
WP 18/05

Parametric models for biomarkers based on
flexible size distribution

Apostolos Davillas and Andrew M. Jones

February 2018

http://www.york.ac.uk/economics/postgrad/herc/hedg/wps/

HEDG
HEALTH, ECONOMETRICS AND DATA GROUP



 
Parametric models for biomarkers based on 

flexible size distributions 
 
 

Apostolos Davillas 

Institute for Social and Economic Research, University of Essex 

Andrew M Jones 

Department of Economics and Related Studies, University of York 

Centre for Health Economics, Monash University 

 

 

Abstract 

Recent advances in social science surveys include collection of biological samples. 

Although biomarkers offer a large potential for social science and economic research, they 

impose a number of statistical challenges, often being distributed asymmetrically with 

heavy tails. Using data from the UK Household Panel Survey (UKHLS), we illustrate the 

comparative performance of a set of flexible parametric distributions, which allow for a 

wide range of skewness and kurtosis: the four-parameter generalized beta of the second 

kind (GB2), the three-parameter generalized gamma (GG) and their three-, two- or one-

parameter nested and limiting cases. Commonly used blood-based biomarkers for 

inflammation, diabetes, cholesterol and stress-related hormones are modelled. Although 

some of the three-parameter distributions nested within the GB2 outperform the latter for 

most of the biomarkers considered, the GB2 can be used as a guide for choosing among 

competing parametric distributions for biomarkers. Going “beyond the mean” to estimate 

tail probabilities, we find that GB2 performs fairly well with some disparities at the very 

high levels of HbA1c and fibrinogen. Commonly used OLS models are shown to perform 

worse than almost all the flexible distributions.  
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1. Introduction 

 

Recent developments in social surveys include the integration of biomarkers and self-

reported health measures. Biomarkers are objectively measured indicators of normal 

biological or pathogenic processes and, as such, offer at least two key advances over self-

report health. First, biomarkers are not subject to reporting bias; given evidence for socio-

economic-related reporting bias in health, biomarkers offer a significant advantage in 

socioeconomic inequalities research (Bago d’Uva et al., 2008; Carrieri and Jones, 2014). 

Second, biomarkers can contribute to our understanding of the underlying biological 

factors through which socioeconomic conditions get “under the skin” (for example, 

thought stress-related physiological responses) as well as the role of socioeconomic 

exposures at earlier pre-symptomatic health states (Davillas et al., 2016; Gruenewald et 

al., 2009; Jürges et al., 2013).  

 

A growing number of studies analyse the effect of socioeconomic position on the 

conditional mean of biomarkers (e.g., Davillas et al., 2016, Gruenewald et al., 2009, 

Jürges et al., 2013). However, biomarkers create several statistical modelling challenges as 

they often have skewed distributions with heavy tails (Jones, 2017). Furthermore, errors 

are likely to be heteroskedastic and responses to covariates may be nonlinear. Existing 

studies have applied OLS on raw or log transformed biomarkers (Gruenewald et al., 2009; 

Jürges et al., 2013) and alternative inherently nonlinear specifications, such as the 

generalized linear models (GLM) (Davillas et al., 2016). While using log rather than linear 

OLS might improve performance by reducing skewness, re-transformation to the raw 

scale –as health policymakers require– is highly challenging, requiring knowledge of the 

degree and form of heteroscedasticity (Jones et al., 2014). Although the GLM family deals 

with heteroskedasticity, it fails to explicitly account for skewness and kurtosis, imposing 

potential bias and efficiency losses (Jones et al., 2014). 

 

Our paper contributes to the literature on modelling biomarkers by comparing the 

performance of a set of more flexible parametric distributions, the generalized beta of the 

second kind (GB2), the generalized gamma (GG) and their nine nested and limiting cases; 

we use nationally representative UK data on commonly used blood-based biomarkers for 

inflammation, diabetes, cholesterol and stress-related hormones (Carrieri and Jones, 
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2016). The GG and GB2 allow for a wide range of skewness and kurtosis to better 

accommodate the biomarker data generation processes; these models have been proposed 

for fitting heavily skewed outcomes (for example, health care costs; Jones et al., 2014), to 

which biomarkers share similar distributional features. OLS models are also estimated for 

comparison purposes. Given that different biomarkers exhibit different distributions, 

identifying GB2 as a discriminatory tool amongst competing distributions might be useful 

for health researchers. Going “beyond the mean”, we also explore the ability of these 

models to predict tail probabilities; prediction bias at the tails are of policy interest 

because of the elevated health risks and associated health-care costs. 

