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Abstract

This paper adds to the literature on the income-health gradient by exploring the association between
short- and long-term income and a wide set of self-reported health measures and objective nurse-
administered and blood-based biomarkers as well as employing estimation techniques that allow for
analysis “beyond the mean” and accounting for unobserved heterogeneity. The income-health
gradients are greater in magnitude in case of long-run rather than cross-sectional income measures.
Unconditional quantile regressions reveal that the differences between the long-run and the short-run
income gradients are more evident towards the tails of the distributions, where both higher risk of
illnesses and steeper income gradients are observed. A two-step estimator, involving a fixed-effects
income model at the first stage, shows that the individual-specific selection effects have a systematic
impact in the long-run income gradients in self-reported health but not in biomarkers, highlighting the
importance of reporting error in self-reported health.
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1. Introduction

Economic studies that aim to explore the health-income gradient face a number of challenges

(for example, Benzeval and Judge, 2001; Chou et al., 2004; Deaton and Paxson, 1998; Ettner,

1996; Jones and Wildman, 2008; Van Doorslaer and Jones, 2003). Firstly, self-assessed

health (SAH) measures are indirect indicators of underling health, which may be subject to

misreporting and are associated with comparability problems at both the individual level and

among countries (Bago d’Uva et al. 2008; Jürges 2007, 2008). If the reporting error is

randomly distributed, this might not be an issue. However, reporting bias has been shown to

vary systematically with income and other socioeconomic characteristics that are often used

to explore health inequalities, which raises doubts about the robustness of studies based on

self-reported health indicators (Crossley and Kennedy, 2002; Dowd and Zajacova, 2010;

Ziebarth, 2010). The same holds true for other self-reported health measures, such as

functional limitations, self-reported diagnosis of chronic conditions and self-administered

well-being measures (Baker et al., 2004; Daltroy et al., 1999; Johnston et al., 2009;

Powdthavee, 2010).

Secondly, self-reported health indicators and other health proxies do not give information

about the pathways through which economic conditions get “under the skin”, and may miss

important information about pre-symptom stages. Identifying the role of income in

physiological processes that occur before a disease or condition manifests may be particularly

important for better understanding the link between income and health (Dowd et al., 2009;

Jürges et al., 2013). Recent studies have explored the association between measures of

socioeconomic status and more objective and proximal health measures such as blood-based

or nurse-administered biomarkers1. Using blood-based biomarker data for inflammation,

diabetes and blood pressure a number of studies found a negative association with higher

socioeconomic position such as higher income or educational attainment (e.g., Banks et al.,

2006; Johnston et al., 2009; Jürges et al., 2013; Muennig et al., 2007; Murasko, 2008;

Powdthavee, 2010).

1 Biomarkers are objectively measured and evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic intervention (Biomarkers Definition Working Group,
2001).
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A third challenge in income-health studies is how to measure income. Dating back to

Friedman (1957), a prolonged discussion about the importance of permanent versus short-

term income levels, which can be found in the general economics literature, might be also

relevant for health (Fuchs, 2004). According to the “permanent income hypotheses”, it might

be anticipated that permanent income (as opposed to transitory) may be more relevant as a

determinant of the demand for health services (Feldstein, 1966). From a life-course

perspective, long-term socioeconomic position may be more relevant to health since it may

better reflect cumulative disadvantage (see e.g., Benzeval and Judge, 2001; Singh-Manoux et

al., 2004). Moreover, employing measures of income based on long income histories are

better indicators of an individuals’ economic status since they are less sensitive to temporal

income variations, such as a brief spell of unemployment or a short period of hard times, and

they help to reduce concerns regarding the role of any potential effects of health shocks on

income (Menchik, 1993).

Fourthly, studies of the link between income and health measures typically explore the effect

of the former on the conditional mean of the health outcome (for instance, Johnston et al.,

2009; Jürges et al., 2013; Muennig et al., 2007; Powdthavee, 2010). However, analyses based

solely on the mean may mask important information in other parts of the distribution (Bitler

et al., 2006). This is particularly important in the case of the health-income association, where

clinical concern is typically focused on the tails of the health distribution (Carrieri and Jones,

2016). For instance, individuals with higher income who experience ill-health may be more

likely to initiate behavioural adjustments. In this context, Carrieri and Jones (2016) and

Jolliffe (2011) explore the association of income with selected blood-based biomarkers and

adiposity measures using quantile regression techniques in order to estimate how the income

gradients may vary at different points of the distribution of biomarkers. Hence, evaluating the

income gradients at different points of the health distribution may be beneficial.

In this paper we seek to address all of these concerns by using both self-reported health

outcomes and nurse measured and blood-based biomarkers in an analysis that compares

short-run and long-run measures of income and evaluates the health-income gradient at the

mean and across the full distribution of the outcomes. The absorption of the British

Household Panel Survey (BHPS) into the Understanding Society (the UK Household

Longitudinal Survey, UKHLS) gives us the rare opportunity of combining cross-sectional

(UKHLS wave 3 data) and long-running (up to a maximum of 18 BHPS waves) longitudinal
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household income data with a large set of self-reported and objective health measures. We

estimate short- and long-run income gradients in health in order to explore the relative

importance of “permanent” versus current measures of income. In subsequent analysis, a two-

step approach is used to account for selection effects due to the time-invariant unobserved

heterogeneity when estimating the long-run income gradients in health.

Our paper contributes to the literature in a number of ways. Firstly, we believe that using

biomarkers in the analysis of the income gradient in health has its virtues: a) compared to the

conventional self-reported health measures, biomarkers are objective measures of health; b)

they provide direct information on pre-disease mechanisms that are below the individual’s

threshold of perception or clinical diagnosis thresholds and, thus, allow for a better

understanding of the income-health gradient when diseases have not yet become explicit; and

c) they give useful insights about the causal physiological pathways in the complex

relationship between socioeconomic status and health, since they are more proximal

outcomes compared to SAH.

The most popular biomarkers from the health economics literature are used in this study:

adiposity measures, blood pressure, resting heart rate, inflammatory biomarkers, blood

glucose (HbA1C) and cholesterol ratio (Carrieri and Jones, 2016; Frankenberg et al., 2016;

Johnston et al., 2009). These biomarkers capture different health dimensions and are

considered as “secondary” physiological responses to stress and, thus, they are more proximal

outcomes in the process through which economic status get “under the skin” (Glei et al.,

2013; Turner et al., 2016)2. Self-reported health measures may be subject to reporting bias

that is correlated with important determinants of health. However, they have been shown to

be predictors of future mortality, even after accounting for more objective health measures

(Idler and Benyamini, 1997; Jϋrges et al., 2013; Jylhä, 2009). Complementary to the 

objective measures, therefore, we also consider three self-reported health measures: SAH,

functional disabilities and physical-health functioning (PCS-12). Identifying differences

between self-reported and objective health measures that may be driven by reporting

heterogeneity in the self-reported health could be of particular importance.

2 These biomarkers are used by the medical literature to construct allostatic load, i.e. a measure of the wear and
tear on the body reflecting the physiological consequences of exposure to stress (Turner et al., 2016). However
they are used separately in this study to capture different dimensions of health.
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Secondly, capitalizing on the richness of the data we explore associations of health with

contemporaneous income as well as relatively long (a maximum of 18 waves) longitudinal

income histories; this facilitates identification of the relative importance of the short-run

versus long-run measures of income for health. Long-run income is defined by calculating the

within-individual mean of the household income over the available time period. In

subsequent analysis, a two-step estimator is used to account for selection effects due to the

time-invariant unobserved heterogeneity that may be associated with both current health and

long-run income. This approach involves the estimation of a longitudinal fixed-effects model

for household income in the first stage followed by using the predicted individual-specific

fixed effects in the health regression models on our measure of long-run income.

