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Abstract 
 
Introduction  
Accurate information on disease prevalence is needed to target limited health resources in order 
to maximize overall population health. Applying rigorous econometric methods to routinely 
collected data can produce accurate estimates of disease prevalence and under-detection rates at a 
fraction of the cost of alternatives such as prevalence surveys or universal diagnostic testing. 
Such estimates are valuable in developing countries to inform evidence-based health policy. 
 
Methods 
We develop a simple framework with minimal assumptions to capture key features of clinical 
decision making surrounding diagnostic testing in resource limited settings.  When it is infeasible 
to test every at-risk patient, clinicians must triage available resources to test those deemed most 
likely to have the disease. We use standard econometric estimation methods and iterative 
numerical optimization techniques to estimate (a) disease prevalence and (b) the accuracy with 
which clinicians triage patients for testing.  We implement an instrumental variables approach 
using national and local policy changes that exogenously shift the available resources for 
diagnostic testing as instruments.  We apply this method to tuberculosis (TB), which recently 
surpassed HIV as the leading infectious disease cause of death in the world.  We use a national 
database of TB test data from South Africa, which includes over 11 million patients, to examine 
diagnostic testing for multi-drug resistant TB (MDR-TB). 
 
Results 
The predictions from our model closely match observed patterns in the data.  We find that at least 
one-quarter of MDR-TB cases were undiagnosed between 2004-2011.  Our estimates show that 
the official World Health Organization estimate of 2.5% based on notification rates is too low, 
and MDR-TB prevalence in South Africa could be as high as 3.29 - 3.37%.  Noise-to-signal ratios 
in MDR-TB detection estimated in our model enable the identification of areas where clinicians 
do a poor job of sorting patients by MDR-TB risk prior to testing. 
 
Discussion 
In the case of MDR-TB there is a need for greater investment in early detection and more 
effective treatment.  Our method of identifying areas with high MDR-TB under-detection rates, 
which was heretofore unmeasured and contributes to high transmission rates, provides clinicians 
and policy makers with a formidable new tool for targeting efforts to control TB. This method 
should be deployed in countries such as India, China and Russia, which together account for over 
50% of MDR-TB cases worldwide, as well as applied to other infectious and non-infectious 
diseases where prevalence data is lacking. 
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1. Introduction 
 
1.1 Background 
 
Accurate information on disease prevalence is essential for health policy making so that limited 
resources can be targeted globally and nationally to improve patient outcomes and maximize 
overall population health.  Prevalence surveys can provide accurate estimates of disease 
prevalence, but they are infrequently conducted because they entail significant financial and time 
costs.  Unadjusted estimates from routinely collected health care data are likely to be biased 
because clinicians generally only perform diagnostic testing on patients who appear at-risk for the 
disease.  Testing all patients for every disease is neither feasible nor cost-effective. 
 
In this study, we develop an innovative approach to estimating disease prevalence that accounts 
for under-detection, provides continuous surveillance and relies solely on existing routinely-
collected data from diagnostic laboratories.  Notably, our method does not require that all patients 
or a random sample of patients be screened for the disease.  Instead, it applies rigorous statistical 
(econometric) methods to routinely collected data, which is readily available but acutely 
underused, to produce low-cost, unbiased estimates of disease prevalence.   
 
Our framework may be applied to a broad range of health conditions including hypertension, 
HIV, malaria, and anti-microbial resistance among others.  In this study, we apply the method to 
tuberculosis (TB), which kills more than 1.5 million people annually and recently surpassed HIV 
as the leading infectious disease cause of death in the world (WHO 2015).  Though multi-drug 
resistant TB (MDR-TB) patients comprised an estimated 5% of TB cases notified, they accounted 
for 13% of TB deaths and 20% of TB spending worldwide in 2014 (WHO 2015). Early and 
accurate diagnosis of MDR-TB is therefore critical.  However, only 12% of incident TB cases 
were tested for MDR-TB.  The under-detection of MDR-TB drives the development of new 
forms of drug resistance such as extensively (XDR) and totally drug-resistant TB worldwide 
(Klopper et al. 2013). 
 
We develop a simple framework with minimal assumptions to capture key features of clinical 
decision making surrounding MDR-TB testing.  In resource limited settings, resources are not 
available to test every TB-positive patient for MDR-TB.  Clinicians must therefore triage 
available resources to test those deemed most likely to have MDR-TB. We use standard 
econometric estimation methods and iterative numerical optimization techniques to estimate (a) 
the prevalence of MDR-TB and (b) the accuracy with which clinicians triage for MDR-TB 
testing.  Our method leverages the same principle that underlies regression discontinuity analysis 
– the contrast between slow-changing MDR-TB prevalence and sudden (discontinuous) changes 
in the likelihood that MDR-TB cases are diagnosed due to the availability of testing resources 
(e.g. funding, testing materials, human resources, lab capacity). 
 
