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Abstract

This study comprehensively assesses the immediate effects of extreme weather conditions and
high concentrations of ambient air pollution on population health. For Germany and the
years 1999 to 2008, we link the universe of all 170 million hospital admissions, along with all
8 million deaths, with weather and pollution data reported at the day-county level. Extreme
heat significantly increases hospitalizations and deaths. Extreme cold has a negligible effect
on population health. High ambient PM;y, O3 and NOs concentrations are associated with
increased hospitalizations and deaths, particularly when ignoring simultaneous weather and
pollution conditions. We find strong evidence for “harvesting”, and that the instantaneous
heat-health relationship is only present in the short-term. We calculate that one “Hot Day”
with a temperature higher than 30°C (86°F) triggers short-term adverse health effects
valued between $0.10 and $0.68 per resident.
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1 Introduction

Over the last decade, the economics literature has seen a staggering rise in the number of studies
that empirically estimate the impact of air pollution on health outcomes. Certainly one reason for
this boom lies in increasingly sophisticated data collection and availability. In addition, researchers
and policymakers understand that state-of-the-art empirical investigations may produce evidence-
based causal relationships that help to design effective and welfare increasing policy regulation.
Air pollution that harms humans represents negative externalities that could be internalized by
their producers via optimal policy regulation.

Although thorough cost-benefit analyses are still scant, almost all existing studies find that

pollution negatively affects, or is negatively associated with, population health. This finding

has been shown to hold particularly for vulnerable subgroups such as newborns (Currie and!

|Schmieder}, [2009; |Currie and Walker}, 2011), children (Chay and Greenstone) 2003} Nilsson, 2009}

|Currie et al., 2009), or the elderly (Villena et al., 2008} [Schlenker and Walker, [2011; Karlsson|

land Schmitt, 2011)), but also for whole populations (Almond et al., 2009). Outcome measures are

typically mortality statistics (Knittel et al., 2011} |Clay et al.,[2013), but some studies also rely on

hospitalization data (Neidell, [2009; [Lagravinese et al., 2013), school absence data (Currie et al.

2009)), specific diagnoses (Hammitt and Zhoul, 2006), or even self-reported health data (Evans and

Smith|, 2005} [Edwards and Langpap), [2012). Most existing studies use data from industrialized

countries, although there has been an upswing in the work on developing countries in recent years

(Quah and Boonl 2003; |Greenstone and Hannal, 2011; Hanna et al., |2012; |Greenstone and Jack),

2013).

By study design or due to data availability, the limitations of existing studies are (i) very

narrowly defined outcome measures, (ii) very narrowly defined geographic foci, or (iii) single
pollutant or weather measures, which limit the ability to model air pollution comprehensively—in

particular the various interactions between the multiple pollutants and weather conditions.

A closely related subfield of the economics literature studies the impact of weather condi-

tions on population health (Deschénes and Moretti, [2009; Deschénes et al., [2009; Deschénes and|

\Greenstone, 2011} [Deschénes|, [2012; Barreca et al.| |2013[)E| The relatively sparse literature on the

impact of weather on health is surprising, particularly when considering the heated debates sur-
rounding the causes and consequences of climate change. The famous (2000) report states

that the world’s average temperature has risen by 0.74°C (1.33°F) over the past 100 years. It

! The epidemiological literature on this topic is older and, thus, more diverse (Curriero et al.; 2002} |Basu and|
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projects this trend will continue into the future. For the US, the predicted temperature change
ranges between a 2.2 and 6.1°C (4 and 11 °F) increase by the end of the 215 century (United
States Global Change Research Programl |2009)). Moreover, climate scientists project a significant
increase in the number of hot days with temperatures above 30 ° C (86 ° F), as well as in the num-
ber of heat waves. The Intergovernmental Panel on Climate Change (IPCC) projects “warmer
and fewer cold days and nights” and states: “It is very likely that hot extremes, heat waves and
heavy precipitation events will continue to become more frequent.” (Intergovernmental Panel on

Climate Change (IPCC)| (2007)), p. 46, 53).

This study aims to comprehensively assess the joint population health effects of pollution
and weather for an entire nation over one decade. We base our findings on various high-quality
administrative datasets from Germany—the most populous European country and fourth largest
industrialized nation in the world— between 1999 and 2008. The study considers a battery of
pollution and weather indicators to thoroughly model specific weather conditions and nonlinear
associations between weather and pollution. It relies on 11 weather and 11 pollution measures
collected by up to 2,358 ambient monitors on a daily basis. This very dense, high-quality network

of stations covers the entire 357,121 km? (138,000 mi?) surface of Germany.

In addition to the rich administrative pollution and weather measures, this paper bases its
health outcome findings on two high-quality health register datasets: First, the German Mortality
Census, containing all deaths occurring on German territory from 1999 to 2008. Second, the Ger-
man Hospital Admission Census, containing more than 170 million hospital admissions from 1999
to 2008. Most previous studies primarily focused on mortality effects. However, solely relying on
deaths only allows the researcher to capture a fraction of the total population health effects of
weather and pollution. In contrast, relying on both the universe of deaths and hospital admis-
sions should capture most serious population health effects. We aggregate and link the German
Mortality Census, the German Hospital Admission Census, the weather data, and the pollution

data at the county-day level over ten years, resulting in 1.5 million county-day observations.

Methodologically, the paper exploits the exogenous nature of day-to-day climatic variation
along with rich sets of spatial and temporal fixed effects. As such it identifies the immediate
effects of spikes in temperature and pollution levels on hospital admissions and deaths. In other
words, the econometric models use the random de-seasonalized within-county variation in extreme
temperature and pollution levels over 365 days and 10 years to identify their short-run impact on

residents’ health.



The setup of the German health care system is particularly well-suited for our research ob-
jective since institutional and geographic access barriers to hospitals are very low. Germany has
one of the highest densities of hospital beds worldwide, universal health care coverage, and vir-
tually no access barriers for inpatient care (cf. OECD, 2013)). In addition, Germany’s climatic
conditions are ideal to empirically study and identify the effects of extreme temperatures and high
pollution levels. Like most countries in the North Temperature Zone, Germany has four seasons,
hot summers and cold winters. For example, during the 10 years that we study, daily maximum
temperatures range from -14°C (7°F) to 39" C (102 °F). Partly due to the fact that weather
conditions determine pollution levels, the tempo-spatial pollution variation is likewise very rich.
For example, the daily maximum O3 concentration ranges from 1.2 to 192ug/m3. Lastly, the find-
ings are likely to have external validity for most industrialized countries in the North Temperate

Zone, where the majority of the world’s population resides.

Overall, this paper makes four main contributions to the literature. First of all, to our knowl-
edge, this paper represents the most comprehensive attempt to assess the population health effects
of weather and pollution for an entire country over a long time horizon. The approach provides
credible externally valid estimates that can be interpreted as policy-relevant “intention-to-treat”
estimates. It is not the purpose of this paper to identify full exposure estimates that we believe
can be better and more cleanly assessed in laboratory experiments. Rather, we stress that we use
real-world data for an industrialized country over a decade to analyze the real-world impact of
extreme temperature and pollution conditions. We show that extreme heat events have a highly
significant and largely adverse impact on both hospitalizations and deaths, whereas extreme cold
seems to have a negligible real-world impact on population health. Furthermore, particularly
when not controlling for simultaneous weather and pollution conditions, high levels of outdoor
air pollution are associated with significant adverse health effects. Note that these levels of air
pollution lie significantly below the regulatory threshold levels in the US. The EU alert thresholds
are two to three times lower than their US counterparts. In addition, the actual average PMjg
and Ogs concentrations in the US are 2 to 3 times higher than in Germany; however, the geo-
graphical variation in concentrations is also huge in the US (Environmental Protection Agency
(EPA), 2013)). Thus, our findings have direct implications not only for European countries, but
also for the US. For example, the EPA is currently discussing a petition that foresees tighter air
pollution regulation on nine “Rust Belt” and “Appalachian” states with high coal emissions. To
the degree that regulators can actively bring down spikes in pollution levels, the findings of this

paper suggest that a more stringent environmental regulation would be very effective in improving
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population health.

Second, we present estimates separately for all-cause admissions and deaths along with es-
timates for five different groups of diseases. This allows researchers and policymakers to better
pinpoint vulnerable disease groups, to further investigate the relationships studied, and to develop
plans to ameliorate the adverse health effects of temperature and pollution spikes. For example, a
Hot Day—defined as a day with a maximum temperature of more than 30 ° C (86 ° F)—moderately
increases almost all cause-specific hospitalizations and deaths by between 2 and 5%. Ongoing
heat—e.g., at least four consecutive Hot Days—Ileads to a strong increase in these adverse health
effects, particularly for admissions and deaths due to respiratory, infectious, and metabolic rea-

sons.

