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Abstract

Introduction

Accurate information on disease prevalence is needed to target limited health resources in order
to maximize overall population health. Applying rigorous econometric methods to routinely
collected data can produce accurate estimates of disease prevalence and under-detection rates at a
fraction of the cost of alternatives such as prevalence surveys or universal diagnostic testing.
Such estimates are valuable in developing countries to inform evidence-based health policy.

Methods

We develop a simple framework with minimal assumptions to capture key features of clinical
decision making surrounding diagnostic testing in resource limited settings. When it is infeasible
to test every at-risk patient, clinicians must triage available resources to test those deemed most
likely to have the disease. We use standard econometric estimation methods and iterative
numerical optimization techniques to estimate (a) disease prevalence and (b) the accuracy with
which clinicians triage patients for testing. We implement an instrumental variables approach
using national and local policy changes that exogenously shift the available resources for
diagnostic testing as instruments. We apply this method to tuberculosis (TB), which recently
surpassed HIV as the leading infectious disease cause of death in the world. We use a national
database of TB test data from South Africa, which includes over 11 million patients, to examine
diagnostic testing for multi-drug resistant TB (MDR-TB).

Results

The predictions from our model closely match observed patterns in the data. We find that at least
one-quarter of MDR-TB cases were undiagnosed between 2004-2011. Our estimates show that
the official World Health Organization estimate of 2.5% based on notification rates is too low,
and MDR-TB prevalence in South Africa could be as high as 3.29 - 3.37%. Noise-to-signal ratios
in MDR-TB detection estimated in our model enable the identification of areas where clinicians
do a poor job of sorting patients by MDR-TB risk prior to testing.

Discussion

In the case of MDR-TB there is a need for greater investment in early detection and more
effective treatment. Our method of identifying areas with high MDR-TB under-detection rates,
which was heretofore unmeasured and contributes to high transmission rates, provides clinicians
and policy makers with a formidable new tool for targeting efforts to control TB. This method
should be deployed in countries such as India, China and Russia, which together account for over
50% of MDR-TB cases worldwide, as well as applied to other infectious and non-infectious
diseases where prevalence data is lacking.



1. Introduction
1.1 Background

Accurate information on disease prevalence is essential for health policy making so that limited
resources can be targeted globally and nationally to improve patient outcomes and maximize
overall population health. Prevalence surveys can provide accurate estimates of disease
prevalence, but they are infrequently conducted because they entail significant financial and time
costs. Unadjusted estimates from routinely collected health care data are likely to be biased
because clinicians generally only perform diagnostic testing on patients who appear at-risk for the
disease. Testing all patients for every disease is neither feasible nor cost-effective.

In this study, we develop an innovative approach to estimating disease prevalence that accounts
for under-detection, provides continuous surveillance and relies solely on existing routinely-
collected data from diagnostic laboratories. Notably, our method does not require that all patients
or a random sample of patients be screened for the disease. Instead, it applies rigorous statistical
(econometric) methods to routinely collected data, which is readily available but acutely
underused, to produce low-cost, unbiased estimates of disease prevalence.

Our framework may be applied to a broad range of health conditions including hypertension,
HIV, malaria, and anti-microbial resistance among others. In this study, we apply the method to
tuberculosis (TB), which kills more than 1.5 million people annually and recently surpassed HIV
as the leading infectious disease cause of death in the world (WHO 2015). Though multi-drug
resistant TB (MDR-TB) patients comprised an estimated 5% of TB cases notified, they accounted
for 13% of TB deaths and 20% of TB spending worldwide in 2014 (WHO 2015). Early and
accurate diagnosis of MDR-TB is therefore critical. However, only 12% of incident TB cases
were tested for MDR-TB. The under-detection of MDR-TB drives the development of new
forms of drug resistance such as extensively (XDR) and totally drug-resistant TB worldwide
(Klopper et al. 2013).

We develop a simple framework with minimal assumptions to capture key features of clinical
decision making surrounding MDR-TB testing. In resource limited settings, resources are not
available to test every TB-positive patient for MDR-TB. Clinicians must therefore triage
available resources to test those deemed most likely to have MDR-TB. We use standard
econometric estimation methods and iterative numerical optimization techniques to estimate (a)
the prevalence of MDR-TB and (b) the accuracy with which clinicians triage for MDR-TB
testing. Our method leverages the same principle that underlies regression discontinuity analysis
— the contrast between slow-changing MDR-TB prevalence and sudden (discontinuous) changes
in the likelihood that MDR-TB cases are diagnosed due to the availability of testing resources
(e.g. funding, testing materials, human resources, lab capacity).