 

2. Methods  

The three-parameter GG distribution has a density function and conditional expectation 

that take the form: 

𝑓(𝑦; 𝜅, 𝜇, 𝜎) =
𝛾𝛾

𝜎𝑦√𝛾𝛤(𝛾)
exp⁡(𝑧√𝛾 − 𝑢)                                                                            (1) 

and  

𝐸(𝑦|𝑥) = exp⁡(𝑥′𝛽) [𝑘2𝜎/𝜅
𝛤(

1

𝜅2
+
𝜎

𝜅
)

𝛤(
1

𝜅2
)
]                                                                                 (2) 

where,  𝛾 = |𝜅|−2, 𝑧 = 𝑠𝑖𝑔𝑛(𝜅){ln(𝑦) − 𝜇}, 𝑢 = 𝛾 exp(|𝜅|𝑧), 𝜇 = 𝑥′𝛽 and 𝛤(. ) is the 

gamma function. Parameters 𝜅 and 𝜎 are the shape parameters (Manning et al., 2005). The 

GG nests the gamma (𝜅 = 𝜎), Weibull (𝜅 = 1), exponential (𝜅 = 1, 𝜎 = 1), and 

lognormal (𝜅 = 0)⁡distributions.  

 

The 4-parameter GB2 model adds further flexibility and has a mean of:  

𝐸(𝑦) = 𝑏 [
Γ(𝑝+

1

𝑎
)Γ(𝑞−

1

𝑎
)

Γ(𝑝)Γ(𝑞)
]                                                                                                     (3) 

where, 𝑏 = exp(𝑥′𝛽) and Γ(. ) is the gamma function (Jones et al., 2014). Parameter 𝑎 

influences kurtosis and 𝑝 and 𝑞 the skewness of the distribution. We also estimate the 

nested and limiting cases of GB2; the three-parameter Beta of the second kind (B2) [𝑎 =

1], Singh-Maddala (SM) [𝑝 = 1] and Dagum [𝑞 = 1]; the two-parameter Fisk [𝑝 = 𝑞 =

1], and Lomax [𝑝 = 𝑎 = 1]. GG itself is also a limiting case of the GB2. We also estimate 

OLS models for comparison purposes.  
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The restrictions imposed by each of the special and limiting cases within the GG and GB2 

are evaluated using Wald and likelihood-ratio (LR) tests. To assess the comparative 

performance of beta- with gamma-family models (being limited, non-nested cases), we 

use Akaike (AIC) and Bayesian (BIC) information criteria (Jones et al., 2014). 

 

3. Data  

The UK Household Panel Study (UKHLS) is a large, nationally representative UK study. 

At UKHLS wave 2, participants from its predecessor, the British Household Panel Survey 

(BHPS), were also incorporated. Non-fasted blood samples were collected, after the 

UKHLS wave 2 interview for the original UKHLS respondents and, at wave 3, for the 

BHPS sample (Benzeval et al., 2014). Pooling biomarker data from UKHLS waves 2 and 

3 (2010-2013), resulted in a potential sample of 13,107 respondents.  

 

Four biomarkers are used. Fibrinogen is an inflammatory biomarker, with higher values 

linked to cardiovascular morbidity and all-cause mortality risks (Davillas et al., 2017). 

Glycated haemoglobin (HbA1c) is a diagnostic biomarker for diabetes (Benzeval et al., 

2014). The ratio of total cholesterol to high-density lipoprotein cholesterol (i.e., 

cholesterol ratio) is used as a marker for fatty substances in the blood. 

Dehydroepiandrosterone sulfate (DHEAS) is a common steroid hormone and one of the 

primary mechanisms through which psychosocial stressors might affect health (Vie et al., 

2014).  We model biomarkers as a function of polynomials of age (cubic or quartic 

depending on the biomarker used), gender, and their interactions to allow for flexible 

gender effects (Figure A1, appendix). 

 

 

4. Results 

Table 1 and Figure 1 present descriptive statistics and the distribution of biomarkers. 

Fibrinogen has a symmetric distribution but with heaping and fat tails (Figure 1). HbA1c 

is much more skewed (skewness statistic of 4.2 compared to zero for normal data) with 

long right-hand tails and excess kurtosis (31.15 versus 3 for normal data). The cholesterol 

ratio and DHEAS also exhibits long right-hand tails and high kurtosis.  
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Table 2 contains restriction tests for the nested and limiting models within the GG and 

GB2. Across all biomarkers, we find no evidence in support of any of the special cases 

within the GG distribution. For fibrinogen, we are unable to reject the null hypothesis of 

the restriction being valid for the SM model. Our results for HbA1c do not support any of 

the nested distributions. For the cholesterol ratio, both the LR and Wald tests favour the 

B2 distribution. Although the Wald test also fails to reject the null hypothesis for SM, this 

is not confirmed by the LR test; this disparity reflects the wide confidence intervals for 

GB2’s 𝑝⁡parameter (which include both one, satisfying the SM restriction, but also zero; 

Table A1, appendix). Our results for DHEAS favour the SM distribution.   

 

Table 2. Likelihood-ratio (LR) and Wald tests (p-values) for special cases of the GB2 

and GG distributions.  

 Fibrinogen HbA1c Cholesterol ratio DHEAS 

 LR Wald LR  Wald  LR  Wald  LR  Wald  

GB2 vs…         

B2 0.000 0.000 0.000 0.000 0.247 0.193 0.000 0.000 

SM 0.208 0.236 0.000 0.000 0.000 0.188 0.703 0.710 

Dagum 0.004 0.013 0.000 0.000 0.000 0.020 0.000 0.000 

Fisk 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Lomax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
GG vs…         

Gamma 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.000 

Log Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Weibull 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Exponential 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

Table 3 shows that AIC and BIC results are in accordance with the tests of Table 2. For all 

biomarkers, OLS performs worse than each of the four- and three-parameter and most of 

the more parsimonious models. For fibrinogen, GB2 and SM perform best according to 

AIC and BIC criteria, with the latter showing the best performance. GB2 outperforms all 

the competing models regarding HbA1c. While the B2 and the SM distribution exhibit the 

best performance for the Cholesterol ratio and DHEAS, GB2 is ranked the second best. 