In this context, this is the first study, to our knowledge, that estimates the association of

biomarkers with both cross-sectional and long-run income measures after accounting for

individual-specific effects as well as employing econometric techniques that facilitate

“beyond the mean” analysis. Over and above the conventional ordinary least square (OLS)

models, unconditional quantile regression (UQR) techniques are used for the case of our

continuous health measures. Building on recent work from Firpo et al. (2009), UQR models -

based on the recentered influence function (RIF) approach - are used to estimate the income

gradient at different points of the unconditional distribution of each biomarker of interest.

Exploring the health-income gradients “beyond the mean” is particularly important given the

heterogeneity of the health risks across the distribution of biomarkers. This allows us to

assess whether the association is more evident at the higher quantiles of the biomarker

distribution where elevated risks are prominent, implying greater illnesses for individuals and

possibly high costs for the health care system.

Results from our cross-sectional regressions of health on household income indicate the

presence of clear income gradients across all the self-reported health measures and most of

the nurse-administered and blood-based biomarkers. Analysis “beyond the mean” shows that

the cross-sectional income gradient is substantially larger in the upper tail of the distribution

of our continuous health measures, corresponding to higher health risks. This is particularly

true for self-reported physical health functioning measures (PCS-12) and for biomarkers of

adiposity (BMI, WC), heart rate, inflammation (CRP), diabetes and cholesterol. However,

we find that the long-run income gradients are much greater in magnitude and more

statistically significant than those based on the cross-sectional income measure. Moreover,
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the corresponding UQR results reveal the presence of greater heterogeneity in the income

gradients, being larger in magnitude and following a more clearly increasing pattern towards

the tails of the distribution that correspond to higher health risks, when long-term average

income is used as opposed to cross-sectional income. Further analysis allows us to

disentangle the role of long-run income from individual-specific selection effects, using a

two-step estimator that includes the estimated individual-specific selection effects from panel

data regressions of household income within the health outcome regressions. Our results

show a clear distinction between the self-reported and the objectively measured biomarkers.

We find that selection effects due to the time-invariant unobserved heterogeneity are highly

significant in the case of the self-reported health outcomes but not in the case of the

objectively measured health indicators. This may suggest that reporting heterogeneity in self-

reported health, assumed to be driven by individual-specific characteristics that are correlated

with socio-economic status and income, may bias the income-health gradients in the case of

the pertinent health measures.

The rest of the paper is organized as follows. Section 2 presents our empirical methodology,

Section 3 introduces the data and Section 4 presents the results of the study. The final section

summarizes and concludes.

2. Methods

In this section we present the empirical strategy that we employ in this study. We first give a

brief illustration of the regression models that we use to explore the association between

income and our different health measures. This is followed by a presentation of the health

specifications for the case of short-run and long-run income measures and the method

employed to account for selection-effects due to the time-invariant unobserved heterogeneity

that may be associated with both income and health measures.

2.1 Health outcome regression models

Ordered probit models and probit models are used to test the association of short-run and

long-run household income with SAH and functional difficulties, respectively. The

continuous health measures (PCS-12, nurse-measured and blood-based biomarkers) are
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initially modelled using the conventional linear regression model (OLS); in subsequent

analysis, quantile regression techniques are employed to explore the whole distribution of the

health measures. In this context, a general model specification can be written as:

௜ܪ
∗ = +௜ܫᇱߛ +௜ݖᇱߜ ௜ݑ (1)

where, ௜ܪ
∗stands for the health outcome of interest, ௜representsܫ the household income

variable, ௜standsݖ for the covariates and ߛ and �areߜ the regression coefficients to be

estimated. In the case of the continuous health outcomes (OLS models), ௜ܪ
∗ coincides with

the observed health measure .(௜ܪ) Regarding the probit models for functional difficulties and

ordered probit models for SAH, ௜ܪ
∗ stands for latent variable.

We also apply quantile regression techniques that allow us to consider the entire distribution

of the continuous health outcomes and to investigate the potentially differential effect of

household income across different points of their distribution. UQR models are employed in

this study (Firpo et al., 2009). Unlike the conventional conditional quantile regression

models, which explore the effect of covariates on the conditional quantiles of the outcome

variable (Koenker and Bassett, 1978), the UQR technique estimates unconditional quantile

partial effects.

The estimation of the UQR is based on the RIF. This can be estimated directly from the data

by computing sample quantiles of the health measure (ఛݍ) and then estimating the density of

the distribution of health measures at that quantiles using kernel density methods.

Specifically, for an observed quantile ,(ఛݍ) a RIF is generated which can take one of two

values depending upon whether or not the observation’s value of the health measure is less

than or equal to the observed quantile :(ఛݍ)

(ఛݍ;௜ܪ)ܨܫܴ = +ఛݍ
ఛି ଵ[ு೔ஸ௤ഓ]

௙ಹ (௤ഓ)
(2)

where, ఛݍ is the observed sample quantile, ≥௜ܪ]1 [ఛݍ is an indicator that equals to one if the

observation value of the health measure of interest is less than or equal to the observed

quantile ఛݍ and zero otherwise. ு݂(ݍఛ) is the estimated kernel density of the particular health

measure at the τth quantile. The RIF is then regressed on a set of covariates ௜usingݖ OLS; this
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constitutes a rescaled linear probability models. We use the bootstrap method with 500

replications to obtain unbiased estimates of the variance-covariance matrix of the parameter

estimates (Buchinsky, 1998; Jolliffe, 2011).

2.2 Model specifications

Cross-sectional regressions of health on income (specification 1) are initially estimated using

current household income (collected at UKHLS wave 3). We then enhance this cross-

sectional approach by using a long-run average measure of household income (within-

individual mean of the natural logarithm of the household income) derived from the

longitudinal income histories covering a long period (maximum of 18 BHPS waves) prior to

the health outcomes (specification 2). In subsequent analysis, a two-step approach is used to

account for selection effects due to the time-invariant unobserved heterogeneity (specification

3). This analysis allows us to separate the role of individual-specific selection effects from

that of our measure of “permanent” income3.

2.2.1 Two-step approach and longitudinal household income model

To account for individual-specific selection effects (due to the time-invariant unobserved

heterogeneity) in the case of the long-run income gradients in health, we adopt a two-step

estimation approach, with a fixed effects income model used in the first-stage.4 Specifically,

the availability of long-running (up to a maximum of 18 BHPS waves) longitudinal

household income data facilitates the estimation of a fixed effect model for household

income; this model allow for disentangling the time-invariant unobserved individual

heterogeneity whose correlation with health may lead to endogeneity concerns. For each

individual ݅at time period (wave) t, the household income equation can be specified as

follows:

ln( ௜ܻ௧) +௜௧ݔᇱߚ�= +௜ݒ ௜௧ߝ (݅= 1, … ,ܰ =ݐ; 1, … , ௜ܶ) (3)

3 A number of studies have used comparable approaches to proxy “permanent income” in the context of other
economic research fields (Bhalla, 1980; Mincer, 1962).
4 Originally, two-step residual inclusion estimators have been devolved to address endogeneity in the context of
instrumental variable models (Hausman, 1978). The two-step residual inclusion and the two-stage least squares
estimator are identical for the case of linear models and, thus, both consistent (Terza et al., 2008). For the needs
of our paper, we use a variant of the two-step residual inclusion estimator technique that limited to allow for the
time-invariant unobserved heterogeneity (i.e., the individual-specific selection effects from our first-stage fixed
effects income estimator, whose correlation with health outcomes may lead to endogeneity) to be taken into
account in the estimation of long-run income gradients in health.
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where,�ܻ௜௧ is the equivalised deflated household income, ௜௧ݔ is a vector of explanatory

variables (mainly describing individual ݅and their household) and ߚ is a vector of regression

coefficients to be estimated. The error term has two components:ݒ�௜, which represents time-

invariant individual-specific effects, and ,௜௧ߝ which is a randomly distributed idiosyncratic

error term. ௜canݒ be correlated with the covariates, while ௜௧ߝ is assumed to be uncorrelated

across individuals and waves as well as strictly exogenous. The fixed effects (௜ݒ) capture

time-invariant unobserved characteristics that affect household income and can be obtained

as =ො௜ݒ ln( పܻ)തതതതതതത− .ҧ௜௧ݔᇱ෡ߚ

At the second stage of our two-step approach, ො௜ݒ , is included in our health outcome

regressions (eq. 1) as an additional regressor. In the context of our general health outcomes

model specification (eq. 1), the role of selection due to unobserved heterogeneity that is

correlated with both long-run income and the health outcomes can be modelled through a

common factor structure, where:

=௜ݑ +ො௜ݒߠ� ௜ߢ (4)

and ௜ߢ is the new idiosyncratic error term of the health outcome models.