We find that approximately one-quarter of all MDR-TB cases were undiagnosed between 2004-
2011 in South Africa, which worsens patient outcomes, increases transmission and leads to the
development of additional drug resistance. This straightforward, yet powerful, approach to
disease surveillance is a viable strategy for identifying localities and patient groups with high
disease burdens. It is simple and adaptable enough to be applied to many infectious and non-
infectious diseases in the developing world where prevalence data is lacking.

The contribution of this paper is three-fold. First, we develop a new method for estimating
disease prevalence that is widely applicable to many diseases. The HIV literature has
demonstrated the importance of using statistical methods to adjust ante-natal care and population



prevalence estimates for representativeness (see Sakarovitch et al. 2007, Nyirenda et al. 2010,
Hogan et al. 2012, Clark and Houle 2014, McGovern et al. 2015), however we develop more
rigorous methods for routine data and are the first to apply these types of methods to TB. Second,
by applying the model to the case of MDR-TB, we find that approximately one-quarter of MDR-
TB cases in South Africa went undiagnosed between 2004-2011, which is a significant threat to
TB control. Third, we demonstrate the ease with which this method can be applied to other
diseases and contexts because it uses existing data, is low cost and can be quickly scaled up. Our
method can be employed in low- and middle-income countries to cost-effectively develop
guidance for health policy making to ultimately improve population health.

1.2 Context

TB has been the leading cause of death for over a decade in South Africa but the lack of reliable
estimates of local TB prevalence makes it difficult to allocate government resources efficiently
(Statistics South Africa 2011). This is especially important for MDR-TB which accounts for 2.5-
3.5% of all TB patients in South Africa, but consumes about 50% of the TB budget (WHO 2011;
Pooran et al. 2012). Treatment success rates in South Africa are close to 45% compared to 79%
for drug susceptible TB (WHO 2014).

Conventional thinking about estimating MDR-TB prevalence focuses on increasing the frequency
and coverage of TB prevalence studies and expanding access to rapid molecular tests such as
Xpert for drug resistance testing (Cohen et al. 2008, Weyer et al. 2013). However, both avenues
are expensive and logistically complex. Theron et al. (2015) calls for better use of existing data to
inform tailored responses in the fight against TB, however advances in this area have been slow.
For over a decade there have been calls for more MDR-TB prevalence studies yet only 8.3% of
the population in the 27 high MDR-TB burden countries live in an area where at least two
accurate population surveillance data points are available to estimate trends (Cohen et al. 2014).

Official guidelines counsel clinicians to screen patients for TB based on symptoms (current
cough, weight loss, night sweats, fever) which are indistinguishable from MDR-TB (Department
of Health 2013). Before Xpert was widely available in South Africa, the guidelines indicated that
persons with TB symptoms who had been previously treated for TB, patients who had failed TB
treatment, and those who were known contacts of MDR-TB were at highest risk of MDR-TB and
therefore should be tested (Department of Health 2013). Clinicians can ascertain a patient's
approximate risk of MDR-TB from a medical history and physical exam to rank patients on
MDR-TB risk before ordering laboratory testing. The risk factors are a good but imperfect signal
of MDR-TB so many cases could initially go undetected. Previously, MDR-TB was primarily due
to acquisition through incorrect or incomplete treatment, however recent evidence shows that
most incident MDR-TB cases are due to transmission instead, which makes risk factors worse
predictors (Kendall et al. 2015). Resource shortages such as stockouts of test materials or drugs,
long lab wait times or heavy clinical workload may prevent some at-risk patients from being
tested for MDR-TB.

2. Methods

2.1 Data

We use data from the National Health Laboratory Service (NHLS) database on TB tests
performed on patients aged 16-64 in public health facilities (hospitals and health clinics) for the

period January 2004 - December 2011, which includes over 11 million patients. Our analysis
sample comprises 2,271,538 TB-positive test records from 2,520,337 unique patients in 5,122



health facilities (359,174 of which are tested for MDR). For TB and drug susceptibility testing,
the data include the type of test performed, test result, testing facility location, test date and basic
patient demographics. We consider TB-positive results from culture testing and smear
microscopy as well as scanty positives of 3 or more acid fast bacilli (AFB) per 100 immersion
fields. Patient records are linked using unique patient identifiers created by the NHLS. Our
dataset spans 8 years of frequent observations, which allows us to observe several sudden policy
shifts that affected the inclination to test for MDR. Since this variation forms the basis for our
identification strategy, the long time-series dimension makes it especially well-suited for this
analysis.

In some analyses, we use data only from new patients in order to limit the sample to one
diagnostic episode per patient, exclude treatment monitoring tests, and examine the sample
without a history of TB testing (which in most cases implies without a history of TB treatment).
We exclude 89,032 records (3.9% of the sample) that were missing gender data from the gender
sub-group analysis. We also exclude data from KwaZulu-Natal from the provincial analyses
because only a small fraction of tests performed in that province have been electronically
captured. Ethics approval was obtained from the University of Michigan Institutional Review
Board and the University of Cape Town Faculty Ethics in Research Committee.