We find that approximately one-quarter of all MDR-TB cases were undiagnosed between 2004-
2011 in South Africa, which worsens patient outcomes, increases transmission and leads to the 
development of additional drug resistance. This straightforward, yet powerful, approach to 
disease surveillance is a viable strategy for identifying localities and patient groups with high 
disease burdens. It is simple and adaptable enough to be applied to many infectious and non-
infectious diseases in the developing world where prevalence data is lacking. 
 
The contribution of this paper is three-fold. First, we develop a new method for estimating 
disease prevalence that is widely applicable to many diseases. The HIV literature has 
demonstrated the importance of using statistical methods to adjust ante-natal care and population 
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prevalence estimates for representativeness (see Sakarovitch et al. 2007, Nyirenda et al. 2010, 
Hogan et al. 2012, Clark and Houle 2014, McGovern et al. 2015), however we develop more 
rigorous methods for routine data and are the first to apply these types of methods to TB.  Second, 
by applying the model to the case of MDR-TB, we find that approximately one-quarter of MDR-
TB cases in South Africa went undiagnosed between 2004-2011, which is a significant threat to 
TB control.  Third, we demonstrate the ease with which this method can be applied to other 
diseases and contexts because it uses existing data, is low cost and can be quickly scaled up.  Our 
method can be employed in low- and middle-income countries to cost-effectively develop 
guidance for health policy making to ultimately improve population health. 
 
1.2 Context 
 
TB has been the leading cause of death for over a decade in South Africa but the lack of reliable 
estimates of local TB prevalence makes it difficult to allocate government resources efficiently 
(Statistics South Africa 2011).  This is especially important for MDR-TB which accounts for 2.5-
3.5% of all TB patients in South Africa, but consumes about 50% of the TB budget (WHO 2011; 
Pooran et al. 2012).  Treatment success rates in South Africa are close to 45% compared to 79% 
for drug susceptible TB (WHO 2014). 
 
Conventional thinking about estimating MDR-TB prevalence focuses on increasing the frequency 
and coverage of TB prevalence studies and expanding access to rapid molecular tests such as 
Xpert for drug resistance testing (Cohen et al. 2008, Weyer et al. 2013).  However, both avenues 
are expensive and logistically complex. Theron et al. (2015) calls for better use of existing data to 
inform tailored responses in the fight against TB, however advances in this area have been slow.  
For over a decade there have been calls for more MDR-TB prevalence studies yet only 8.3% of 
the population in the 27 high MDR-TB burden countries live in an area where at least two 
accurate population surveillance data points are available to estimate trends (Cohen et al. 2014).   
 
Official guidelines counsel clinicians to screen patients for TB based on symptoms (current 
cough, weight loss, night sweats, fever) which are indistinguishable from MDR-TB (Department 
of Health 2013).  Before Xpert was widely available in South Africa, the guidelines indicated that 
persons with TB symptoms who had been previously treated for TB, patients who had failed TB 
treatment, and those who were known contacts of MDR-TB were at highest risk of MDR-TB and 
therefore should be tested (Department of Health 2013).  Clinicians can ascertain a patient's 
approximate risk of MDR-TB from a medical history and physical exam to rank patients on 
MDR-TB risk before ordering laboratory testing.  The risk factors are a good but imperfect signal 
of MDR-TB so many cases could initially go undetected. Previously, MDR-TB was primarily due 
to acquisition through incorrect or incomplete treatment, however recent evidence shows that 
most incident MDR-TB cases are due to transmission instead, which makes risk factors worse 
predictors (Kendall et al. 2015). Resource shortages such as stockouts of test materials or drugs, 
long lab wait times or heavy clinical workload may prevent some at-risk patients from being 
tested for MDR-TB. 
 
2. Methods 
 
2.1 Data 
 
We use data from the National Health Laboratory Service (NHLS) database on TB tests 
performed on patients aged 16-64 in public health facilities (hospitals and health clinics) for the 
period January 2004 - December 2011, which includes over 11 million patients.  Our analysis 
sample comprises 2,271,538 TB-positive test records from 2,520,337 unique patients in 5,122 



	 4	

health facilities (359,174 of which are tested for MDR).  For TB and drug susceptibility testing, 
the data include the type of test performed, test result, testing facility location, test date and basic 
patient demographics. We consider TB-positive results from culture testing and smear 
microscopy as well as scanty positives of 3 or more acid fast bacilli (AFB) per 100 immersion 
fields.  Patient records are linked using unique patient identifiers created by the NHLS.  Our 
dataset spans 8 years of frequent observations, which allows us to observe several sudden policy 
shifts that affected the inclination to test for MDR. Since this variation forms the basis for our 
identification strategy, the long time-series dimension makes it especially well-suited for this 
analysis. 
 
