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Abstract

Recent advances in social science surveys include collection of biological samples.
Although biomarkers offer a large potential for social science and economic research, they
impose a number of statistical challenges, often being distributed asymmetrically with
heavy tails. Using data from the UK Household Panel Survey (UKHLS), we illustrate the
comparative performance of a set of flexible parametric distributions, which allow for a
wide range of skewness and kurtosis: the four-parameter generalized beta of the second
kind (GB2), the three-parameter generalized gamma (GG) and their three-, two- or one-
parameter nested and limiting cases. Commonly used blood-based biomarkers for
inflammation, diabetes, cholesterol and stress-related hormones are modelled. Although
some of the three-parameter distributions nested within the GB2 outperform the latter for
most of the biomarkers considered, the GB2 can be used as a guide for choosing among
competing parametric distributions for biomarkers. Going “beyond the mean” to estimate
tail probabilities, we find that GB2 performs fairly well with some disparities at the very
high levels of HbA1c and fibrinogen. Commonly used OLS models are shown to perform
worse than almost all the flexible distributions.
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1. Introduction

Recent developments in social surveys include the integration of biomarkers and self-
reported health measures. Biomarkers are objectively measured indicators of normal
biological or pathogenic processes and, as such, offer at least two key advances over self-
report health. First, biomarkers are not subject to reporting bias; given evidence for socio-
economic-related reporting bias in health, biomarkers offer a significant advantage in
socioeconomic inequalities research (Bago d’Uva et al., 2008; Carrieri and Jones, 2014).
Second, biomarkers can contribute to our understanding of the underlying biological
factors through which socioeconomic conditions get “under the skin” (for example,
thought stress-related physiological responses) as well as the role of socioeconomic
exposures at earlier pre-symptomatic health states (Davillas et al., 2016; Gruenewald et
al., 2009; Jiirges et al., 2013).

A growing number of studies analyse the effect of socioeconomic position on the
conditional mean of biomarkers (e.g., Davillas et al., 2016, Gruenewald et al., 2009,
Jiirges et al., 2013). However, biomarkers create several statistical modelling challenges as
they often have skewed distributions with heavy tails (Jones, 2017). Furthermore, errors
are likely to be heteroskedastic and responses to covariates may be nonlinear. Existing
studies have applied OLS on raw or log transformed biomarkers (Gruenewald et al., 2009;
Jiirges et al., 2013) and alternative inherently nonlinear specifications, such as the
generalized linear models (GLM) (Davillas et al., 2016). While using log rather than linear
OLS might improve performance by reducing skewness, re-transformation to the raw
scale —as health policymakers require— is highly challenging, requiring knowledge of the
degree and form of heteroscedasticity (Jones et al., 2014). Although the GLM family deals
with heteroskedasticity, it fails to explicitly account for skewness and kurtosis, imposing

potential bias and efficiency losses (Jones et al., 2014).

Our paper contributes to the literature on modelling biomarkers by comparing the

performance of a set of more flexible parametric distributions, the generalized beta of the
second kind (GB2), the generalized gamma (GG) and their nine nested and limiting cases;
we use nationally representative UK data on commonly used blood-based biomarkers for

inflammation, diabetes, cholesterol and stress-related hormones (Carrieri and Jones,



2016). The GG and GB2 allow for a wide range of skewness and kurtosis to better
accommodate the biomarker data generation processes; these models have been proposed
for fitting heavily skewed outcomes (for example, health care costs; Jones et al., 2014), to
which biomarkers share similar distributional features. OLS models are also estimated for
comparison purposes. Given that different biomarkers exhibit different distributions,
identifying GB2 as a discriminatory tool amongst competing distributions might be useful
for health researchers. Going “beyond the mean”, we also explore the ability of these
models to predict tail probabilities; prediction bias at the tails are of policy interest

because of the elevated health risks and associated health-care costs.

2. Methods
The three-parameter GG distribution has a density function and conditional expectation
that take the form:

fiwm0) = Wm exp(z\y —u) (1)
and
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where, vy = |k|™2, z = sign(x){In(y) — u}, u = y exp(|k|z), u = x’B and I'(.) is the
gamma function. Parameters k and ¢ are the shape parameters (Manning et al., 2005). The
GG nests the gamma (k = ), Weibull (k = 1), exponential (xk = 1,0 = 1), and

lognormal (x = 0) distributions.