Third, thanks to the extraordinarily rich palette of weather and pollution measures, the paper
also advances the literature methodologically. Although it is generally accepted that short-run
climatic variations are exogenous to humans and out of individuals’ influence, it is also clear
that the climate represents a very complex system with thousands of mostly unobserved factors
playing a role. For example, it is well documented that the different available weather measures
are non-linear functions of one another (cf. Aryaj, 1998). In addition, different pollutants form
non-linear relationships with each other—some pollutants are necessary chemical input factors for
the development of other pollutants (cf. Potter} 2002)). To complicate it further, specific weather
conditions can be seen as necessary conditions for the formation of high pollution concentrations,
whereas there is less evidence that pollution affects weather (cf. Arya, [1998; Seinfeld, [2006; Li
et al.l 2011)). Despite its richness, the economic literature has been relatively silent as how to
philosophically and econometrically interpret these relationships and interactions. We hope to
provide a first step towards a better understanding by making use of unique and extraordinarily

rich data.

To keep the analysis tractable, the empirical portion focuses on two main approaches. Hence-
forth, Approach I is defined as the “Unconditional Approach.” This means that the underlying
models only consider one single weather or pollution measure as the variable of interest. The
identified effect of this single indicator on population health yields the “overall” effect of this indi-
cator on health. For example, consider the effect of a Hot Day. In Approach I, we do not net out
any contemporaneous weather and pollution conditions that typically prevail on a Hot Day, e.g.,
high ozone levels or sunshine. In contrast, Approach II—the “Conditional Approach”—always
controls for a full set of simultaneous weather and pollution conditions as well as their own and

cross-interactions in order to estimate the net eicfect of a Hot Day, i.e., the pure heat effect net



of higher pollution levels, less rain, and more sunshine. We show that this distinction makes
a crucial difference: When comprehensively considering contemporaneous weather and pollution
conditions, the impact of extreme temperature on health shrinks dramatically, by at least 50%.
Maybe even more surprisingly, the highly significant and large impact of high concentration levels
of single pollutants vanishes almost entirely when fully considering other pollutants and weather
conditions that prevail simultaneously. This finding suggests that it is more the overall combi-
nation of various highly elevated concentrations of pollutants—along with the mostly extreme
weather conditions that prevail on high pollution days—that causes humans’ physical condition
to deteriorate. This is in line with well-established epidemiological and medical experimental
evidence suggesting that very high concentrations of single pollutants are required before signif-
icant physical health effects can be detected in the lab (cf. [Stewart et al. [1970; Anderson et al.,
1973} Hackney et al., [1975; Kerr et al.) [1979; |[Horstman et al., [1988; |Lippmann, [1989; |Jappinen
et al., [1990; Dye et al., |2001). However, for environmental regulators who rely on only uncondi-
tional measures from ambient monitors in order to develop alert thresholds and policy action, the

unconditional estimates seem to be the relevant ones.

As a final contribution, we provide a first step to better assess and understand the health
costs associated with extreme climatic conditions that are very likely to increase in the future
due to climate change. Systematically and comprehensively monetizing different subcategories
of climate change-related costs is a necessary first step towards cost-benefit analyses. Solid cost-
benefit analyses are crucial for a welfare increasing evidence-based climate change management.
The most concrete and reliable climate change prediction of the [Intergovernmental Panel on
Climate Change (IPCC)| (2007)) is an increase in the number of extreme heat events. Thus, we
attempt to monetize the health loss associated with one additional Hot Day for an entire nation.
One main conclusion from this exercise is that two factors crucially drive the estimates: (i) the
choice between the Unconditional and the Conditional Approach, and (ii) whether one considers
“harvesting” or not. In line with the literature, we find strong evidence in line with the harvesting
hypothesis, according to which heat mostly adversely affects humans in bad health who, in the
absence of heat, would have likely died shortly after. Empirical tests demonstrate that heat does
not lead to a permanent increase in hospitalizations and deaths. Depending on the underlying
assumptions, the last part of the paper estimates that one additional Hot Day triggers a monetized
health loss of between € 6m and € 43m for Germany or between € 0.07 ($0.10) and € 0.52 ($0.68)

per German resident.

The next section describes the datasets used as well as the rich tempo-spatial variations in
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the main variables of interest. Section [3] describes the estimation strategy and discusses the
identification of the effects. Section [] contains the empirical findings. In Section [5] we monetize

the health loss of one additional Hot Day. Section [6] concludes.

2 Datasets, Main Variables, and Identifying Variation

2.1 Hospital Admission Census:

The Universe of all German Hospital Admissions 1999-2008

The first dataset used is the Hospital Admission Census. Access is provided by the GERMAN
FEDERAL STATISTICAL OFFICE. It comprises all German hospital admissions from 1999 to 2008.
Germany has about 82 million inhabitants and registers about 17 million hospital admission per
year. We observe every single hospital admission from 1999 to 2008, i.e., a total of more than 170
million hospitalizationsﬂ To obtain our working dataset, we aggregate the individual-level data at
the day-county level and normalize admissions per 100,000 people using official population counts
(see Appendix F)E|

As seen in Appendix A, along with other admission characteristics, the Hospital Admission
Census provides information on the age and gender of the patient, the day of admission, the length
of stay, the county of residence as well as the primary diagnosis in form of the ICD-10 code (10"

revision of the International Statistical Classification of Diseases and Related Health Problems).

Construction of Main Dependent Variables

Using the information on the primary diagnosis, we generate a series of dependent variables. The
dependent variables represent different groups of diagnoses, generated by extracting the letter
and digits of the ICD-10 code, e.g., JO0-J99 refers to “diseases of the respiratory system.” In
some cases, the second and third ICD-10 digits are helpful to identify more specific conditions. In

addition to all-cause hospitalizations, which is simply the sum of all admissions, we examine five

2 By law, German hospitals are required to submit depersonalized information on every single hospital admission.
This excludes military hospitals and hospitals in prisons. The 16 German states collect the information and the
GERMAN FEDERAL STATISTICAL OFFICE (Statistische Amter des Bundes und der Léander) provides restricted data
access for researchers.

3 The remote access servers of the Statistische Amter des Bundes und der Lénder only provide a memory of
18 gigabytes per computer. The individual admission data is provided in files by calendar years. The memory
capacities only allow to merge and analyze one calendar year of hospitalizations on the individual admission level.
Therefore, one has to restrict the working dataset to patients who were admitted after January 1°° of a given year.
In other words, one has to delete all admissions that led to hospital stays over New Year. This is because we
first aggregate admissions at the day-county level and then merge the files by calendar years, resulting in duplicate
observations for counties and days with admissions in ¢tp and discharges in t1. In a robustness checks, we run the
analysis using only one calendar year, but include stays over New Year’s Day. The results are robust to excluding
people who stay in hospitals over the change in years an% are available upon request.



specific subgroups: (i) cardiovascular hospitalizations (100-199), (ii) respiratory hospitalizations
(JO0-J99), (iii) infectious hospitalizations (A00-B99), (iv) metabolic hospitalizations (E00-E89),
and (v) neoplastic hospitalizations (C00-D49).

We also exploit the death and length of stay information. Following up on the example from
above, cardiovascular death identifies people who died after they were admitted to a hospital due
to a cardiovascular disease. Cardiovascular hospital days includes the number of nights that a

patient spent in a hospital after a cardiovascular admission.

After having summed the total of admissions—as well as the cause-specific admissions—at
the day-county level, we normalize the dependent variables per 100,000 population using official
population data at the year-county level (Federal Institute for Research on Building, Urban Affairs
and Spatial Development, 2012). Appendix A displays the summary statistics of all normalized
dependent hospital admission VariablesE] For example, on a given day, we observe 58 hospital
admissions per 100,000 residents. This admission rate varies substantially over days and across
counties; the standard deviation is 26. On average, a day triggers 489 hospital days, i.e., the
58 admissions have an average length of stay of 8.4 days. The largest single group of diseases is
cardiovascular hospitalizations. Nine cardiovascular admissions per 100,000 pop. represent 16%

of all admissions.

2.2 Mortality Census:
The Universe of all German Deaths 1999-2008

The second dataset employed is the Mortality Census which is also provided by the GERMAN
FEDERAL STATISTICAL OFFICE. The Mortality Census includes every death that occurred on
German territory. Per year, one observes approximately 800,000 deaths, i.e, about 8 million deaths
from 1999 to 2008. To obtain the working dataset, we aggregate the individual-level data at the
day-county level and generate the mortality rate per 100,000 population.

