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Abstract 

This paper offers new evidence on the income-health relationship by analyzing the income 

gradient across the full distribution of four blood-based biomarkers: cholesterol, fibrinogen, 

glycated haemoglobin and ferritin. We use an unconditional quantile approach based on 

recentered influence function (RIF) regressions and apply an Oaxaca-Blinder decomposition 

at various quantiles of biomarker distributions to explain gender differentials in biomarkers. 

Using ten waves of the Health Survey for England (from 2003 to 2012) we find a non-linear 

relationship between income and biomarkers and a higher income gradient at the highest 

quantiles of the biomarker distributions. Moreover, we find that there is an important 

heterogeneity in the association of health to income across genders which varies significantly 

along the biomarker distribution and accounts for a substantial percentage of the gender 

differentials in observed health. 

 

Keywords: biomarkers; unconditional quantile regression; decomposition analysis; health 

inequalities. 

JEL codes: C1, C5, I14. 

 

 

  

*Corresponding Author: Department of Economics and Statistics, Via Giovanni Paolo II, 84084 Fisciano 

(SA), Italy. E-mail: vcarrieri@unisa.it 



2 
 

Introduction 

The positive association between income and health is a well-established finding in the 

health economics literature. This relationship has been found across age groups, in many 

countries analyzed and for a variety of health measures, including self-rated health 

(Mackenbach et al., 2005; Ettner, 1996), functional limitations (Ettner, 1996), 

anthropometric measures (Wagstaff, Van Doorslaer and Watanabe, 2001) and mortality 

(Cutler, Deaton and Lleras-Muney, 2006). The influence of economic conditions on health is 

also the basis of the research on “income-related health inequalities”, one of the most 

prominent fields in the health economics literature (see e.g., Kakwani, Wagstaff and van 

Doorslaer, 1997; van Doorslaer and Jones, 2003). Studies of the influence of economic 

conditions on health typically measure the effect of the former on the conditional mean of 

the health status variable. Unfortunately, analysis based solely on the mean misses potentially 

important information in other parts of the distribution (Bitler et al., 2006). This is especially 

relevant to the income-health relationship, where clinical concern is focused on the tail of the 

distributions and where evaluating the income gradient at different points of the distribution 

of health status and decomposing income-related inequalities in health could be beneficial 

(Jones and Lopez, 2006).  

This lack of evidence is likely due to two factors. On one hand, health information is often 

unavailable on a continuous scale in standard health or social surveys. For instance, self-

assessed health and functional limitations are collected on an ordinal scale while mortality is a 

dichotomous indicator (by nature). “Beyond the mean analysis” is obviously less attractive in 

these cases. On the other hand, the literature in econometrics has developed techniques 

going “beyond the mean” only recently (see Fortin et al., 2011 for a review). This is because, 

unlike average estimation framework, the estimates on the entire distribution of the 

dependent variables, i.e. the quantile regression, cannot be easily used to estimate the impact 

of a covariate on the corresponding unconditional quantile of the dependent variable (Firpo, 

Fortin and Lemieux, 2009). OLS regressions provide consistent estimates of the impact of an 

explanatory variable, X, on the population unconditional mean of an outcome variable, Y, 

because the conditional mean,       , averages up to the unconditional mean,     , due to 

the law of iterated expectations. As a consequence, a linear model for conditional means 

          implies that            and OLS estimates of   also indicate what is the 

impact of   on the population average of   (Firpo, Fortin and Lemiux, 2009). When the 

attention shifts towards the entire distribution, the situation is more complicated because 

conditional quantiles do not average up to their population counterparts, ie:       

          . The analysis “beyond the mean” of the unconditional distribution of the 

dependent variable is then more challenging. 

In this paper, we use a distributional method proposed in the recent literature, the recentered 

influence function approach (RIF) of Firpo, Fortin and Lemieux (2009) to estimate the 

income gradient for a continuous measure of objective health status: blood-based 

biomarkers.  Biomarkers are characteristics that are ‘objectively measured and evaluated as 

indicators of normal biological processes, pathogenic processes, or pharmacologic responses 
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to a therapeutic intervention’1. They are measured on a continuous scale associated with an 

increasing or decreasing risk (depending on the biomarker) of a disease state and they are 

often highly correlated with mortality (Bixby and Dow, 2012; Sattar et al., 2009; Gruenewald 

et al., 2006). We consider four blood-based biomarkers available in ten waves of the Health 

Survey for England (2003-2012) associated with the most relevant diseases in all Western 

countries: cholesterol, glycated haemoglobin, fibrinogen and ferritin. Cholesterol measures 

“fat in the blood” and it is associated with a higher risk of heart disease; glycated 

haemoglobin is a biomarker for diabetes; ferritin is a biomarker for poor nutrition and is 

associated with other important diseases such as liver diseases; fibrinogen is a haemostatic 

marker associated with many inflammatory diseases including cardiovascular and liver 

diseases. 

Biomarker data have also been recently used to analyze the effect of socioeconomic position 

on the conditional mean of the biomarker score. Using biomarker data for diabetes, 

hypertension and cardiovascular diseases, Banks et al. (2006) found that English residents 

have on average better health than US residents. Juerges, Kruk and Reinhold (2013) found a 

positive relationship between schooling and biomarkers of cardiovascular diseases 

(fibrinogen and C-reactive protein). Muennig, Sohler and Mahato (2007) look at differences 

between socioeconomic groups in C-reactive protein and cholesterol homocysteine, 

associated with cardiovascular diseases. They found a positive effect of income and 

education on “good cholesterol” and a slightly significant effect on fibrinogen. Ploubidis et 

al. (2014) found a negative impact of early life socioeconomic position on fibrinogen levels 

later in life. Dowd and Goldman (2006) tested the influence of stress biomarkers on the 

relationship between socioeconomic status and health. They found that chronic stress is 

actually not very different across socioeconomic groups. A key advantage from using 

biomarker data in all these analyses is having a measure of health which is free of reporting 

bias. This is particularly important given the intense debate around the extent of 

socioeconomic-related reporting bias.2   

All these studies corroborate the idea that social position and economic conditions 

contribute to shape objective health, i.e. biomarkers scores. Our paper goes beyond this 

literature in two ways. Firstly, we use the unconditional quantile regression approach 

developed by Firpo, Fortin and Lemieux (2009) to estimate the impact of a marginal change 

in income on the entire distribution of biomarkers. The unconditional quantile method 

consists of running a regression of the (recentered) influence function of the unconditional 

quantile on the explanatory variables. The method works by providing a linear 

approximation to a non-linear functional of the distribution. This allows one to apply the law 

of iterated expectations to the distributional statistics of interest (i.e. the quantiles) and thus 

to compute approximate partial effects of a single covariate on the functional being 

approximated. In our setting, this method allows us to properly assess the impact of income 

                                                           
1
 This definition is given by National Institute of Health Biomarkers Definitions Working Group (2001). 

2
 Empirical literature investigating the extent of reporting heterogeneity in health between socioeconomic groups has found 

contrasting results. Some papers (i.e. Sen (2002) for India) show the existence of a large reporting heterogeneity. Some others, 

(i.e. Hernández-Quevedo, Jones and Rice, (2004) for the United Kingdom) do not find any heterogeneity while some others (i.e 

Bago d’Uva et al. (2008) for China, Indonesia and India) found only a small reporting heterogeneity and not in all countries 

analyzed. 
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at different points of the unconditional distribution of biomarkers. This is desirable in order 

to check for non-linearities in the relationship between income and health and to assess the 

role of income at extreme biomarker levels which often indicate the presence or the risk of 

severe diseases that are associated with high costs for the health system.  