In some analyses, we use data only from new patients in order to limit the sample to one 
diagnostic episode per patient, exclude treatment monitoring tests, and examine the sample 
without a history of TB testing (which in most cases implies without a history of TB treatment).  
We exclude 89,032 records (3.9% of the sample) that were missing gender data from the gender 
sub-group analysis.  We also exclude data from KwaZulu-Natal from the provincial analyses 
because only a small fraction of tests performed in that province have been electronically 
captured.  Ethics approval was obtained from the University of Michigan Institutional Review 
Board and the University of Cape Town Faculty Ethics in Research Committee. 
 
 
2.2 Theory model 
 
Using minimal assumptions, we develop a simple theoretical model of the clinician’s decision to 
perform drug susceptibility testing on a patient with suspected TB.  In the absence of resources to 
test every patient for drug resistance, the clinician’s testing decision is based on their knowledge 
of the patient’s risk factor profile and the policy guidelines in place, subject to having time and 
resources available for drug resistance testing. 
 
Suppose the clinician observes information about the patient’s underlying propensity to have 
MDR-TB in the form of a noisy signal (that includes risk factors such as HIV status and non-
specific symptoms such as cough and fever) denoted: 
 
s≡a+σu 
 
where s is the noisy signal (observable to the clinician but not the econometrician), a is the true 
likelihood of MDR-TB, u is noise, and, and σ is therefore the noise-to-signal ratio (i.e. a measure 
of accuracy of the observed signal).  This framework follows the labor economics literature on 
screening (see for example Phelps 1972) and assumes both a and u are normally and 
independently distributed on the unit interval (0,1). Furthermore, suppose the clinician does not 
know the actual prevalence of MDR-TB in the population, µ, or the true likelihood of each 
patient to have MDR-TB (a) but can use the observed signal to rank (triage) individuals from 
most to least likely of having MDR-TB (scaled to the unit interval) conditional on having TB: 
 

 
 
where Φ is the normal cumulative distribution function (CDF), so that q~U(0,1). 
 
The proportion of individuals who can be tested for MDR-TB, θ, is exogenously determined by 
institutional factors (such as the XDR-TB outbreak in 2006, changes in national testing 
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guidelines, and the availability of test materials and human resources) and is therefore 
uncorrelated with µ.  Clinicians will triage patients and order drug resistance testing for the 
proportion θ of patients with the highest expected likelihood of having MDR-TB based on the 
noisy signal.  We define c as the binary variable representing whether a patient is tested for 
MDR-TB: 
 

 
 
Furthermore, we define d as the binary variable representing whether the patient actually has 
MDR-TB: 
 

 
 
Finally, y is the binary variable representing whether a patient tests positive for MDR-TB: 
 
y≡cd 
 
For the sake of notational convenience, we define  and  so we 
can rewrite the outcomes as: 
 

 
 
The proportion of individuals who test positive for MDR-TB is therefore 
 

 
 
2.3 Identification 
 
From the routinely collected patient data the econometrician can observe (c,y), but not (d,a,u). In 
a sufficiently large random sample of routinely collected data, we can therefore obtain reliable 
estimates of the proportion of TB cases tested for MDR-TB, θ, and the proportion of those testing 
positive for MDR-TB, P(y=1), but not of the “true” underlying proportion with MDR-TB, µ. This 
would be difficult with cross-sectional data, since any observable combination of θ and P(y=1) in 
the population could have been produced by infinite combinations of (µ,σ). For example, in our 
sample 13.86% of patients are tested for MDR-TB and 1.43% test positive. These outcomes are 
consistent with a health system in which clinicians perfectly observe the patients propensity to 
have MDR-TB (σ=0) and the underlying MDR-TB prevalence in the population is µ=1.43%. 
However, it is also consistent with a system in which the clinicians observe only noise (σ→∞) 
and the actual MDR-TB prevalence in the population is µ=1.43%/13.86%=10.32%.  
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Suppose that due to exogenous institutional variation in θ (due to a national policy change or the 
2006 XDR-TB outbreak, for example) there is an increase in the proportion of individuals who 
get tested for MDR-TB over time. This naturally has implications for the type of individual who 
gets tested, but should have no effect on the clinician’s ability to rank patients or on the 
underlying share of drug-resistant patients.  
 
Let us consider what the two extreme cases predict for the change in the share of individuals that 
tests positive for MDR-TB. If the signal observed by the clinicians consists only of noise (σ→∞) 
then any increase in θt should lead to a proportional increase in the share of individuals who test 
positive, P(y=1). On the other hand, if there is no noise in the signal (σ=0) then the increase in θt 
should have no effect on this share. If an increase in the share of tested individuals leads to a 
smaller than proportional increase in the share of individuals who test positive (which is the case 
in our data) then this suggests intermediate values of σ and µ. 
 