2.2 Theory model

Using minimal assumptions, we develop a simple theoretical model of the clinician’s decision to
perform drug susceptibility testing on a patient with suspected TB. In the absence of resources to
test every patient for drug resistance, the clinician’s testing decision is based on their knowledge
of the patient’s risk factor profile and the policy guidelines in place, subject to having time and
resources available for drug resistance testing.

Suppose the clinician observes information about the patient’s underlying propensity to have
MDR-TB in the form of a noisy signal (that includes risk factors such as HIV status and non-
specific symptoms such as cough and fever) denoted:

s=a+ou

where s is the noisy signal (observable to the clinician but not the econometrician), a is the true
likelihood of MDR-TB, u is noise, and, and ¢ is therefore the noise-to-signal ratio (i.e. a measure
of accuracy of the observed signal). This framework follows the labor economics literature on
screening (see for example Phelps 1972) and assumes both a and u are normally and
independently distributed on the unit interval (0, ). Furthermore, suppose the clinician does not
know the actual prevalence of MDR-TB in the population, u, or the true likelihood of each
patient to have MDR-TB (a) but can use the observed signal to rank (triage) individuals from
most to least likely of having MDR-TB (scaled to the unit interval) conditional on having TB:

S
=0 (—)
1 V14 o2
where @ is the normal cumulative distribution function (CDF), so that ¢g~U(0, 1).

The proportion of individuals who can be tested for MDR-TB, 6, is exogenously determined by
institutional factors (such as the XDR-TB outbreak in 2006, changes in national testing



guidelines, and the availability of test materials and human resources) and is therefore
uncorrelated with u. Clinicians will triage patients and order drug resistance testing for the
proportion 6 of patients with the highest expected likelihood of having MDR-TB based on the
noisy signal. We define c as the binary variable representing whether a patient is tested for
MDR-TB:

c=1(@>1-0)

Furthermore, we define d as the binary variable representing whether the patient actually has
MDR-TB:

d=1(®(a)>1—pn)
Finally, y is the binary variable representing whether a patient tests positive for MDR-TB:
y=cd

For the sake of notational convenience, we define § = d~1(1 —6) and & = P~ "(1 — 1) so we
can rewrite the outcomes as:

d=1(a > i)
The proportion of individuals who test positive for MDR-TB is therefore

Py=1)=Plc=1nd=1)=P(c=1d=1)P(d=1)
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2.3 Identification

From the routinely collected patient data the econometrician can observe (c,y), but not (d,a,u). In
a sufficiently large random sample of routinely collected data, we can therefore obtain reliable
estimates of the proportion of TB cases tested for MDR-TB, 6, and the proportion of those testing
positive for MDR-TB, P(y=1), but not of the “true” underlying proportion with MDR-TB, wu. This
would be difficult with cross-sectional data, since any observable combination of 8 and P(y=1) in
the population could have been produced by infinite combinations of (i, o). For example, in our
sample 13.86% of patients are tested for MDR-TB and 1.43% test positive. These outcomes are
consistent with a health system in which clinicians perfectly observe the patients propensity to
have MDR-TB (0=0) and the underlying MDR-TB prevalence in the population is u=1.43%.
However, it is also consistent with a system in which the clinicians observe only noise (0—)
and the actual MDR-TB prevalence in the population is u=1.43%/13.86%=10.32%.



Suppose that due to exogenous institutional variation in 6 (due to a national policy change or the
2006 XDR-TB outbreak, for example) there is an increase in the proportion of individuals who
get tested for MDR-TB over time. This naturally has implications for the type of individual who
gets tested, but should have no effect on the clinician’s ability to rank patients or on the
underlying share of drug-resistant patients.

Let us consider what the two extreme cases predict for the change in the share of individuals that
tests positive for MDR-TB. If the signal observed by the clinicians consists only of noise (0—o0)
then any increase in 6, should lead to a proportional increase in the share of individuals who test
positive, P(y=1). On the other hand, if there is no noise in the signal (0=0) then the increase in 6,
should have no effect on this share. If an increase in the share of tested individuals leads to a
smaller than proportional increase in the share of individuals who test positive (which is the case
in our data) then this suggests intermediate values of o and u.