3. The UKHLS and BHPS datasets

The data come from the BHPS sub-sample of UKHLS. UKHLS is a large, national

representative longitudinal study of the members of about 32,000 households (at wave 1) in

the UK (Knies, 2015). At wave 2 (2010-2011), the sample of around 8,000 households from

the BHPS was absorbed into the UKHLS. The BHPS is a widely used representative

longitudinal UK study that covered the period between 1991 and 2009 (18 waves) up to the

time it was incorporated in the UKHLS.

For the BHPS respondents followed up in the UKHLS, a set of objective health measures as

well as a non-fasted blood sample were collected by trained nurses, as part of the UKHLS

wave 3 main survey (Benzeval et al., 2014; McFall et al., 2014). All the other

contemporaneous information (such as self-reported health measures, socioeconomic
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characteristics etc.) was collected as part of the UKHLS wave 3 main survey. Longitudinal

household income histories (and other covariates that are used for the panel household

income models) are extracted from BHPS waves 1-18. In order to exploit all the available

observations, an unbalanced sample of the BHPS waves 1-18 is employed for the estimation

of the longitudinal household income model.

For our study we merge BHPS waves 1-18 with UKHLS wave 3 data for the BHPS sample

members who were followed up and were interviewed at least once during the BHPS waves

1-18. When available, the relevant biomedical data from the nurse visits that followed

UKHLS wave 3 are also included. Respondents were eligible for the nurse visits if they took

part in the main survey, were aged 16+, lived in Great Britain (not Northern Ireland), and

were not pregnant (McFall et al., 2014). Blood sample collections were further restricted to

those who had no clotting or bleeding disorders and had never had a fit (Benzeval et al.,

2014). The resulting potential sample for the longitudinal household income analysis has

195,176 observations across all the eighteenth BHPS waves (25,804 unique individuals). Of

those, 8,086 also participated in the UKHLS wave 3, while 4,512 took part in the nurse visits.

The blood-based biomarker data are available for 3,054 respondents5.

3.1 Health Measures

In addition to the conventional SAH and functional disability measures, we also use a set of

continuous health indicators. The latter are constituted by a self-reported physical health

functioning measure (PCS-12) and a number of objectively measured health indicators:

adiposity measures and biomarkers that derived from nurse-administered measurements or

analysis of blood samples. Continuous scale health measures allow for exploring the income

gradients across different points of the distribution of the pertinent health measure.

Self-reported Health

Three self-reported health measures are used. SAH categorizes respondents on a five-

category scale, ranging from “excellent” (value of 1) to “poor” (value of 5) health. We also

consider a self-reported functional disability measure. A dichotomous variable is constructed

taking the value of one if the respondent reported any long-standing functional difficulty with

5 Comparison of the summary statistics across different samples reveals similar results (Table A1, appendix),
indicating that the implications of the reduction in the sample size (in the case of the nurse visits and the blood
data) are limited in our analysis.
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any domain of life and zero otherwise. The SF-12 is a self-administered measure of health-

related quality of life. For this study, we use the physical component sub-measure (PCS-12).

By definition, PCS-12 scores have values between zero and 100 and are standardized to have

a mean of 50 and a standard deviation of 10. To facilitate consistency with the interpretation

of our results since we intent to measure ill-health, PCS-12 is inverted such as higher values

indicate worse physical health functioning.

Adiposity Measures

Anthropometrics were measured during the nurse visits (McFall et al., 2014). We employ

waist circumference (WC), to capture central adiposity, in addition to the conventional BMI.

The mean of the WC measurements (the two closest, if there were three) is used for the

purpose of our study (Davillas and Benzeval, 2016). Body weight and height are used to

calculate BMI as the weight (in kilograms) over the square of height (in meters). It has been

shown that there is a J-shaped association of BMI and WC with mortality risks; mortality risk

is elevated for the underweight and it gradually increases with higher levels of BMI and WC

(Pischon et al, 2008; Prospective Studies Collaboration, 2009).

Blood pressure and resting health rate

Systolic blood pressure (SBP) is the maximum pressure in an artery at the moment when the

heart is pumping blood; diastolic blood pressure (DBP) is the lowest pressure in an artery in

the moments between beats when the heart is resting. A large body of medical studies have

demonstrated that the cardiovascular morbidity and mortality risks gradually increase with

higher levels of SBP and DBP (Sesso et al., 2000). Heart rate is an overall measure of heart

function and cardiovascular fitness. Heart rate values above 90 heart beats per minute (bpm)

are indicative for excess health risks (Seccareccia et al., 2001).

Blood-based biomarkers

Two biomarkers of inflammation are examined: CRP and fibrinogen. CRP (in mg/ L) is an

acute phase protein that mainly reflects general chronic or systemic inflammation. It has been

shown that the risk of ischaemic vascular disease, metabolic syndrome and mortality are

gradually increasing in CRP (Emerging Risk Factors Collaboration, 2010). A number of cut-

points are used in the medical literature with CRP values over 5 mg/L considered as elevated,

while CRP over 3 mg/L as a high risk for cardiovascular diseases (Emerging Risk Factors

Collaboration, 2010; Ferrari et al., 2015); values over 10 mg/L are regarded as suggestive of
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acute infections (Ishii et al., 2012). Fibrinogen (in g/L) is a glycoprotein that stops bleeding

by helping blood clots to form. As such, fibrinogen is directly related to coronary artery

thrombosis; however, it is also regarded as an inflammatory biomarker. There is an

approximately log-linear association of fibrinogen levels with cardiovascular conditions and

mortality (Fibrinogen Studies Collaboration, 2005).

Glycated haemoglobin (HbA1c) is a validated diagnostic test for diabetes (WHO, 2011).

Implications for health are not homogenous across the distribution of HbA1c since different

levels suggest distinct conditions and severity. HbA1c levels between 42 mmol/mol and 48

mmol/mol indicate pre-diabetes risk, HbA1c ≥ 48 mmol/mol indicates diagnosis of diabetes, 

and higher HbA1c levels suggestive of more severe conditions (WHO, 2011).

Cholesterol concentrations measure the “fat in the blood”. For this study, the cholesterol ratio

is calculated as the ratio of total cholesterol over high-density lipoprotein cholesterol. This is

a stronger predictor of cardiovascular morbidity and mortality risks, than each of the

individual cholesterol concentrations, with a dose-response association (Prospective Studies

Collaboration, 2007).

3.2 Household income variables

The monthly gross household income is used as the dependent variable in the panel

household income model for BHPS waves 1-18. Current household income (i.e. UKHLS

wave 3) is available as a derived variable in UKHLS. The household income variables are

transformed to natural logarithms in order to allow for the concavity of the health-income

associations (e.g. Contoyannis et al., 2004a) and because of the skewness of the income

distribution. To facilitate comparisons over time and between households, household income

is deflated, using the Retail Price Index, to express income in January 2010 prices and

equivalised (using the modified OECD scale).
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3.3 Other covariates

Longitudinal income regression models

In keeping with previous studies that model household income, a number of household and

individual level covariates are also included (Cappellari and Jenkins, 2002 and 2004).6

Gender, ethnicity and age (age group dummies for five years intervals between 15 and 84 and

a dummy for those over 84) of the HoH are included. We also account for education and job

status of the HoH in order to capture important demographic and socioeconomic

characteristics that may affect the welfare of the household members (Devicienti, 2011).

