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Abstract

This paper offers new evidence on the income-health relationship by analyzing the income
gradient across the full distribution of four blood-based biomarkers: cholesterol, fibrinogen,
glycated haemoglobin and ferritin. We use an unconditional quantile approach based on
recentered influence function (RIF) regressions and apply an Oaxaca-Blinder decomposition
at various quantiles of biomarker distributions to explain gender differentials in biomarkers.
Using ten waves of the Health Survey for England (from 2003 to 2012) we find a non-linear
relationship between income and biomarkers and a higher income gradient at the highest
quantiles of the biomarker distributions. Moreover, we find that there is an important
heterogeneity in the association of health to income across genders which varies significantly
along the biomarker distribution and accounts for a substantial percentage of the gender
differentials in observed health.
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Introduction

The positive association between income and health is a well-established finding in the
health economics literature. This relationship has been found across age groups, in many
countries analyzed and for a variety of health measures, including self-rated health
(Mackenbach et al, 2005; Ettner, 1996), functional limitations (Ettner, 1990),
anthropometric measures (Wagstaff, Van Doorslaer and Watanabe, 2001) and mortality
(Cutler, Deaton and Lleras-Muney, 2006). The influence of economic conditions on health is
also the basis of the research on “income-related health inequalities”, one of the most
prominent fields in the health economics literature (see e.g., Kakwani, Wagstaff and van
Doorslaer, 1997; van Doorslaer and Jones, 2003). Studies of the influence of economic
conditions on health typically measure the effect of the former on the conditional mean of
the health status variable. Unfortunately, analysis based solely on the mean misses potentially
important information in other parts of the distribution (Bitler et al., 20006). This is especially
relevant to the income-health relationship, where clinical concern is focused on the tail of the
distributions and where evaluating the income gradient at different points of the distribution
of health status and decomposing income-related inequalities in health could be beneficial
(Jones and Lopez, 2000).

This lack of evidence is likely due to two factors. On one hand, health information is often
unavailable on a continuous scale in standard health or social surveys. For instance, self-
assessed health and functional limitations are collected on an ordinal scale while mortality is a
dichotomous indicator (by nature). “Beyond the mean analysis” is obviously less attractive in
these cases. On the other hand, the literature in econometrics has developed techniques
going “beyond the mean” only recently (see Fortin et al., 2011 for a review). This is because,
unlike average estimation framework, the estimates on the entire distribution of the
dependent variables, i.e. the quantile regression, cannot be easily used to estimate the impact
of a covariate on the corresponding unconditional quantile of the dependent variable (Firpo,
Fortin and Lemieux, 2009). OLS regressions provide consistent estimates of the impact of an
explanatory variable, X, on the population unconditional mean of an outcome variable, Y,
because the conditional mean, E[Y|X], averages up to the unconditional mean, E[Y], due to
the law of iterated expectations. As a consequence, a linear model for conditional means
E[Y|X] = XpB implies that E[Y] = E[X]B and OLS estimates of f§ also indicate what is the
impact of X on the population average of Y (Firpo, Fortin and Lemiux, 2009). When the
attention shifts towards the entire distribution, the situation is more complicated because
conditional quantiles do not average up to their population counterpatts, ie: g, (1) #
E[qyx(7)]. The analysis “beyond the mean” of the unconditional distribution of the

dependent variable is then more challenging.

In this paper, we use a distributional method proposed in the recent literature, the recentered
influence function approach (RIF) of Firpo, Fortin and Lemieux (2009) to estimate the
income gradient for a continuous measure of objective health status: blood-based
biomarkers. Biomarkers are characteristics that are ‘objectively measured and evaluated as

indicators of normal biological processes, pathogenic processes, or pharmacologic responses



to a therapeutic intervention’'. They are measured on a continuous scale associated with an
increasing or decreasing risk (depending on the biomarker) of a disease state and they are
often highly correlated with mortality (Bixby and Dow, 2012; Sattar et al., 2009; Gruenewald
et al., 2006). We consider four blood-based biomarkers available in ten waves of the Health
Survey for England (2003-2012) associated with the most relevant diseases in all Western
countries: cholesterol, glycated haemoglobin, fibrinogen and ferritin. Cholesterol measures
“fat in the blood” and it is associated with a higher risk of heart disease; glycated
haemoglobin is a biomarker for diabetes; ferritin is a biomarker for poor nutrition and is
associated with other important diseases such as liver diseases; fibrinogen is a haemostatic
marker associated with many inflaimmatory diseases including cardiovascular and liver

diseases.

Biomarker data have also been recently used to analyze the effect of socioeconomic position
on the conditional mean of the biomarker score. Using biomarker data for diabetes,
hypertension and cardiovascular diseases, Banks et al. (2006) found that English residents
have on average better health than US residents. Juerges, Kruk and Reinhold (2013) found a
positive relationship between schooling and biomarkers of cardiovascular diseases
(fibrinogen and C-reactive protein). Muennig, Sohler and Mahato (2007) look at differences
between socioeconomic groups in C-reactive protein and cholesterol homocysteine,
associated with cardiovascular diseases. They found a positive effect of income and
education on “good cholesterol” and a slightly significant effect on fibrinogen. Ploubidis et
al. (2014) found a negative impact of early life socioeconomic position on fibrinogen levels
later in life. Dowd and Goldman (2000) tested the influence of stress biomarkers on the
relationship between socioeconomic status and health. They found that chronic stress is
actually not very different across socioeconomic groups. A key advantage from using
biomarker data in all these analyses is having a measure of health which is free of reporting
bias. This is particularly important given the intense debate around the extent of

socioeconomic-related reporting bias.?

All these studies corroborate the idea that social position and economic conditions
contribute to shape objective health, i.e. biomarkers scores. Our paper goes beyond this
literature in two ways. Firstly, we use the unconditional quantile regression approach
developed by Firpo, Fortin and Lemieux (2009) to estimate the impact of a marginal change
in income on the entire distribution of biomarkers. The unconditional quantile method
consists of running a regression of the (recentered) influence function of the unconditional
quantile on the explanatory variables. The method works by providing a linear
approximation to a non-linear functional of the distribution. This allows one to apply the law
of iterated expectations to the distributional statistics of interest (i.e. the quantiles) and thus
to compute approximate partial effects of a single covariate on the functional being
approximated. In our setting, this method allows us to propetly assess the impact of income

1
This definition is given by National Institute of Health Biomarkers Definitions Working Group (2001).

Empirical literature investigating the extent of reporting heterogeneity in health between socioeconomic groups has found

contrasting results. Some papers (i.e. Sen (2002) for India) show the existence of a large repotting heterogeneity. Some others,
(i.e. Hernandez-Quevedo, Jones and Rice, (2004) for the United Kingdom) do not find any heterogeneity while some others (i.e
Bago d’Uva et al. (2008) for China, Indonesia and India) found only a small reporting heterogeneity and not in all countries

analyzed.



at different points of the unconditional distribution of biomarkers. This is desirable in order
to check for non-linearities in the relationship between income and health and to assess the
role of income at extreme biomarker levels which often indicate the presence or the risk of

severe diseases that are associated with high costs for the health system.