The assumption of exogenous changes in the proportion of patients tested over time implies a set 
of moment conditions that can be used to identify the parameters of interest.  In this case we can 
use the period dummy variables as instrumental variables.  However, we may be concerned that 
identifying off changes over time may reflect underlying transmission dynamics of the epidemic 
that drive the true prevalence.  We therefore introduce instruments based on exogenous 
institutional variation in MDR-TB testing rates.  The national policy changes are orthogonal to 
facility-level variation in the lagged proportion of patients tested and lagged MDR-TB prevalence 
because their timing is neither determined by clinician decision making nor by deviations from 
the underlying prevalence trend.  Intuitively, these instruments represent discontinuous changes 
in θ that cannot, in the short term, be correlated with relatively smooth trends in prevalence or the 
noise-to-signal ratio. 
 
We include the following policy changes: MDR-TB surveillance study results reported (Jan 
2002); national anti-retroviral therapy (ART) for AIDS rollout begins (July 2004); WHO declares 
TB an emergency in Africa (August 2005); first poster on XDR-TB presented at Conference on 
Retroviruses and Opportunistic Infections (CROI) (February 2006); South African government 
National Strategic Plan released (January 2007); clinical guidelines require one rather than three 
negative smears for smear-negative diagnosis (January 2009).  We also use the facility-level and 
local-area-level availability of ART as instruments to incorporate sub-national exogenous 
variation.  With the exception of the ART rollout, these policy changes are highly unlikely to 
change the composition of population of people present at health facilities or affect the ranking 
ability of clinicians and should therefore serve as valid instruments.  
 
2.4 Estimation 
 
2.4.1 Simulated maximum likelihood 
 
In our empirical analysis we use a simulated maximum likelihood estimator (SMLE) to estimate 
the model parameters. In period t each individual is either tested for MDR-TB or not, where the 
former occurs with probability 
 

 
 
Furthermore, the likelihood that an individual tests positive for MDR-TB in period t is  
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Using MLE to estimate the model parameters is achieved by finding the values of (µ,σ) that 
maximize the likelihood function 
 

 
 
or the log-likelihood function, which we use for our estimation 
 

 
 

where  Because this probability contains a 

double integral that cannot be calculated analytically using standard software, we must 
approximate it using simulations (Judd 1998: 291). 
 
We draw trials of K×T values (where in our estimates K = 1 million and T = 31 quarters) of a and 
u so that both variables are nid(0,1). For any set of trial parameter values (µ,σ), observable θt and 
randomly drawn values of (akt,ukt) we can calculate values for c kt, d kt, and y kt as follows: 
 

 
We then use these values to approximate  from our auxiliary model as 
 

 
 
Plugging these values into our likelihood function produces the simulated likelihood function 
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Theoretically, we can obtain a simulated likelihood function that is arbitrarily close to the actual 
likelihood function by choosing a sufficiently large number of simulated draws, K. In practice, 
because our outcome variable is discrete, the likelihood function is not a continuous function of 
the model parameters. Therefore small changes in model parameters may have no effect on the 
simulated values of ykt and will leave the simulated likelihood function unchanged. This makes 
using numerical optimization techniques difficult because they rely on small changes in the 
likelihood to find the parameters that maximize the function. 
 
This is the well-documented problem of simulating choice probabilities with a binary Accept-
Reject (AR) simulator (Manski & Lerman 1981). We follow the solution proposed by McFadden 
(1989) of smoothing the discrete individual outcomes with a logit function. We therefore generate 
the outcomes ckt and dkt as: 
 

 
 
where the degree of smoothing is determined by the value of λ. High values of λ produce a 
simulated likelihood surface that is very smooth, which makes numerical optimization easier, but 
also produces worse approximations to the likelihood function and hence potentially biased 
parameter estimates. As λ→0 the logit-smoothed AR simulator approaches the binary AR 
simulator and better approximates the likelihood function, but also has greater difficulties in 
finding the optimal parameter values. In our empirical application we set this value to λ=0.005. 
 
According to our theory model the parameters should be restricted so that σ ∈[0,∞) and µ ∈[0,1], 
which can be applied by expressing the likelihood function in terms of the transformed 

unrestricted parameters .  We can then obtain point estimates of the 

parameters of interest by performing the inverse transformation on these parameters.  Standard 
errors are calculated via the delta method. 
 
2.4.2 Method of simulated moments 
 
Another estimator that can be used to estimate the parameters of our auxiliary model is the 
method of simulated moments (MSM). If we define the model error term as  
 

 
 
then the exogeneity assumption implies that  
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where Ω  represents all the information available to the clinician at the time of the testing 
decision. This implies that  
 

 
 
where zit is a vector of instrumental variables, the elements of which are believed to be orthogonal 
to the individual’s likelihood of having MDR-TB. If we define the GMM moment function as 
 

 
 
then the generalized method of moments (GMM) estimator can be expressed as 
 

 
 
where W is the weighting matrix. We cannot calculate  analytically, but 
replacing this probability with its simulated counterpart in the GMM estimator allows us to 
estimate the model parameters with the method of simulated moments.  
 