 

Secondly, we apply an Oaxaca-Blinder decomposition at various quantiles of the biomarker 

distributions to analyse gender differentials in biomarkers and to measure the contribution of 

income (and other covariates) to these differentials. Oaxaca-Blinder decomposition assesses 

to what extent gender differentials in biomarkers are explained by compositional differences, 

ie. differences in observed covariates, or by differences in elasticity of health with respect to 

income and other factors. Under the assumption of the invariance of conditional distribution (see 

Fortin, Firpo and Lemieux 2011), discussed in more detail in section 3, this might also 

identify the causal effect of gender on the biomarkers. More generally, decomposition 

analysis is important for drawing policy implications because it helps to deliniate the role of 

health policies, that operate on the health-gradient, from the role of fiscal policy, that 

operates on compositional differences (see Van Doorslaer and Koolman, 2004 for a 

discussion of the policy implications of decomposition analysis). Jones and Lopez (2006) 

have already found that there is a great heterogeneity  in the association of health with 

explanatory variables across genders and they have shown that this has important 

consequences on the measurement of income-related inequalities in health. Our paper 

contributes to this literature by performing the decomposition analysis of gender differentials 

in health along the entire distribution of health status:  this permits an assessment of gender-

related differences in income-health gradient across the entire distribution of health status.  

 

We find a non-linear relationship between income and health and a strong gradient with 

respect to income at the highest quantiles of the biomarker distributions. In some cases, i.e. 

cholesterol, the income gradient is found only at high quantiles, while analysis “at the mean” 

leads to misleading conclusions (ie. a positive relationship between income and cholesterol ). 

This makes the analysis on the entire distribution especially relevant in such cases. Secondly,  

we find that there is important heterogeneity in the association of health to income across 

genders which varies significantly along the biomarker distribution and accounts for a 

substantial percentage of the gender differentials in observed health. 

 

The rest of the paper is organized as follows. The next section presents data and descriptive 

statistics. Section 3 discusses the empirical methodology. Section 4 presents the results. The 

final section summarizes and concludes. 

 

 

2. Data 

Our data come from the Health Survey for England (HSE). HSE is an annual health 

interview survey of around 15,000 to 20,000 respondents in England conducted by the 

National Centre for Social Research (separate surveys are available for Scotland and Wales). 
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The survey started in 1991 and has been carried out annually since then. HSE includes adults 

aged 16 and over, and since 1995 has also included children aged 2-15. From 2001 onwards, 

the survey covers all ages, but certain age groups are asked questions on selected topics only. 

An interview with each eligible person in the household is followed by a nurse visit for those 

who agree to take part. The interview includes a set of core questions, asked each year on 

general health and psycho-social indicators, smoking, alcohol, demographic and socio-

economic indicators, questions about use of health services and prescribed medicines. 

Biomarkers are collected during nurse visits and include not only blood samples but also 

anthropometric measurements, blood pressure measurements, and saliva samples. During 

the nurse visits, the nurse asks the respondent for permission to carry out various types of 

measurements. Respondents are informed about the purpose of each test and the value of 

each test for the monitoring of various diseases. For instance, for the cholesterol test, the 

nurse informs participants that “high levels are associated with blood clots, heart attack and 

stroke”. The delivery of information is useful in order to increase compliance and establish a 

good working relationship.  

 

The most popular blood-based biomarkers, which are analyzed in this paper, have been 

collected  since 2002 in HSE. More precisely, Cholesterol and glycated hemoglobin were 

collected since 2003 to 2012 every year. Fibrinogen was collected since 2003 to 2006 and in 

2009. Ferritin was collected in 2002, from 2004 to 2006 and in 2009. Other potentially 

relevant biomarkers (ie. tryglicerides, C-reactive protein) are collected sporadically and they 

are not included in this analysis. We do not make any statistical transformation of the blood-

based biomarkers sample and use the valid (ie. blood sample properly collected and 

successfully processed) biomarker measurements in each wave. Thus, we can use 30,770 

non-missing observations for the analysis of cholesterol spanning over the period 2003-2012, 

34,831 for the analysis of glycated haemoglobin over the period 2003-2012, 15,530 for the 

analysis of fibrinogen from 2003 to 2006 and in 2009 and 14,188 observations for ferritin 

available in 2002, 2004, 2005, 2006 and 2009. An implicit age stratification comes from the 

age restriction used by HSE for the blood sample collection. For almost all the waves, blood 

samples are collected from individuals aged 16+. In a few waves a different age restriction is 

employed. In the 2002 only individuals aged 24 or less are included; in the 2004 individuals 

aged 11+ are included, while in 2005 only individuals aged 65+ are analyzed. A careful 

control for demographics is employed in all our analysis and sample weights are used in all 

regressions to take account of the survey design.  

 

2.1 Variables and descriptive statistics 

In what follows, we provide a description of the variables used in our analysis. Firstly, we 

describe the blood-biomarker variables giving some detail on their unit of measurement, the 

clinical cutpoints (when available) and the use of biomarker values for diagnosis of a disease 

state. Later, we describe the income variable and other controls employed in the regression. 

A complete list of the variables along with some descriptive statistics is then presented in 

Tables 1 and 2.  
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We examine four blood-based biomarkers: Total Cholesterol, Glycated Haemoglobin, 

Fibrinogen and Ferritin. As discussed in the introduction, these markers are highly predictive 

of the most relevant chronic diseases in Western Countries such as England. Total 

cholesterol (TC) is measured in units called millimoles per litre of blood, (mmol/L). The 

English government recommends that total Cholesterol should be equal or less than 4 

mmol/L among individuals at high risk of cardiovascular disease (CVD) (ie. obese, with an 

history of CVD, etc. ) and equal or less than 5mmol/L or less for healthy individuals. Values 

above these thresholds indicate a higher risk of CVD.  

 

Glycated haemoglobin (HbA1c) is a measure of the level of sugar in the blood over the 

previous 8 to 12 weeks before measurement. It is the proportion of haemoglobin proteins 

that have been bound by glucose.  HbA1c can be expressed as a percentage or as a value in 

mmol/mol. HbA1c is measured in percentage in all waves of the HSE. HbA1c values ≥ 

6.5% indicates diagnosis of diabetes, while values between 5.7% and 6.4% indicate pre-

diabetes risk (ADA, 2010; WHO, 2011a).  

 

Fibrinogen is a marker of inflammation and it aids the body to stop bleeding by helping 

blood clots to form. It is measured in grams per liter (g/L). The measure is continuous and 

there are no established clinical cutpoints but normal levels generally range between 1.5-3 

g/L. Higher levels of fibrinogen are implicated in the development of CVD and many 

inflammatory diseases, such as liver diseases.  

Levels of Ferritin reflect the size of the body’s stock of iron and therefore they are indicative 

of anaemia. A low ferritin level is predictive of uncomplicated iron deficiency anaemia, 

caused, for instance, by poor nutrition. However, high ferritin levels suggest excess body 

iron, which is also problematic for health because it is generally associated with important 

diseases such as liver diseases. WHO (2011b) suggests some cut-points: ferritin levels below 

≤ 20 ug/L indicate depletion of iron, while levels ≤ 12 indicate complete absence of stored 

iron. Ferritin levels >300 ug/L may indicate iron overload in men and post-menopausal 

women and >200 may indicate iron overload in pre-menopausal women.  

 

Our main independent variable is household equivalised income. It includes total income of 

a household from all sources, after tax and other deductions, divided by the number of 

household members converted into equivalised adults. In order to take into account the fact 

that income changes are often multiplicative in the real world (ie. a 5% raise in wages), we 

take the logarithms of equivalised income in all regressions. This allows a better 

interpretation of the income-health relationship. 

 

As control variables, we include six age group variables (11-18, 18-34, 35-44, 45-64, 65-74, 

75+) for each gender and seven dummies for educational status. Education is measured 

according to the following categories: Degree or National vocation qualification (NVQ) 4 or 

5; Higher education below degree; NVQ 3 or General Certificate of Education (GCE) 

Advanced Level; NVQ 2 or GCE ordinary level; NVQ1 or Certificate of Secondary 

Education (CSE); Other qualifications from outside England; No qualification. Omitted 

categories in our analysis are males aged 11-18 and individuals with no qualification. 
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Table 1 shows some descriptive statistics for the biomarkers. We find that average biomarker 

values in our sample fall essentially within normal ranges, but with some distinctions. In 

particular, cholesterol values are just a bit higher than the cutpoint of 5 while fibrinogen 

average scores are a bit higher than the normal cutpoint of 3. Moreover, Table 1 depicts a 

higher dispersion around the average cholesterol and Ferritin values, while other biomarkers 

values are less dispersed around the mean.  