Measures of the composition and the labour market attachment of the household (number of

family members working) are also included since they are either directly associated with

earned income or linked to the demographic composition of the household (Cappellari and

Jenkins, 2004). Standard regional dummies are also included.

In order to account for any potential effect of individual’s health on household income

(Michaud and Van Soest, 2008) we control for SAH and dummy indicators for having any

long-lasting health problem/disability and health-related limitations on daily activities7.

Respondent age (dummies defined analogously to the case of HoH) is also included. A vector

of wave dummies is added to account for aggregate income shocks that are not captured by

deflated income as well as for time-varying reporting changes. Descriptive statistics for these

variables are presented in Table A2 (Appendix).

Health outcome regression models

The covariates (collected during the UKHLS wave 3) that are used to model our health

outcomes are presented in Table A1 (Appendix), along with summary statistics. The

estimation models include fourteen age dummies for each gender (as already described,

although the two youngest categories are grouped due to sample size), to allow for a flexible

association between health, age and gender. Ethnicity dummies are also included in the health

models. We include marital status since it may affect household production of health and

demand for health (Fuchs, 2004). Education is also included given evidence on the positive

6 Although these studies focus on poverty, a similar set of covariates can be used in our analysis since poverty is
a function of the continuous household income measures.
7 Since the wording of the SAH question is different for BHPS wave 9, data from the two adjacent waves are
used to impute SAH for BHPS wave 9. Data from adjacent waves are used to impute the missing “health-related
limitations” variable at BHPS waves 9 and 14.
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association between schooling and health (Contoyannis et al., 2004a). Regional dummies are

also added to capture regional variations.

Medications may affect the level of the biomarkers. Following previous literature (Godoy et

al., 2007; Powdthavee, 2010; Rahkovsky and Gregory, 2013), we adjust for taking relevant

medications. This allows exploration of the health-income gradients on the whole population,

controlling for the role of medications. A dummy for anti-hypertensive medications is

included in the blood pressure models, while dummies for statins and anti-inflammatory

medications are added to the CRP models. Anti-inflammatory medications are also accounted

for in fibrinogen models. The cholesterol ratio and the HbA1c regression models include

indicators for statins and anti-diabetic medications, respectively.8

4. Empirical Results

We present results on income gradients in health using cross-sectional and long-run income

measures and the self-reported and objective health indicators. We then present the findings

from our two-step approach. To save space, the results from the longitudinal fixed-effects

model for household income, serving as the first-stage estimation to obtain the predicted

individual-specific fixed effects (sub-section 2.2.1), are presented in the Appendix (Section

B).

4.1 Income gradients in health using cross-sectional versus long-run income measures

Income gradients for our different health indicators using cross-sectional (specification 1) and

long-run (within-individual mean of the natural logarithm of the household income over up to

18 BHPS waves) household income measures (specification 2) are presented in Tables 1-6.

Our results are broadly in accordance with previous studies that have found a stronger

association between long-run income measures and self-reported measures of health and

disability compared to short-run income measures (e.g., Benzeval et al., 2000, Contoyannis et

al., 2004a,b) and extends them to a set of objective health measures, employing “beyond the

mean” analytical techniques.

8 Since an unbalanced BHPS sample is used, we also account for the number of BHPS waves that each
individual is observed in the case of the regressions of health on long-run income (Verbeek and Nijman, 1992).
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Tables 1 and 2 present the results for our self-reported health measures. As expected, we find

a strong cross-sectional income gradient in both SAH and functional disability; higher

income is related to a better SAH (i.e., lower SAH values since SAH is coded from excellent

[1] to poor health [5]) and to a lower probability of functional disability (specification 1,

Table 1). There is also a negative association between higher cross-sectional income and poor

physical health functioning (inverted PCS-12; specification 1, Table 2). The UQR estimates

show that the gradient is more evident beyond the median of the PCS-12 distribution

(corresponding to lower physical functioning). For instance, the income gradient at the 10th

percentile is about five times higher than that at the 75th percentile (-1.922 vs. -0.391).

Table 1. Income gradients in self-assessed health and functional disabilities using
cross-sectional and long-run income measures.

Panel A: Self-assessed health
Ordered Probit

Coeff.
(s.e.)†

APE
(s.e.)†

Excellent Very good Good Fair Poor
Specification 1

Ln(current income) -0.233*** 0.052*** 0.033*** -0.021*** -0.037*** -0.027***

(0.024) (0.005) (0.003) (0.002) (0.004) (0.003)
Specification 2
Long-run mean ln(income) -0.406*** 0.090*** 0.057*** -0.035*** -0.063*** -0.048***

(0.029) (0.006) (0.004) (0.003) (0.005) (0.004)
Specification 3
Long-run mean ln(income) -0.687*** 0.152*** 0.095*** -0.059*** -0.107*** -0.080***

(0.061) (0.013) (0.008) (0.005) (0.009) (0.008)
Individual-specific effects 0.387*** -0.086*** -0.054*** 0.033*** 0.061*** 0.045***

(0.071) (0.016) (0.010) (0.006) (0.011) (0.009)
Sample size 7,978

Panel B: Functional disabilities
Probit

Coeff.
(s.e.)†

APE
(s.e.)†

Specification 1
Ln(current income) -0.176*** -0.048***

(0.032) (0.009)
Specification 2
Long-run mean ln(income) -0.388*** -0.105***

(0.041) (0.011)
Specification 3
Long-run mean ln(income) -0.954*** -0.256***

(0.086) (0.022)
Individual-specific effects 0.782*** 0.210***

(0.100) (0.027)
Sample size 7,724

Abbreviations: APE, average partial effects; Coeff., coefficients; s.e., standard errors.
† Robust standard errors in parenthesis.
***P<0.01; **P<0.05; *P<0.10

Employing our long-run income measure (proxy of “permanent income”) we find much

higher income gradients (specification 2) than those based on cross-sectional income

(specification 1). Specifically, the long-run income gradients in SAH and the functional

disability (average partial effects) are 1.6 to 2 times higher than those based on cross-
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sectional income. Moreover, long-run income, compared to current income, exhibits greater

heterogeneity in the income gradients in (inverted) PCS-12 (Table 2, specification 2).

Specifically, the long-run income gradient at the 90th percentile is about 8 times higher than

at the 10th (inverted) PCS-12 percentile.

Table 2. Income gradients in (inverted) PCS-12 using cross-sectional and long-run income
measures.