2.5 Time Trends 
 
To calculate the time trends we estimate the following equation: 
 
µ = Φ(µ0* + µ1*t + µ2*t2), 
 
where µ is the prevalence of MDR-TB, t is the time period and µk are the time coefficients and 
Φ() represents the standard normal cumulative distribution function. 
 
 
3. Results 
 
3.1 Descriptive Statistics 
 
Figure 1 shows that the proportion of TB-positive patients tested for MDR-TB and the proportion 
that test positive are negatively correlated, both in long-run trends and short-term fluctuations.  
The patterns in the data are consistent with our theoretical model in which clinicians triage TB 
patients for testing based on the observed likelihood of being MDR-TB.  An increase in the tested 
proportion (θ) implies extending the test to patients deemed less likely to have MDR-TB by the 
clinicians (i.e. σ  is less than infinity). The percentage of all TB-positive patients (based on smear, 
culture or PCR) who were tested for MDR-TB was fairly stable at around 10% from 2004-2006, 
spiked up at the end of 2006 and again at the end of 2007 before steadily increasing from the end 
of 2008 to 2011, when it reached 27%.  The percentage of all TB-positive patients who tested 
positive for MDR-TB was stable around 1% from 2004-2006 and rose above 2% in 2010.  MDR-
TB cases as a percentage of all those tested for MDR-TB was steady at around 12% until 2007 
when it rose to 15% and then steadily declined.  
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Figure 2 rescales the percent of all TB-positive patients who were diagnosed with MDR-TB to 
show that it tracks the percent of all TB-positive patients who were tested for MDR-TB 
reasonably well, especially after 2009.  The data are consistent with our model in that σ (the noise 
to signal ratio) is neither zero nor infinity.  As more TB-positive patients are tested for MDR-TB, 
more MDR-TB cases are found (consistent with θ being a limiting factor and σ being less than 
infinity) and the share of MDR-TB tested patients who are MDR-TB-positive falls (σ>0). 
 
3.2 Estimation Results 
 
We estimate that MDR-TB prevalence in South Africa could be as high as 3.29 - 3.37% (Table 1) 
which is approximately 0.8 percentage points higher than the 2011 WHO estimate of 2.5% based 
on notification rates (WHO 2011).  This indicates that approximately one-quarter of all MDR-TB 
cases went undetected during this period.  The standard errors for our estimates are small.  We are 
most confident in estimates that are very similar between the two methods (MLE and MSM-IV).  
The noise-to-signal ratio in the clinician-observed signal of risk factors is estimated to range 
between 2.12-2.15, in other words the standard deviation of noise is about twice as large as the 
standard deviation of the signal (which is normalized to be 1).  MLE and MSM-IV methods 
produce very similar estimates of MDR prevalence (µ) and the noise-to-signal ratio (σ) in the full 
sample.  
 
Figure 3 provides evidence of the validity of our estimation method because the time pattern of 
MDR-TB prevalence predicted by our model matches the observed MDR-TB prevalence 
reasonably well in both the long and short run.  This shows that the majority of the variation in 
MDR-TB prevalence can be explained by changes in the proportion of patients tested (θ) alone.  
The match is worse where the observed prevalence has more peaks and troughs (2006-2010). 
 
New patients and patients with a previous test result have different underlying noise-to-signal 
ratio and estimated MDR-TB prevalence.  While the MLE results show a prevalence of 5.65% for 
new and 4.69% for repeat patients, the MSM-IV results of 2.21% for new and 6.29% for repeat 
patients are very close to the notification rates for new (1.8%) and retreatment patients (6.7%), 
respectively (Weyer et al. 2007).  As expected, the values for σ reflect that clinicians have less 
information upon which to assess the risk profile of the new patients compared to repeat patients.  
For the MLE, σ is estimated at 16.24 for new and 1.23 for repeat patients, and for MSM-IV it is 
2.25 compared to 1.90.   
 
When we relax the assumption that MDR-TB prevalence is constant over time, we find that 
MDR-TB prevalence decreases between 2004 and 2011 from 4.0% to 3.6% for the linear trend (σ 
= 2.40) and 4.2% to 3.7% for the quadratic trend (σ = 2.56) (Figure 4, Table 2). 
 