 

Table 2 shows descriptive statistics for the independent variables. We observe a high share of 

individuals aged 45-64 and a higher share of elderly women (over 65), consistent with the 

well-known gender differences in life expectancy. With respect to education, we observe that 

around 23% of individuals in our sample have a degree, and a similar share of them have a 

NVQ 2 or GCE. Also the share of individuals without formal education is substantial 

(around 21%). This includes mostly individuals belonging to older cohorts without any 

formal education (around 20% and an average age of 60) and students receiving compulsory 

education or attending a school at the time in which the interview was conducted 

(approximately 1% of our sample and an average age of 15).  

 

3. Empirical Methodology 

Our empirical analysis is based on the Recentered Influence Function (RIF) method of 

Firpo, Fortin and Lemiux (2009). We use the RIF method to estimate the relationship 

between income and biomarkers and we use the RIF regression as a basis for Oaxaca-Blinder 

decomposition of gender differentials in England.  

As discussed in the introduction, the key advantage of the RIF approach is that it allows us 

to analyze the relationship between income and the unconditional distribution of biomarkers, 

and to analyze and decompose differences in the unconditional distribution of biomarkers 

across genders. This possibility is essentially given by the fact that RIF method works by 

providing a linear approximation of the unconditional quantiles of the dependent variable. 

The law of iterated expectations can be applied to the quantile being approximated and used 

to estimate the marginal effect of a covariate through a simple regression of a function of the 

outcome variable, the Recentered Influence Function, on the covariates X. 

In our setting, the RIF of biomarkers is estimated directly from the data by first computing 

the sample quantile   and then estimating the density of the distribution of biomarkers at 

that quantile using kernel density methods. Then, for a given observed quantile   , a RIF is 

generated which can take one of two values depending upon whether or not the 

observation’s value of the outcome variable is less than or equal to the observed quantile: 

 

                
           

        
                                          (1) 
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Where     is the observed sample quantile,           is an indicator variable equal to one 

if the observation’s value of the biomarker is less than or equal to the observed quantile and 

zero otherwise.          is the estimated kernel density of the biomarker at the     quantile.  

The RIF defined in equation (1) is then used as a dependent variable in a OLS regression on 

the covariates X, as defined in section 2.1. In practice, this amounts to estimate a rescaled 

linear probability model (Jones, Lomas and Rice, 2015). Indeed, the unconditional quantile 

of the biomarker ,  , may be obtained as follows:  

                                                                   (2) 

Where                is the estimate of RIF as defined in equation (1) conditional on 

covariates X. Thanks to this linear approximation, it is now possible to apply the the law of 

iterated expectations. Thus,    can be written as : 

         
  

where   
  is the coefficient of the unconditional quantile regression. This linearization allows 

estimation of  the marginal effect of a change in distribution of covariates X (including 

income) on the unconditional quantile of biomarkers, measured by the parameter   
 . In our 

model, as well as the covariates X presented in Table 2, we also include year fixed effects, to 

pick up time variation in biomarker levels. 

To analyze gender differentials in biomarkers, we use Oaxaca-Blinder (Blinder 1973; Oaxaca 

1973) (OB) decomposition method using the RIF regression in equation (2) as a basis for the 

decomposition. A similar logic to the OB decomposition at the mean applies also here (see 

Fortin, Lemieux, Firpo, 2011 for a review). Formally, differences in estimated biomarkers 

levels between males     and females     year at each quantile can be decomposed as 

follows: 

    
                                     

    
                          (3) 

where     and     represent the sample means of covariates X for the subsample of males 

and females, and    and    represent the coefficients of the unconditional quantile 

regression as in equation (2) for the subsample of males and females, respectively.  

The first term in equation (3) is the part of differential in biomarkers that is “explained” by 

differences in observed covariates between the subsample of males and females. This is often 

called as a “composition effect”. Differences in covariates across genders are weighted by the 

coefficients of the unconditional quantile regression from a model estimated on the 

subsample of females (  ). The decomposition is thus formulated from the viewpoint of 

females as in the original work by Oaxaca (1973). In our application, the choice of the 

discriminated group is complicated by the fact that women might have some health 

advantages over men (ie. they have a higher longevity than men, for instance) but they often 



9 
 

earn less than males because of gender discrimination in the labour market. We therefore 

consider females as the discriminated group. This puts our OB decomposition in line with 

the traditional discrimination literature, ie. the analysis of gender wage gap (see the discussion 

in Neumark, 1988 and Jann, 2008 for more details). 

The second term in equation (3) measure the “unexplained” part of the differential in 

biomarkers. This is often called also as “structural” part and it accounts for differences in 

biomarkers across genders which is due to differences in the impact of the covariates and it 

also captures all potential effects of differences in unobserved variables.    

The explained and unexplained part can be further decomposed into contributions of each 

covariate at each quantile. In our case, it is particularly useful to derive both the total 

contribution and the detailed contribution of income to the gender differentials in 

biomarkers. This allows to understand to what extent differences in biomarkers are driven by 

differences in earnings between males and females (“composition effect”) and/or by 

differences in the association of health to income across genders (also known as “elasticity 

effect”). Thanks to the additivity assumption of the OB decomposition, this is possible 

because the “explained” and “unexplained” part in equation (3) are simply given by the sum 

of the contribution of individual covariates. 

Thus, it is possible to derive the detailed contribution of all covariates (including income) to 

the “explained part”, as follows: 

                                         +… (4) 

Where     and    … are the means of the single covariates and   are the associated 

coefficients of the unconditional quantile regression estimated on the subsample of females. 

Similarly, the contributions of each covariate to the “unexplained part” can be obtained as as 

follows: 

                                          (5) 

To draw inference on the contributions of each covariate to the explained and unexplained 

part, standard errors are computed using the delta method (See Jann, 2008 for more details).  

First to present our results we highlight some interesting connections between the 

decomposition presented above and the treatment effect literature. In principle, if we 

consider the gender as a treatment, decomposition presented in equations (3)- (5) might have 

a causal interpretation. Indeed, the explained part (           ) in equation (3) captures all 

the compositional differences, ie. in income and in the other factors, between males and 

females. This part might be thus conceived as the selection bias resulting from confounding 

factors to be controlled for in the program evaluation literature. Instead, the unexplained 

part (          ) in equation (3) might be conceived as the treatment effect of gender on 

health, or, more precisely, as the Population Treatment Effect on the Treated (Fortin, Firpo 

and Lemiuex 2011). Moreover, thanks to the additivity assumption, the detailed OB 

decomposition presented in equation (4) and (5) allows us to separate the elasticity from the 

compositional effect of each covariate on the total differences in biomarkers between males 
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and females. Thus, for instance, the elasticity effect of income (or of other covariates) in 

equation (5) can be interpreted as the causal effect of gender on income-health gradient (or 

other covariates-health relationship). In a recent paper, Sloczynski (2015) also examines the 

finite-sample performances of the OB unexplained component as an estimator of the PATT 

and finds that it performs better than many popular methods that have received considerable 

attention in the treatment effects literature, such as inverse probability weighting estimators, 

kernel matching, nearest-neighbour matching, etc. (see Sloczynski (2015) for more details) . 