Secondly, we apply an Oaxaca-Blinder decomposition at various quantiles of the biomarker
distributions to analyse gender differentials in biomarkers and to measure the contribution of
income (and other covariates) to these differentials. Oaxaca-Blinder decomposition assesses
to what extent gender differentials in biomarkers are explained by compositional differences,
ie. differences in observed covariates, or by differences in elasticity of health with respect to
income and other factors. Under the assumption of the znvariance of conditional distribution (see
Fortin, Firpo and Lemieux 2011), discussed in more detail in section 3, this might also
identify the causal effect of gender on the biomarkers. More generally, decomposition
analysis is important for drawing policy implications because it helps to deliniate the role of
health policies, that operate on the health-gradient, from the role of fiscal policy, that
operates on compositional differences (see Van Doorslaer and Koolman, 2004 for a
discussion of the policy implications of decomposition analysis). Jones and Lopez (2000)
have already found that there is a great heterogeneity in the association of health with
explanatory variables across genders and they have shown that this has important
consequences on the measurement of income-related inequalities in health. Our paper
contributes to this literature by performing the decomposition analysis of gender differentials
in health along the entire distribution of health status: this permits an assessment of gender-
related differences in income-health gradient across the entire distribution of health status.

We find a non-linear relationship between income and health and a strong gradient with
respect to income at the highest quantiles of the biomarker distributions. In some cases, i.c.
cholesterol, the income gradient is found only at high quantiles, while analysis “at the mean”
leads to misleading conclusions (ie. a positive relationship between income and cholesterol ).
This makes the analysis on the entire distribution especially relevant in such cases. Secondly,
we find that there is important heterogeneity in the association of health to income across
genders which varies significantly along the biomarker distribution and accounts for a
substantial percentage of the gender differentials in observed health.

The rest of the paper is organized as follows. The next section presents data and descriptive
statistics. Section 3 discusses the empirical methodology. Section 4 presents the results. The

final section summarizes and concludes.

2. Data

Our data come from the Health Survey for England (HSE). HSE is an annual health
interview survey of around 15,000 to 20,000 respondents in England conducted by the
National Centre for Social Research (separate surveys are available for Scotland and Wales).



The survey started in 1991 and has been carried out annually since then. HSE includes adults
aged 16 and over, and since 1995 has also included children aged 2-15. From 2001 onwards,
the survey covers all ages, but certain age groups are asked questions on selected topics only.
An interview with each eligible person in the household is followed by a nurse visit for those
who agree to take part. The interview includes a set of core questions, asked each year on
general health and psycho-social indicators, smoking, alcohol, demographic and socio-
economic indicators, questions about use of health services and prescribed medicines.
Biomarkers are collected during nurse visits and include not only blood samples but also
anthropometric measurements, blood pressure measurements, and saliva samples. During
the nurse visits, the nurse asks the respondent for permission to carry out various types of
measurements. Respondents are informed about the purpose of each test and the value of
each test for the monitoring of various diseases. For instance, for the cholesterol test, the
nurse informs participants that “high levels are associated with blood clots, heart attack and
stroke”. The delivery of information is useful in order to increase compliance and establish a
good working relationship.

The most popular blood-based biomarkers, which are analyzed in this paper, have been
collected since 2002 in HSE. More precisely, Cholesterol and glycated hemoglobin were
collected since 2003 to 2012 every year. Fibrinogen was collected since 2003 to 2006 and in
2009. Ferritin was collected in 2002, from 2004 to 2006 and in 2009. Other potentially
relevant biomarkers (ie. tryglicerides, C-reactive protein) are collected sporadically and they
are not included in this analysis. We do not make any statistical transformation of the blood-
based biomarkers sample and use the valid (ie. blood sample propetly collected and
successfully processed) biomarker measurements in each wave. Thus, we can use 30,770
non-missing observations for the analysis of cholesterol spanning over the period 2003-2012,
34,831 for the analysis of glycated haemoglobin over the period 2003-2012, 15,530 for the
analysis of fibrinogen from 2003 to 2006 and in 2009 and 14,188 observations for ferritin
available in 2002, 2004, 2005, 2006 and 2009. An implicit age stratification comes from the
age restriction used by HSE for the blood sample collection. For almost all the waves, blood
samples are collected from individuals aged 16+. In a few waves a different age restriction is
employed. In the 2002 only individuals aged 24 or less are included; in the 2004 individuals
aged 11+ are included, while in 2005 only individuals aged 65+ are analyzed. A careful
control for demographics is employed in all our analysis and sample weights are used in all

regressions to take account of the survey design.

2.1 Variables and descriptive statistics

In what follows, we provide a description of the variables used in our analysis. Firstly, we
describe the blood-biomarker variables giving some detail on their unit of measurement, the
clinical cutpoints (when available) and the use of biomarker values for diagnosis of a disease
state. Later, we describe the income variable and other controls employed in the regression.
A complete list of the variables along with some descriptive statistics is then presented in
Tables 1 and 2.



We examine four blood-based biomarkers: Total Cholesterol, Glycated Haemoglobin,
Fibrinogen and Ferritin. As discussed in the introduction, these markers are highly predictive
of the most relevant chronic diseases in Western Countries such as England. Total
cholesterol (TC) is measutred in units called millimoles per litre of blood, (mmol/L). The
English government recommends that total Cholesterol should be equal or less than 4
mmol/L among individuals at high risk of cardiovascular disease (CVD) (ie. obese, with an
history of CVD, etc. ) and equal or less than 5mmol/L or less for healthy individuals. Values
above these thresholds indicate a higher risk of CVD.

Glycated haemoglobin (HbAlc) is a measure of the level of sugar in the blood over the
previous 8 to 12 weeks before measurement. It is the proportion of haemoglobin proteins
that have been bound by glucose. HbAlc can be expressed as a percentage or as a value in
mmol/mol. HbAlc is measured in percentage in all waves of the HSE. HbAlc values =
6.5% indicates diagnosis of diabetes, while values between 5.7% and 6.4% indicate pre-
diabetes risk (ADA, 2010; WHO, 2011a).

Fibrinogen is a marker of inflammation and it aids the body to stop bleeding by helping
blood clots to form. It is measured in grams per liter (g/L). The measure is continuous and
there are no established clinical cutpoints but normal levels generally range between 1.5-3
g/L. Higher levels of fibrinogen are implicated in the development of CVD and many
inflammatory diseases, such as liver diseases.

Levels of Ferritin reflect the size of the body’s stock of iron and therefore they are indicative
of anaemia. A low ferritin level is predictive of uncomplicated iron deficiency anaemia,
caused, for instance, by poor nutrition. However, high ferritin levels suggest excess body
iron, which is also problematic for health because it is generally associated with important
diseases such as liver diseases. WHO (2011b) suggests some cut-points: ferritin levels below
< 20 ug/L indicate depletion of iron, while levels < 12 indicate complete absence of stored
iron. Ferritin levels >300 ug/L may indicate iron ovetload in men and post-menopausal

women and >200 may indicate iron overload in pre-menopausal women.

Our main independent variable is houschold equivalised income. It includes total income of
a household from all sources, after tax and other deductions, divided by the number of
household members converted into equivalised adults. In order to take into account the fact
that income changes are often multiplicative in the real world (ie. a 5% raise in wages), we
take the logarithms of equivalised income in all regressions. This allows a better
interpretation of the income-health relationship.

As control variables, we include six age group variables (11-18, 18-34, 35-44, 45-64, 65-74,
75+) for each gender and seven dummies for educational status. Education is measured
according to the following categories: Degree or National vocation qualification (NVQ) 4 or
5; Higher education below degree; NVQ 3 or General Certificate of Education (GCE)
Advanced Level; NVQ 2 or GCE ordinary level; NVQ1 or Certificate of Secondary
Education (CSE); Other qualifications from outside England; No qualification. Omitted
categories in our analysis are males aged 11-18 and individuals with no qualification.