Appendix B shows all raw measures included in the Mortality Census. It contains information
on age, gender, day of death, county of residence as well as the primary cause of death in ICD-10

form.

4 Note that the German data protection laws prohibit us from reporting min. and max. values.



Construction of Main Dependent Variables

Analogously to the Hospital Admission Census, we generate dependent variables that indicate the
all-cause mortality rate, as well as the cause-specific mortality rates for five specific categories: the
(i) cardiovascular mortality rate, (ii) respiratory mortality rate, (iii) infectious mortality rate, (iv)
metabolic mortality rate, and (v) neoplastic mortality rate. The total daily mortality rate is 2.99
deaths per 100,000 pop.—1.38 or almost 50% of which are caused by cardiovascular health issues.
The summary statistics of the all-cause—as well as cause-specific—mortality rates are displayed

in Appendix B.

2.3 Official Daily Weather Data from 1,044 stations 1999-2008

The weather data is provided by the GERMAN METEOROLOGICAL SERVICE (Deutscher Wetter-
dienst (DWD)), a publicly funded federal institution. Weather measures are collected from 1999
to 2008 from up to 1,044 meteorological monitors which are distributed all over Germany. Figure
shows the distribution of all ambient monitors along with county borders. It is easy to see that

the German weather station network is very dense.
[Insert Figure [1] about here]

The paper uses official measurement data from all existing weather stations in a given year. As
described in Section we interpolate the point measures into county space on a daily basis

using Inverse Distance Weighting (IDW).

Weather Variation Across Space and Time

Summary statistics of all raw weather measures at the day-county level are given in Panel A
of Table in Appendix C. The mean daily air temperature is 9.6 ° C (49.2° F), averaged over
the whole time period and all counties. Note the extremely rich variation in the average daily
temperature: it ranges from -19°C (-2.2°F) to 30.6 ° C (87.1 " F). Equally rich is the variation in

the minimum and maximum temperature, hours of sunshine and other weather measures.
[Insert Figure [2| about here]

F igure shows a boxplot of the mean temperature over the twelve months of a year (averaged over
all ten years). The graph illustrates the large cross-county as well as cross-seasonal variation in

weather. One observes a clear increase in average temperatures and sunshine duration during the



summer months. Figure[2b shows the daily cross-county temperature, sunshine, and precipitation
variation over ten years. One observes the typical seasonal trends along with a lot of spikes in
the high-frequency data. The empirical models will exploit the rich positive and negative weather
shocks across space and over time. Deviations in daily weather variations are plausibly exogenous
to individuals’ health.

Figure[I0]in Appendix C displays a scatter matrix which shows, illustratively, the associations
between some raw weather measures. Not surprisingly, one finds a strong positive association
between the hours of sunshine and the temperature, as well as a strong negative association

between the hours of sunshine and the precipitation level.

Construction of Extreme Temperature Indicators & Identifying Variation

Construction of Extreme Temperature Indicators. At the beginning of the Results section,
this study employs the raw continuous weather measures and provides nonparametric evidence on
the (non-linear) relationship between temperature and health effects. As a next step, we employ
semiparametric variants that net out seasonal effects, but let a series of temperature regressors
flot flexibly. In the main parametric models, however, we mostly employ a single binary indicator
to measure extreme heat and cold for the following reasons:

(i) The binary measures generated refer to the official definitions of Hot and Cold Days,
e.g., the GERMAN METEOROLOGICAL SERVICE defines a Hot Day as a day with a maximum
temperature above 30" C (86 ° F). In addition, the previous literature has employed these binary
measures, which facilitates the comparison of results (cf. |Deschénes and Moretti, |2009; Barreca
et al., [2013) ]

(ii) Defining a binary indicator to measure Hot and Cold Days greatly simplifies the empirical
analysis, provides the reader with a better intuition, and makes it easier to follow the thought
experiment wherein we ask, “What are the health effects of one additional Hot Day?”

(iii) As we will demonstrate in the Results section, there is empirical evidence that most
adverse health effects kick in when temperatures exceed 30 ° C (86 ° F'). Thus we define the binary

measures:

e Hot Day = 1 if the max. temperature >30°C (86 F), 0 else.
e Heat Wave Day = 1 if Hot Day=1 and the 3 previous days were also Hot Days, 0 else.

e Cold Day= 1 if the min. temperature < -10°C (14 °F).

5 To be precise, the US studies by [Deschénes and Moretti| (2009) and [Barreca et al|(2013) define a Hot Day as
a day with the max. temperature >90"F (32.2°C). 9



e Cold Wave Day= 1 if Cold Day=1 and the 3 previous days were also Cold Days, 0 else.

Identifying Variation. Panel B of Table in Appendix C shows the descriptive statistics for
the generated extreme temperature indicators. As seen, 1.97% of all days are Hot Days. This
translates into roughly seven Hot Days per year. However, between 1999 and 2008, the number
of Hot Days varied between 4 (1999, 2004, 2007) and 18 (2003). Note that the variation in Hot
Days between counties is even larger. The number of Hot Days varies between 0 and 40 per year,
depending on county (Figure ) In one empirical specification, we aggregate the data at the

year-county level and exploit the variation in the annual number of Hot Days.

On average, there is about one Heat Wave Day per year (see Panel B of Table . Between

1999 and 2008, the number of Heat Wave Days varied between 0.03 (2005) and more than 6 (2003,
not shown in Table E|

Figure [3a plots the distributions of (i) the annual mean of the maximum daily county-level
temperatures, and (ii) the annual number of Hot Days per county. This is to show that (a) the
annual mean maximum temperatures follow a normal distribution with the mass point around
14°C (57 °F), and (b) that the annual number of Hot Days is skewed to the right and exhibits
substantial variation with many counties showing more than 10 Hot Days per year. Overall,
Figure illustrates that the identifying variation stems from the majority of counties and not
just a small subset of “hot” counties. Thus extrapolation and out-of-sample predictions are largely

avoided.
[Insert Figure [3| about here]

Turning to the other temperature extreme, 1.24% or about 20,000 of all county-day observations
are Cold Days with minimum temperatures below -10° C (14 ° F). This translates into 4.4 days
per year, but the variation ranges from an average of 1 Cold Day in 2008 to 10 Cold Days in
2003. The annual county-level variation in Cold Days ranges from 0 to 41 (see Figure ) Rarer
are Cold Wave Days with more than three consecutive Cold Days—between one and zero occur
per year. However, over 10 years, we still count 2,870 county-level Cold Wave Days.

Figure shows the distributions of (i) the annual mean of the minimum daily county-level
temperature, and (ii) the annual number of Cold Days per county. As in the extreme heat case,
the minimum temperature distribution is about normal (mean 5.5 ° C (42 " F)), while the county-

level Cold Day distribution is skewed to the right (mean 4.4 days). Again, the empirical models

5 Note that 6 heat wave days could be the result of a very long heat wave, lasting 9 days, or 6 short heat waves
of 4 consecutive Hot Days, or a combination of the tvvo.10



largely avoid out-of-sample predictions since the identifying variation occurs in the large majority

of German counties.

2.4 Official Daily Pollution Data from 1,314 stations 1999-2008

The pollution data are provided by the GERMAN FEDERAL ENVIRONMENTAL OFFICE (Umwelt-
bundesamt (UBA)), a publicly funded federal agency. From 1999 to 2008, pollution measures are
collected from up to 1,314 ambient monitors (Figure . As with the weather measures and as
described in Section we interpolate the monitor point measures into the county space. Panel

A of Table in Appendix D shows all raw pollution measures on a daily county-level basis.

Appendix D also discusses in detail the chemical composition of the five pollutants investigated,
as well as their health hazards. Moreover, Appendix D describes and graphically illustrates the
tempo-spatial variation of the pollutants and their association with weather conditions: All pollu-
tants have in common that they (i) exhibit some seasonal pattern, (ii) exhibit strong (non-)linear
associations with the weather indicators—in particular the temperature—and most importantly

for identification purposes: (iii) exhibit strong daily variation across counties and over time.

Construction of Non-Compliance Pollution Indicators, Comparison to US Thresh-

olds, & Identifying Variation

Construction of Non-Compliance Pollution Indicators. One objective of this paper is to
assess the effects of high pollution concentrations on human health. As in the temperature case,
we first demonstrate the nonparametric nonlinear relationship between pollution concentrations
and health graphically. Then we employ nonparametric models that net out seasonal impacts but
explore the pollution-health relationship via flexibly varying pollution concentration regressors.
Finally, the main models make use of the official EU alert thresholds to assess the health impact
of crossing these thresholds[] Appendix D discusses the different thresholds in detail and also the
policy action required when counties violate these thresholds. Henceforth, we call a day during
which the pollution concentration exceeds its EU threshold a “non-compliance” day. Accordingly,
the following binary indicator variables are generated (European Environment Agency, 2012)@

The descriptives of these indicators are displayed in Panel B of Table

" This is not always exactly feasible since we rely on day-county level averages, whereas some EU thresholds rely
on hourly averages.