The assumption of exogenous changes in the proportion of patients tested over time implies a set
of moment conditions that can be used to identify the parameters of interest. In this case we can
use the period dummy variables as instrumental variables. However, we may be concerned that
identifying off changes over time may reflect underlying transmission dynamics of the epidemic
that drive the true prevalence. We therefore introduce instruments based on exogenous
institutional variation in MDR-TB testing rates. The national policy changes are orthogonal to
facility-level variation in the lagged proportion of patients tested and lagged MDR-TB prevalence
because their timing is neither determined by clinician decision making nor by deviations from
the underlying prevalence trend. Intuitively, these instruments represent discontinuous changes
in 6 that cannot, in the short term, be correlated with relatively smooth trends in prevalence or the
noise-to-signal ratio.

We include the following policy changes: MDR-TB surveillance study results reported (Jan
2002); national anti-retroviral therapy (ART) for AIDS rollout begins (July 2004); WHO declares
TB an emergency in Africa (August 2005); first poster on XDR-TB presented at Conference on
Retroviruses and Opportunistic Infections (CROI) (February 2006); South African government
National Strategic Plan released (January 2007); clinical guidelines require one rather than three
negative smears for smear-negative diagnosis (January 2009). We also use the facility-level and
local-area-level availability of ART as instruments to incorporate sub-national exogenous
variation. With the exception of the ART rollout, these policy changes are highly unlikely to
change the composition of population of people present at health facilities or affect the ranking
ability of clinicians and should therefore serve as valid instruments.

2.4 Estimation
2.4.1 Simulated maximum likelihood
In our empirical analysis we use a simulated maximum likelihood estimator (SMLE) to estimate

the model parameters. In period ¢ each individual is either tested for MDR-TB or not, where the
former occurs with probability

Sit
Plcy=1)=P(q>1-6) =P|——=>d71(1-0) |=6
it qit t 1102 t

Furthermore, the likelihood that an individual tests positive for MDR-TB in period ¢ is
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Using MLE to estimate the model parameters is achieved by finding the values of (u, o) that
maximize the likelihood function

N T dit 1-dj¢
L(y0) = | | ) | |t 1(P(yu =1|u,0,6,)) “(1- Py = 1|p, 0,6,))
= =

or the log-likelihood function, which we use for our estimation

l (u,0) =logL (u,0)

T N
- z Z {diclog(P(yie = 1|u,0,6,))
t=1 i=1

+ (1 - di)log(1 — P(yir = 1|p,0,6,))}
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where P(y = 1|u,0,0,) = ® ( ) u. Because this probability contains a

double integral that cannot be calculated analytically using standard software, we must
approximate it using simulations (Judd 1998: 291).

We draw trials of KT values (where in our estimates K = 1 million and 7= 31 quarters) of « and

u so that both variables are nid(0,1). For any set of trial parameter values (i, o), observable 6, and
randomly drawn values of (ay,u,) we can calculate values for ¢, dy, and y, as follows:

akt+aukt
c (0,9)51(¢(—>>1—9)
e Vi+o? ‘

die () = 1(P(ag) >1—p)

Vit (W, 0,0¢) = ¢y (0,0 )d e (W)

We then use these values to approximate p(y = 1|y, o, ,) from our auxiliary model as

- 1 : :K
P(y = 1|‘Ll, g, Ht) = E ykt(.u: g, Ht)
k=1

Plugging these values into our likelihood function produces the simulated likelihood function

[(wo) = ETEN {diclog (P& = 11n,0,6))

+ (1 —di)log(1- Py = 10,6, )}



Theoretically, we can obtain a simulated likelihood function that is arbitrarily close to the actual
likelihood function by choosing a sufficiently large number of simulated draws, K. In practice,
because our outcome variable is discrete, the likelihood function is not a continuous function of
the model parameters. Therefore small changes in model parameters may have no effect on the
simulated values of y;, and will leave the simulated likelihood function unchanged. This makes
using numerical optimization techniques difficult because they rely on small changes in the
likelihood to find the parameters that maximize the function.

This is the well-documented problem of simulating choice probabilities with a binary Accept-
Reject (AR) simulator (Manski & Lerman 1981). We follow the solution proposed by McFadden
(1989) of smoothing the discrete individual outcomes with a logit function. We therefore generate
the outcomes ¢y, and dj, as:

Akt + OUpt

N 2
exp l1+o -

e~ '(1-6,)

ut(0,6¢) = Age + OUyy

1+ exp V1+0° 1

o-1(1-6,)
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—dp-1 —
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where the degree of smoothing is determined by the value of A. High values of A produce a
simulated likelihood surface that is very smooth, which makes numerical optimization easier, but
also produces worse approximations to the likelihood function and hence potentially biased
parameter estimates. As A—0 the logit-smoothed AR simulator approaches the binary AR
simulator and better approximates the likelihood function, but also has greater difficulties in
finding the optimal parameter values. In our empirical application we set this value to A=0.005.