Table 1 shows some descriptive statistics for the biomarkers. We find that average biomarker
values in our sample fall essentially within normal ranges, but with some distinctions. In
particular, cholesterol values are just a bit higher than the cutpoint of 5 while fibrinogen
average scores are a bit higher than the normal cutpoint of 3. Moreover, Table 1 depicts a
higher dispersion around the average cholesterol and Ferritin values, while other biomarkers

values are less dispersed around the mean.

Table 2 shows descriptive statistics for the independent variables. We observe a high share of
individuals aged 45-64 and a higher share of elderly women (over 65), consistent with the
well-known gender differences in life expectancy. With respect to education, we observe that
around 23% of individuals in our sample have a degree, and a similar share of them have a
NVQ 2 or GCE. Also the shate of individuals without formal education is substantial
(around 21%). This includes mostly individuals belonging to older cohorts without any
formal education (around 20% and an average age of 60) and students receiving compulsory
education or attending a school at the time in which the interview was conducted

(approximately 1% of our sample and an average age of 15).

3. Empirical Methodology

Our empirical analysis is based on the Recentered Influence Function (RIF) method of
Firpo, Fortin and Lemiux (2009). We use the RIF method to estimate the relationship
between income and biomarkers and we use the RIF regression as a basis for Oaxaca-Blinder
decomposition of gender differentials in England.

As discussed in the introduction, the key advantage of the RIF approach is that it allows us
to analyze the relationship between income and the wnconditional distribution of biomarkers,
and to analyze and decompose differences in the wnconditional distribution of biomarkers
across genders. This possibility is essentially given by the fact that RIF method works by
providing a linear approximation of the unconditional quantiles of the dependent variable.
The law of iterated expectations can be applied to the quantile being approximated and used
to estimate the marginal effect of a covariate through a simple regression of a function of the
outcome variable, the Recentered Influence Function, on the covariates X.

In our setting, the RIF of biomarkers is estimated directly from the data by first computing
the sample quantile ¢ and then estimating the density of the distribution of biomarkers at
that quantile using kernel density methods. Then, for a given observed quantile g, a RIF is
generated which can take one of two values depending upon whether or not the

observation’s value of the outcome variable is less than or equal to the observed quantile:

T—1[Bio<q]

RIF (Bi0;q7) = 4z +— ==
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Where @ is the observed sample quantile, 1[Bio < q.] is an indicator variable equal to one
if the observation’s value of the biomarker is less than or equal to the observed quantile and

zero otherwise. fpi,(qy) is the estimated kernel density of the biomarker at the T, quantile.

The RIF defined in equation (1) is then used as a dependent variable in a OLS regression on
the covariates X, as defined in section 2.1. In practice, this amounts to estimate a rescaled
linear probability model (Jones, Lomas and Rice, 2015). Indeed, the unconditional quantile

of the biomarker ,q;, may be obtained as follows:
Gc = Ey. [E[RTF (Bio; q,)|X]| @)

Where RIF(Bio; q;)|X is the estimate of RIF as defined in equation (1) conditional on
covariates X. Thanks to this linear approximation, it is now possible to apply the the law of

iterated expectations. Thus, g, can be written as :

~

4. = E[X]6;

where 3; is the coefficient of the unconditional quantile regression. This linearization allows
estimation of the marginal effect of a change in distribution of covariates X (including
income) on the wnconditional quantile of biomarkers, measured by the parameter 5;. In our
model, as well as the covariates X presented in Table 2, we also include year fixed effects, to
pick up time variation in biomarker levels.

To analyze gender differentials in biomarkers, we use Oaxaca-Blinder (Blinder 1973; Oaxaca
1973) (OB) decomposition method using the RIF regression in equation (2) as a basis for the
decomposition. A similar logic to the OB decomposition at the mean applies also here (see
Fortin, Lemieux, Firpo, 2011 for a review). Formally, differences in estimated biomarkers
levels between males (M) and females (F) year at each quantile can be decomposed as
follows:

%i0= [RIF (Bioy, qu:)] — [RIF (Biog, qr;)]
Aio= Xy — Xp)8p + Xz (8 — 68) (3)

where X, and Xp represent the sample means of covariates X for the subsample of males
and females, and &y and O represent the coefficients of the unconditional quantile

regression as in equation (2) for the subsample of males and females, respectively.

The first term in equation (3) is the part of differential in biomarkers that is “explained” by
differences in observed covariates between the subsample of males and females. This is often
called as a “composition effect”. Differences in covariates across genders are weighted by the
coefficients of the unconditional quantile regression from a model estimated on the
subsample of females (8f). The decomposition is thus formulated from the viewpoint of
females as in the original work by Oaxaca (1973). In our application, the choice of the
discriminated group is complicated by the fact that women might have some health
advantages over men (ie. they have a higher longevity than men, for instance) but they often



earn less than males because of gender discrimination in the labour market. We therefore
consider females as the discriminated group. This puts our OB decomposition in line with
the traditional discrimination literature, ie. the analysis of gender wage gap (see the discussion
in Neumark, 1988 and Jann, 2008 for more details).

The second term in equation (3) measure the “unexplained” part of the differential in
biomarkers. This is often called also as “structural” part and it accounts for differences in
biomarkers across genders which is due to differences in the impact of the covariates and it
also captures all potential effects of differences in unobserved variables.

The explained and unexplained part can be further decomposed into contributions of each
covariate at each quantile. In our case, it is particularly useful to derive both the total
contribution and the detailed contribution of income to the gender differentials in
biomarkers. This allows to understand to what extent differences in biomarkers are driven by
differences in earnings between males and females (“composition effect”) and/or by
differences in the association of health to income across genders (also known as “elasticity
effect”). Thanks to the additivity assumption of the OB decomposition, this is possible
because the “explained” and “unexplained” part in equation (3) are simply given by the sum
of the contribution of individual covariates.

Thus, it is possible to derive the detailed contribution of all covariates (including income) to

the “explained part”, as follows:
Xy — Xp)6p = (X — X1p)81r + (Xom — Xop)Sop+... (4)

Where X; and X, ... are the means of the single covariates and 8 are the associated
coefficients of the unconditional quantile regression estimated on the subsample of females.
Similarly, the contributions of each covariate to the “unexplained part” can be obtained as as

follows:

XF(SM - 6F) = XlF((SlM - 61[:) +)?2F(62M _— 62F) + eee (S)

To draw inference on the contributions of each covariate to the explained and unexplained
part, standard errors are computed using the delta method (See Jann, 2008 for more details).

First to present our results we highlight some interesting connections between the
decomposition presented above and the treatment effect literature. In principle, if we
consider the gender as a treatment, decomposition presented in equations (3)- (5) might have
a causal interpretation. Indeed, the explained part ((Xy — Xz)8F) in equation (3) captures all
the compositional differences, ie. in income and in the other factors, between males and
females. This part might be thus conceived as the selection bias resulting from confounding
factors to be controlled for in the program evaluation literature. Instead, the unexplained
part (Xp(8y — 8p)) in equation (3) might be conceived as the treatment effect of gender on
health, or, more precisely, as the Population Treatment Effect on the Treated (Fortin, Firpo
and Lemiuex 2011). Moreover, thanks to the additivity assumption, the detailed OB
decomposition presented in equation (4) and (5) allows us to separate the elasticity from the
compositional effect of each covariate on the total differences in biomarkers between males



and females. Thus, for instance, the elasticity effect of income (or of other covariates) in
equation (5) can be interpreted as the causal effect of gender on income-health gradient (or
other covariates-health relationship). In a recent paper, Sloczynski (2015) also examines the
finite-sample performances of the OB unexplained component as an estimator of the PATT
and finds that it performs better than many popular methods that have received considerable
attention in the treatment effects literature, such as inverse probability weighting estimators,
kernel matching, nearest-neighbour matching, etc. (see Sloczynski (2015) for more details) .