8 Note that CO and SO are omitted. The maximum county-level CO concentration that we observe is 2.8 ppm,
which is significantly below the EU threshold and the WHO 8-hour threshold of 8.7 ppm. All SO2 values also lie
significantly below the maximum daily EU threshold of 125 ug/ m?>. Interestingly we observe the same pattern for
the US (Environmental Protection Agency (EPA)|[2013).
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e O3 non-compliance day = 1 if the max. O3 level >120 ug/m?, 0 else.
e NO, non-compliance day = 1 if the average NOy level >40 ug/m?3, 0 else.

e PM, non-compliance day = 1 if the average PMyq level >50 ug/m?, 0 else.

According to these definitions, 12% of all 1.5 million county-day observations are NOy and PM;q
non-compliance days. This translates into 44 days per year. Thirty-four days per year are Os

non-compliance days.

Comparison to US Thresholds. In principle, the pollution regulation in the US is similar to
the one in the EU: the US ENVIRONMENTAL PROTECTION AGENCY (EPA) implements pollution
concentration thresholds and requires all US states to comply. However, the EPA thresholds are
significantly less strict than the EU ones: The PMq threshold is a 24 hour average concentration
of 150 pg/m3. The O3 threshold is an 8 hour average concentration of 159 ug/m?. And the NO,
threshold is an annual average concentration of 107 ug/m? or a maximum hourly concentration
of 203 pg/m3 (Environmental Protection Agency (EPA), 2013)EI Thus, the threshold levels for
NO3 and PMq are 2 to 3 times larger in the US, which should be kept in mind when comparing
the results of this study to related US studies. In Germany, from 1999 to 2008, the US regulatory
thresholds for PM;g, O3 and NOy were never exceeded (see Table . The measured pollution
concentrations in the US are likewise 2 to 3 times higher than in Germany—at least for PMjg
and Os, while NOg concentrations are very similar (Environmental Protection Agency (EPA),
2013)). However, note that the variation in concentrations across US regions is very large and the
distribution overlaps with the distribution of concentration levels in Germany.

Identifying Variation. Figure [ illustrates several crucial empirical facts about the iden-
tifying pollution variation using the example of ozone (O3): (a) Figure 4a in the top left corner
illustrates that the annual number of O3 non-compliance days is highly correlated with the annual
maximum ozone concentration. This shows that the binary non-compliance indicator represents

and captures high ozone concentrations well.
[Insert Figure [4| about here]

(b) Figure in the top right corner shows the pollution variation with respect to the daily
maximum ozone concentration per county and year (black), as well as the number of annual non-

compliance days per county and year (red). Both distributions are roughly normal and have large

9 The original scales for NO2 and Oz are expressed in “parts per million (ppm)” and have to be converted to

“micrograms per cubic meter of air (ug/m3)”. The annual threshold for NO3 is 0.053 ppm and the hourly maximum
0.1 ppm. For Og, the “annual fourth-highest daily maximum 8 hours concentration, averaged over 3 years,” must
not exceed 0.075 ppm. 19



supports. This shows that the identifying variation is based on a broad set of counties and not
just a small subset of non-representative high ozone-level counties with permanently high levels
of ozone. It is worthwhile to note that every single German county had non-compliance days
between 1999 and 2008. In fact, the number of non-compliance days ranges between 10 and 553

across the counties and over the ten years.

(c) Figure [4c in the bottom left corner plots the annual number of non-compliance days along
with the GDP growth rate, while Figure [dd plots the annual number of non-compliance days
along with the annual maximum temperature. The graphs illustrate that there is not much
correlation between economic activity and high ozone concentrations, but that there is a strong
correlation between high temperatures and high ozone levels at the county level. This relationship
is also illustrated in Figure[15|in Appendix D. The relationship derives from the chemical process
that leads to high ozone levels. High temperatures and sunshine are important input factors
for the photochemical oxidation process between CO and NO, and thus for the development of
ozone (cf. |Arya; (1998} European Environment Agencyl 2013). It that sense one can think of
extreme temperatures causally triggering extreme ozone levels. Since high ambient temperatures
are exogenous to individuals, so are high ozone levels. The empirical analysis exploits both.

The equivalent graphs to Figure [4| for nitrogen dioxide (NO2) and particular matter (PM;p)
can be found in Appendix D (Figures and . The conclusions drawn for Og also hold for
NO3 and PMyg. For example, from 1999 to 2008, even the German county with the least NOs or
PM; pollution experienced 4 (NO2) and 8 (PMjg) non-compliance days, respectively. High NOq

and PM;g concentrations are also triggered by high temperatures.

2.5 Interpolation of Weather and Pollution Measures

To obtain the working datasets, we (i) had to interpolate the point measures of the weather
and pollution monitors into the county space, (ii) aggregate and normalize all information at
the (daily) county level, and (iii) merge the register datasets with the pollution, weather, and
the socioeconomic dataset (see Appendix F) at the day-county level. Assuming that the number
of counties is time-invariant and 400, we should obtain 400 x 365 x 10 = 1,460,000 rows, each

representing one county on a given day.
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Interpolation of Weather and Pollution Measures

Hanigan et al.| (2006) discuss and compare different approaches of how to calculate population
exposure estimates of daily weather and pollution conditions from monitors. The approach chosen
here makes use of the geographical centroid of each county: one calculates the weather and
pollution conditions for every county and day as the inverse distance weighted average of all
ambient monitors within a radius of 60 km (37.5 miles) of the county centroid. Thus, denoting
by d;; the distance between a location ¢ (a county centroid) and a monitor j, one can define the

weighting scheme as:

% if i # j and 6;; < 60

wija =1 if §inp,, > 60 and j = Mg 1)

0 otherwise

where M;y denotes the nearest station outside location 7. Thus, whenever there are no stations
within a radius of 60 kilometers, the measure from the nearest station outside this radius is used.

Henceforth, we call this interpolation approach simply Inverse Distance Weighting (IDW).

3 Empirical Approach and Identification

3.1 Econometric Approach

As a first step, we investigate the temperature and pollution-health relationship nonparametrically
by plotting scatterplots along with Kernel-weighted local polynomial smooth plots. Next, we run

the following model by OLS:

36

Yea =+ Z Bn MazTempl, 2)
h=20
468 52 Dec 2008
+ Z vj county; + Z Cp weeky, + Z O month,y, +60 Xt + €cq
j=2 k=2 m=Feb1999

where, depending on the specification, Y4 either denotes the hospital admission rate or the mor-
tality rate per 100,000 population in county c on day d. M a:cTempZd are a series of temperature
regressors of interest that equal 1 if the maximum daily temperature in the county exceeds h

degrees and is zero otherwise. We plot the 17 tle}lnperature coeflicient estimates to semiparamet-



rically evaluate the temperature-health relationship, net of seasonal influences. This means that
we net out county fixed effects, Z?g vj county; , calendar week fixed effects, 222:2 Cp weeky,
year-month fixed effects, de:c}?eob()?g% Om month,,, as well as yearly county-level covariates, X.

The latter vector contains demographics, the share of private hospitals, the bed density, or the

county-level GDP per capita (see Appendix F).

Finally, our basic fully parametric approach is based on the following model:

Yea=a+BETeq+vYPNCey+ dWeqg+ pPeg+ 1) Weqg X Prg

468 52 Dec 2008
+ Z vj county; + Z Cr weeky, + Z O month,, +60 X + €cq (3)
j=2 k=2 m=Feb 1999

As mentioned earlier, the parametric analysis is implemented using two main approaches: the “Un-
conditional” and the “Conditional” Weather and Pollution Approach. Both approaches routinely
control for all covariates that appear in the second row in equation , i.e., county fixed effects,

calendar week fixed effects, year-month fixed effects, as well as yearly county-level covariates.

Approach I is the Unconditional Approach that does not net out contemporaneous weather
and pollution conditions. In addition to the sets of covariates listed above, only one weather or
pollution variable of interest is added to the model. Depending on the exact specification, for
example, this could be either the dummy Hot Day, the dummy Cold Wave Day, or a pollution
non-compliance dummy like NOy non-compliance day (see Section and . One can think of
this approach as a reduced form “intention-to-treat” approach where the main regressor of interest
absorbs all weather and pollution conditions that are correlated with the exogenous weather or

pollution indicator.