According to our theory model the parameters should be restricted so that o €[0,0) and u €[0,1],
which can be applied by expressing the likelihood function in terms of the transformed

. ~ o) H . . .
unrestricted parameters @) = (log -’ logo ) We can then obtain point estimates of the

parameters of interest by performing the inverse transformation on these parameters. Standard
errors are calculated via the delta method.

2.4.2 Method of simulated moments

Another estimator that can be used to estimate the parameters of our auxiliary model is the
method of simulated moments (MSM). If we define the model error term as

e=y—P(ly=1|u0,0)

then the exogeneity assumption implies that



E(g|Q) =0

where Q represents all the information available to the clinician at the time of the testing
decision. This implies that

Elz;{yir — P(}’it = 1|y, 0, 6} =0

where z; is a vector of instrumental variables, the elements of which are believed to be orthogonal
to the individual’s likelihood of having MDR-TB. If we define the GMM moment function as

9itWit» Zie, 11, 0,0;) = 2y {yie — P(yie = 1|1, 0,6,)}

then the generalized method of moments (GMM) estimator can be expressed as

T N ! T N
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where W is the weighting matrix. We cannot calculate P(y,, = 1|y, o, ,) analytically, but

replacing this probability with its simulated counterpart in the GMM estimator allows us to
estimate the model parameters with the method of simulated moments.

2.5 Time Trends
To calculate the time trends we estimate the following equation:
W= (uo* + Wit + wo*t),

where u is the prevalence of MDR-TB, t is the time period and uy are the time coefficients and
®() represents the standard normal cumulative distribution function.

3. Results
3.1 Descriptive Statistics

Figure 1 shows that the proportion of TB-positive patients tested for MDR-TB and the proportion
that test positive are negatively correlated, both in long-run trends and short-term fluctuations.
The patterns in the data are consistent with our theoretical model in which clinicians triage TB
patients for testing based on the observed likelihood of being MDR-TB. An increase in the tested
proportion (6) implies extending the test to patients deemed less likely to have MDR-TB by the
clinicians (i.e. ¢ is less than infinity). The percentage of all TB-positive patients (based on smear,
culture or PCR) who were tested for MDR-TB was fairly stable at around 10% from 2004-2006,
spiked up at the end of 2006 and again at the end of 2007 before steadily increasing from the end
of 2008 to 2011, when it reached 27%. The percentage of all TB-positive patients who tested
positive for MDR-TB was stable around 1% from 2004-2006 and rose above 2% in 2010. MDR-
TB cases as a percentage of all those tested for MDR-TB was steady at around 12% until 2007
when it rose to 15% and then steadily declined.



Figure 2 rescales the percent of all TB-positive patients who were diagnosed with MDR-TB to
show that it tracks the percent of all TB-positive patients who were tested for MDR-TB
reasonably well, especially after 2009. The data are consistent with our model in that o (the noise
to signal ratio) is neither zero nor infinity. As more TB-positive patients are tested for MDR-TB,
more MDR-TB cases are found (consistent with 6 being a limiting factor and ¢ being less than
infinity) and the share of MDR-TB tested patients who are MDR-TB-positive falls (c>0).

3.2 Estimation Results

We estimate that MDR-TB prevalence in South Africa could be as high as 3.29 - 3.37% (Table 1)
which is approximately 0.8 percentage points higher than the 2011 WHO estimate of 2.5% based
on notification rates (WHO 2011). This indicates that approximately one-quarter of all MDR-TB
cases went undetected during this period. The standard errors for our estimates are small. We are
most confident in estimates that are very similar between the two methods (MLE and MSM-1V).
The noise-to-signal ratio in the clinician-observed signal of risk factors is estimated to range
between 2.12-2.15, in other words the standard deviation of noise is about twice as large as the
standard deviation of the signal (which is normalized to be 1). MLE and MSM-1V methods
produce very similar estimates of MDR prevalence () and the noise-to-signal ratio (o) in the full
sample.

Figure 3 provides evidence of the validity of our estimation method because the time pattern of
MDR-TB prevalence predicted by our model matches the observed MDR-TB prevalence
reasonably well in both the long and short run. This shows that the majority of the variation in
MDR-TB prevalence can be explained by changes in the proportion of patients tested (6) alone.
The match is worse where the observed prevalence has more peaks and troughs (2006-2010).

New patients and patients with a previous test result have different underlying noise-to-signal
ratio and estimated MDR-TB prevalence. While the MLE results show a prevalence of 5.65% for
new and 4.69% for repeat patients, the MSM-IV results of 2.21% for new and 6.29% for repeat
patients are very close to the notification rates for new (1.8%) and retreatment patients (6.7%),
respectively (Weyer et al. 2007). As expected, the values for o reflect that clinicians have less
information upon which to assess the risk profile of the new patients compared to repeat patients.
For the MLE, o is estimated at 16.24 for new and 1.23 for repeat patients, and for MSM-1V it is
2.25 compared to 1.90.