 

However, it is important to note that the interpretation of OB decomposition in causal terms 

is valid under the assumptions of ignorability and common support3. These assumptions are also 

the identifying assumptions of all the estimators mentioned above, belonging to the strand of 

treatment effect literature which relies on selection on observables. When the OB decomposition 

is performed on the entire outcome distribution, as in our case, these assumptions guarantee 

the invariance of conditional distribution, namely, that the conditional distribution of the 

biomarker given the control variables X remains invariant under manipulations of the 

marginal distribution of the X4. This permits us to derive a valid counterfactual of the 

distribution of biomarkers for females using the biomarker-covariates relationship estimated 

on males (Fortin, Firpo and Lemiuex (2011)).  

In our setting, some of these assumptions are rather restrictive while some others seem to be 

more justified. In particular, the ignorability assumption - requiring that the conditional 

distribution of unobservables to be the same across genders - is restrictive, because 

important unobservable determinants of health status such as preferences for risk, inter-

temporal preferences or variables for which we cannot control for in our dataset (lifestyles, 

genetic inheritance) might be unevenly distributed across genders.. On the other hand, we 

checked balancing properties of our covariates across gender and found a slight lack of 

balance for some covariates (ie. demographics and some educational dummies) but a good 

balance on our key covariate, income 5 . This suggests that common support assumption- 

requiring that the values of the control variables observed for males are also observed among 

females - might be justified.  In view of this, a causal interpretation of the decomposition 

may be possible.  

Despite that, we prefer to not give a causal interpretation of our results essentially because of 

the nature of our treatment. Gender is not a choice or a manipulable action, as we cannot 

obviously conceive individuals choosing which group to belong to (see for instance the 

discussion in Fortin, Firpo and Lemieux, 2011 and in Holland, 1986). Nonetheless, we think 

that relating the decomposition exercise to the policy evaluation framework is useful for a 

deeper understanding of the decomposition results shown in the next sections of the paper. 

 

                                                           
3
Together termed also as strong ignorability . Please see Fortin, Firpo and Lemiuex (2011) for a clear discussion on the identifying 

assumptions of the most popular decomposition methods employed in economic analysis. 
4 An additional assumption, which is somewhat implicit in the OB decomposition, is the simple counterfactual assumption. This 
implies that other counterfactuals based on hypothetical states of the world, ie. general equilibrium effects, are ruled out.  In our 
case, this means that males are a valid counterfactual for females. Consequently, it means to assume that if females were not 
penalized, they would exhibit the same health-covariates relationship found among males. 
5 
Results are not shown here and they are available upon request. 
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4. Results 

4.1 Income-health relationship 

Tables 3-6 shows the results of RIF regressions described in equation (2) for cholesterol, 

glycated haemoglobin, fibrinogen and ferritin, respectively. Column 1 of each table includes 

OLS regression at the mean for comparison, while columns 2-5 include results of the RIF 

regressions at the 25th, 50th, 75th, 90th and 95th percentile of each biomarker, respectively. To 

make the interpretation of our coefficient of interest easier, we also plot the income 

coefficient at all points of the biomarker distribution (every 5 percentiles) in Figures 1-4. 

Table 3 shows that the relationship between income and cholesterol is somewhat complex 

and that analysis at the mean misses important information. Indeed, OLS estimates suggest 

only a positive income gradient (column 1), while RIF regressions indicate that income-

cholesterol relationship varies at different points of the cholesterol distribution. At the 

lowest quantiles of the distribution, the income-cholesterol association is positive, while 

from the 75th percentile of cholesterol distribution, the relationship turns to be negative, 

albeit not statistically significant.  More precisely, Figure 1 shows that the “saddle” point is 

located at the 80th percentile, corresponding to cholesterol equal to 6.5, just a bit higher than 

the clinical cutpoint of 5. After this threshold, the income gradient increases in magnitude 

and reaches a peak at the 95th percentile. Interestingly, this pattern indicates that the income 

gradient rises exactly when cholesterol levels exceed the normal range and are indicative of a 

disease state.   

With respect to the other covariates, we find higher cholesterol levels among the elderly, 

(especially women) and a high association with education at all levels of cholesterol 

distribution. However, while the age effect appears to be marginally decreasing along the 

cholesterol distribution, education effect is marginally increasing: the cholesterol gradient 

between educated (at any level) and individuals without formal education (reference 

category) increases along the cholesterol distribution and reach its peak at the 95th percentile 

of the cholesterol distribution. 

The association between income and glycated haemoglobin (GH) is negative at all quantiles 

of the distribution but it varies highly in magnitude along the distribution. In this case, OLS 

estimates provides a poor approximation of this association (column 1 of Table 4), while RIF 

estimates (columns 2-5 of Table 4) show that the income coefficient at 95th percentile of GH 

distribution is ten times higher than the income coefficient at the 25th percentile (-0.204 vs -

0.025). Figure 2 actually shows that income gradient reaches his peak at the 95th percentile of 

the GH distribution, corresponding to the clinical diagnosis of diabetes (GH >6.5). A similar 

pattern is observed also for the other covariates: both education and age effects increase at 

the highest quantiles of GH distribution and they are particularly high around the clinical 

threshold. 

With respect to fibrinogen (Table 5), we find a pattern very similar to the income-GH 

relationship. We find a negative association at all quantiles of fibrinogen distribution and an 

higher income gradient at top quantiles. However, the income gradient is smoother because 
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the income coefficient at the 95th percentile is “only” twice as much as the income 

coefficient at the 25th percentile (-0.067 vs -0.028). In this case, OLS regression (column 1 of 

Table 5) provides a good approximation of the average relationship between income and 

fibrinogen (the OLS coefficient is -0.039). Consistently with the other biomarkers analyzed, 

we observe that the income gradient is high around the abnormal threshold of fibrinogen, 

around the 75th percentile (see Figure 3). The income gradient reaches its peak at the 95th 

percentile of fibrinogen corresponding to fibrinogen values of 4.3, one point more than the 

upper bound of the normal ranges of fibrinogen. As far as the other variables are concerned, 

Table 5 shows that both age and education effects increase along the distribution of 

fibrinogen, in a manner consistent with the other biomarkers analysed. 

With respect to ferritin, we find that a positive income gradient at all points of the 

distribution (Table 6). This is consistent with the fact that higher ferritin values generally 

indicate better health, with the exception of very extreme values which may also indicate the 

presence of some health problems. The income-ferritin relationship reflects exactly this 

pattern. Indeed, we find that income gradient increases up to the 75th percentile and it 

reduces in magnitude after this threshold, becoming hardly statistically significant at the 95th 

percentile of ferritin distribution. This pattern is more clearly depicted in Figure 4. The 

income coefficient increases almost linearly up to the 75th percentile (the income coefficient 

at the 75th percentile is three times higher than the coefficient at the 25th percentile). After 

this threshold (corresponding to ferritin level of 100), there is less clear income-ferritin 

pattern because income coefficient fluctuates widely (but it is always positive) along the 

ferritin distribution. Also the other covariates exhibit a similar pattern: both age and 

education effects reduce highly in magnitude at the top quantiles of the ferritin distribution 

and the education gradient disappears at the 95th percentile of ferritin distribution. 

 

4.2 Oaxaca-Blinder decomposition of gender differentials in biomarkers  

The results of Oaxaca-Blinder (OB) decomposition at the 25th, 50th, 75th, 90th and 95th 

percentile distribution of cholesterol, glycated haemoglobin, fibrinogen and ferritin are 

shown in Tables 7-10, respectively. Decomposition is expressed always as a difference 

between levels for males “minus” levels for females. Thus a positive (negative) difference 

means that a given biomarker value is higher (lower) among males. Tables 7-10 includes total 

differences, the explained and the unexplained part and their respective standard errors. 

Detailed decomposition is shown in Figures 5-8, where we highlight the contribution of 

main factors (income, education, demographics and year fixed effects) to the explained and 

unexplained part at 25th, 50th, 75th, 90th and 95th percentile distribution of each biomarker. 