The subgroup analysis shows that MDR-TB prevalence for men is estimated to be 3.0-3.4% for 
men and slightly higher at 3.1-3.5% for women, with similar values of σ for both sexes (Table 3).  
Both methods show the highest MDR-TB prevalence for patients 30-40 of 3.2% (MLE) and 3.5% 
(MSM-IV), while the MLE shows lower prevalence for patients 20-30 and 40-50 and the MSM-
IV shows similar for patients 20-50.  Patients 50-60 make up 18% of patients and are shown to 
have MDR-TB prevalence between 3.2-4.3%.  However, the unusually high noise to signal ratio 
for the new patients in the MLE estimation suggests that the estimate of MDR prevalence (µ) for 
this age group is suspect because the two parameters are jointly estimated.  Both methods show 
that patient populations tested in hospitals have lower estimated MDR-TB prevalence (2.3-2.9%) 
than those tested in smaller health clinics (5.0-5.5%). 
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Both methods showed the highest MDR-TB prevalence in Eastern Cape and Northern Cape.  The 
MLE method produced an especially high prevalence of 6.4% in Northwest Province, however 
the estimate of σ is very large which suggests that this estimate is elevated.  Limpopo, Free State 
and Western Cape consistently have the lowest estimated prevalence of MDR-TB. 
 
4 Discussion 
 
Our results indicate that the assumptions about clinician behavior in our theoretical framework 
are consistent with the data.  Figures 1 and 2 show that clinicians do prioritize testing patients that 
are more likely to be MDR-TB positive, but that this prioritization is imperfect.  Our simple 
framework is able to match observed patterns in the data very closely (Figure 3).  The fact that 
our MSM-IV estimates differ little from the MLE estimates provides evidence to support our 
assumption that the constraint on diagnostic testing resources (θ) changes exogenously over time.  
Our results do not exhibit characteristics indicative of weak instruments – large standard errors or 
sensitivity to changes in the sample – therefore concerns about bias in the estimates due to an 
influence of local MDR-TB prevalence on MDR-TB testing rates appear unfounded (Stock, 
Wright and Yogo 2002).  The fact that our MSM-IV results change little with the addition of an 
instrument related to the rollout of ART, which occurred at the facility level and varied 
geographically and temporally, provides additional support that µ and σ are well-identified.  This 
method can be further validated with applications to other data sources. 
 
Our estimates of MDR-TB prevalence are at least 33% higher (0.8 percentage points) than the 
WHO 2010 estimate of 2.5% (WHO 2011) which is based on an adjustment to notification rates.  
Because our data do not have full coverage of KwaZulu-Natal, which likely has the highest 
MDR-TB burden, our estimates are a lower bound on the true national MDR-TB prevalence.  As 
expected, our results are also higher than results from the 2001 prevalence study, which found an 
MDR-TB prevalence of 2.9% overall and 6.6% in the population with a history of TB treatment 
(Weyer et al. 2007). The forthcoming results from the most recent surveillance study may be 
higher than anticipated. In light of these results, additional resources should be allocated to the 
National Tuberculosis Program to increase efforts to control MDR-TB. 
 
Our subgroup analyses found no substantial differences in MDR-TB prevalence between genders 
or age groups.  Estimated MDR-TB prevalence was almost twice as high for patients tested in 
clinics and health centers compared to those tested at hospitals.  This raises the question of 
whether smaller (low volume) health facilities have sufficient access to diagnostic resources to 
identify patients at risk for MDR-TB and test them promptly.   
 
The provincial estimates show similar patterns to the 2001 drug resistance prevalence study with 
the Eastern Cape and North West province having higher prevalence while the Western Cape and 
Free State have lower prevalence (Weyer et al. 2007).  The two exceptions are Limpopo, that had 
high prevalence in the 2001 study but low prevalence in our results and Mpumalanga, that had 
relatively high prevalence in the 2001 study but were in the middle of the range in our results.  
These two provinces are also the only ones with estimates of σ that fall outside of the 2.0-2.23 
range.  Limpopo’s noise to signal ratio of 2.35 suggests that clinicians experience slightly more 
difficulties in accurately ranking patients based on MDR-TB risk.  Mpumalanga, on the other 
hand, has a low value of σ (1.67) which indicates that patients are not tested for MDR-TB until 
after treatment failure has been observed, which likely contributes to the high MDR-TB 
prevalence we observe for this province.  Perniciously, this type of wait-and-see approach is 
“neither effective nor benign” because it risks patient health and leads to further propagation of 
drug resistance (Kim et al. 2005).  
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Though HIV-positive status was found to be a risk factor for MDR-TB in the 2001 surveillance 
study, the provincial patterns of MDR-TB in our data do not appear to be closely associated with 
provincial HIV prevalence (Weyer et al. 2007).  Other province-specific factors such as early 
detection of treatment failure or high treatment success rates for drug-susceptible TB may have 
more influence on MDR-TB prevalence than HIV prevalence per se. 
 