Approach 1T is the Conditional Approach, net of contemporaneous weather and pollution con-
ditions. A saturated model is estimated that includes—in addition to the weather or pollution re-
gressor of interest—all covariates listed in the first row of equation , i.e., Extreme Temperature
dummies in the vector ET,4, a set of Pollution Non-Compliance dummies PNC,.q4, the 7 “raw”
continuous weather measures, as well as 15 own interactions of these measures at the day-county
level, represented by the vector W4 (see Tables and H The Conditional Approach also
makes use of P.; which contains 5 continuous pollution measures—QO3, NOg, SO2, NOo, PMg—

their quadratic and cubic terms, as well as the 10 most relevant interactions between these 5

10 Obviously, when estimating the effect of a Hot Day this vector does not additionally include the temperature,
but such measures as precipitation, sunshine, or air prengre (see Table in Appendix C).



pollutants (cf. Figure . Finally, Approach II also considers cross-interaction effects between
Weq and P.4. In total, in addition to the binary variable of interest, the Conditional,saturated,
Approach includes more that 80 additional weather and pollution control variables—in levels,
quadratic, cubic and interacted terms. As such, the Conditional Approach disentangles the single

pollutant or extreme temperature effect from simultaneous weather and pollution conditions.

3.2 Identification of Population Health Effects Using Hospitalization and Mor-

tality Censuses

First of all, one needs to consider that we “only” observe the universe of deaths and inpatient
treatments, i.e., hospital admissions that require the patient to stay over night. This excludes mild
conditions that are treated in outpatient settings. Since this paper intends to assess the population
health effects of weather and pollution, the underlying assumption here is that adverse health
effects not requiring an overnight stay in a hospital are negligible relative to inpatient treatments
and mortality effects. This assumption essentially means that we obtain a lower bound total

population health effect triggered by weather and pollution conditions.

Second, note that we interpret the estimates strictly as contemporaneous short-run effects on
population health. While this approach has several methodological advantages—one of them is the
immediate and obvious dose-response relationship that substantially ameliorates concerns about
confounding impacts of third unobserved factors—one has to keep in mind that this approach
abstracts away from long-term effects on health. The main neglected long-term effect is certainly
the adverse effect of in-utero and early childhood exposure to adverse environmental conditions
(cf. van den Berg, [2006; |(Currie and Almond}, 2011; |Zivin and Neidell, 2013)). For example, Currie
et al. (2013)) estimate that the overall discounted long-term societal costs of being born with low-
birth weight are at least $100,000. While the paper abstains from comment on any long-term
effects of climatic conditions on health, please note that the approach considers the immediate
effect on hospitalizations and deaths of newborns and children.

Third, while we are able to observe every single hospital admission, data protection laws
prohibit us from analyzing panel data. This means that we are unable to observe hospital read-
missions. According to representative Socio-Economic Panel Study (SOEP) data, about 13% of
all Germans were admitted to a hospital in 2010. About 2% (15% conditional on an admission),
had more than one hospital stay in 2010 (Wagner et al., 2007)). Not being able to identify read-

missions would be particularly worrisome if we were interested in treatments of chronic diseases
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such as diabetes where patients are obliged to return to the hospital in regular intervalsE

Fourth, we implicitly assume that all severe health effects triggered by weather and pollution
eventually lead to a hospital admission or death. We believe that this is a reasonable assumption.
German geography, combined with the institutional setting of the German health care system,
supports the assumption. First of all, the German population density is relatively high. Germany
has 82 million residents living in an area roughly the size of the US state Montana. The average
German population density is about seven times as high as the US population density (231 vs.
32 people per km?) (U.S. Census Bureau, 2012; |German Federal Statistical Office, 2012). The
hospital bed density is also much higher. Germany has a total of 2,045 hospitals while Montana has
only 70 hospitals (German Federal Statistical Office, 2013b)). Per 100,000 population, Germany’s
health care infrastructure offers 824 hospital beds, while the US has only 304 (OECD), [2012). This
illustrates that geographic hospital access barriers, such as travel distances, are low in Germany

and significantly lower than in the US.

To date, Germany has 402 counties or county-equivalents (“urban municipalities”). The av-
erage population is about 190,000 but varies from 35,000 to 3.5 million for Berlin (see Table
in Appendix F). As compared to the US, the area size of German counties is smaller and the
population density is higher. The US has 3,144 counties but is 27 times the size of Germany. The
average US county population is about 100,000 but variation is much larger than in Germany
and ranges from 82 inhabitants in the smallest to 10 million inhabitants in the largest US county,
Los Angeles County (United States Census Bureaul, 2013). Hence, the German counties are more
homogeneous. Still it is fair to say that US and German counties are comparable both in terms
of their administrative function in the two federalist states, as well as their overall structure.

Lastly, the uninsurance rate in Germany is below 0.5%. The public health care system covers
90% of the population and copayment rates in the public scheme are uniform and IOWE The
overwhelming majority of hospitals can be accessed independently of insurance status and provider
networks are almost unknown in Germany. Thus, insurance barriers to hospital access are also
low in Germany, and certainly lower than in the US.

Given these very low geographic and institutional access barriers, it is reasonable to assume

that severe health conditions ultimately lead to hospitalizations or death

1 Note that, using the age, gender and county-level information, we could apply propensity score matching
methods to probabilistically identify readmissions.

12 If total out-of-pocket expenditures do not exceed 2% of the individual’s income (1% for people with chronic
conditions), the daily copayment for inpatient stays is € 10 in the public system.
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3.3 County-Level Aggregation and Measurement Errors in Pollution and

Weather Measures

Every empirical study has to deal with the issue of measurement errors. It is known that classical
measurement error attenuates parameter estimates. In case of non-classical measurement error,
the direction of the bias is unclear. Moreoever, measurement error in the dependent variables
inflates standard errors (Chen et al., 2011). Since this study makes use of several rich high-
frequency administrative register datasets it (i) certainly does not have a power issue, and (ii) the

overall data quality is very high.

However, particularly when it comes to the mapping of monitor point measures into space, it
is obvious that one has to deal with measurement errors[I3] To assess the measurement error that
is introduced via the IDW method, we perform the following (indirect) test: For each weather
and pollution monitor (not county centroid), one calculates the IDW value using the weighting
scheme in equation . The crucial point is that the weighting scheme attaches weight 0 to the
own station@ Thus, for each ambient monitor and all weather and pollution measures from
that monitor Z;, we calculate a cross-validated Zd = Z48q; where €y is the symmetric matrix
of weights for day d with elements w;jq = w;ja/ > i Wikq- In other words, we predict the values
of each monitor using all surrounding monitors and the IDW interpolation method. Then, we
assess the accuracy of the IDW interpolation by calculating Pearson’s correlation coefficient for
the variables Z and Z. The results of this exercise are in column (1) of Table in Appendix G.
Column (2) compares the IDW method to a simple nearest neighbor (NN) interpolation that just

correlates the values of each station with its nearest neighbor.

Table illustrates that (a) the IDW method dominates the simpler NN weighting scheme:
only for air pressure does the NN method deliver better accuracy. Besides, it becomes clear
that (b) our IDW interpolation algorithm delivers a very acceptable accuracy with correlation
coefficients ranging from 0.413 for the max. CO concentration to 0.981 for the mean temperatures.
Overall, the correlation values for pollution range between 0.4 and 0.8 while the weather measures
mostly deliver even better results. Note that this paper particularly relies on minimum, mean,
and maximum temperature measurements, all of which deliver excellent accuracy results with

correlation values ranging above 0.95 (column (1) of Table . This means that we are able to

13 |Currie et al.| (2013) show that if one uses variation in the toxic exposure of plants as source of exogenous
pollution variation, at least in the US, the measurable impact of the emitted pollutants mostly lies within the
radius of one mile.

4 When using the county centroid in the IDW interpolation of point measures into county space, the closest
monitor obviously gets the largest weight.
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predict 95% of the variation of the temperature measured by monitor X using our IDW method
and all surrounding monitorsE Note that the results are robust to considering individual years

instead of the entire pooled sample (results available upon request).

Table in Appendix G show results of a similar test for the generated extreme weather
indicators and confirms the results of Table Basically, one finds that the overall share of
correctly predicted heat and cold indicator values is above 99%, as is the share of correctly
predicted zeros. Since there is only a small percentage of extreme temperature events, “false
positives” have a larger impact on estimates than “false negatives”. Thus, it is reassuring to see
that (i) IDW clearly outperforms NN in that respect, and (ii) the share of false positives is low

and less than 20% in the case of heat.

Finally, we calculate the Reliability Ratio (RR) « that indicates the magnitude of measurement

errors and thus the attenuation bias (Hyslop and Imbens, [2001)):

Cov (Z, Z) @
Var (Z)

o =

The RR is relatively high and lies around 0.8 for the most important indicators.