However, it is important to note that the interpretation of OB decomposition in causal terms
is valid under the assumptions of jgnorability and common suppor?’. These assumptions are also
the identifying assumptions of all the estimators mentioned above, belonging to the strand of
treatment effect literature which relies on selection on observables. When the OB decomposition
is performed on the entire outcome distribution, as in our case, these assumptions guarantee
the znvariance of conditional distribution, namely, that the conditional distribution of the
biomarker given the control variables X remains invariant under manipulations of the
marginal distribution of the X#*. This permits us to derive a valid counterfactual of the
distribution of biomarkers for females using the biomarker-covariates relationship estimated
on males (Fortin, Firpo and Lemiuex (2011)).

In our setting, some of these assumptions are rather restrictive while some others seem to be
more justified. In particular, the dgnorability assumption - requiring that the conditional
distribution of unobservables to be the same across genders - is restrictive, because
important unobservable determinants of health status such as preferences for risk, inter-
temporal preferences or variables for which we cannot control for in our dataset (lifestyles,
genetic inheritance) might be unevenly distributed across genders.- On the other hand, we
checked balancing properties of our covariates across gender and found a slight lack of
balance for some covariates (ie. demographics and some educational dummies) but a good
balance on our key covariate, income?’. This suggests that common support assumption-
requiring that the values of the control variables observed for males are also observed among
females - might be justified. In view of this, a causal interpretation of the decomposition
may be possible.

Despite that, we prefer to not give a causal interpretation of our results essentially because of
the nature of our treatment. Gender is not a choice or a manipulable action, as we cannot
obviously conceive individuals choosing which group to belong to (see for instance the
discussion in Fortin, Firpo and Lemieux, 2011 and in Holland, 1986). Nonetheless, we think
that relating the decomposition exercise to the policy evaluation framework is useful for a
deeper understanding of the decomposition results shown in the next sections of the paper.

3Together termed also as s#rong ignorability . Please see Fortin, Firpo and Lemiuex (2011) for a clear discussion on the identifying
assumptions of the most popular decomposition methods employed in economic analysis.

+ An additional assumption, which is somewhat implicit in the OB decomposition, is the simple countetfactual assumption. This
implies that other counterfactuals based on hypothetical states of the world, ie. general equilibrium effects, are ruled out. In our
case, this means that males are a valid countetfactual for females. Consequently, it means to assume that if females were not
penalized, they would exhibit the same health-covariates relationship found among males.

> Results are not shown here and they are available upon request.
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4. Results

4.1 Income-health relationship

Tables 3-6 shows the results of RIF regressions described in equation (2) for cholesterol,
glycated haemoglobin, fibrinogen and ferritin, respectively. Column 1 of each table includes
OLS regression at the mean for comparison, while columns 2-5 include results of the RIF
regressions at the 25t 50, 75t 90t and 95% percentile of each biomarker, respectively. To
make the interpretation of our coefficient of interest easier, we also plot the income
coefficient at all points of the biomarker distribution (every 5 percentiles) in Figures 1-4.

Table 3 shows that the relationship between income and cholesterol is somewhat complex
and that analysis at the mean misses important information. Indeed, OLS estimates suggest
only a positive income gradient (column 1), while RIF regressions indicate that income-
cholesterol relationship varies at different points of the cholesterol distribution. At the
lowest quantiles of the distribution, the income-cholesterol association is positive, while
from the 75% percentile of cholesterol distribution, the relationship turns to be negative,
albeit not statistically significant. More precisely, Figure 1 shows that the “saddle” point is
located at the 80t percentile, corresponding to cholesterol equal to 6.5, just a bit higher than
the clinical cutpoint of 5. After this threshold, the income gradient increases in magnitude
and reaches a peak at the 95" percentile. Interestingly, this pattern indicates that the income
gradient rises exactly when cholesterol levels exceed the normal range and are indicative of a

disease state.

With respect to the other covariates, we find higher cholesterol levels among the eldetly,
(especially women) and a high association with education at all levels of cholesterol
distribution. However, while the age effect appears to be marginally decreasing along the
cholesterol distribution, education effect is marginally increasing: the cholesterol gradient
between educated (at any level) and individuals without formal education (reference
category) increases along the cholesterol distribution and reach its peak at the 95" percentile
of the cholesterol distribution.

The association between income and glycated haemoglobin (GH) is negative at all quantiles
of the distribution but it varies highly in magnitude along the distribution. In this case, OLS
estimates provides a poor approximation of this association (column 1 of Table 4), while RIF
estimates (columns 2-5 of Table 4) show that the income coefficient at 95 percentile of GH
distribution is ten times higher than the income coefficient at the 25t percentile (-0.204 vs -
0.025). Figure 2 actually shows that income gradient reaches his peak at the 95% percentile of
the GH distribution, corresponding to the clinical diagnosis of diabetes (GH >6.5). A similar
pattern is observed also for the other covariates: both education and age effects increase at
the highest quantiles of GH distribution and they are particularly high around the clinical
threshold.

With respect to fibrinogen (Table 5), we find a pattern very similar to the income-GH
relationship. We find a negative association at all quantiles of fibrinogen distribution and an
higher income gradient at top quantiles. However, the income gradient is smoother because
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the income coefficient at the 95" percentile is “only
coefficient at the 25% percentile (-0.067 vs -0.028). In this case, OLS regression (column 1 of
Table 5) provides a good approximation of the average relationship between income and

twice as much as the income

tibrinogen (the OLS coefficient is -0.039). Consistently with the other biomarkers analyzed,
we observe that the income gradient is high around the abnormal threshold of fibrinogen,
around the 75% percentile (see Figure 3). The income gradient reaches its peak at the 95t
percentile of fibrinogen corresponding to fibrinogen values of 4.3, one point more than the
upper bound of the normal ranges of fibrinogen. As far as the other variables are concerned,
Table 5 shows that both age and education effects increase along the distribution of
fibrinogen, in a manner consistent with the other biomarkers analysed.

With respect to ferritin, we find that a positive income gradient at all points of the
distribution (Table 6). This is consistent with the fact that higher ferritin values generally
indicate better health, with the exception of very extreme values which may also indicate the
presence of some health problems. The income-ferritin relationship reflects exactly this
pattern. Indeed, we find that income gradient increases up to the 75% percentile and it
reduces in magnitude after this threshold, becoming hardly statistically significant at the 95%
percentile of ferritin distribution. This pattern is more clearly depicted in Figure 4. The
income coefficient increases almost lineatly up to the 75" percentile (the income coefficient
at the 75% percentile is three times higher than the coefficient at the 25% percentile). After
this threshold (corresponding to ferritin level of 100), there is less clear income-ferritin
pattern because income coefficient fluctuates widely (but it is always positive) along the
ferritin distribution. Also the other covariates exhibit a similar pattern: both age and
education effects reduce highly in magnitude at the top quantiles of the ferritin distribution
and the education gradient disappears at the 95% percentile of ferritin distribution.

4.2 Oaxaca-Blinder decomposition of gender differentials in biomarkers

The results of Oaxaca-Blinder (OB) decomposition at the 25%, 50t 75t 90t and 95
percentile distribution of cholesterol, glycated haemoglobin, fibrinogen and ferritin are
shown in Tables 7-10, respectively. Decomposition is expressed always as a difference
between levels for males “minus” levels for females. Thus a positive (negative) difference
means that a given biomarker value is higher (lower) among males. Tables 7-10 includes total
differences, the explained and the unexplained part and their respective standard errors.
Detailed decomposition is shown in Figures 5-8, where we highlight the contribution of
main factors (income, education, demographics and year fixed effects) to the explained and
unexplained part at 25, 50t 75t 90t and 95t percentile distribution of each biomarker.