 
4.1 Limitations 
 
Our study population is the same as for the TB prevalence studies: individuals who present at a 
public health facility, are determined to be at risk for TB and have TB testing performed.  Both 
will underestimate the prevalence of TB and MDR-TB in the population to the degree that cases 
do not present to health facilities, or are overlooked as at-risk by health workers, or due to 
diagnostic tests not being perfectly sensitive.  Though the data have been deduplicated using an 
algorithm devised by the NHLS, poor patient linking across time may lead to double counting of 
MDR-TB patients and bias our estimates upwards.  If clinicians order drug susceptibility testing 
only after treatment failure has been observed, then in the data clinicians will appear to have 
better information (stronger signal value) than they actually do.  In the absence of prevalence 
study benchmarking, this would bias our estimates upwards.   
 
4.2 Conclusion 
 
This study developed a novel econometric method for estimating disease prevalence from 
routinely collected data.  We found that approximately 25% of MDR-TB cases in South Africa 
were undiagnosed between 2004-2011 which contributed to high transmission rates and high TB 
mortality rates.  Our analysis also identified areas where MDR-TB cases were undetected due to 
inaccurate clinician triage of patients into MDR-TB testing rather than due to a lack of testing 
resources.  Identifying areas with high under-detection rates, which was heretofore unmeasured, 
provides clinicians and policy makers with a formidable new tool for targeting efforts to control 
TB. 
 
These findings demonstrate the need for increased investment in early detection of MDR-TB, 
such as the ongoing implementation of Xpert technology, and more effective treatment, such as 
new antibiotics (WHO 2014).  In particular, additional diagnostic resources should be allocated to 
areas with low noise-to-signal estimates, which suggest that patients may not be tested for drug 
resistance unless they are at very high risk or have recently experienced treatment failure.  A 
heightened index of suspicion for MDR-TB among patients could effectively identify more 
MDR-TB cases to not only control the spread of MDR-TB but also curtail future human and 
financial costs of TB. Our method can be applied to MDR-TB where access to Xpert technology 
is limited, and to extensively drug resistant TB where Xpert is available but testing for resistance 
to additional first- and second-line drugs is less common. 
 
From a health policy perspective, high rates of under-detection of MDR-TB highlight the need for 
additional diagnostic resources and MDR-TB treatment for new cases that are identified.  The 
current MDR-TB budget allocation is therefore likely to be insufficient.  In addition, our new 
MDR-TB estimates should be used as input parameters for TB modeling studies that inform 
health policy because MDR-TB prevalence is often highly influential in these models (see Acuna-
Villaorduna et al. 2008, Vassall et al. 2011, Meyer-Rath et al. 2012, Dowdy et al. 2014).  Finally, 
more frequent prevalence surveys are needed to track the evolution of MDR-TB prevalence over 
time.  Prevalence surveys and rigorous statistical analysis of routine data are complements rather 
than substitutes: recently completed MDR-TB prevalence studies can serve to further calibrate 
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methods such as ours, and estimates from the analysis of routinely collected data can inform the 
design of prevalence studies to maximize precision and minimize cost.   
 
Statistical analysis of diagnostic test results from routinely collected data is an economical and 
effective way to monitor disease prevalence and guide the targeting of resources to control TB.  It 
uses existing data, which is inexpensive to collect and widely available, and can easily be scaled 
up to the national level.  Countries such as India, China and Russia, which together account for 
over 50% of MDR-TB cases worldwide could benefit from the deployment of this method to 
target investments in MDR-TB diagnosis, such as the rollout of new diagnostic technologies or 
new second-line TB drugs.  Routine statistical analysis results can also function as an early 
warning system for outbreaks, especially if they are able to discern deviations from the 
prevalence trends over time.  Ultimately, using routinely collected data to monitor population 
prevalence is a viable, low-cost, high-value strategy to guide evidence-based health policy 
making and implementation in resource-limited settings. 
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Figure 1:  Percent of TB-positive cases tested for MDR-TB, percent of TB-positive cases MDR-
TB-positive, and percent of MDR-TB-tested cases MDR-TB-positive from National Health 
Laboratory Service data. 
 
 
 



	 17	

 
Figure 2:  Percent of TB-positive cases tested for MDR-TB and percent of TB-positive cases 
MDR-TB-positive from National Health Laboratory Service data (scaled to two Y-axes to show 
how the testing rate and testing-positive rate track reasonably well over time). 
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Figure 3: Observed MDR-TB prevalence over time in NHLS data compared to MDR-TB 
prevalence estimated from simulated maximum likelihood estimation. 
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Figure 4: Predicted time trends in MDR-TB prevalence (%) in South Africa estimated from 
NHLS data using simulated maximum likelihood estimation.  Dotted lines represent 95% 
confidence intervals. 
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Table 1: Estimated MDR-TB prevalence (µ) and noise to signal ratio (σ). 
 