We illustrate and explain the mechanics of the decomposition using cholesterol results as an 

example and discuss the main findings for all other biomarkers. Table 7 shows that females 

have generally higher values of cholesterol at all quantiles of cholesterol distribution. This is 

not surprising and this is partly explained by the female sex hormone oestrogen which tends 

to raise HDL cholesterol (good cholesterol).  However, according to our results, gender 

differentials are not the same along the entire distribution. They are negligible and not 

http://www.heart.org/HEARTORG/Conditions/Cholesterol/AboutCholesterol/Good-vs-Bad-Cholesterol_UCM_305561_Article.jsp
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statistically significant at the 25th and 50th percentile of cholesterol distribution while they are 

high and statistically significant at the 90th (0.22 points is the total gender differential) and 

95th percentile (around 0.28 points). The second and third rows of Table 7 shows that this is 

explained both by a difference in the impact of covariates on cholesterol (“unexplained 

part”) and by compositional differences in covariates (“explained part”). At high levels of 

cholesterol (ie. at the 75th and 90th percentile) compositional differences are predominant, 

while at extreme levels of cholesterol (at the 95th percentile), the unexplained part is more 

important to explain gender differentials.  

The detailed contribution of income and the other covariates is presented in Figure 5. The 

decomposition exercise shows a large contribution of demographics (red bar) at the lowest 

levels of cholesterol. This contribution is mainly due to a difference in the association of 

health to demographics while compositional differences are less important. The contribution 

of education is important especially from the 75th percentile and it is also due to differences 

in the association of health to education across genders. The contribution of income is 

predominant from the 25th percentile of the cholesterol distribution and it is particularly high 

at the extreme levels of cholesterol (95th percentile). Also in the case of income, gender 

differentials in income-health association (“elasticity effect”) are much more important than 

compositional differences (“compositional effect”) to explain total differentials. The 

interpretation of the elasticity effect deserves more attention. The sign of the elasticity effect 

of any covariates in our OB decomposition comes from the second term in equation (5) and 

it depends on two factors: i. the sign of the coefficients (  and   ) ii. the differences in 

coefficients between the regression on the subsample of males and the subsample of females 

(  -   ). When the coefficients are negative, a positive (negative) elasticity effect arises when 

the coefficient of female regression is larger (smaller) in magnitude than the coefficient of 

male regression. On the contrary, when the coefficients are positive, a positive (negative) 

elasticity effect arises when the coefficient in the female regression is smaller (larger) than the 

coefficient in the male regression. 6 In the case of cholesterol, as shown in the previous 

section, the income coefficient in the pooled regression is positive at the lowest quantiles of 

cholesterol and negative from the 80th percentile of cholesterol. Thus, Figure 5 actually 

shows that there is an important heterogeneity in the association of cholesterol to income 

which varies significantly along the cholesterol distribution. From the 25th to the 75th 

percentile of cholesterol distribution, the positive contribution of income means a higher 

(positive) association of income to cholesterol among males, while at the 90th percentile, the 

positive contribution we found means that income has a more protective effect (negative 

effect) among females. However, it is interesting to observe that at very extreme and 

dangerous levels of cholesterol (at the 95th percentile) we found a negative contribution 

which indicates a higher protective effect of income on illness among males. 

The OB decomposition of glycated haemoglobin (GH) is reported in Table 8. Results 

indicate higher values of GH among males along the entire distribution of GH and especially 

at the extreme levels (at the 95th percentile). The higher prevalence of diabetes among males 

                                                           
6
 The elasticity terms in equation (5) is           . Thus,  with negative (positive) coefficients 

(  and      ,  a positive elasticity effect arises iff       (     ) being the sample mean (   ) 
always positive in our case. 
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is a recent finding of the medical literature and it is mainly imputed to a higher abdominal 

visceral fat which represent one of the main risk factor for diabetes (see for instance 

Perreault et al. 2008). Contrarily to cholesterol, gender differentials in GH are largely due a 

different association of GH to the covariates (row 3 of table 8), while compositional 

differences are much less important to explain total gender differentials (row 2). Detailed 

contribution analysis in Figure 6 suggests a marginal role of demographics and a strong 

contribution of education (mainly due to an elasticity effect) to gender differentials. With 

respect to income, Figure 6 indicates that its contribution becomes predominant after the 

75th percentile of GH distribution. Also in the case of GH,  the contribution of income is 

largely due to gender-related differences in the association of the biomarker to income which 

vary significantly along the GH distribution. For instance, while at 90th percentile of GH 

distribution we found a higher protective effect of income on illness among males, we found 

the opposite (but less important in magnitude) at the 95th percentile of the distribution.  

Table 9 indicates general higher levels of fibrinogen among women especially at low levels of 

fibrinogen which are not indicative of a pathological state. Differences are largely explained 

by gender differentials in the association of fibrinogen to covariates while compositional 

differences are much less important. Detailed decomposition presented in Figure 7 shows 

that gender differentials in fibrinogen are largely explained by income, and by demographics 

(to a less extent), while education plays a less important role. Figure 7  also shows that the 

contribution of income is largely explained by an elasticity effect, a pattern observed also for 

the other biomarkers. Moreover, similarly to the other biomarkers, the elasticity effect is 

heterogeneous along the distribution of fibrinogen. Up to the 90th percentile of the 

fibrinogen distribution,  the protective effect of income is higher among females while at 

very extreme levels of fibrinogen income has a much stronger protective effect among males.  

Lastly, we report the OB decomposition of gender differentials in ferritin in Table 10.  

Results indicate the existence of high ferritin levels among males along the entire distribution 

and especially at the 95th percentile of ferritin distribution. These differences are partly 

physiologic and associated to blood losses in menstrual women, for instance. However, 

decomposition analysis also suggests that differences are largely explained by an elasticity 

effect while compositional differences are less important. Similarly to the other biomarkers, 

we found that income is the largest contributing factor to gender differentials and this 

happens along the entire distribution of ferritin. Again, we found that that income 

contribution is mostly due to an elasticity effect. This indicates an higher effect of income on 

ferritin among males at all levels. In substantive terms, these results suggest that income has 

a more protective effect on males for low ferritin problems while we do not detect 

meaningful gender differentials at highest levels of ferritin, and the income-ferritin 

association is rarely significant at those levels (as discussed in the paragraph 4.1). 
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5. Conclusions 

The relationship between income and health is probably one of the most explored topics in 

health economics. A large literature documents the existence of a positive income gradient 

which is found in several countries, across different age groups and according to several 

measures of health status. Despite this large interest, less is known about the income-health 

relationship at different points of the health distribution. Indeed, studies of the influence of 

economic conditions on health typically measure the effect of the former on the conditional 

mean of the health status variable through regression analysis. Analysis based solely on the 

mean while offering useful information, misses potentially important information in other 

parts of the distribution. For instance, it does not check for non-linearities in the relationship 

between income and health across the full conditional distribution. Moreover, it does not 

permit analysis of the role of economic conditions at the tails of the health distribution 

which are often associated with large welfare losses for individuals and high costs for the 

health care system.  

This paper fills this gap by offering new evidence on the income-health relationship “beyond 

the mean” of the health distribution. We use a distributional method proposed in the recent 

literature, the recentered influence function approach (RIF) of Firpo, Fortin and Lemieux 

(2009), to estimate income gradients across the full distribution for continuous measures of 

objective health status: blood-based biomarkers. Moreover, we apply Oaxaca-Blinder 

decompositions at various quantiles of the biomarker distributions to explain gender 

differentials in biomarkers in England. We use data from the Health Survey for England and 

we concentrate on four markers highly predictive of the most relevant chronic diseases in 

Western Countries: total cholesterol, glycated haemoglobin, fibrinogen and ferritin.  

A key advantage of using biomarker data is having a measure of health which is free of 

reporting bias. Indeed, biomarkers are health measures collected during a professional nurse 

visit and measured on a continuous scale. So, even if our analysis cannot be considered as 

causal, the absence of reporting bias rules out one important source of endogeneity in the 

income-health relationship.  