We illustrate and explain the mechanics of the decomposition using cholesterol results as an
example and discuss the main findings for all other biomarkers. Table 7 shows that females
have generally higher values of cholesterol at all quantiles of cholesterol distribution. This is
not surprising and this is partly explained by the female sex hormone oestrogen which tends
to raise HDL cholesterol (good cholesterol). However, according to our results, gender
differentials are not the same along the entire distribution. They are negligible and not
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statistically significant at the 25% and 50t percentile of cholesterol distribution while they are
high and statistically significant at the 90% (0.22 points is the total gender differential) and
95t percentile (around 0.28 points). The second and third rows of Table 7 shows that this is
explained both by a difference in the impact of covariates on cholesterol (“unexplained
part”) and by compositional differences in covariates (“explained part”). At high levels of
cholesterol (ie. at the 75™ and 90" percentile) compositional differences are predominant,
while at extreme levels of cholesterol (at the 95% percentile), the unexplained part is more
important to explain gender differentials.

The detailed contribution of income and the other covariates is presented in Figure 5. The
decomposition exercise shows a large contribution of demographics (red bar) at the lowest
levels of cholesterol. This contribution is mainly due to a difference in the association of
health to demographics while compositional differences are less important. The contribution
of education is important especially from the 75" percentile and it is also due to differences
in the association of health to education across genders. The contribution of income is
predominant from the 25% percentile of the cholesterol distribution and it is particularly high
at the extreme levels of cholesterol (95™ percentile). Also in the case of income, gender
differentials in income-health association (“elasticity effect”) are much more important than
compositional differences (“compositional effect”) to explain total differentials. The
interpretation of the elasticity effect deserves more attention. The sign of the elasticity effect
of any covariates in our OB decomposition comes from the second term in equation (5) and
it depends on two factors: 7 the sign of the coefficients (6pand 6y) 7 the differences in
coefficients between the regression on the subsample of males and the subsample of females
(0r- Opr). When the coefficients are negative, a positive (negative) elasticity effect arises when
the coefficient of female regression is larger (smaller) in magnitude than the coefficient of
male regression. On the contrary, when the coefficients are positive, a positive (negative)
elasticity effect arises when the coefficient in the female regression is smaller (larger) than the
coefficient in the male regression. ¢ In the case of cholesterol, as shown in the previous
section, the income coefficient in the pooled regression is positive at the lowest quantiles of
cholesterol and negative from the 80" percentile of cholesterol. Thus, Figure 5 actually
shows that there is an important heterogeneity in the association of cholesterol to income
which varies significantly along the cholesterol distribution. From the 25% to the 75
percentile of cholesterol distribution, the positive contribution of income means a higher
(positive) association of income to cholesterol among males, while at the 90 percentile, the
positive contribution we found means that income has a more protective effect (negative
effect) among females. However, it is interesting to observe that at very extreme and
dangerous levels of cholesterol (at the 95% percentile) we found a negative contribution
which indicates a higher protective effect of income on illness among males.

The OB decomposition of glycated haemoglobin (GH) is reported in Table 8. Results
indicate higher values of GH among males along the entire distribution of GH and especially
at the extreme levels (at the 95th percentile). The higher prevalence of diabetes among males

® The elasticity terms in equation (5) is Xp(8y — 8f). Thus, with negative (positive) coefficients
(Spand 8y < 0), a positive elasticity effect arises iff 8 > 8y (8y > 8p) being the sample mean (Xz)
always positive in our case.
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is a recent finding of the medical literature and it is mainly imputed to a higher abdominal
visceral fat which represent one of the main risk factor for diabetes (see for instance
Perreault et al. 2008). Contrarily to cholesterol, gender differentials in GH are largely due a
different association of GH to the covariates (row 3 of table 8), while compositional
differences are much less important to explain total gender differentials (row 2). Detailed
contribution analysis in Figure 6 suggests a marginal role of demographics and a strong
contribution of education (mainly due to an elasticity effect) to gender differentials. With
respect to income, Figure 6 indicates that its contribution becomes predominant after the
75t percentile of GH distribution. Also in the case of GH, the contribution of income is
largely due to gender-related differences in the association of the biomarker to income which
vary significantly along the GH distribution. For instance, while at 90% percentile of GH
distribution we found a higher protective effect of income on illness among males, we found
the opposite (but less important in magnitude) at the 95t percentile of the distribution.

Table 9 indicates general higher levels of fibrinogen among women especially at low levels of
tibrinogen which are not indicative of a pathological state. Differences are largely explained
by gender differentials in the association of fibrinogen to covariates while compositional
differences are much less important. Detailed decomposition presented in Figure 7 shows
that gender differentials in fibrinogen are largely explained by income, and by demographics
(to a less extent), while education plays a less important role. Figure 7 also shows that the
contribution of income is largely explained by an elasticity effect, a pattern observed also for
the other biomarkers. Moreover, similarly to the other biomarkers, the elasticity effect is
heterogeneous along the distribution of fibrinogen. Up to the 90™ percentile of the
fibrinogen distribution, the protective effect of income is higher among females while at

very extreme levels of fibrinogen income has a much stronger protective effect among males.

Lastly, we report the OB decomposition of gender differentials in ferritin in Table 10.
Results indicate the existence of high ferritin levels among males along the entire distribution
and especially at the 95% percentile of ferritin distribution. These differences are partly
physiologic and associated to blood losses in menstrual women, for instance. However,
decomposition analysis also suggests that differences are largely explained by an elasticity
effect while compositional differences are less important. Similatly to the other biomarkers,
we found that income is the largest contributing factor to gender differentials and this
happens along the entire distribution of ferritin. Again, we found that that income
contribution is mostly due to an elasticity effect. This indicates an higher effect of income on
ferritin among males at all levels. In substantive terms, these results suggest that income has
a more protective effect on males for low ferritin problems while we do not detect
meaningful gender differentials at highest levels of ferritin, and the income-ferritin

association is rarely significant at those levels (as discussed in the paragraph 4.1).

14



5. Conclusions

The relationship between income and health is probably one of the most explored topics in
health economics. A large literature documents the existence of a positive income gradient
which is found in several countries, across different age groups and according to several
measures of health status. Despite this large interest, less is known about the income-health
relationship at different points of the health distribution. Indeed, studies of the influence of
economic conditions on health typically measure the effect of the former on the conditional
mean of the health status variable through regression analysis. Analysis based solely on the
mean while offering useful information, misses potentially important information in other
parts of the distribution. For instance, it does not check for non-linearities in the relationship
between income and health across the full conditional distribution. Moreover, it does not
permit analysis of the role of economic conditions at the tails of the health distribution
which are often associated with large welfare losses for individuals and high costs for the
health care system.

This paper fills this gap by offering new evidence on the income-health relationship “beyond
the mean” of the health distribution. We use a distributional method proposed in the recent
literature, the recentered influence function approach (RIF) of Firpo, Fortin and Lemieux
(2009), to estimate income gradients across the full distribution for continuous measures of
objective health status: blood-based biomarkers. Moreover, we apply Oaxaca-Blinder
decompositions at various quantiles of the biomarker distributions to explain gender
differentials in biomarkers in England. We use data from the Health Survey for England and
we concentrate on four markers highly predictive of the most relevant chronic diseases in
Western Countries: total cholesterol, glycated haemoglobin, fibrinogen and ferritin.

A key advantage of using biomarker data is having a measure of health which is free of
reporting bias. Indeed, biomarkers are health measures collected during a professional nurse
visit and measured on a continuous scale. So, even if our analysis cannot be considered as
causal, the absence of reporting bias rules out one important source of endogeneity in the
income-health relationship.