 SMLE MSM-IV 

 
Noise to signal 

ratio (σ) 

Estimated 
prevalence 

(µ) 

Noise to 
signal ratio 

(σ) 
Estimated 

prevalence (µ) 
Whole 
sample 2.119*** 0.0337*** 2.154*** 0.0329*** 
 (0.057) (0.0008) (0.087) (0.0011) 
Split sample       

Repeat 
patients 1.227*** 0.0469*** 1.9*** 0.0629*** 

 (0.067) (0.002) (0.169) (0.0045) 
New patients 16.235*** 0.0565*** 2.254*** 0.0221*** 
 (5.727) (0.0033) (0.206) (0.0016) 

Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients ages 
16-64 in public health facilities from January 2004-December 2011. 
 N = 2,565,951.  New patients defined as within three months of first TB test in data.  SMLE = 
Simulated maximum likelihood estimation.  MSM-IV = Method of simulated moments – 
Instrumental variables.  *** - Significant at the 1% level, ** - 5% level, * - 10% level. 



	 21	

 
Table 2: Estimated MDR-TB prevalence (µ) and noise to signal ratio (σ) over time from 
simulated maximum likelihood estimation. 
 

  

Noise to 
signal 

ratio(s) 

Prevalence 
index 

coefficient 
(µ0*) 

Time 
coefficient 

(µ1*) 

Time squared 
coefficient 

(µ2*) 
No trend 2.12*** -1.83***     
  (0.06) (0.01)     
Linear trend 2.40*** -1.75*** -0.0017***   
  (0.07) (0.02) (0.0004)   
Quadratic trend 2.56*** -1.73*** -0.0006 -0.00004 
  (0.08) (0.02) (0.0012) 0.00004) 

Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients ages 
16-64 in public health facilities from January 2004-December 2011. 
 N = 2,565,951.  *** - Significant at the 1% level, ** - 5% level, * - 10% level. 
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Table 3: Estimated MDR-TB prevalence (µ) and noise to signal ratio (σ) by location type, gender, 
age and province. 
 

 SMLE MSM-IV 

 
Noise to signal 

ratio (σ) 
Estimated 

prevalence (µ) 

Noise to 
signal ratio 

(σ) 
Estimated 

prevalence (µ) 
Gender     

Male 1.787*** 0.0302*** 2.119*** 0.0335*** 
 (0.110) (0.0015) (0.187) (0.0023) 

Female 1.709*** 0.0312*** 2.102*** 0.0352*** 
  (0.115) (0.0017) (0.187) (0.0024) 

Location type     
Hospital 1.562*** 0.0227*** 2.169*** 0.029*** 

 (0.081) (0.0010) (0.2) (0.0022) 
Clinic 2.34*** 0.0554*** 2.012*** 0.0498*** 

  (0.153) (0.0023) (0.136) (0.0022) 
Age group     

20-29 1.62*** 0.0287*** 2.107*** 0.0345*** 
 (0.152) (0.0021) (0.256) (0.0033) 

30-39 1.8*** 0.0322*** 2.106*** 0.0348*** 
 (0.111) (0.0015) (0.199) (0.0025) 

40-49 1.664*** 0.0299*** 2.106*** 0.0347*** 
 (0.147) (0.0021) (0.264) (0.0034) 

50-59 3.057*** 0.0431*** 2.141*** 0.0316*** 
 (0.645) (0.0063) (0.449) (0.0054) 
Province     

Eastern Cape 5.859*** 0.0774*** 2.058*** 0.0431*** 
 (1.065) (0.0051) (0.248) (0.0037) 

Free State 1.769*** 0.0214*** 2.229*** 0.0243*** 
 (0.334) (0.0035) (0.735) (0.0067) 

Gauteng 1.221*** 0.025*** 2.091*** 0.0354*** 
 (0.082) (0.0012) (0.245) (0.0031) 

Limpopo 1.45*** 0.0158*** 2.352** 0.017*** 
 (0.462) (0.0044) (1.121) (0.0068) 

Mpumalanga 2.105*** 0.0405*** 1.673*** 0.0352*** 
 (0.366) (0.0055) (0.305) (0.005) 

North West 8.341* 0.0637*** 2.216** 0.0255** 
 (6.469) (0.0170) (1.252) (0.0135) 

Northern Cape 2.578*** 0.0465*** 2.091*** 0.0392*** 
 (0.330) (0.0037) (0.248) (0.0032) 

Western Cape 1.249*** 0.0225*** 2.124*** 0.033*** 
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  (0.097) (0.0012) (0.262) (0.0031) 
 Notes: Table presents coefficients and standard errors. Sample includes TB-positive patients 
ages 16-64 in public health facilities from January 2004-December 2011.  KwaZulu-Natal 
omitted from provincial analysis due to data limitations. N = 2,565,951. SMLE = Simulated 
maximum likelihood estimation.  MSM-IV = Method of simulated moments – Instrumental 
variables.  *** - Significant at the 1% level, ** - 5% level. 
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