The 4-parameter GB2 model adds further flexibility and has a mean of:
r(p+:)r(a—
ﬂw—bF—lLﬁ ®)

where, b = exp(x’'B) and I'(.) is the gamma function (Jones et al., 2014). Parameter a
influences kurtosis and p and q the skewness of the distribution. We also estimate the
nested and limiting cases of GB2; the three-parameter Beta of the second kind (B2) [a =
1], Singh-Maddala (SM) [p = 1] and Dagum [g = 1]; the two-parameter Fisk [p = q =
1], and Lomax [p = a = 1]. GG itself is also a limiting case of the GB2. We also estimate

OLS models for comparison purposes.



The restrictions imposed by each of the special and limiting cases within the GG and GB2
are evaluated using Wald and likelihood-ratio (LR) tests. To assess the comparative
performance of beta- with gamma-family models (being limited, non-nested cases), we
use Akaike (AIC) and Bayesian (BIC) information criteria (Jones et al., 2014).

3. Data

The UK Household Panel Study (UKHLYS) is a large, nationally representative UK study.
At UKHLS wave 2, participants from its predecessor, the British Household Panel Survey
(BHPS), were also incorporated. Non-fasted blood samples were collected, after the
UKHLS wave 2 interview for the original UKHLS respondents and, at wave 3, for the
BHPS sample (Benzeval et al., 2014). Pooling biomarker data from UKHLS waves 2 and
3 (2010-2013), resulted in a potential sample of 13,107 respondents.

Four biomarkers are used. Fibrinogen is an inflammatory biomarker, with higher values
linked to cardiovascular morbidity and all-cause mortality risks (Davillas et al., 2017).
Glycated haemoglobin (HbA1c) is a diagnostic biomarker for diabetes (Benzeval et al.,
2014). The ratio of total cholesterol to high-density lipoprotein cholesterol (i.e.,
cholesterol ratio) is used as a marker for fatty substances in the blood.
Dehydroepiandrosterone sulfate (DHEAS) is a common steroid hormone and one of the
primary mechanisms through which psychosocial stressors might affect health (Vie et al.,
2014). We model biomarkers as a function of polynomials of age (cubic or quartic
depending on the biomarker used), gender, and their interactions to allow for flexible

gender effects (Figure Al, appendix).

4. Results

Table 1 and Figure 1 present descriptive statistics and the distribution of biomarkers.
Fibrinogen has a symmetric distribution but with heaping and fat tails (Figure 1). HbAlc
is much more skewed (skewness statistic of 4.2 compared to zero for normal data) with
long right-hand tails and excess kurtosis (31.15 versus 3 for normal data). The cholesterol

ratio and DHEAS also exhibits long right-hand tails and high kurtosis.



Table 1. Descriptive statistics

Biomarker Mean Median gtar)de_ird Skewness  Kurtosis Sar_nple
eviation size
Fibrinogen (g/l) 2.79 2.70 0.59 0.47 3.82 12,811
HbAlc (mmol/mol) 37.25 36.00 8.19 4.17 31.15 12,153
Cholesterol ratio 3.74 3.46 1.36 1.42 6.43 12,865
DHEAS (umol/l) 4.62 3.80 3.24 1.29 5.11 12,809

Table 2 contains restriction tests for the nested and limiting models within the GG and
GB2. Across all biomarkers, we find no evidence in support of any of the special cases
within the GG distribution. For fibrinogen, we are unable to reject the null hypothesis of
the restriction being valid for the SM model. Our results for HbAlc do not support any of
the nested distributions. For the cholesterol ratio, both the LR and Wald tests favour the
B2 distribution. Although the Wald test also fails to reject the null hypothesis for SM, this
is not confirmed by the LR test; this disparity reflects the wide confidence intervals for
GB2’s p parameter (which include both one, satisfying the SM restriction, but also zero;
Table A1, appendix). Our results for DHEAS favour the SM distribution.

Table 2. Likelihood-ratio (LR) and Wald tests (p-values) for special cases of the GB2
and GG distributions.