Our analysis makes two important contributions to the existing literature. Firstly, analysis
beyond the mean allows us to highlight some aspect of the income-health relationship which
are overlooked by standard regression methods. In particular, we find that the income-health
relationship is non-linear across the health distribution and that the income gradients appear
to be higher at the top quantiles of the biomarker distributions, close to the clinical cutpoints
that indicate the presence of disease. For instance, we find that the income gradient at the
95t percentile is ten times higher than income gradient at the 25% percentile of glycated
haemoglobin, a marker for diabetes. At the same time, the income gradient at the 95
percentile is twice as much as the gradient at the 25% percentile of the distribution of
fibrinogen, a marker of many inflammatory diseases, including cardiovascular ones. The
income gradient increases almost lineatly up to the 75" percentile of ferritin (a marker of
anaemia and other important diseases) and it reduces in magnitude after this threshold. In
these cases, the analysis at the mean provides a partial view of the income-health
relationship. In the case of cholesterol, analysis at the mean leads to misleading conclusions.
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For instance, we found that OLS regression suggests a positive association between income
and cholesterol. Instead, RIF regression suggests that at lowest quantiles of the distribution,
income-cholesterol association is positive, while from the 75% percentile of cholesterol
distribution, the relationship turns to be negative. Also in the case of cholesterol, the
“saddle” point is very close to the clinical threshold denoting pathologic cholesterol levels.

A second contribution of our paper is the measurement of the gender differentials in
biomarkers and the assessment of the contribution of income (and other covariates) to these
differentials. Under the assumption of the znvariance of the conditional distribution that we
discussed in Section 3, these effects could also represent the causal effects of gender on
health and of gender on income-health relationship, respectively. We find that, besides some
physiological reasons, gender differentials in biomarkers are largely explained by a different
association of health to covariates across genders. Importantly, detailed decomposition
analysis suggests that the heterogeneity in the effect of income on health across genders
accounts for a substantial percentage of the total gender differentials in observed health.
Moreover, we find that income-health relationship across genders varies significantly along
the biomarker distribution and that this depends on the nature of the biomarker considered.
At extreme levels of biomarkers, indicating pathological cardiovascular diseases (ie.
cholesterol and fibrinogen), we find a higher protective effect of income on illness among
males, while we find that this effect is higher among females at lowest quantiles of the
distribution (ie. at the 25% and at the 50% percentile of the distribution). On the contrary, at
extreme levels of glycated haemoglobin indicating severe diabetes, we find a higher

protective effect of income among females. The same pattern is observed for ferritin.

These results might have important policy implications. If we follow the argument of Van
Doorslaer and Koolman (2004), the importance of the gender-related differences in the
association of income to health would suggest primarily health policy interventions which
operate on the health-gradient. At the same time, it seems that fiscal policy interventions are
less relevant as compositional differences are not very important to explain the total gender
differentials. Moreover, our analysis suggests that health policy interventions should be
differently focused across genders and across the distribution of health. For instance, for the
purpose of eliminating socio-economic inequalities in health, it seems important to focus on
males in poor economic conditions when considering severe cardiovascular diseases. On the
contrary, more attention should be paid to females in poor economic conditions when
considering severe diabetes or health problems deriving from high-ferritin, such as liver
diseases.

Future research might concentrate on the reasons behind the heterogeneity of income-health
relationship along the distribution of health status and across genders. Our results indicate
that these aspects should be carefully considered when investigating the impact of income,

and of other covariate, on health status.
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Tables and Figures

Table 1. Descriptive Statistics - Biomarkers

Variable Mean | Std Waves? Observations
Dev.

Cholesterol 5.57 1.15 2,3,4,5,6,7,8,9,10,11 | 30,770

Glycated haemoglobin 5.58 0.75 2,3,4,5,6,7,8,9,10,11 | 34,831

Fibrinogen 3.01 0.74 23,458 15,530

Ferritin 99.29 109.3 1,3,4,5,8 13,849

2 2002=wave 1; 2012=wavell

Table 2. Descriptive Statistics - Independent Variables

Variable Mean Std Dev.

Log (Household Equivalised Income) 10.04 0.82

M (11-18)- Omitted Category 0.01 0.13

M (18-34) 0.09 0.29

M (35-44) 0.10 0.30

M (45-64) 0.16 0.36

M (65-74) 0.06 0.23

M (75+) 0.03 0.17

F (11-18) 0.02 0.13

F (18-34) 0.11 0.31

F (35-44) 0.12 0.33

F (45-64) 0.20 0.40

F (65-74) 0.07 0.25

F (75+) 0.04 0.20

No Qualification- Omitted Category 0.21 0.41

Degree- NVQ 4,5 0.23 0.42

Higher Education 0.12 0.33

NVQ 3- GCE A 0.14 0.35

NVQ2-GCEO 0.23 0.42

NVQ1 - CSE 0.05 0.21

Other Qualifications 0.02 0.15
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Table 3. Cholesterol Results - OLS and RIF regressions

OLS RIF Regressions

Variables Q25 Q50 Q75 Q90 Q95

Log Income 0.035%6%  0.048%%%  (.039%:¢  0.015 0.014  -0.015
0.008 0.013 0.011 0.013 0.017 0.023

M (18-34) 0.695%F% 10180k () 572%0k () 38k () 28Q%kk () 26340k
0.038 0.087  0.044 0.039 0.040 0.054

M (35-44) 1.353%kx 173050k | DagHkx ] (58K (), 88K (),8] 5k
0.039 0.085 0.045 0.046 0.057 0.074

M (45-64) 1.559%k%  1.94Q%kk | 5p5kkk ] DT(@Rkk ] (5]HkK (0,964
0.037 0.082 0.041 0.041 0.050 0.069

M (65-74) 1,395k 857k ] 3a4%0x ] 081%kk  (),824%Kkk  (),593kkx
0.045 0.086  0.052 0.057 0.077 0.102

M (75+) 1,082k 1 552%kkk | (0]3kek () 73TRK (. 424%%% () 248%*
0.050 0.094 0.059 0.064 0.083 0.103

F (11-18) 0.104%%  0.270%%  0.022 0.008 0.024 0.067
0.042 0.105  0.057 0.043 0.051 0.075

F (18-34) 05148k ().842%8k () 348%kk (), ]97H6k ()] 59%kk ()] 478k
0.036 0.085  0.039 0.033 0.034 0.047

F (35-44) 0.940%8% 1 451%6k () T73%66 () 476%k (39288 () 358%kk
0.038 0.085  0.042 0.037 0.043 0.058

F (45-64) 1,661 1.988%kx 1 58@Hrx 1 44Q%kx | DA(pRRK ] D38k
0.037 0.082 0.040 0.039 0.050 0.071

F (65-74) 1.985%kk 2 (098%kk  1.923kkk D (26KFkx ] 84Q%kk ] 840wk
0.043 0.083 0.045 0.056 0.086 0.120

F (75+) 1.787%0k D 013%kk 1 T40%k0k ] 646Kk ] 549%kk ] 380k
0.045 0.087  0.052 0.066 0.102 0.140

Degree- NVQ 4,5 -0.080% _0.016  -0.087%Fk  _0.090%FF _(.18G%** (). 225%k*
0.021 0.030 0.028 0.035 0.049 0.066

Higher Education 0.016  0.016 -0.017 0.016 20.080  -0.192%*
0.023 0.031 0.031 0.040 0.058 0.076

NVQ 3- GCE A 20.094%6% _0,088%F  _0.059%F  _0.091%kk  _(),]54%kk (), 20F%kk
0.021 0.035  0.030 0.035 0.050 0.066

NVQ2-GCEO -0.048%¢  -0.051*  -0.029 0.010 -0.089%  -0.170%**
0.019 0.028 0.026 0.033 0.048 0.064

NVQ1 - CSE -0.089%%F _0.048  -0.089%F  -0.049 -0.223%%F ()31 7k
0.030 0.046  0.041 0.051 0.068 0.086

Other Qualifications 0.009 -0.012  -0.035 -0.013  -0.031 0.058
0.045 0.048 0.057 0.080 0.127 0.182

Constant 4274%0x DB MK 4 4Dk 5 BQ(pRik 7 ]T8kkx 7 9Tk
0.088 0.151 0.117 0.142 0.202 0.274
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Years Fixed Effects YES YES YES YES YES YES

Observations 30770 30770 30770 30770 30770 30770

Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied.