OLS Unconditional quantile regressions
Q10 Q25 Q50 Q75 Q90 Q95

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -1.310*** -0.391** -0.916*** -1.523*** -1.922*** -1.696** -1.145

(0.231) (0.166) (0.157) (0.249) (0.516) (0.725) (0.735)
Specification 2
Long-run mean ln(income) -3.058*** -0.799*** -0.885*** -2.292*** -5.409*** -6.510*** -6.100***

(0.294) (0.196) (0.182) (0.299) (0.710) (1.039) (1.037)
Specification 3
Long-run mean ln(income) -6.305*** -0.771* -1.032*** -3.947*** -11.62*** -17.17*** -13.45***

(0.641) (0.402) (0.361) (0.631) (1.377) (2.257) (2.223)
Individual-specific effects 4.465*** -0.0387 0.202 2.276*** 8.545*** 14.66*** 10.11***

(0.733) (0.465) (0.438) (0.758) (1.595) (2.523) (2.323)
Sample size 7,048

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10

The income gradients in adiposity are presented in Table 3. Again, in the BMI models the

income coefficients are larger in magnitude for long-run versus cross-sectional income

measures. Although there is no systematic association at the mean (OLS), the long-run

income coefficient at the 95th BMI percentile (corresponds to BMI values within the range of

severe obesity, i.e. ≥35 kg/m2; Prospective Studies Collaboration, 2009) is more than five

times higher than the corresponding OLS coefficient. The income gradients in WC are more

pronounced. This is broadly in accordance with previous studies that found stronger

socioeconomic gradients for central adiposity measures rather than BMI, reflecting the fact

that BMI is a noisy adiposity measure that cannot distinguish fat from lean body mass

(Davillas and Benzeval, 2016; Ljungvall et al., 2015). Income gradients in WC are also

higher in magnitude in the case of long-run versus current income measures, notably at the

right tails of the WC distribution. A closer look at the long-run income gradients

(specification 2) reveals that the OLS estimator averages out notable differences across the

WC distribution. Specifically, the UQR models suggest no systematic income gradients at the

lower percentiles of WC, while there are statistically significant and gradually increasing

income gradients at higher percentiles (up to three times larger than the OLS estimates).
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Table 3. Income gradients in adiposity using cross-sectional and long-run income measures.
Panel A: Body mass index

OLS Unconditional quantile regressions¶

Q10
(22.0

kg/m2)

Q25
(24.4

kg/m2)

Q50
(27.4

kg/m2)

Q75
(31.1

kg/m2)

Q90
(35.2 kg/m2)

Q95
(38.3 kg/m2)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.091 0.099 -0.026 -0.078 -0.059 -0.282 -0.757*

(0.154) (0.197) (0.187) (0.199) (0.256) (0.367) (0.430)
Specification 2
Long-run mean ln(income) -0.254 0.228 -0.115 -0.284 -0.476 -0.743 -1.414**

(0.194) (0.239) (0.230) (0.230) (0.315) (0.457) (0.579)
Specification 3
Long-run mean ln(income) -0.120 0.591 0.148 -0.132 -0.160 -1.591 -2.755**

(0.422) (0.502) (0.465) (0.444) (0.634) (1.040) (1.381)
Individual-specific effects -0.180 -0.487 -0.353 -0.205 -0.423 1.138 1.799

(0.483) (0.560) (0.537) (0.535) (0.727) (1.179) (1.540)
Sample size 4,224

Panel B: Waist circumference
OLS Unconditional quantile regressions¶

Q10
(76.2 cm)

Q25
(84.2 cm)

Q50
(93.7 cm)

Q75
(103.7 cm)

Q90
(113.6 cm)

Q95
(120 cm)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.820** -0.780 0.0300 -0.237 -1.310** -1.821** -2.110**

(0.377) (0.563) (0.546) (0.491) (0.590) (0.815) (0.955)
Specification 2
Long-run mean ln(income) -1.377*** -0.543 -0.322 -0.682 -1.630** -3.020*** -4.302***

(0.493) (0.770) (0.670) (0.614) (0.689) (1.036) (1.251)
Specification 3
Long-run mean ln(income) -1.528 -0.847 0.758 -0.475 -0.716 -4.024 -8.187***

(1.068) (1.706) (1.454) (1.355) (1.556) (2.468) (3.109)
Individual-specific effects 0.203 0.409 -1.451 -0.279 -1.228 1.350 5.222

(1.202) (1.920) (1.673) (1.585) (1.851) (2.825) (3.375)
Sample size 4,372

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors.
¶ Body mass index and waist circumference values that correspond to each percentile of the distribution are also presented.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10

Table 4 presents the results for blood pressure and heart rate. There is some evidence of

considerably higher income gradients at the right tails of the distribution for both systolic and

diastolic blood pressure, especially in the case of long-run income measures, albeit only

statistically significant at the 10% level. More pronounced income gradients are evident for

our measure of overall cardiovascular fitness (heart rate). Long-run income gradients in heart

rate are larger in magnitude and increase towards the right tail of the heart rate distribution

than those for current income. No systematic gradients are found at the lowest percentiles of

the heart rate distribution (up to 60 bmp; most likely reflecting athletic lifestyles), whereas

gradually increasing negative income gradients are evident towards the higher percentiles,

with a peak at the 95th percentile that is close to the clinical threshold for elevated health risks

(>90 bmp; Seccareccia et al., 2001).
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Table 4. Income gradients in blood pressure and heart rate measurements using cross-sectional
and long-run income measures.

Panel A: Systolic blood pressure
OLS Unconditional quantile regressions¶

Q10
(106

mmHg)

Q25
(114.5

mmHg)

Q50
(124.5 mm

Hg)

Q75
(136.5 mm

Hg)

Q90
(148.5 mm

Hg)

Q95
(156.5

mmHg)
Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.687 -0.508 -0.575 -0.211 -0.587 -0.613 -2.061

(0.470) (0.628) (0.576) (0.633) (0.839) (0.978) (1.558)
Specification 2
Long-run mean ln(income) -0.050 1.023 -0.144 1.008 0.547 -0.610 -4.238*

(0.608) (0.812) (0.773) (0.765) (0.975) (1.396) (2.390)
Specification 3
Long-run mean ln(income) 1.025 0.642 -0.824 2.300 1.548 0.917 -2.729

(1.291) (1.904) (1.630) (1.686) (2.215) (2.552) (4.164)
Individual-specific effects -1.423 0.506 0.902 -1.711 -1.326 -2.023 -2.000

(1.508) (2.277) (1.924) (1.979) (2.683) (3.029) (5.165)
Sample size 3,632

Panel B: Diastolic Blood pressure
OLS Unconditional quantile regressions¶

Q10
(59.5

mmHg)

Q25
(65.5

mmHg)

Q50
(73 mm Hg)

Q75
(80 mmHg)

Q90
(87 mmHg)

Q95
(91.5

mmHg)
Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.809** -0.573 -0.971** -0.707* -1.002* -1.049 -0.861

(0.326) (0.448) (0.456) (0.430) (0.520) (0.693) (0.978)
Specification 2
Long-run mean ln(income) -0.478 0.258 -0.199 0.0385 -1.131* -1.619* -1.520

(0.422) (0.680) (0.607) (0.545) (0.665) (0.886) (1.114)
Specification 3
Long-run mean ln(income) -0.744 0.546 -1.269 0.090 -1.217 -0.647 -3.170

(0.903) (1.501) (1.317) (1.159) (1.341) (1.811) (2.380)
Individual-specific effects 0.352 -0.382 1.418 -0.0683 0.114 -1.288 2.186

(1.053) (1.816) (1.570) (1.402) (1.568) (2.015) (2.567)
Sample size 3,632

Panel C: Resting Heart rate
OLS Unconditional quantile regressions¶

Q10
(56 bmp)

Q25
(61.5 bmp)

Q50
(68.5 bmp)

Q75
(75.5 bmp)

Q90
(84 bmp)

Q95
(89 bmp)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -1.425*** -0.673 -0.743* -1.481*** -1.463*** -3.476*** -2.934***

(0.348) (0.535) (0.434) (0.467) (0.534) (0.848) (0.869)
Specification 2
Long-run mean ln(income) -1.742*** -0.391 -0.992* -1.712*** -2.118*** -4.078*** -5.061***

(0.455) (0.652) (0.544) (0.587) (0.634) (1.081) (1.226)
Specification 3
Long-run mean ln(income) -1.755* 0.937 0.0821 -2.533** -2.603* -5.018** -6.567***

(1.015) (1.352) (1.113) (1.204) (1.433) (2.489) (3.001)
Individual-specific effects 0.0172 -1.760 -1.423 1.088 0.643 1.246 2.447

(1.174) (1.625) (1.288) (1.333) (1.690) (2.741) (3.365)
Sample size 3,636

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors.
¶ Blood pressure and heart rate values that correspond to each percentile of the distribution are also presented.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10
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Income gradients in inflammatory biomarkers are also higher in magnitude for long-run

versus cross-sectional income (Table 5). Analysis “beyond the mean” reveals that the

differences between them are more evident at the tails of the CRP distribution, where both

higher health risks and steeper income gradients are observed. For example, the long-run

income gradient at the 95th percentile (reflecting acute inflammation; Ishii et al., 2012) is

about 7 times higher than the OLS coefficient. However, we find limited variation in the

magnitude of the negative income gradient in fibrinogen across its distribution; this result is

in accordance with previous evidence (Carrieri and Jones, 2016).