When we relax the assumption that MDR-TB prevalence is constant over time, we find that
MDR-TB prevalence decreases between 2004 and 2011 from 4.0% to 3.6% for the linear trend (o
=2.40) and 4.2% to 3.7% for the quadratic trend (¢ = 2.56) (Figure 4, Table 2).

The subgroup analysis shows that MDR-TB prevalence for men is estimated to be 3.0-3.4% for
men and slightly higher at 3.1-3.5% for women, with similar values of ¢ for both sexes (Table 3).
Both methods show the highest MDR-TB prevalence for patients 30-40 of 3.2% (MLE) and 3.5%
(MSM-1V), while the MLE shows lower prevalence for patients 20-30 and 40-50 and the MSM-
IV shows similar for patients 20-50. Patients 50-60 make up 18% of patients and are shown to
have MDR-TB prevalence between 3.2-4.3%. However, the unusually high noise to signal ratio
for the new patients in the MLE estimation suggests that the estimate of MDR prevalence (p) for
this age group is suspect because the two parameters are jointly estimated. Both methods show
that patient populations tested in hospitals have lower estimated MDR-TB prevalence (2.3-2.9%)
than those tested in smaller health clinics (5.0-5.5%).
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Both methods showed the highest MDR-TB prevalence in Eastern Cape and Northern Cape. The
MLE method produced an especially high prevalence of 6.4% in Northwest Province, however
the estimate of o is very large which suggests that this estimate is elevated. Limpopo, Free State
and Western Cape consistently have the lowest estimated prevalence of MDR-TB.

4 Discussion

Our results indicate that the assumptions about clinician behavior in our theoretical framework
are consistent with the data. Figures 1 and 2 show that clinicians do prioritize testing patients that
are more likely to be MDR-TB positive, but that this prioritization is imperfect. Our simple
framework is able to match observed patterns in the data very closely (Figure 3). The fact that
our MSM-IV estimates differ little from the MLE estimates provides evidence to support our
assumption that the constraint on diagnostic testing resources () changes exogenously over time.
Our results do not exhibit characteristics indicative of weak instruments — large standard errors or
sensitivity to changes in the sample — therefore concerns about bias in the estimates due to an
influence of local MDR-TB prevalence on MDR-TB testing rates appear unfounded (Stock,
Wright and Yogo 2002). The fact that our MSM-IV results change little with the addition of an
instrument related to the rollout of ART, which occurred at the facility level and varied
geographically and temporally, provides additional support that p and ¢ are well-identified. This
method can be further validated with applications to other data sources.

Our estimates of MDR-TB prevalence are at least 33% higher (0.8 percentage points) than the
WHO 2010 estimate of 2.5% (WHO 2011) which is based on an adjustment to notification rates.
Because our data do not have full coverage of KwaZulu-Natal, which likely has the highest
MDR-TB burden, our estimates are a lower bound on the true national MDR-TB prevalence. As
expected, our results are also higher than results from the 2001 prevalence study, which found an
MDR-TB prevalence of 2.9% overall and 6.6% in the population with a history of TB treatment
(Weyer et al. 2007). The forthcoming results from the most recent surveillance study may be
higher than anticipated. In light of these results, additional resources should be allocated to the
National Tuberculosis Program to increase efforts to control MDR-TB.

Our subgroup analyses found no substantial differences in MDR-TB prevalence between genders
or age groups. Estimated MDR-TB prevalence was almost twice as high for patients tested in
clinics and health centers compared to those tested at hospitals. This raises the question of
whether smaller (low volume) health facilities have sufficient access to diagnostic resources to
identify patients at risk for MDR-TB and test them promptly.

The provincial estimates show similar patterns to the 2001 drug resistance prevalence study with
the Eastern Cape and North West province having higher prevalence while the Western Cape and
Free State have lower prevalence (Weyer et al. 2007). The two exceptions are Limpopo, that had
high prevalence in the 2001 study but low prevalence in our results and Mpumalanga, that had
relatively high prevalence in the 2001 study but were in the middle of the range in our results.
These two provinces are also the only ones with estimates of ¢ that fall outside of the 2.0-2.23
range. Limpopo’s noise to signal ratio of 2.35 suggests that clinicians experience slightly more
difficulties in accurately ranking patients based on MDR-TB risk. Mpumalanga, on the other
hand, has a low value of 6 (1.67) which indicates that patients are not tested for MDR-TB until
after treatment failure has been observed, which likely contributes to the high MDR-TB
prevalence we observe for this province. Perniciously, this type of wait-and-see approach is
“neither effective nor benign” because it risks patient health and leads to further propagation of
drug resistance (Kim et al. 2005).
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Though HIV-positive status was found to be a risk factor for MDR-TB in the 2001 surveillance
study, the provincial patterns of MDR-TB in our data do not appear to be closely associated with
provincial HIV prevalence (Weyer et al. 2007). Other province-specific factors such as early
detection of treatment failure or high treatment success rates for drug-susceptible TB may have
more influence on MDR-TB prevalence than HIV prevalence per se.