Table 4. Glycated Haemoglobin Results - OLS and RIF regressions

OLS RIF Regressions

Variables Q25 Q50 Q75 Q90 Q95

Log Income S0.065%%x  _0.025%k% 0.037%kk _(.048%K% (,094%%% () 2045
0.005 0.004 0.004 0.005 0.010 0.026

M (18-34) 0.068%**  0.034 0.040%  0.044%%  (.117%0x  (0.267%F*
0.025 0.032 0.021 0.021 0.025 0.056

M (35-44) 0.278%kx (0. 221%0k () 221%%  ().2458kk () 289wk () 58] kK
0.026 0.032 0.021 0.022 0.029 0.069

M (45-64) 0.513%kx  (0.33800k () 3790 () 4650kk  (),649%kk | 337Hkk
0.025 0.031 0.020 0.021 0.031 0.078

M (65-74) 0.679%F%  (0.381%kx (. 475%0k  (),630%kk 1 1]GRx 2307wk
0.027 0.031 0.021 0.025 0.048 0.133

M (754) 0.697#%x  (0.397#06k  ()526%%k  ().742%kk ] 18T%kk 2137k
0.030 0.031 0.022 0.027 0.059 0.166

F (11-18) -0.032 -0.027 -0.009 20.041%  -0.064%0F  (),]134%%x
0.028 0.036 0.023 0.021 0.017 0.036

F (18-34) 0.034 -0.019 -0.004 0.022 0.106%#F (. 26255
0.024 0.031 0.020 0.020 0.022 0.051

F (35-44) 0.158%6k  0.109%kx  0.099%kx  (.116%%  0.177%k*  (.449%%%
0.025 0.032 0.020 0.021 0.025 0.060

F (45-64) 0.411%6k  0.310%k%  (0.333%06  (.396%kk  (0.475%kx  ().839%kk
0.024 0.031 0.020 0.021 0.027 0.065

F (65-74) 0.610%6%  (0.398%kx  (0.497%kx  (.661%Fk  (0.915%kx ] 638%kk
0.027 0.031 0.021 0.024 0.044 0.118

E(75+) 0.628%%  0.407Fkx  (.537%0k (7380 1 100k 1.618%kk
0.028 0.032 0.022 0.026 0.053 0.137

Degree- NVQ 4,5 S0.154%0% _0,079%kx  _(0,083%kk (), 133%kk  _().243%kx () 558%k%
0.013 0.010 0.009 0.012 0.026 0.073

ngher Education _01 1 9*** _0038*** _0047*** _0089*** _Ol 86*** _0452***
0.014 0.010 0.009 0.013 0.030 0.083

NVQ 3- GCE A L0540 0,071k Q.07THRE L(,143%k% (). 238%%k () 553k
0.013 0.011 0.010 0.012 0.026 0.073

NVQ2-GCEO S0.107%6k 0,042%k% _(.044%%  0,088%kk  _(.195%kkx (). 480%k*
0.012 0.009 0.008 0.011 0.025 0.070

NVQI1 - CSE -0.094%%x 0,018 20.023%  L0.071Fk 0.167F 0,365

0.019 0.014 0.013 0.018 0.040 0.120
Other Qualifications  -0.116%** -0.018 -0.045%0F  -0.0926% (. 257*+*k (). 533#H*
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0.027 0.018 0.017 0.024 0.058 0.162

Constant 6.043%wk 5407wk 5 G5TRRE 6 126% 6,827k 8 110k
0.055 0.052 0.042 0.051 0.101 0.277
Years Fixed Effects YES YES YES YES YES YES
Observations 34831 34831 34831 34831 34831 34831

Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied.

Table 5. Fibrinogen Results - OLS and RIF regressions

OLS RIF Regressions

Vatiables Q25 Q50 Q75 Q90 Q95

Log Income J0.039%6k 0,028%K 005006k _0,057%%F  0.041%kK  _(,067*H*
0.008 0.010 0.011 0.014 0.016 0.025

M (18-34) 0.053 0.026 -0.010 0.035 0.119% 0.113
0.039 0.070 0.058 0.060 0.070 0.102

M (35-44) 0.247%6%  (0.266%F%  0.202%F%  0.163%%  (.183%  (.168*
0.040 0.069 0.058 0.060 0.070 0.101

M (45-64) 0.447+0%  04T70%kx  (.438%06k  (353%k0k () 358%kk () 392k
0.039 0.067 0.057 0.060 0.072 0.106

M (65-74) 0.635%0F  (0.58G%K*  (.625%Fk (.58 (),622%kk  (),6]8%k*
0.045 0.069 0.062 0.074 0.093 0.147

M (75+) 0.830%kk  (.672%kx () 795%kk  (.84Gkx  ().887FFK ] 3]6%Hx
0.049 0.069 0.065 0.084 0.117 0.208

F (11-18) 0.143%0%  0.144%  0.103 0.046 0.148 0.107
0.043 0.073 0.074 0.080 0.108 0.150

F (18-34) 0.385%kx  (0.428%kk () 350Kk ().320%kk () 35Q%kk  ()3]GRHk
0.038 0.066 0.057 0.060 0.073 0.104

F (35-44) 04020k 0.407%0F  0.406%F%  (.385%F (346K ().3] 2%k
0.039 0.068 0.058 0.062 0.072 0.103

F (45-64) 0.581%kx (. 571%kk () 584Kk (),552%%k () 48Rk (). 482kk
0.039 0.067 0.056 0.061 0.073 0.106

F (65-74) 0.798kkx (0701 %k0k (). 784%kx  ().852%kkk () T72%kk (), 861Kk
0.044 0.067 0.061 0.073 0.095 0.150

F (75+) 0.880°kk*  (0.689%%*  ().882%kx  1.026%**k  (.944%kk 1 12k

0.046 0.068 0.062 0.082 0.1713 0.178
Degree- NVQ 4,5 193%%x () 157#kk  _(0,193kkk (0262006 (0 279%%% () 222%%x

0.020 0.024 0.026 0.035 0.042 0.067
Higher Education L0127k _0.082% Kk _().119%k (.1 78FRK  _().223%kk  _().]194%*

0.021 0.025 0.029 0.039 0.048 0.077
NVQ 3- GCE A -0.12706 20.088FF 0. 128%+k (. 187***  -0.239%**  -0.21 5%
0.021 0.026 0.029 0.038 0.044 0.067