Our analysis makes two important contributions to the existing literature. Firstly, analysis 

beyond the mean allows us to highlight some aspect of the income-health relationship which 

are overlooked by standard regression methods. In particular, we find that the income-health 

relationship is non-linear across the health distribution and that the income gradients appear 

to be higher at the top quantiles of the biomarker distributions, close to the clinical cutpoints 

that indicate the presence of disease. For instance, we find that the income gradient at the 

95th percentile is ten times higher than income gradient at the 25th percentile of glycated 

haemoglobin, a marker for diabetes. At the same time, the income gradient at the 95th 

percentile is twice as much as the gradient at the 25th percentile of the distribution of 

fibrinogen, a marker of many inflammatory diseases, including cardiovascular ones. The 

income gradient increases almost linearly up to the 75th percentile of ferritin (a marker of 

anaemia and other important diseases) and it reduces in magnitude after this threshold.  In 

these cases, the analysis at the mean provides a partial view of the income-health 

relationship. In the case of cholesterol, analysis at the mean leads to misleading conclusions. 
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For instance, we found that OLS regression suggests a positive association between income 

and cholesterol. Instead, RIF regression suggests that at lowest quantiles of the distribution, 

income-cholesterol association is positive, while from the 75th percentile of cholesterol 

distribution, the relationship turns to be negative.  Also in the case of cholesterol, the 

“saddle” point is very close to the clinical threshold denoting pathologic cholesterol levels. 

A second contribution of our paper is the measurement of the gender differentials in 

biomarkers and the assessment of the contribution of income (and other covariates) to these 

differentials. Under the assumption of the invariance of the conditional distribution that we 

discussed in Section 3, these effects could also represent the causal effects of gender on 

health and of gender on income-health relationship, respectively.  We find that, besides some 

physiological reasons, gender differentials in biomarkers are largely explained by a different 

association of health to covariates across genders. Importantly, detailed decomposition 

analysis suggests that the heterogeneity in the effect of income on health across genders 

accounts for a substantial percentage of the total gender differentials in observed health. 

Moreover, we find that income-health relationship across genders varies significantly along 

the biomarker distribution and that this depends on the nature of the biomarker considered. 

At extreme levels of biomarkers, indicating pathological cardiovascular diseases (ie. 

cholesterol and fibrinogen), we find a higher protective effect of income on illness among 

males, while we find that this effect is higher among females at lowest quantiles of the 

distribution (ie. at the 25th and at the 50th percentile of the distribution). On the contrary, at 

extreme levels of glycated haemoglobin indicating severe diabetes, we find a higher 

protective effect of income among females. The same pattern is observed for ferritin. 

 

These results might have important policy implications. If we follow the argument of Van 

Doorslaer and Koolman (2004), the importance of the gender-related differences in the 

association of income to health would suggest primarily health policy interventions which 

operate on the health-gradient. At the same time, it seems that fiscal policy interventions are 

less relevant as compositional differences are not very important to explain the total gender 

differentials. Moreover, our analysis suggests that health policy interventions should be 

differently focused across genders and across the distribution of health. For instance, for the 

purpose of eliminating socio-economic inequalities in health, it seems important to focus on 

males in poor economic conditions when considering severe cardiovascular diseases. On the 

contrary, more attention should be paid to females in poor economic conditions when 

considering severe diabetes or health problems deriving from high-ferritin, such as liver 

diseases. 

 

Future research might concentrate on the reasons behind the heterogeneity of income-health 

relationship along the distribution of health status and across genders. Our results indicate 

that these aspects should be carefully considered when investigating the impact of income, 

and of other covariate, on health status.  
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Tables and Figures 
 

Table 1. Descriptive Statistics - Biomarkers 

Variable Mean Std 
Dev. 

Wavesa Observations 

Cholesterol 5.57 1.15 2,3,4,5,6,7,8,9,10,11 30,770 

Glycated haemoglobin 5.58 0.75 2,3,4,5,6,7,8,9,10,11 34,831 

Fibrinogen 3.01 0.74 2,3,4,5,8 15,530 

Ferritin 99.29 109.3 1,3,4,5,8 13,849 
a 2002=wave 1; 2012=wave11 

 

 

Table 2. Descriptive Statistics - Independent Variables 

Variable Mean Std Dev. 

Log (Household Equivalised Income) 10.04 0.82 

M (11-18)- Omitted Category 0.01 0.13 

M (18-34) 0.09 0.29 

M (35-44) 0.10 0.30 

M (45-64) 0.16 0.36 

M (65-74) 0.06 0.23 

M (75+) 0.03 0.17 

F (11-18) 0.02 0.13 

F (18-34) 0.11 0.31 

F (35-44) 0.12 0.33 

F (45-64) 0.20 0.40 

F (65-74) 0.07 0.25 

F (75+) 0.04 0.20 

No Qualification- Omitted Category 0.21 0.41 

Degree- NVQ 4,5 0.23 0.42 

Higher Education 0.12 0.33 

NVQ 3- GCE A 0.14 0.35 

NVQ 2 – GCE 0 0.23 0.42 

NVQ1 – CSE 0.05 0.21 

Other Qualifications 0.02 0.15 
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Table 3.  Cholesterol Results - OLS and RIF regressions 

 
OLS RIF Regressions 

Variables 
 

Q25 Q50 Q75 Q90 Q95 
 
Log Income 

0.035*** 0.048*** 0.039*** 0.015 -0.014 -0.015 

 
0.008 0.013 0.011 0.013 0.017 0.023 

M (18-34) 0.695*** 1.018*** 0.572*** 0.388*** 0.288*** 0.263*** 

 
0.038 0.087 0.044 0.039 0.040 0.054 

M (35-44) 1.353*** 1.739*** 1.268*** 1.058*** 0.880*** 0.815*** 

 
0.039 0.085 0.045 0.046 0.057 0.074 

M (45-64) 1.559*** 1.949*** 1.525*** 1.276*** 1.051*** 0.964*** 

 
0.037 0.082 0.041 0.041 0.050 0.069 

M (65-74) 1.395*** 1.857*** 1.364*** 1.081*** 0.824*** 0.593*** 

 
0.045 0.086 0.052 0.057 0.077 0.102 

M (75+) 1.082*** 1.552*** 1.013*** 0.737*** 0.424*** 0.248** 

 
0.050 0.094 0.059 0.064 0.083 0.103 

F (11-18) 0.104** 0.270** 0.022 0.008 0.024 0.067 

 
0.042 0.105 0.057 0.043 0.051 0.075 

F (18-34) 0.514*** 0.842*** 0.348*** 0.197*** 0.159*** 0.147*** 

 
0.036 0.085 0.039 0.033 0.034 0.047 

F (35-44) 0.940*** 1.451*** 0.773*** 0.476*** 0.392*** 0.358*** 

 
0.038 0.085 0.042 0.037 0.043 0.058 

F (45-64) 1.661*** 1.988*** 1.586*** 1.449*** 1.240*** 1.238*** 

 
0.037 0.082 0.040 0.039 0.050 0.071 

F (65-74) 1.985*** 2.098*** 1.923*** 2.026*** 1.848*** 1.840*** 

 
0.043 0.083 0.045 0.056 0.086 0.120 

F (75+) 1.787*** 2.013*** 1.749*** 1.646*** 1.549*** 1.389*** 

 
0.045 0.087 0.052 0.066 0.102 0.140 

Degree- NVQ 4,5 -0.080*** -0.016 -0.087*** -0.090*** -0.186*** -0.225*** 

 
0.021 0.030 0.028 0.035 0.049 0.066 

Higher Education -0.016 0.016 -0.017 0.016 -0.080 -0.192** 

 
0.023 0.031 0.031 0.040 0.058 0.076 

NVQ 3- GCE A -0.094*** -0.088** -0.059** -0.091*** -0.154*** -0.223*** 

 
0.021 0.035 0.030 0.035 0.050 0.066 

NVQ 2 – GCE 0 -0.048** -0.051* -0.029 0.010 -0.089* -0.170*** 

 
0.019 0.028 0.026 0.033 0.048 0.064 

NVQ1 – CSE -0.089*** -0.048 -0.089** -0.049 -0.223*** -0.317*** 

 
0.030 0.046 0.041 0.051 0.068 0.086 

Other Qualifications 0.009 -0.012 -0.035 -0.013 -0.031 0.058 

 
0.045 0.048 0.057 0.080 0.127 0.182 

Constant 4.274*** 2.851*** 4.142*** 5.580*** 7.178*** 7.976*** 

 
0.088 0.151 0.117 0.142 0.202 0.274 
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Years Fixed Effects YES YES YES YES YES YES 

Observations 30770 30770 30770 30770 30770 30770 
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied. 