Fibrinogen HbAlc Cholesterol ratio DHEAS
LR Wald LR Wald LR Wald LR Wald
GB2 vs
B2 0.000 0.000 0.000 0.000 0.247 0.193 0.000 0.000
SM 0.208 0.236 0.000 0.000 0.000 0.188 0.703 0.710
Dagum 0.004 0.013 0.000 0.000 0.000 0.020 0.000 0.000
Fisk 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Lomax 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
GG vs
Gamma 0.000 0.024 0.000 0.000 0.000 0.000 0.000 0.000
Log Normal 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Weibull 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Exponential 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3 shows that AIC and BIC results are in accordance with the tests of Table 2. For all
biomarkers, OLS performs worse than each of the four- and three-parameter and most of
the more parsimonious models. For fibrinogen, GB2 and SM perform best according to
AIC and BIC criteria, with the latter showing the best performance. GB2 outperforms all
the competing models regarding HbAlc. While the B2 and the SM distribution exhibit the
best performance for the Cholesterol ratio and DHEAS, GB2 is ranked the second best.



Figure 2 presents the conditional tail probabilities (at 10", 25%, 50", 75" and 90" quantile)
and spike plots of the actual-fitted difference (bias) for the GB2 distribution and its nested
models exerted the best performance for each biomarker (Table 3). There are limited
differences in the predictive ability of the more parsimonious models compared to GB2,
confirming previous evidence that a flexible distribution is not a substitute for finding the
correct distribution (Manning et al., 2005; Jones et al., 2014). GB2 performs reasonably
well at predicting tail probabilities, although there are some disparities at the very high
fibrinogen levels (90th quantile) and HbAlc above the pre-diabetes threshold (HbAlc >

42 mmol/mol).

Table 3. Values for each model’s AIC and BIC.

Fibrinogen Hbalc Cholesterol ratio DHEAS

Distribution AlIC BIC AlIC BIC AlIC BIC AlIC BIC

GB2 20866 20948 72138 72219 39175 39257 53800 53889
B2 21221 21296 76134 76371 39173 39249 53897 53979
SM 20865 20939 72329 72404 39432 39506 53798 53880
Dagum 20872 20947 72927 73001 39315 39390 53855 53937
Fisk 20883 20950 73563 73629 39482 39549 54149 54223
Lomax 51843 51910 112182 112249 59542 59624 61959 62040
GG 21204 21278 74986 75060 39180 39270 53927 54016
Log-normal 21502 21569 77305 77372 39306 39373 54407 54482
Gamma 21219 21287 79049 79116 39867 39934 53942 54016
Weibull 22804 22871 88676 88743 42443 42518 54640 54715
Exponential 51841 51900 112180 112239 59540 59615 61957 62031
OLS 21500 21558 84119 84178 42875 42950 58371 58446

5. Conclusion

Biomarkers have a large potential for social and economic research but they impose
statistical challenges. We illustrate the comparative performance of a set of more flexible
parametric distributions, the GB2, GG, and their nested and limiting cases for a set of
biomarkers. Although some of the three-parameter distributions nested within the GB2
(mainly the B2 and SM) outperform the latter in most of the biomarkers considered, GB2
can be used as a guide for choosing among competing distributions; a potentially useful
message for applied researchers given that different biomarkers follow different
distributions. However, going “beyond the mean” to estimate tail probabilities we find
limited differences in performance of these distributions compared to GB2. The
conventional OLS models are dominated by almost all the competitive models. GB2
performs well at predicting biomarkers’ tail probabilities, although with some disparities
at the very high levels of fibrinogen and HbAlc.
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Figure 1. Distribution of biomarkers and quantile-normal (Q-N) plots
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Figure 2. Actual versus fitted tail probabilities.
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Appendix

Figure Al. Quantile-quantile plots of the biomarkers by gender
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Table Al. Estimated parameters from the generalized beta two (GB2) and the generalized gamma

(GG) models.

Biomarker Generalized beta two (GB2) Generalized gamma (GG)

a p q K Ln(o)

Fibrinogen 7.892 1.104 1.299 0.267 -1.606
[7.017; 8.767] [0.933; 1.275] [1.063; 1.535] [0.209; 0.326] [-1.621; -1.592]

HbAlc 42.986 0.348 0.198 -0.461 -1.970
[36.674; 49.298] [0.287; 0.410] [0.167; 0.230] [-0.555; -0.368] [-2.017; -1.924]

Cholesterol ratio 1.442 23.345 6.611 -0.246 -1.169
[0.777; 2.108] [-9.920; 56.612] [1.761; 11.463] [-0.290; -0.200] [-1.183; -1.157]

2.538 1.036 2.316 0.446 -0.615

DHEAS

[2.202; 2.873] [0.846; 1.225] [1.717; 2.915]

[0.396; 0.495]

[-0.631; -0.599]
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