4.1 Limitations

Our study population is the same as for the TB prevalence studies: individuals who present at a
public health facility, are determined to be at risk for TB and have TB testing performed. Both
will underestimate the prevalence of TB and MDR-TB in the population to the degree that cases
do not present to health facilities, or are overlooked as at-risk by health workers, or due to
diagnostic tests not being perfectly sensitive. Though the data have been deduplicated using an
algorithm devised by the NHLS, poor patient linking across time may lead to double counting of
MDR-TB patients and bias our estimates upwards. If clinicians order drug susceptibility testing
only after treatment failure has been observed, then in the data clinicians will appear to have
better information (stronger signal value) than they actually do. In the absence of prevalence
study benchmarking, this would bias our estimates upwards.

4.2 Conclusion

This study developed a novel econometric method for estimating disease prevalence from
routinely collected data. We found that approximately 25% of MDR-TB cases in South Africa
were undiagnosed between 2004-2011 which contributed to high transmission rates and high TB
mortality rates. Our analysis also identified areas where MDR-TB cases were undetected due to
inaccurate clinician triage of patients into MDR-TB testing rather than due to a lack of testing
resources. Identifying areas with high under-detection rates, which was heretofore unmeasured,
provides clinicians and policy makers with a formidable new tool for targeting efforts to control
TB.

These findings demonstrate the need for increased investment in early detection of MDR-TB,
such as the ongoing implementation of Xpert technology, and more effective treatment, such as
new antibiotics (WHO 2014). In particular, additional diagnostic resources should be allocated to
areas with low noise-to-signal estimates, which suggest that patients may not be tested for drug
resistance unless they are at very high risk or have recently experienced treatment failure. A
heightened index of suspicion for MDR-TB among patients could effectively identify more
MDR-TB cases to not only control the spread of MDR-TB but also curtail future human and
financial costs of TB. Our method can be applied to MDR-TB where access to Xpert technology
is limited, and to extensively drug resistant TB where Xpert is available but testing for resistance
to additional first- and second-line drugs is less common.

From a health policy perspective, high rates of under-detection of MDR-TB highlight the need for
additional diagnostic resources and MDR-TB treatment for new cases that are identified. The
current MDR-TB budget allocation is therefore likely to be insufficient. In addition, our new
MDR-TB estimates should be used as input parameters for TB modeling studies that inform
health policy because MDR-TB prevalence is often highly influential in these models (see Acuna-
Villaorduna et al. 2008, Vassall et al. 2011, Meyer-Rath et al. 2012, Dowdy et al. 2014). Finally,
more frequent prevalence surveys are needed to track the evolution of MDR-TB prevalence over
time. Prevalence surveys and rigorous statistical analysis of routine data are complements rather
than substitutes: recently completed MDR-TB prevalence studies can serve to further calibrate
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methods such as ours, and estimates from the analysis of routinely collected data can inform the
design of prevalence studies to maximize precision and minimize cost.

Statistical analysis of diagnostic test results from routinely collected data is an economical and
effective way to monitor disease prevalence and guide the targeting of resources to control TB. It
uses existing data, which is inexpensive to collect and widely available, and can easily be scaled
up to the national level. Countries such as India, China and Russia, which together account for
over 50% of MDR-TB cases worldwide could benefit from the deployment of this method to
target investments in MDR-TB diagnosis, such as the rollout of new diagnostic technologies or
new second-line TB drugs. Routine statistical analysis results can also function as an early
warning system for outbreaks, especially if they are able to discern deviations from the
prevalence trends over time. Ultimately, using routinely collected data to monitor population
prevalence is a viable, low-cost, high-value strategy to guide evidence-based health policy
making and implementation in resource-limited settings.
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Figure 1: Percent of TB-positive cases tested for MDR-TB, percent of TB-positive cases MDR-

TB-positive, and percent of MDR-TB-tested cases MDR-TB-positive from National Health
Laboratory Service data.
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Figure 2: Percent of TB-positive cases tested for MDR-TB and percent of TB-positive cases
MDR-TB-positive from National Health Laboratory Service data (scaled to two Y-axes to show
how the testing rate and testing-positive rate track reasonably well over time).
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Figure 3: Observed MDR-TB prevalence over time in NHLS data compared to MDR-TB
prevalence estimated from simulated maximum likelihood estimation.
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Table 1: Estimated MDR-TB prevalence (¢) and noise to signal ratio (o).