As a last conceptual point, please note that the issue of introducing measurement error when
extrapolating point measures into space is methodologically not fundamentally different from the
issue of unknown individual exposure to weather and pollution conditions. We approximate the
individual level exposure to weather and pollution on a given day by taking inverse distance
weighted averages of the daily measures of the next monitors. Even if we knew the exact ambient
weather and pollution conditions at the exact locations of residence of all German residents, we
would still (i) have to take daily averages in ambient conditions, (ii) lack knowledge about the
exact length, place, and time of the day spent outdoors by the individuals, and thus (iii) deal
with exposure-related measurement error of unknown form.

As time, empirical methods, and data collection advance, researchers will have access to in-
creasingly more and better data that reduce measurement errors. Considering our extremely

precise coefficient estimates stemming from various high-quality register datasets and comparing

5 One concern with this interpolation test is that a seemingly high degree of accuracy might be driven by time
trends and seasonal variation in the variables. Thus, we calculate alternative accuracy correlation measures that
are based on transformed versions of Z which had first been nonparametrically adjusted for individual day effects.
As seen, the correlation coefficients in columns (3) and (4) of Table drop somewhat, but still show that there is
a considerable correlation between imputed and actual values. For the temperature measures, the time trend and
season-adjusted correlation values all lie around 0.7. It should also be noted that this method of controlling for day
time effects is very conservative in the sense that it is likely to remove “too much” variation from the data since one
cannot disentangle the “true” correlation between monitors and climatic measures from day effects. By removing
the daily mean one obviously also removes part the nonltéme—trend correlation.



this data quality to the data quality of self-reported survey data often used in empirical studies, we
believe and argue that the issue of measurement error is of secondary importance for the general

findings of this paper.

3.4 Identification of Exogenous Pollution and Weather Effects Using Daily

Spikes in High Pollution and Extreme Temperatures

From an identification point of view, the appealing aspect of using weather and pollution variation
to estimate their impact on health is that weather and pollution is very likely to be orthogonal to
the error term in equation above. More precisely, it is very plausible that pollution and weather
variation at the day-county level is exogenous to the outcomes of any one individual. Remember
that the parametric models net out a rich array of seasonal and time effects and solely rely on
high-frequency, daily within county variation. Positive and negative pollution and temperature

shocks are then linked to contemporaneous health effects at the day-county level.

One could still identify three identification concerns: (i) based on (un)observables, people
may self-select into living in specific regions, (ii) pollution levels may be correlated with economic
activities which, in turn, may affect health outcomes, (iii) individual-level exposure to weather
and pollution conditions is unknown and adaption behavior may bias the “true” causal effect

downward.

A few recent papers address some of these concerns by using variation in traffic as an instru-
ment for CO, PMjo, and O3 exposure (Knittel et al., 2011; Moretti and Neidell, 2011} [Schlenker
and Walker| 2011]). While these approaches as stimulating and worthwhile to pursue, this paper

abstains from instrumenting pollution levels with traffic activity.

Instead, this paper addresses the potential concerns in the following ways. First of all, with
respect to (i): It is of course true that people with specific characteristics may self-select into
specific regions. This is of particular concern for studies that rely on small geographic regions—
one may question the external validity of the findings. One particular strength of the approach
used in this paper is that it relies on the universe all hospital admissions and deaths from the
fourth largest industrial nation in the world over one decade. To the extent that one is interested
in the real-world effects of weather and pollution on population health in a given geographic area,
one should consider and include sorting into regions; the identified parameters then represent
the effects on population health once geographic preferences are accounted for. In the case of

Germany, it should be added that (intergenerational) geographic mobility is historically very low.
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Using the SOEP we find that, in a given year, only about 1% of all SOEP respondents move,

which also includes within-county moving (Wagner et al., 2007; [SOEP, [2012).

Second, as far as (ii) is concerned: it is obvious that the level of regional economic activity and
the regional pollution level may be correlated. This is particularly worrisome when pollution and
health outcome data are linked on a highly aggregated level, e.g., when the unit of observation is

the year or month and studies do not or cannot account for year and region fixed effects.

However, as a first argument, recall that we rely on high-frequency data, recorded on a daily
county-level basis. We do not only consider county fixed effects, but also week fixed effects and
month-year fixed effects. Moreover, we make use of binary indicators that indicate changes in
high pollution concentrations in these fixed effects models. Econometrically, this means that we
exclusively focus on daily county-level increases or decreases in high pollution concentrations, i.e.,
EU non-compliance days and alternative high pollution thresholds. Economic activity, in contrast,

does not fluctuate strongly at the day-county level.

Moreover, a robustness check relates changes in high pollution concentrations to hospitaliza-
tions that may stem from an increased economic activity: treatments due to physical injuries
caused by accidents. We do not find any evidence that there is a meaningful relationship between
these two factors. For example, in the Unconditional Model, an ozone non-compliance day is
associated with a 0.024 ppt. (0.5%) lower standardized accident rate at the daily county-level.
However, this association is clearly not statistically significant with a p-value of 0.52 (detailed

results available upon request).

In addition, Figures [k, [I3k, and [I6 do not suggest a significant relationship between economic
activity and high levels of pollution. Looking at annual county-level variation in GDP growth
and pollution concentrations, it becomes clear that changes in extreme pollution are not primarily
driven by economic activity but rather by high temperatures. On the annual county level, only the
maximum NOs concentration is positively correlated with the GDP growth per capita. However,
even this correlation is rather small. An increase in the growth rate by 1 ppt. increases the
average maximum NOj level by 0.25 ug/m? or 0.5%. High O3 and PMjy concentrations are
in fact negatively correlated with GDP growth. Thus, assuming a positive association between
economic activity and adverse health effects would cause us to underestimate the adverse effect
of pollution on health. Thus economic activity is very unlikely to significantly confound our

identified pollution-health relationship.

As an important last point, note that concern (ii)—economic activity may affect both, pol-
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lution and health—is clearly irrelevant when it comes to extreme temperature events which are
definitely exogenous to any one human’s behavior. Research in atmospheric science strongly sug-
gests that extreme pollution levels are triggered by high temperatures. The discussion in Appendix
D strongly supports this. Particularly O3 and PM;q are secondary pollutants and oxidants; the
oxidation process requires sunshine and heat. For example, the relationship between ozone and
the temperature is almost linear (see Figure ) and the daily county-level correlation between
the maximum temperature and the maximum ozone concentration is 0.7(!). The equivalent non-
parametric graphs between PMjg, NOy and the mean temperature are U-shaped (e.g., see Figure
12). When daily temperatures exceed 20°C (68" F), PM;jg and NOg concentrations increase
strongly with correlations of about 0.25. Overall, one can think of extreme temperatures and
weather conditions playing a significant causal role in producing high pollution concentrations.
Since weather is exogenous to individuals, so are changes in high pollution concentrations that

are triggered by high temperatures.

Third, with respect to the third potential identification concern (iii) and adaptation behavior:
We argue that we intentionally want to estimate an effect that would equal an “intention-to-
treat (ITT)” estimate in other settings, including avoidance behavior and human adaptation to
extreme temperatures and pollution. This parameter is the relevant parameter for policymakers.
Any policy action should be based on this parameter. We do not deny that people engage in
avoidance behavior and spend less time outdoor when pollution levels and temperatures are high.
It is also clear that it is a challenging and relevant task to study avoidance behavior. However,
we believe that in this setting, a parameter measuring the health effects of a theoretical 24 hours
exposure to high pollution levels, heat or cold events would not be policy-relevant. This exercise
has been and can be better conducted by medical scientists in laboratory settings (cf. |[Stewart
et al., [1970; |[Anderson et al., [1973; Hackney et al.l [1975; [Kerr et al., (1979 [Horstman et al., |[1988};
Lippmann, [1989; Jappinen et all 1990; Dye et al., 2001). We think that real-world data offers
great advantages over such experimental studies. The relationship that this paper intends to
expose is: given that people adjust their behavior to climatic conditions, how would a decrease
in the number of annual days with heavy ambient air pollution affect population health? Or:
Given that humans have the capacity to adjust to extreme temperatures, based on real-world
behavioral data from today, how would climate change in the form of more heat events most
likely affect population health? However, without question, this I'TT estimate represents a lower

bound estimate as compared to a “full exposure” estimate.

Also please note that it is beyond the scope of this paper to make projections about human
22



behavioral adaptation and/or technological progress that could facilitate adaption behavior in
the future. Such projections are inherently uncertain and notoriously difficult to make. However,
recent state-of-the-art empirical evidence shows that humans adapt to adverse climatic conditions
and that adaptation has increased over time (cf. Deschéenes|, 2012} |Zivin and Neidell, 2013; |Barreca
et al |2013). Given this recent empirical evidence, an approach that assumes no further increases
in adaptation behavior produces conservative estimates of the potential adverse health effects of

climate change.