 

Table 1. Descriptive statistics 

Biomarker Mean Median 
Standard 

deviation 
Skewness Kurtosis 

Sample 

size 

Fibrinogen (g/l) 2.79 2.70 0.59 0.47 3.82 12,811 

HbA1c (mmol/mol) 37.25 36.00 8.19 4.17 31.15 12,153 
Cholesterol ratio 3.74 3.46 1.36 1.42 6.43 12,865 

DHEAS (μmol/l) 4.62 3.80 3.24 1.29 5.11 12,809 
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Figure 2 presents the conditional tail probabilities (at 10th, 25th, 50th, 75th and 90th quantile) 

and spike plots of the actual-fitted difference (bias) for the GB2 distribution and its nested 

models exerted the best performance for each biomarker (Table 3). There are limited 

differences in the predictive ability of the more parsimonious models compared to GB2, 

confirming previous evidence that a flexible distribution is not a substitute for finding the 

correct distribution (Manning et al., 2005; Jones et al., 2014). GB2 performs reasonably 

well at predicting tail probabilities, although there are some disparities at the very high 

fibrinogen levels (90th quantile) and HbA1c above the pre-diabetes threshold (HbA1c ≥ 

42 mmol/mol).  

 

Table 3. Values for each model’s AIC and BIC. 

 Fibrinogen Hba1c Cholesterol ratio DHEAS 

Distribution AIC BIC AIC BIC AIC BIC AIC BIC 

GB2 20866 20948 72138 72219 39175 39257 53800 53889 

B2 21221 21296 76134 76371 39173 39249 53897 53979 
SM 20865 20939 72329 72404 39432 39506 53798 53880 

Dagum  20872 20947 72927 73001 39315 39390 53855 53937 

Fisk  20883 20950 73563 73629 39482 39549 54149 54223 
Lomax 51843 51910 112182 112249 59542 59624 61959 62040 

GG 21204 21278 74986 75060 39180 39270 53927 54016 

Log-normal 21502 21569 77305 77372 39306 39373 54407 54482 
Gamma 21219 21287 79049 79116 39867 39934 53942 54016 

Weibull 22804 22871 88676 88743 42443 42518 54640 54715 

Exponential  51841 51900 112180 112239 59540 59615 61957 62031 
OLS 21500 21558 84119 84178 42875 42950 58371 58446 

       

 

5. Conclusion  

Biomarkers have a large potential for social and economic research but they impose 

statistical challenges. We illustrate the comparative performance of a set of more flexible 

parametric distributions, the GB2, GG, and their nested and limiting cases for a set of 

biomarkers. Although some of the three-parameter distributions nested within the GB2 

(mainly the B2 and SM) outperform the latter in most of the biomarkers considered, GB2 

can be used as a guide for choosing among competing distributions; a potentially useful 

message for applied researchers given that different biomarkers follow different 

distributions. However, going “beyond the mean” to estimate tail probabilities we find 

limited differences in performance of these distributions compared to GB2. The 

conventional OLS models are dominated by almost all the competitive models. GB2 

performs well at predicting biomarkers’ tail probabilities, although with some disparities 

at the very high levels of fibrinogen and HbA1c.  
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Figure 1. Distribution of biomarkers and quantile-normal (Q-N) plots 
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Figure 2. Actual versus fitted tail probabilities. 
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Appendix 
 

 

 

Figure A1. Quantile-quantile plots of the biomarkers by gender 
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Table A1. Estimated parameters from the generalized beta two (GB2) and the generalized gamma 

(GG) models.  

Biomarker Generalized beta two (GB2) Generalized gamma (GG) 

 𝜶 𝒑 𝒒 𝜿 Ln(σ) 

Fibrinogen 
7.892 

[7.017; 8.767] 
1.104 

[0.933; 1.275] 
1.299 

[1.063; 1.535] 
0.267 

[0.209; 0.326] 
-1.606 

[-1.621; -1.592] 

HbA1c 
42.986 

[36.674; 49.298] 

0.348 

[0.287; 0.410] 

0.198 

[0.167; 0.230] 

-0.461 

[-0.555; -0.368] 

-1.970 

[-2.017; -1.924] 

Cholesterol ratio 
1.442 

[0.777; 2.108] 

23.345  

[-9.920; 56.612] 

6.611 

[1.761; 11.463] 

-0.246 

[-0.290; -0.200] 

-1.169 

[-1.183; -1.157] 

DHEAS 
2.538 

[2.202; 2.873] 
1.036 

[0.846; 1.225] 
2.316 

[1.717; 2.915] 
0.446 

[0.396;  0.495] 
-0.615                 

[-0.631;  -0.599] 

 

 