NVQ2-GCEO 20.096%%k  0.076%Fk  0.112%kk  _(.148%F%  _(.162%k*  _().146%*
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0.018 0.021 0.024 0.034 0.043 0.066
NVQ1 - CSE -0.032 20039 0.032 -0.038 -0.103 -0.056
0.028 0.033 0.037 0.051 0.065 0.104
Other Qualifications
0.118%k%  -0.042 20.098%%  _0.194%kx 0195  -0.203
0.039 0.036 0.050 0.070 0.092 0.143
Constant 3.135%KK DG4 3190%Rk 3 738%ek 3 954%kk 4 44Rkkk
0.083 0.118 0.119 0.149 0.169 0.259
Years Fixed Effects YES YES YES YES YES YES
Observations 15530 15530 15530 15530 15530 15530
Standard Errors in Ttalics, *¥*, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied.
Table 6. Ferritin Results- OLS and RIF regressions
OLS RIF Regressions
Variables Q25 Q50 Q75 Q90 Q95
Log Income 2.988%%x (53K () 795RKK ] 301RKx (),994%k% 1.412%
1.077 0.093 0.150 0.295 0.373 0.734
M (18-34) 65.805%%% 4 381Hkk 4 16TRRE 18.342%Kk 9 725RRk  1(),6] 1%k
4.093 0.388 0.624 1.077 1.067 1.862
M (35-44) 93.800%%%  4.272%kk  5325%kk D3 D45%kk 10 D@GHKK D9 D (kK
4.647 0.430 0.669 1.290 1.611 3.276
M (45-64) 99.457+%%  4,003%kk  14.269%0% 235934k 2] 83GHKK 29 94Kk
4.270 0.439 0.660 1.117 1.304 2.399
M (65-74) 100.438%#% 3 900%** 14, 553%kk 25 3]5%kk D4 274%0k 33 46k
1.887 0.468 0.718 1.303 1.718 3.570
M (75+4) 73.658%F  2.832%kkk  11505%0% 18.698%KF 16.438%KK 25 636Kk
5432 0.497 0.796 1.523 1.744 3.407
F (11-18) S11.592%%% 3 34405k D 828Rk 1 098% (019 0.071
3.776 0.429 0.425 0.410 0.199 0.183
F (18-34) 21031500 D45k 0939 DAGTRRx _1.179%* 0.404
3.924 0.428 0.574 0.739 0.591 0.969
F (35-44) 5978 21100 -0.213  -1.954%  -0.580 0.861
4.537 0.495 0.685 0.875 0.715 1.161
F (45-64) 22.754%0% 1 110%F  6.235%kk 5 023%kk 23Rk 3 753k
4.218 0.453 0.670 0.912 0.728 1.119
F (65-74) 48474k DT2TRRE 1().312%0k 12,039%kk 8250k 11.069% K
4.879 0.458 0.711 1.180 1.226 2.207
E(75+) 33.014%%x  2.043%%k G TG%RE 838K 4 BITHRER 4G4k
4.973 0.495 0.783 1.300 1.173 2.018
Degree- NVQ 4,5 5.888%F  (.593Fkk  (.648%  1.499% 1.996%* 0.567
2.820 0.221 0.376 0.770 0.987 1.849
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Higher Education

7. 426%* 0303  0.995%  1.558* 1.756 1.843
3.110 0.237 0412 0.869 1.159 2.262
NVQ 3- GCE A 2.454 0.330 0.565 0377  -1.508* 2,744
2.934 0.239 0.402 0.788 0.905 1.688
NVQ2-GCEO -1.808  0.008%k  0.714% 0733 -1.783%F 2417+
2431 0.199 0.337 0.623 0.726 1.355
NVQI1 - CSE 2170 0.493 0.762 0.661 -0.440 0.180
4.143 0.319 0.530 1.135 1.362 2471
Other
Qualifications 1.044 0397 0905 1581 0246 -4.641*
6.639 0.509 0.893 1.681 1.759 2412
Constant 15263 26.263%** 46.697%FF 92.894%kk 176.526%F* 239.064%+*
10.748 0.940 1.500 2.869 3.614 7.095
Years Fixed Effects YES YES YES YES YES YES
Observations 14188 14188 14188 14188 14188 14188
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied.
Table 7. Oaxaca-Blinder Decomposition of gender differentials in Cholesterol
Q25 % Q0 “ Qi P Qo 7 Qi ~
Amr 0.010 0.008 -0.068%* ~0.225%%k ~0.276%%*
0.019 0.017 0.021 0.026 0.032
Compositional -0.028 281 0,047+ 535 o550 047 g o5peex 81 g 5w 20
0.006 0.008 0.009 0.009 0.001
Elasticity 0018 180 (ps50« 055 0013 153 680 19 219w 80
0.018 0.165 0.019 0.025 0.031

Standard Errors in Italics ; *¥*, ¥, * indicate significance at 1%, 5% and 10%, respectively.

Table 8. Oaxaca-Blinder Decomposition of gender differentials in Glycated

Haemoglobin
Q5 % Qo0 7 Qs 7 Qo 7 Qi @~
Ancr 0.033% 0.0325%% 0.024%+ 0.073%+ 0.336%
0.006 0.005 0.007 0.014 0.041
Compositional -0.009% 27 01500 47 o0 91 030006 41 pg0rex 18
0.002 0.003 0.004 0.005 0.009
Elasticity ~ 0.042%0 127 47006 147 g oagmec 191 g qo30e 141 397500 118
0.006 0.005 0.007 0.013 0.040

Standard Errors in Italics ; ¥, ** * indicate significance at 1%, 5% and 10%, respectively.
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Table 9. Oaxaca-Blinder Decomposition of gender differentials in Fibrinogen

Qs 7 Q0 7 Qi 7 Qo 7 Qs 7
Awm.r 103304k L0.25% 0.381%K% 0. 244%0k -0.103%*
0.014 0.014 0.019 0.029 0.04
Compositional -0.022%% 0 0270 110033006 9 003400 14 3300x 32
0.004 0.004 0.006 0.007 0.009
Elasticity ~ -0.307% 93 0203+ 89 34gw0ex 91 gopgwer 80 pgox 08
0.014 0.014 0.018 0.028 0.039
Standard Errors in Italics ; **%, ** * indicate significance at 1%, 5% and 10%, respectively.
Table 10. Oaxaca-Blinder Decomposition of gender differentials in Ferritin
Q25 % Q50 % Q75 % Q90 % Q95 %
AmF 28.97+** 53.99#k* 84.13%#* 125.04*** 159.86%**
0.14 0.217 0414 0917 1.399
Compositional  0.004 0.1 -0.046 -0.01 -0.152 -0.01 -0.248 02 -0.282 02
0.028 0.047 0.110 0.161 0.246
Elasticity 28.96*** 99.9 54.04#** 100.09 84.20#4* 100.09 125.29%** 100.2 160.14%** 100.2
0.14 0.210 0.402 0.905 1.389

Standard Errors in Italics ; ¥, ** * indicate significance at 1%, 5% and 10%, respectively.
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Figure 1. Income Coefficient of RIF regression. Cholesterol

Cholesterol income relationship
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Figure 2. Income Coefficient of RIF regression. Glycated Haemoglobin

Glycated Haemoglobin-income relationship
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Figure 3. Income Coefficient of RIF regression. Fibrinogen

Fibrinogen income relationship
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Figure 4. Income Coefficient of RIF regression. Ferritin

Ferritin income relationship
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Figure 5. Detailed Decomposition of gender differentials- Cholesterol

O-B decomposition of gender differentials in cholesterol
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Detailed Decomposition of gender differentials- Glycated Haemoglobin

O-B decomposition of gender differentials
in glycated haemoglobin
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Figure 7. Detailed Decomposition of gender differentials- Fibrinogen

O-B decomposition of gender differentials in Fibrinogen
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Figure 8. Detailed Decomposition of gender differentials- Ferritin

O-B decomposition of gender differentials in Ferritin
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