Finally it should be re-iterated what has been discussed at various places throughout the
manuscript: thanks to its climatic conditions and four seasons, Germany is particularly well-
suited for this type of study that links daily increases as well as decreases in extreme temperatures
and pollution to immediate severe health effects. As Figures and [16] demonstrate, the
identification of parameters is based on a broad set of counties and largely avoids out-of-sample
predictions. AIl German counties experienced variation in the extreme temperature variables as
well as in the non-compliance pollution indicators of interest. Identification is not based on a
small non-representative subset of high pollution, extremely hot or extremely cold counties, but

has broad support.

4 Results

4.1 Nonparametric Relationship Between Temperature, Pollution and Health

Figure [5h-d shows scatterplots of hospital admission rates and the daily county-level (a) maximum
temperature, (b) minimum temperature, (¢) mean NOg, and (d) mean PM;o concentration—along
with local polynomial smooth plots and confidence bands. Interestingly, the equivalent mortality
rate graphs follow very similar patterns, but the patterns are even less pronounced (available upon
request).

Overall, at first sight, it is difficult to detect an unambiguous positive relationship between
hospital admissions and extreme temperature or pollution conditions. The data seem to be very
noisy: hospital admission rates vary widely across the whole range of temperature and pollution

values on the x-axis. The smoothed polynomial plots appear surprisingly flat.
[Insert Figure [5| about here]

However, having a closer look, a few peculiarities are of note: (a) The higher the temperature,

the wider the confidence bands. Moreover, the %gmission rate seems to smoothly—but only very



slightly and linearly—increase between 20 ° C and 36 * C (68 ° F and 97 ° F). Then, admissions dip

slightly, before they significantly increase for temperatures above 38 ° C (100 ° F).

(b) For daily minimum temperatures below -10°C (14 °F), the admission rate seems to in-
crease slowly and smoothly down to -18 " C (-2 ° F). Then, again, admissions seem to dip, before

they increase significantly for temperatures below -22° C (-8 ° F).

(c) The relationship between mean NOy concentrations and admissions increases strongly for
NO, concentrations between 10 and 20 pg/m? and subsequently slightly for concentrations up to
63ug/m?>. Between 63ug/m> and T4ug/m?> one observes a clear increase in hospitalizations, then

a drop, and for concentrations above 78ug/m?, a strong increase.

(d) Finally, the relationship between mean PM;jg concentrations and admissions looks pretty
flat but is also slightly bumpy, up to ambient concentrations of around 56ug/m3. Then, one
observes a relatively clear and strong increase of admissions up to the recorded maximum PMjq
value. This strong increase has broad support in actual observed PMy values—more that 200,000

county-day observations or about 12% of all observations carry PMjy concentrations above the

EU alert threshold of 50ug/m3.

4.2 Semiparametric Relationship Between Temperature, Pollution and Health

Next we investigate the temperature-health relationship semiparametrically using flexible temper-
ature and pollution cut-off variables. More specifically, we run the model in equation by OLS.
We always employ Approach I, i.e, the model nets out county fixed effects, week fixed effects, and
month-year fixed effects, but does not consider contemporaneous weather and pollution conditions
other than the variable of interest. The variables of interest are a series of dummy variables which
equal 1 if daily temperature or pollution conditions exceed a certain threshold that we allow to
vary in this particular specification. In contrast, the main models below make use solely of the
official Hot Day and Cold Day definitions as well as the official EU pollution alert thresholds (see
Section .

However, this section intends to illustrate the marginal health impact of one additional tem-
perature degree or a pollution concentration increase of 10 ug/m3. Thus, Figure @illustrating
heat effects—plots the coefficient estimates, 226:20 By, M axTemp?d, of the regression in equation
[2l Since the model controls for all 17 maximum temperature dummies simultaneously, the plotted
graph in Figure [6h shows the marginal temperature impact of one degree, relative to the baseline
category of less than 20° C (68 " F).
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Figure @a illustrates that the temperature range from 26 to 28°C (79 to 82°F) induces
additional admissions, but at a low rate. For temperatures above 30°C (86 ° F), one observes
more pronounced adverse health effects. Thus, it is reasonable to follow the convention and define
a HotDay as a day with temperature above 30 ° C (86 ° F), and use that cut-off to estimate the

impact of one additional HotDay on health. We employ this convention henceforth.

Figure [6b applies the same approach for the daily minimum temperature. As seen, the co-
efficient estimates are very flat around the x-axis. One observes, if any, a slightly and partially
negative relationship between cold and hospital admissions. We discuss potential explanations for

this negative effect of cold on admissions below.
[Insert Figure [6] about here]

Figures [6k and d show the results for NOg and PM;jo. The x-axis of Figure [6c shows the ambient
NO; concentration in pug/m?, where 40 equals the official EU alert threshold. One observes
significantly positive effects on admissions when concentrations exceed this threshold. Recall that
the US threshold is significantly higher, with an annual average concentration of 107 ug/m?3.
However, surprisingly, the marginal impact of concentrations even below the EU threshold of
40 pug/m? seems to be strong and significant. This suggests that even the EU alert threshold
is too high to avoid adverse health effects, even in case of full compliance by the EU member
states. Another explanation could be that other contemporaneous weather and pollution factors
confound the “pure” relationship between NOs and health, e.g., Figure shows that O3 and
NOs are negatively correlated which means that Os levels are higher when NOs levels are lower.
Recall that the underlying Unconditional Approach used here does not consider contemporaneous

weather and pollution conditions.

The findings for Figures [6d and PM;j( are very clear and confirm what we observe in the
nonparametric Figure above. One finds that adverse health effects significantly increase for
PMj values above 50 ug/m3. This is also the official EU alert threshold and thus seems to be well-
targeted, while the US threshold of 150 ug/m? is clearly too high to avoid adverse population
health effects, assuming similar behavioral responses in the US and Germany. In general, one
can say that all graphs in Figure [f] are in line with the nonparametric scatterplots in Figure
However, the dose-response relationship between temperature and single pollutants on the one
hand, and health on the other is carved out in a much clearer way in Figure [f] The equivalent
nonparametric and semiparametric graphs for the mortality rates follow very similar patterns,

albeit the adverse health effects are less pronou%ed. They are available upon request.



The following section focuses on models that solely employ the official Hot and Cold Day
definitions as well as the official EU alert thresholds for pollutants. Instead of varying the threshold
parameters, the next section analyzes the differences between Approach I and II as discussed in
Section[3.1] i.e., the differences in estimates when considering vs. not considering contemporaneous

weather and pollution conditions in addition to the parameter of interest.

4.3 Health Effects of Extreme Temperatures: Unconditional and Conditional

on Contemporaneous Weather and Pollution Conditions

Table [If illustrates the impact of extreme heat and cold on health. Panel A shows the effects on
hospitalizations and Panel B the effects on mortality. The dependent variable always measures the
all-cause hospitalization or mortality rate, i.e., does not distinguish by diagnoses. Each column
in the panels represents one model estimated according to equation (3)). Columns (1) to (4) run
Approach I, the Unconditional Approach. This means that these models do not control for any
contemporaneous weather or pollution conditions and solely focus on the extreme heat or cold
measures as indicated in the rows. For example, the result in column (1) of Panel A measures the
overall Hot-Day-Effect, including correlated factors such as higher ozone levels, more sunshine, or

less rainfall.

Column (1) shows that a Hot Day, i.e., a day with a maximum temperature of more than 30 ° C
(86 ° F) leads to a 5.4% increase in hospitalizations and to a 9.8% increase in deaths. For the whole
of Germany, this translates into 2,500 additional hospital admissions and 240 additional deaths.
Again, please note that this represents the overall Hot-Day-Effect, including all other weather and

pollution conditions that prevail on a Hot Day.

Column (2) shows the effect of the fourth consecutive Hot Day. A Heat Wave Day increases
hospital admissions by about 6% and mortality by about 20%, i.e., the mortality effect doubles
after 3 consecutive Hot Days. Appendix shows that 2% of all county-day observations during
the time period between 1999 and 2008 were Hot Days. Only 0.3% of all observations were Heat
Wave Days in Germany. This translates into an annual average of 7.2 Hot Days, of which 1.2 are
Heat Wave Days.