Table 4. Glycated Haemoglobin Results - OLS and RIF regressions 

 
OLS RIF Regressions 

Variables 
 

Q25 Q50 Q75 Q90 Q95 
Log Income -0.065*** -0.025*** -0.037*** -0.048*** -0.094*** -0.204*** 

 
0.005 0.004 0.004 0.005 0.010 0.026 

M (18-34) 0.068*** 0.034 0.040* 0.044** 0.117*** 0.267*** 

 
0.025 0.032 0.021 0.021 0.025 0.056 

M (35-44) 0.278*** 0.221*** 0.221*** 0.245*** 0.289*** 0.581*** 

 
0.026 0.032 0.021 0.022 0.029 0.069 

M (45-64) 0.513*** 0.338*** 0.379*** 0.465*** 0.649*** 1.337*** 

 
0.025 0.031 0.020 0.021 0.031 0.078 

M (65-74) 0.679*** 0.381*** 0.475*** 0.639*** 1.116*** 2.307*** 

 
0.027 0.031 0.021 0.025 0.048 0.133 

M (75+) 0.697*** 0.397*** 0.526*** 0.742*** 1.187*** 2.137*** 

 
0.030 0.031 0.022 0.027 0.059 0.166 

F (11-18) -0.032 -0.027 -0.009 -0.041* -0.064*** -0.134*** 

 
0.028 0.036 0.023 0.021 0.017 0.036 

F (18-34) 0.034 -0.019 -0.004 0.022 0.106*** 0.262*** 

 
0.024 0.031 0.020 0.020 0.022 0.051 

F (35-44) 0.158*** 0.109*** 0.099*** 0.116*** 0.177*** 0.449*** 

 
0.025 0.032 0.020 0.021 0.025 0.060 

F (45-64) 0.411*** 0.310*** 0.333*** 0.396*** 0.475*** 0.839*** 

 
0.024 0.031 0.020 0.021 0.027 0.065 

F (65-74) 0.610*** 0.398*** 0.497*** 0.661*** 0.915*** 1.638*** 

 
0.027 0.031 0.021 0.024 0.044 0.118 

F (75+) 0.628*** 0.407*** 0.537*** 0.738*** 1.100*** 1.618*** 

 
0.028 0.032 0.022 0.026 0.053 0.137 

Degree- NVQ 4,5 -0.154*** -0.079*** -0.083*** -0.133*** -0.243*** -0.558*** 

 
0.013 0.010 0.009 0.012 0.026 0.073 

Higher Education -0.119*** -0.038*** -0.047*** -0.089*** -0.186*** -0.452*** 

 
0.014 0.010 0.009 0.013 0.030 0.083 

NVQ 3- GCE A -0.154*** -0.071*** -0.077*** -0.143*** -0.238*** -0.553*** 

 
0.013 0.011 0.010 0.012 0.026 0.073 

NVQ 2 – GCE 0 -0.107*** -0.042*** -0.044*** -0.088*** -0.195*** -0.480*** 

 
0.012 0.009 0.008 0.011 0.025 0.070 

NVQ1 – CSE -0.094*** -0.018 -0.023* -0.071*** -0.167*** -0.365*** 

 
0.019 0.014 0.013 0.018 0.040 0.120 

Other  Qualifications -0.116*** -0.018 -0.045*** -0.092*** -0.257*** -0.533*** 
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0.027 0.018 0.017 0.024 0.058 0.162 

Constant 6.043*** 5.407*** 5.657*** 6.126*** 6.827*** 8.110*** 

 
0.055 0.052 0.042 0.051 0.101 0.277 

Years Fixed Effects YES YES YES YES YES YES 

Observations 34831 34831 34831 34831 34831 34831 
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied. 

 

Table 5. Fibrinogen Results - OLS and RIF regressions 

 
OLS RIF Regressions 

Variables 
 

Q25 Q50 Q75 Q90 Q95 
Log Income -0.039*** -0.028*** -0.050*** -0.057*** -0.041*** -0.067*** 

 
0.008 0.010 0.011 0.014 0.016 0.025 

M (18-34) 0.053 0.026 -0.010 0.035 0.119* 0.113 

 
0.039 0.070 0.058 0.060 0.070 0.102 

M (35-44) 0.247*** 0.266*** 0.202*** 0.163*** 0.183*** 0.168* 

 
0.040 0.069 0.058 0.060 0.070 0.101 

M (45-64) 0.447*** 0.470*** 0.438*** 0.353*** 0.358*** 0.392*** 

 
0.039 0.067 0.057 0.060 0.072 0.106 

M (65-74) 0.635*** 0.586*** 0.625*** 0.589*** 0.622*** 0.618*** 

 
0.045 0.069 0.062 0.074 0.093 0.147 

M (75+) 0.839*** 0.672*** 0.795*** 0.846*** 0.887*** 1.316*** 

 
0.049 0.069 0.065 0.084 0.117 0.208 

F (11-18) 0.143*** 0.144** 0.103 0.046 0.148 0.107 

 
0.043 0.073 0.074 0.080 0.108 0.150 

F (18-34) 0.385*** 0.428*** 0.359*** 0.329*** 0.358*** 0.316*** 

 
0.038 0.066 0.057 0.060 0.073 0.104 

F (35-44) 0.402*** 0.407*** 0.406*** 0.385*** 0.346*** 0.312*** 

 
0.039 0.068 0.058 0.062 0.072 0.103 

F (45-64) 0.581*** 0.571*** 0.584*** 0.552*** 0.488*** 0.482*** 

 
0.039 0.067 0.056 0.061 0.073 0.106 

F (65-74) 0.798*** 0.701*** 0.784*** 0.852*** 0.772*** 0.861*** 

 
0.044 0.067 0.061 0.073 0.095 0.150 

F (75+) 0.880*** 0.689*** 0.882*** 1.026*** 0.944*** 1.120*** 

 
0.046 0.068 0.062 0.082 0.113 0.178 

Degree- NVQ 4,5 -0.193*** -0.157*** -0.193*** -0.262*** -0.279*** -0.222*** 

 
0.020 0.024 0.026 0.035 0.042 0.067 

Higher Education -0.127*** -0.082*** -0.119*** -0.178*** -0.223*** -0.194** 

 
0.021 0.025 0.029 0.039 0.048 0.077 

NVQ 3- GCE A -0.127*** -0.088*** -0.128*** -0.187*** -0.239*** -0.215*** 

 
0.021 0.026 0.029 0.038 0.044 0.067 

NVQ 2 – GCE 0 -0.096*** -0.076*** -0.112*** -0.148*** -0.162*** -0.146** 
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0.018 0.021 0.024 0.034 0.043 0.066 

NVQ1 – CSE -0.032 -0.039 -0.032 -0.038 -0.103 -0.056 

 
0.028 0.033 0.037 0.051 0.065 0.104 

Other  Qualifications 

-0.118*** -0.042 -0.098** -0.194*** -0.195** -0.203 

 
0.039 0.036 0.050 0.070 0.092 0.143 

Constant 3.135*** 2.640*** 3.190*** 3.738*** 3.954*** 4.448*** 

 
0.083 0.118 0.119 0.149 0.169 0.259 

Years Fixed Effects YES YES YES YES YES YES 

Observations 15530 15530 15530 15530 15530 15530 
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied. 