Table 5. Income gradients in inflammatory biomarkers using cross-sectional and long-run
income measures.

Panel A: C-reactive protein
OLS Unconditional quantile regressions¶

Q10
(0.3 mg/L)

Q25
(0.6 mg/L)

Q50
(1.4 mg/L)

Q75
(3.1 mg/L)

Q90
(6.7 mg/L)

Q95
(11 mg/L)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.176 0.002 0.001 -0.048 -0.249 -1.195** -2.151*

(0.225) (0.033) (0.038) (0.071) (0.184) (0.566) (1.251)
Specification 2
Long-run mean
ln(income) -0.815*** -0.031 -0.082* -0.222** -0.943*** -2.037*** -5.733**

(0.280) (0.048) (0.049) (0.089) (0.234) (0.730) (2.378)
Specification 3
Long-run mean
ln(income) -0.764 0.047 -0.008 -0.105 -0.563 -1.343 -12.78**

(0.636) (0.077) (0.104) (0.192) (0.515) (1.531) (5.473)
Individual-specific effects -0.0667 -0.103 -0.0972 -0.153 -0.498 -0.911 9.252

(0.677) (0.093) (0.119) (0.222) (0.605) (1.693) (5.694)
Sample size 2,932

Panel B: Fibrinogen
OLS Unconditional quantile regressions¶

Q10
(2.1 g/L)

Q25
(2.4 g/L)

Q50
(2.8 g/L)

Q75
(3.2 g/L)

Q90
(3.6 g/L)

Q95
(3.8 g/L)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.075*** -0.057** -0.073*** -0.085*** -0.099*** -0.061 -0.046

(0.020) (0.025) (0.025) (0.025) (0.031) (0.045) (0.059)
Specification 2
Long-run mean
ln(income) -0.148*** -0.112*** -0.143*** -0.133*** -0.172*** -0.121** -0.166**

(0.025) (0.033) (0.034) (0.031) (0.038) (0.060) (0.069)
Specification 3
Long-run mean
ln(income) -0.200*** -0.061 -0.187*** -0.202*** -0.292*** -0.288** -0.351**

(0.055) (0.071) (0.070) (0.066) (0.081) (0.135) (0.175)
Individual-specific effects 0.068 -0.067 0.057 0.090 0.157 0.220 0.244

(0.063) (0.082) (0.084) (0.080) (0.098) (0.154) (0.203)
Sample size 2,894

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors
¶ Biomarker values that correspond to each percentile of the biomarker distribution are also presented.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10

The long-run income measure shows larger income gradients and a sharper increase in the

income gradients towards the right tail of the distribution of our “blood sugar” (HbA1c) and
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“fat in the blood” (cholesterol ratio) biomarkers than current income measures (Table 6). For

HbA1c we find a steeper pattern across the HbA1c distribution for the long-run measure;

with the gradient increasing almost linearly up to 90th percentile and much sharper after this

point (95th HbA1c percentile, i.e., values close to the diabetes threshold). The long-run

income gradient in cholesterol ratio (specification 2) gradually increases towards the right

tails of its distribution with two “peak” points: the first at around the 75th percentile (close to

the clinical threshold of 4; Millán et al., 2009) and another peak afterwards (95th percentile).

The corresponding income gradient at the right tail of the cholesterol ratio distribution is 37

times higher compared to the bottom of the distribution (-0.475 vs -0.013).

Table 6. Income gradients in HbA1c and Cholesterol ratio using cross-sectional and long-run
income measures.

Panel A: HbA1c
OLS Unconditional quantile regressions¶

Q10
(31

mmol/mol)

Q25
(33

mmol/mol)

Q50
(36

mmol/mol)

Q75
(39

mmol/mol)

Q90
(43

mmol/mol)

Q95
(50

mmol/mol)
Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.673*** -0.342* -0.455** -0.347** -0.450** -0.308 -3.486*

(0.227) (0.197) (0.181) (0.166) (0.228) (0.602) (1.865)
Specification 2
Long-run mean ln(income) -1.248*** -0.274 -0.488** -0.774*** -0.938*** -1.123* -5.549**

(0.366) (0.278) (0.247) (0.211) (0.297) (0.667) (2.850)
Specification 3
Long-run mean ln(income) -2.121*** 0.157 -1.075 -0.708 -1.347** -3.698** -13.390**

(0.807) (0.629) (0.670) (0.458) (0.596) (1.790) (6.519)
Individual-specific effects 1.145 -0.566 0.771 -0.0867 0.536 3.208 12.222

(0.855) (0.700) (0.699) (0.534) (0.736) (2.234) (7.333)
Sample size 2,779

Panel B: Cholesterol ratio
OLS Unconditional quantile regressions¶

Q10
(2.35 units)

Q25
(2.81 units)

Q50
(3.5 units)

Q75
(4.45 units)

Q90
(5.55 units)

Q95
(6.3 units)

Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -0.104** -0.044 -0.096* -0.138*** -0.231*** 0.070 -0.085

(0.046) (0.039) (0.050) (0.052) (0.077) (0.119) (0.157)
Specification 2
Long-run mean ln(income) -0.229*** -0.013 -0.122** -0.221*** -0.379*** -0.305** -0.475**

(0.056) (0.050) (0.059) (0.065) (0.098) (0.143) (0.197)
Specification 3
Long-run mean ln(income) -0.294** -0.047 -0.128 -0.236* -0.490** -0.577* -1.402***

(0.131) (0.124) (0.119) (0.140) (0.209) (0.328) (0.536)
Individual-specific effects 0.086 0.045 0.008 0.020 0.147 0.358 1.129*

(0.156) (0.142) (0.141) (0.159) (0.242) (0.388) (0.637)
Sample size 2,932

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors
¶ Biomarker values that correspond to each percentile of the biomarker distribution are also presented.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10
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4.2 Accounting for unobserved heterogeneity in the long-run health-income gradients

The analysis so far does not account for the role of selection due to unobserved heterogeneity

that may be associated with both health and long-run income. In subsequent analysis

(specification 3, Tables 1-6), a two-step estimator is implemented by adding selection effects

obtained using the fixed effects panel model (results available in Table A3 in the Appendix),

as an additional regressor in the health outcome regressions for long-run income.

Overall, we find that accounting for selection effects due to the time-invariant unobserved

heterogeneity (specification 3) results in a clear distinction between the self-reported and the

objectively measured health indicators. Although the individual-specific selection effects are

highly statistically significant in the case of our self-reported health models (i.e., SAH,

functional disabilities and PCS-12), no such systematic effects are observed for the biomarker

models (specification 3, Tables 1-6).9 This suggests endogeneity of long-run income in the

health outcome regressions based on self-reported health indicators, while this is not the case

for the objectively measured health indicators (at least as far as the time-invariant individual-

specific heterogeneity is concerned). This difference might be explained by the fact that the

individual-specific selection effects in the self-report measures capture subjective reporting

error.

