0.13 -6.61* 9.83 3.76
(7.31)  (3.51)  (8.53) (10.14)

Qy: cons -1.44 -2.28*  -0.37 0.70
2.17)  (1.17)  (1.91)  (2.39)

N 12,908 12,908 7,340 7,340

Standard errors in parentheses
* p<0.10, " p < 0.05

Standard errors in parentheses
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Figure Al: HETEROGENEITY IN THE PROBABILITY OF REPORTING TRUE HEALTH STATUS, N =
12,908
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Notes: Data from HILDA waves 1 and 16 for individuals who responded to SRH questions in wave 1.
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Figure A2: MARGINAL EFFECTS OF REPORTING TRUE HEALTH STATUS, N = 12,908
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Notes: Data from HILDA waves 1 and 13 for individuals who responded to SRH questions in wave 1.
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