 

Table 6. Ferritin Results- OLS and RIF regressions 

 
OLS RIF Regressions 

Variables 
 

Q25 Q50 Q75 Q90 Q95 
Log Income 2.988*** 0.530*** 0.795*** 1.301*** 0.994*** 1.412* 

 
1.077 0.093 0.150 0.295 0.373 0.734 

M (18-34) 65.895*** 4.381*** 14.167*** 18.342*** 9.725*** 10.611*** 

 
4.093 0.388 0.624 1.077 1.067 1.862 

M (35-44) 93.800*** 4.272*** 15.325*** 23.245*** 19.288*** 29.210*** 

 
4.647 0.430 0.669 1.290 1.611 3.276 

M (45-64) 99.457*** 4.003*** 14.269*** 23.593*** 21.836*** 29.946*** 

 
4.270 0.439 0.660 1.117 1.304 2.399 

M (65-74) 100.438*** 3.900*** 14.553*** 25.315*** 24.274*** 33.142*** 

 
4.887 0.468 0.718 1.303 1.718 3.570 

M (75+) 73.658*** 2.832*** 11.505*** 18.698*** 16.438*** 25.636*** 

 
5.432 0.497 0.796 1.523 1.744 3.407 

F (11-18) -11.592*** -3.344*** -2.828*** -1.098*** 0.019 0.071 

 
3.776 0.429 0.425 0.410 0.199 0.183 

F (18-34) -10.315*** -2.451*** -0.939 -2.467*** -1.179** 0.404 

 
3.924 0.428 0.574 0.739 0.591 0.969 

F (35-44) -5.978 -2.110*** -0.213 -1.954** -0.580 0.861 

 
4.537 0.495 0.685 0.875 0.715 1.161 

F (45-64) 22.754*** 1.110** 6.235*** 5.023*** 2.630*** 3.753*** 

 
4.218 0.453 0.670 0.912 0.728 1.119 

F (65-74) 48.474*** 2.727*** 10.312*** 12.039*** 8.250*** 11.069*** 

 
4.879 0.458 0.711 1.180 1.226 2.207 

F (75+) 33.014*** 2.043*** 8.676*** 8.388*** 4.537*** 6.464*** 

 
4.973 0.495 0.783 1.300 1.173 2.018 

Degree- NVQ 4,5 5.888** 0.593*** 0.648* 1.499* 1.996** 0.567 

 
2.820 0.221 0.376 0.770 0.987 1.849 
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Higher Education 7.426** 0.303 0.995** 1.558* 1.756 1.843 

 
3.110 0.237 0.412 0.869 1.159 2.262 

NVQ 3- GCE A -2.454 0.330 0.565 -0.377 -1.508* -2.744 

 
2.934 0.239 0.402 0.788 0.905 1.688 

NVQ 2 – GCE 0 -1.808 0.908*** 0.714** -0.733 -1.783** -2.417* 

 
2.431 0.199 0.337 0.623 0.726 1.355 

NVQ1 – CSE -2.170 0.493 0.762 0.661 -0.440 0.180 

 
4.143 0.319 0.530 1.135 1.362 2.471 

Other 
Qualifications 

1.044 0.397 0.905 1.581 0.246 -4.641* 

 
6.639 0.509 0.893 1.681 1.759 2.412 

Constant 15.263 26.263*** 46.697*** 92.894*** 176.526*** 239.064*** 

 
10.748 0.940 1.500 2.869 3.614 7.095 

Years Fixed Effects YES YES YES YES YES YES 

Observations 14188 14188 14188 14188 14188 14188 
Standard Errors in Italics; ***, **, * indicate significance at 1%, 5% and 10%, respectively. Sample weights applied. 

 

Table 7. Oaxaca-Blinder Decomposition of gender differentials in Cholesterol 

 
Q25 % Q50 % Q75 % Q90 % Q95 % 

ΔM-F -0.010  0.008  -0.068**  -0.225***  -0.276***  

 
0.019  0.017  0.021  0.026  0.032  

Compositional -0.028 281 -0.047*** -555 -0.055*** -647 -0.056*** 81 -0.056***  20 

 
0.006  0.008  0.009  0.009  0.001  

Elasticity 0.018 -180 0.055** 655 -0.013 -153 -0.168*** 19 -0.219*** 80 

 
0.018  0.165  0.019  0.025  0.031  

Standard Errors in Italics ; ***, **, * indicate significance at 1%, 5% and 10%, respectively. 

 

Table 8. Oaxaca-Blinder Decomposition of gender differentials in Glycated 

Haemoglobin 

 
Q25 % Q50 % Q75 % Q90 % Q95 % 

ΔM-F 0.033***  0.032***  0.024**  0.073**  0.336***  

 
0.006  0.005  0.007  0.014  0.041  

Compositional -0.009*** -27 -0.015***  -47 -0.022*** -91 -0.030*** -41 -0.060*** -18 

 
0.002  0.003  0.004  0.005  0.009  

Elasticity 0.042*** 127 0.047*** 147 0.046*** 191 0.103*** 141 0.397*** 118 

 
0.006  0.005  0.007  0.013  0.040  

Standard Errors in Italics ; ***, **, * indicate significance at 1%, 5% and 10%, respectively. 
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Table 9. Oaxaca-Blinder Decomposition of gender differentials in Fibrinogen 

 
Q25 % Q50 % Q75 % Q90 % Q95 % 

ΔM-F -0.330***  -0.25***  -0.381***  -0.244***  -0.103**  

 
0.014  0.014  0.019  0.029  0.04  

Compositional -0.022*** 6 -0.027*** 11 -0.033*** 9 -0.034*** 14 -0.033*** 32 

 
0.004  0.004  0.006  0.007  0.009  

Elasticity -0.307*** 93 -0.223*** 89 -0.348*** 91 -0.209*** 86 -0.069* 68 

 
0.014  0.014  0.018  0.028  0.039  

Standard Errors in Italics ; ***, **, * indicate significance at 1%, 5% and 10%, respectively. 

 

Table 10. Oaxaca-Blinder Decomposition of gender differentials in Ferritin 

 
Q25 

% 
Q50 

% 
Q75 

% 
Q90 

% 
Q95 

% 

ΔM-F 28.97*** 
 

53.99*** 
 

84.13*** 
 

125.04*** 
 

159.86*** 
 

 
0.14 

 
0.217 

 
0.414 

 
0.917 

 
1.399 

 

Compositional 0.004 
0.1 

-0.046 
-0.01 

-0.152  
-0.01 

-0.248 
-0.2 

-0.282 
-0.2 

 
0.028 

 
0.047 

 
0.110 

 
0.161 

 
0.246 

 

Elasticity 28.96*** 
99.9 

54.04*** 
100.09 

84.29***  
100.09 

125.29*** 
100.2 

160.14*** 
100.2 

 
0.14 

 
0.210 

 
0.402 

 
0.905 

 
1.389 

 

Standard Errors in Italics ; ***, **, * indicate significance at 1%, 5% and 10%, respectively. 
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Figure 1. Income Coefficient of RIF regression. Cholesterol 

 

 

 

Figure 2.  Income Coefficient of RIF regression. Glycated Haemoglobin 

 

  

-.
0

5

0

.0
5

.1
 

0 .2 .4 .6 .8 1
Quantile

Cholesterol income relationship

-.
2

-.
1

5
-.

1
-.

0
5

0
 

0 .2 .4 .6 .8 1
Quantile

Glycated Haemoglobin-income relationship



28 
 

Figure 3.  Income Coefficient of RIF regression. Fibrinogen 

 

 

Figure 4.  Income Coefficient of RIF regression. Ferritin 
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Figure 5. Detailed Decomposition of gender differentials- Cholesterol 

 

 

 

Figure 6. Detailed Decomposition of gender differentials- Glycated Haemoglobin 
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Figure 7. Detailed Decomposition of gender differentials- Fibrinogen 

 

 

Figure 8. Detailed Decomposition of gender differentials- Ferritin 
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