Reporting heterogeneity in self-reported health can occur for a number of reasons, and has

been shown to be associated with the respondent’s socio-economic status and income

(Campolieti, 2002; Johnston et al., 2009; Ziebarth, 2010). In this context, models accounting

for unobserved heterogeneity (selection) effects (specification 3) are preferred for the self-

reported health outcomes. Finally, the fact that we observe larger income gradients in self-

reported health (SAH, functional disabilities and PCS-12) in the two-stage estimation models

(specification 3) compared to those that do not account for selection-effects (specification 2)

may be primarily because of attenuation bias associated with measurement error in self-

reported health measures10.

9 To explore whether our results are driven by differences in the sample size, Tables A4 and A5 (Appendix)
present income gradients in the self-reported health measures for the nurse visits sample. We find that our
results are robust to the choice of alternative samples.
10

In accordance with our conclusions, Johnston et al. (2009) found that reporting error in self-reported health

measures may be result in an underestimation of the income-gradient. Our results indicate that those with higher

incomes may have a tendency to be more harsh in evaluations of their own health. Those with higher income

may have higher expectations for their own health or perhaps a better understanding of health conditions. It has
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5. Conclusions

This paper uses data from the BHPS subsample of the UKHLS which allows for a large set of

self-reported and objective measures of health as well as for both short- and long-run

measures of income. We use a range of self-reported health measures (SAH, disability and

physical-health functioning), nurse-administered (adiposity, blood pressure and heart rate)

and blood-based biomarkers (inflammatory, blood sugar and “fat in the blood” biomarkers).

The availability of this large set of health measures, in combination with longitudinal income

histories, give us the rare opportunity for a detailed econometric analysis that is not limited to

cross-sectional income measures but also explores long-run income gradients in health

accounting for the role of individual-specific selection effects (time-invariant unobserved

heterogeneity). To our knowledge, this is the first study that explores income-health gradients

using such a broad set of self-reported and objectively measured health indicators, both short-

run and long-run income measures, and estimation techniques that account for individual-

specific selection effects and facilitate “beyond the mean” analysis.

Our results show clear income gradients across all the self-reported health measures and most

of the nurse-administered and blood-based biomarkers when we use cross-sectional income.

We find that the cross-sectional association of current income with self-reported physical

health functioning measures (PCS-12) and biomarkers of adiposity (BMI, WC), heart rate,

inflammation (CRP), diabetes and cholesterol varies across their distribution and is

considerably larger at the tails of the distribution, where the health care risks are more

evident. We find greater (in magnitude and statistical significance) income gradients in health

when we employ a long-run income measure. Heterogeneity in these income gradients is

evident, especially for long-run income, with the gradients larger in magnitude and following

a steeper increasing pattern towards the tails of the distribution.

Using a two-step estimator, further analysis allows us to disentangle the role of “permanent”

income from that attributed to individual-specific selection effects. Although the individual-

specific selection effects are highly statistically significant for our self-reported health models

been shown that similar objective clinical health conditions can be differentially taken into account in self-

assessments of health subject to the individual’s knowledge of these conditions or symptoms (Jylhä, 2009).
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(i.e., SAH, functional disabilities and PCS-12), no systematic effects are observed for the

objectively measured health indicators. This may suggest that reporting heterogeneity in self-

reported health, assumed to be driven by individual-specific characteristics that are correlated

with income, may bias the income-health gradients in the case of the self-reported measures.

Our findings suggesting that the income-health gradients may be contaminated by the role of

systematic reporting heterogeneity in self-reported health highlighting the importance of

considering more accurate measures of health (such as biomarkers) in future research.
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Appendix

A. Descriptive statistics

Table A1. Descriptive statistics for all the independent variables used in the health outcome
regression models.

Maximum possible sample †
Nurse visits sample†† Blood sample¶

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Ethnicity
White 0.968 0.177 0.969 0.174 0.975 0.156
Non-white (reference category) 0.032 0.177 0.031 0.174 0.025 0.156

Age-sex dummies
Male (Age 19-24) (reference
category) 0.030 0.170 0.019 0.137 0.016 0.125
Male (Age 25-29) 0.027 0.163 0.023 0.151 0.019 0.136
Male (Age 30-34) 0.035 0.184 0.032 0.176 0.027 0.163
Male (Age 35-39) 0.040 0.197 0.037 0.190 0.037 0.188
Male (Age 40-44) 0.046 0.210 0.045 0.208 0.044 0.205
Male (Age 45-49) 0.047 0.211 0.046 0.211 0.048 0.213
Male (Age 50-54) 0.043 0.203 0.044 0.205 0.049 0.216
Male (Age 55-59) 0.040 0.197 0.040 0.195 0.043 0.204
Male (Age 60-64) 0.038 0.192 0.039 0.193 0.039 0.194
Male (Age 65-69) 0.034 0.180 0.036 0.187 0.042 0.200
Male (Age 70-74) 0.027 0.163 0.029 0.167 0.031 0.174
Male (Age 75-79) 0.020 0.141 0.026 0.160 0.027 0.162
Male (Age 80-84) 0.016 0.124 0.015 0.123 0.016 0.124
Male (Age 85+) 0.009 0.097 0.011 0.102 0.008 0.091
Female (Age 19-24) 0.038 0.192 0.029 0.169 0.019 0.138
Female (Age 25-29) 0.032 0.177 0.030 0.169 0.022 0.147
Female (Age 30-34) 0.043 0.202 0.039 0.194 0.036 0.187
Female (Age 35-39) 0.047 0.211 0.048 0.214 0.051 0.219
Female (Age 40-44) 0.051 0.220 0.053 0.224 0.056 0.230
Female (Age 45-49) 0.058 0.233 0.060 0.237 0.060 0.238
Female (Age 50-54) 0.052 0.223 0.051 0.219 0.055 0.227
Female (Age 55-59) 0.042 0.200 0.044 0.206 0.045 0.207
Female (Age 60-64) 0.049 0.215 0.056 0.230 0.060 0.237
Female (Age 65-69) 0.040 0.197 0.045 0.208 0.050 0.217
Female (Age 70-74) 0.030 0.170 0.033 0.179 0.034 0.182
Female (Age 75-79) 0.028 0.166 0.032 0.175 0.033 0.179
Female (Age 80-84) 0.021 0.142 0.022 0.148 0.022 0.146
Female (Age 85+) 0.015 0.122 0.015 0.121 0.012 0.109

Educational attainment
Degree 0.298 0.458 0.309 0.462 0.321 0.467
A-level or equivalent 0.236 0.425 0.222 0.415 0.214 0.410
O-level or basic qualification 0.321 0.467 0.325 0.469 0.322 0.467
No qualification (reference
category) 0.145 0.352 0.145 0.352 0.143 0.350

Marital status
Single 0.154 0.361 0.128 0.334 0.107 0.309
Married (reference category) 0.695 0.460 0.702 0.457 0.713 0.453
Separated/divorced 0.077 0.267 0.087 0.282 0.092 0.289
Widowed 0.074 0.262 0.083 0.276 0.088 0.284

Household size 2.735 1.372 2.626 1.276 2.595 1.235
Number of kids in household 0.531 0.931 0.499 0.897 0.491 0.873
Region

North East 0.029 0.167 0.031 0.174 0.030 0.171
North West 0.084 0.278 0.092 0.289 0.096 0.295
Yorkshire & Humber 0.064 0.245 0.065 0.247 0.067 0.251
East Midlands 0.063 0.244 0.067 0.249 0.061 0.240
West Midlands 0.056 0.229 0.056 0.229 0.052 0.221
East of England 0.073 0.261 0.073 0.260 0.068 0.252
London 0.048 0.215 0.046 0.210 0.049 0.216
South East 0.102 0.302 0.105 0.307 0.102 0.303
South West 0.069 0.253 0.072 0.258 0.071 0.257
Wales 0.210 0.407 0.207 0.405 0.200 0.400
Scotland (reference category) 0.202 0.401 0.187 0.390 0.202 0.401