SMLE MSM-1V
Estimated Noise to
Noise to signal prevalence signal ratio Estimated
ratio (0) (w (o) prevalence (u)
Whole
sample 2.119%** 0.0337%** 2.154%*%* 0.0329%**
(0.057) (0.0008) (0.087) (0.0011)
Split sample
Repeat
patients 1.227%%* 0.0469%** 1.9%** 0.0629%**
(0.067) (0.002) (0.169) (0.0045)
New patients 16.235%** 0.0565%** 2.254%%* 0.0221%**
(5.727) (0.0033) (0.206) (0.0016)

Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients ages
16-64 in public health facilities from January 2004-December 201 1.

N =2,565,951. New patients defined as within three months of first TB test in data. SMLE =
Simulated maximum likelihood estimation. MSM-1V = Method of simulated moments —
Instrumental variables. *** - Significant at the 1% level, ** - 5% level, * - 10% level.
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Table 2: Estimated MDR-TB prevalence (1) and noise to signal ratio (0) over time from
simulated maximum likelihood estimation.

Prevalence
Noise to index Time Time squared
signal coefficient coefficient coefficient
ratio(s) (Wo™) (w*) (12*)
No trend 2.]12%*% -1.83%%*
(0.06) (0.01)
Linear trend 2.40%** -1.75%%* -0.0017%**
(0.07) (0.02) (0.0004)
Quadratic trend 2.56%** -1.73%%* -0.0006 -0.00004
(0.08) (0.02) (0.0012) 0.00004)

Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients ages
16-64 in public health facilities from January 2004-December 201 1.
N =2,565951. ***_ Significant at the 1% level, ** - 5% level, * - 10% level.
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Table 3: Estimated MDR-TB prevalence (u) and noise to signal ratio (o) by location type, gender,
age and province.

SMLE | MSM-1V
Noise to
Noise to signal Estimated signal ratio Estimated
ratio (O) prevalence (u) (o) prevalence (u)
Gender
Male 1.787%%* 0.0302%** 2.119%** 0.0335%**
(0.110) (0.0015) (0.187) (0.0023)
Female 1.709%** 0.0312%** 2.102%** 0.0352%**
(0.115) (0.0017) (0.187) (0.0024)
Location type
Hospital 1.562%** 0.0227*** 2.169%** 0.029%**
(0.081) (0.0010) (0.2) (0.0022)
Clinic 2.34%x%* 0.0554*** 2.012%** 0.0498***
(0.153) (0.0023) (0.136) (0.0022)
Age group
20-29 1.62%%%* 0.0287*** 2.107*** 0.0345%**
(0.152) (0.0021) (0.256) (0.0033)
30-39 1.8%%* 0.0322%** 2.106%** 0.0348***
(0.111) (0.0015) (0.199) (0.0025)
40-49 1.664%** 0.0299*** 2.106%** 0.0347***
(0.147) (0.0021) (0.264) (0.0034)
50-59 3.057%** 0.043 1*** 2. 141%** 0.0316***
(0.645) (0.0063) (0.449) (0.0054)
Province
Eastern Cape 5.859%* 0.0774*** 2.058%** 0.0431***
(1.065) (0.0051) (0.248) (0.0037)
Free State 1.769%** 0.0214%** 2.220%*%* 0.0243***
(0.334) (0.0035) (0.735) (0.0067)
Gauteng 1.221%** 0.025%** 2.091*** 0.0354%**
(0.082) (0.0012) (0.245) (0.0031)
Limpopo 1.45%%* 0.0158*** 2.352%%* 0.017%**
(0.462) (0.0044) (1.121) (0.0068)
Mpumalanga 2.105%%* 0.0405%** 1.673%** 0.0352%**
(0.366) (0.0055) (0.305) (0.005)
North West 8.341* 0.0637*** 2.216%* 0.0255%*
(6.469) (0.0170) (1.252) (0.0135)
Northern Cape 2.578%** 0.0465%** 2.091*** 0.0392%**
(0.330) (0.0037) (0.248) (0.0032)
Western Cape 1.249%** 0.0225%** 2.124%*%* 0.033%**
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(0.097) (0.0012) (0.262) (0.0031)

Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients
ages 16-64 in public health facilities from January 2004-December 2011. KwaZulu-Natal
omitted from provincial analysis due to data limitations. N = 2,565,951. SMLE = Simulated
maximum likelihood estimation. MSM-1V = Method of simulated moments — Instrumental

variables. *** - Significant at the 1% level, ** - 5% level.
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