Sample size 7,979 4,474 3,003
† Sample size corresponds to the maximum possible sample size for the health regression models. Sample
size varies in Tables 1-6 depending on the health outcome considered.
†† Sample size corresponds to the nurse visits sub-sample.
¶ Sample size corresponds to the blood data sub-sample.
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Table A2. Descriptive statistics for selected independent variables used in the
longitudinal model of household income for the BHPS data

Mean Standard deviation
Household head (HoH) characteristics
Male 0.613 0.487
White 0.968 0.175
HoH educational attainment

Degree (reference category) 0.211 0.409
A-level or equivalent 0.203 0.402
O-level or basic qualification 0.331 0.470
No qualification 0.254 0.435

HoH employment status
Employed (reference category) 0.518 0.500
Self-employed 0.091 0.287
Unemployed 0.032 0.176
Retired 0.228 0.420
Sick/disabled 0.047 0.211
Other activity 0.084 0.278

Household composition
Lone parent 0.046 0.210
Couple without children (reference category) 0.423 0.494
Couple with children 0.296 0.456
Single: non-elderly 0.097 0.297
Single: elderly 0.090 0.286
Other (group HHs) 0.032 0.175
Multiple family households 0.016 0.124

Number of workers in the household 1.408 1.104
Individual’s health indicators
Self-assessed health

Excellent (reference category) 0.232 0.422
Very good 0.465 0.499
Good 0.209 0.407
Fair 0.073 0.260
Poor 0.022 0.146

Health problems/disabilities 0.600 0.490
Health-related limitations on daily activities 0.166 0.372
Region of residence

North East 0.038 0.190
North West 0.098 0.297
Yorkshire & Humber 0.076 0.265
East Midlands 0.069 0.254
West Midlands 0.071 0.257
East of England 0.072 0.259
London 0.072 0.258
South East 0.113 0.317
South West 0.075 0.264
Wales 0.146 0.354
Scotland (reference category) 0.169 0.375

Sample size 195,176

Note: Although age dummies for individuals and the household head as well as year dummies are included in the
income models, these variable are not presented to save space.
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B. Panel data regressions for household income

Table A3 presents the results from the fixed effects model for equivalised household income. A strong
negative association is observed between lower education of the HoH and higher equivalised
household income. In a comparable context, Cappellari and Jenkins (2004) found that having a HoH
with low education is associated with a higher risk of poverty. As expected, the employment status of
the HoH is a significant correlate of equivalised income. Lone parent households, followed by couples
with children and multiple family households are the type of households that are associated with the
lowest equivalised family income compared to the references category of couples without children.
Analogously, Cappellari and Jenkins (2004) found that living in lone parent or multiple family
households as well as the presence of children increase the probability of transition to poverty.
Moreover, individuals who are living in households with a higher number of working members have
higher equivalised household income on average. A systematic association is also found between
individual’s SAH and household income. However, this association is relatively small in magnitude.
For example, relative to those with excellent health, individuals reported fair health have a lower
household income by about 2% (=(exp(-0.018)-1)*100). Finally, age dummies reveal an inverted U-
shaped association if one compares the equivalised household income of our younger age group (15-
19 years old; reference group) with any other age group (detailed results are not presented in Table A3
but are available upon request).

Table A3. Fixed effects model of household income for BHPS waves 1-18.
Coefficient Standard error

Household head (HoH) characteristics
Male 0.001 0.005
White 0.090*** 0.033
HoH educational attainment

A-level or equivalent -0.120*** 0.010
O-level or basic qualification -0.098*** 0.010
No qualification -0.118*** 0.012

HoH employment status
Self-employed -0.197*** 0.010
Unemployed -0.425*** 0.010
Retired -0.290*** 0.008
Sick/disabled -0.236*** 0.009
Other activity -0.281*** 0.008

Household composition
Lone parent -0.305*** 0.012
Couple with children -0.167*** 0.005
Single: non-elderly -0.111*** 0.010
Single: elderly -0.061*** 0.013
Other (group HHs) -0.068*** 0.015
Multiple family households -0.163*** 0.011

Number of workers in the household 0.171*** 0.003
Individual’s health indicators
Self-assessed health

Very good -0.006* 0.003
Good -0.011*** 0.004
Fair -0.018*** 0.006
Poor -0.011 0.009

Health problems/disabilities 0.001 0.004
Health-related limitations on daily activities 0.001 0.003
Controls for:

Individual age dummies Y
HoH age dummies Y
Year dummies Y
Regional dummies Y

Sample size 195,176
Notes: Standard errors are clustered at the individual level.
***P<0.01; **P<0.05; *P<0.10
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C. Income gradients in self-reported health measures for the nurse visits sub-sample

Table A4. Income gradients in self-assessed health and functional disabilities for
the nurse visits sample.

Panel A: Self-assessed health
Ordered Probit

Coeff.
(s.e.)†

APE
(s.e.)†

Excellent Very good Good Fair Poor
Specification 1

Ln(current income) -0.264*** 0.056*** 0.041*** -0.022*** -0.043*** -0.032***

(0.032) (0.007) (0.005) (0.003) (0.005) (0.004)
Specification 2
Long-run mean ln(income) -0.409*** 0.086*** 0.062*** -0.034*** -0.066*** -0.048***

(0.039) (0.008) (0.006) (0.003) (0.006) (0.005)
Specification 3
Long-run mean ln(income) -0.675*** 0.141*** 0.102*** -0.055*** -0.109*** -0.080***

(0.086) (0.018) (0.013) (0.007) (0.014) (0.011)
Individual-specific effects 0.358*** -0.075*** -0.054*** 0.029*** 0.058*** 0.042***

(0.100) (0.020) (0.015) (0.008) (0.015) (0.011)
Sample size 4,474

Panel B: Functional disabilities
Probit

Coeff.
(s.e.)†

APE
(s.e.)†

Specification 1
Ln(current income) -0.174*** -0.050***

(0.041) (0.012)
Specification 2
Long-run mean ln(income) -0.379*** -0.108***

(0.053) (0.015)
Specification 3
Long-run mean ln(income) -1.017*** -0.286***

(0.114) (0.031)
Individual-specific effects 0.857*** 0.241***

(0.132) (0.036)
Sample size 4,474

Abbreviations: APE, average partial effects; Coeff., coefficients; s.e., standard errors.
† Robust standard errors in parenthesis.
***P<0.01; **P<0.05; *P<0.10

Table A5. Income gradients in (inverted) PCS-12 for the nurse visits sample.
OLS Unconditional quantile regressions

Q10 Q25 Q50 Q75 Q90 Q95
Coeff.
(s.e.)†

Coeff.
(s.e.)‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Coeff.
(s.e.) ‡

Specification 1
Ln(current income) -1.471*** -0.580*** -0.933*** -1.594*** -2.334*** -1.825** -1.639**

(0.299) (0.203) (0.188) (0.325) (0.701) (0.906) (0.810)
Specification 2
Long-run mean
ln(income) -3.284*** -0.878*** -0.908*** -2.818*** -6.144*** -6.549*** -6.423***

(0.397) (0.263) (0.243) (0.421) (1.007) (1.308) (1.154)
Specification 3
Long-run mean
ln(income) -7.391*** -0.313 -1.162** -5.387*** -14.58*** -19.60*** -15.53***

(0.876) (0.525) (0.497) (0.875) (2.187) (3.162) (2.744)
Individual-specific
effects 5.523*** -0.760 0.343 3.455*** 11.34*** 17.56*** 12.25***

(0.987) (0.604) (0.596) (1.002) (2.392) (3.517) (2.960)
Sample size 4,218

Abbreviations: Coeff., coefficients; OLS, ordinary least squares; s.e., standard errors.
† Robust standard errors in parenthesis.
‡ UQR standard errors are bootstrap estimates with 500 replications.
***P<0.01; **P<0.05; *P<0.10
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