Column (3) shows the overall effect of a Cold Day, i.e., a day with a minimum temperature
of less than -10° C (14 " F). We find that, not netting out other weather and pollution conditions,
a Cold Day leads to 2% fewer hospital admissions and 1% more deaths, i.e., the effects are

(i) significantly smaller as compared to the health effects of heat events. The (ii) decrease in
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hospitalizations is very likely an artifact of higher hospital admission costs and less outdoor
activities, e.g., through snowfall and bad traffic and weather conditions on Cold Days (Schwartz
et al., [2004). This is reinforced by column (4) which shows that hospital admissions significantly
decrease by almost 8% on the fourth consecutive Cold Day while mortality is not affected by Cold
Waves. However, again, please keep in mind that these effects do not capture only the effect of
extreme cold on health, but also the effect of correlated conditions such as lower O3 and higher

NOg pollution (see Figures |12| and [15in the Appendix).
[Insert Table (1| about here]

Column (5) show results from estimation using the fully saturated Conditional Approach II. Here,
we add an extensive set of 7 continuous weather measures, such as sunshine and precipitation as
well as 15 interaction terms between those weather measures (cf. Table E Moreover, we
simultaneously control for high pollution non-compliance days. In addition, the continuous mean
values of the 5 pollutants—CQO, Oz, NOg, SO9, PM;g—their 5 quadratic and 5 cubic terms as well
as 10 of their cross interactions are added to the model (cf. Table . The covariates model the
rich non-linear interactions between pollutants, as shown in Figure [I7] in the Appendix. Lastly,
the model includes 25 interaction terms between the 7 continuous weather and the 5 continuous
pollution measures modelling the nonparametric associations displayed in Figures [12| and In
total, Approach IT adds 77 continuous pollution and weather measures as well as their interactions

to the model, plus up to 4 extreme temperature and 3 high pollution non-compliance indicators.

When one considers this rich set of contemporaneous weather and pollution conditions, in the
Conditional Approach I, extreme cold alone does not affect mortality at all. The mortality effects
of about +1% in the Unconditional Approach I are further reduced and become insignificant. The
Cold Day effect on hospitalizations is also small in size (0.72***; 41.2%), but highly significant.
Interestingly, the negative Cold Wave Day hospitalization coefficient remains large in size (-9.6%)
and significant. The finding that the first (presumably unexpected) Cold Day slightly increases
mortality but Cold Wave Days strongly decrease hospitalizations yield strong evidence in support
for the “higher transportation cost hypothesis” outlined above. Bad weather and transportation
conditions associated with several subsequent extremely Cold Days are the most likely reason
for the drop in hospital admissions. This is in line with existing research from epidemiology
(Schwartz et al., 2004). The drop in admissions does not seem to trigger an (immediate) increase

in mortality.

16 The model does not consider the three plain temperature indicators since the main variables of interest are
the four extreme temperature indicators. o7



Netting out all climatic factors that prevail on Hot Days, in the Conditional Approach II, the
hospitalization effect of a Hot Day is reduced by the factor 2 and the effect of a Heat Wave Day
is even reduced by a factor of 6. However, both coefficient estimates are still highly significant
and of meaningful size (~+2.5%). As compared to the Unconditional Approach I, the Hot Day
mortality effect is reduced by the factor 6 to +1.5%. The Heat Wave Day mortality effect shrinks
by a factor of 2 to (a still large) +10% increase in the death rate on the fourth consecutive Hot
Day. When adding the sets of covariates step-wise, it becomes clear that the main reduction
in coefficient sizes is due to the inclusion of the (i) seven continuous weather measures such as
precipitation, the (ii) five continuous mean pollution measures as well as (iii) the five quadratic
and five cubic terms of the pollutants (see Panels A of Tables and . Overall, these sharp
declines in coefficient sizes illustrate the importance of considering other health-damaging weather

and pollution conditions associated with extreme heat.

4.4 Health Effects of High Pollution Concentrations: Unconditional and Con-

ditional on Contemporaneous Weather and Pollution Conditions

The setup of Table[2]is identical to that of Table[l] Considering the Unconditional Approach I, it is
easy to see that for all three pollutants—NQO2, O3 and PM;9—the following holds: When ambient
pollution levels cross EU alert thresholds, hospital admissions increase significantly. However, the
effects for O3 and PM;( are small and have magnitudes of about 1%. On the other hand, the

NO; effect is relatively large and associated with 8.7% more hospital admissions.

Mortality rates increase by between 1.5% and 4.5% when NOs, O3 and PMj levels increase
above EU alert thresholds. For example, during a PMjg non-compliance day when concentrations
increase above 50 ug/m3, the death rate increases by 2.5% or about 61 deaths for the whole of
Germany. These effects are of significant relevance since 12.8% of all county-day observations
in the sample carry PM;y concentrations above EU alert thresholds. No county entirely avoids
violation of the EU norms over the ten years of observation. Similarly high pollution levels are

reached for O3 (9.3% of all obs.; +4.5% deaths) and NOy (11.9% of all obs.; +1.3% deaths).
[Insert Table [2| about here]

However, interestingly and maybe surprisingly, when considering the extremely rich set of con-
current weather and pollution conditions—Figures|[12|and [15|illustrate the nonlinear relationships
between pollution levels and weather conditions—all formerly significant associations between

pollutants and mortality dramatically shrink iéiS size and become insignificant. The effects on



hospital admissions remain partly significant, but the coefficients are very small in size; the effects
in percentage terms tend towards zero. This finding is absolutely in line with research in medical
science and epidemiology, where high concentrations of a single pollutant are seen rather as an
indicator for overall general adverse environmental conditions that put strain on human bodies.
Laboratory experiments show that concentrations of single pollutants need to be extremely high—
higher than they typically occur in outdoor environments, at least in Germany—before adverse
physical health effects such as lung, pulmonary, or respiratory function responses can be detected
(cf. [Stewart et al., [1970; |Anderson et al., [1973; Hackney et al. 1975; [Kerr et al., |1979; [Horstman

et al.l [1988; [Lippmann, |1989; Jappinen et al., |[1990; Dye et al., 2001).

However, for the regulator, the relevant pollution parameter of interest should be the one
that the Unconditional Approach I identifies. To date, regulatory thresholds always apply to
unconditional pollution levels and do not consider simultaneous weather and pollution conditions.
In the EU and the US, measures from official ambient monitors are taken on a daily basis.
If they exceed official thresholds, action must be taken. It that sense, it may be of interest
for the researcher that one only detects small health-damaging effects of single pollutants when
comprehensively considering all other health-damaging weather and pollution conditions, but the

policy implications of this empirical exercise are questionable.

Both in Germany and the US, SOy and CO concentration levels rarely exceed alert thresh-
olds. However, in Germany, in more than ten percent of all county level observations, PMyq, Os,
and NOg levels were significantly elevated above EU thresholds and associated with more deaths
and hospitalizations. NOs levels even below the EU threshold are associated with adverse health
effects. This suggests significant public health benefits from stricter regulation and/or stricter en-
forcement of the existing regulation. It should also be recalled that the US regulatory thresholds
for PMjp and NOg are 2 to 3 times higher as compared to the EU regulatory thresholds (Environ-
mental Protection Agency (EPA), [2013)); actual average PMjg and Oz levels in the US are also 2
to 3 times higher than in Germany (Environmental Protection Agency (EPA), [2011). Obviously,
the public health benefits from lowering the US thresholds and actual pollution concentrations

could be tremendous.
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4.5 Cause-Specific Health Effects of Extreme Heat Conditional on Contempo-

raneous Weather and Pollution Conditions

Table 3] now disentangles the extreme temperature effects by diagnoses applying the Conditional
Approach HE We can summarize the following:

First, Hot Days significantly increase cardiovascular, respiratory, metabolic and neoplasmic
hospital admissions. Infections are unaffected. The latter is confirmed when looking at mortality
effects in Panel B. Plausibly, Hot Days do not trigger infectious and metabolic deaths.

Second, ongoing heat—i.e., the fourth consecutive Hot Day—increases all of the above listed
diagnosis-specific deaths. The same holds true for hospital admissions; however, neoplasmic and
cardiovascular health shocks requiring inpatient stays seem to be triggered by a single Hot Day,

and are not exacerbated by the onset of a heat wave.
[Insert Table [3| about here]

Third, in line with expectations, metabolic and neoplasmic health shocks are totally unrelated
to extreme cold while cardiocascular, respiratory and infectious diseases are triggered by extreme
cold. As mentioned above, longer periods of extreme cold are most likely associated with bad
traveling conditions and therefore decrease admissions significantly.

Fourth, Cold Days and Cold Wave Days are not associated with higher mortality rates for
any of the cause-specific deaths. All coefficient estimates are very small in size.

Figures [7] graphically illustrates the effect of extreme heat on the different disease types and
also considers the overall relevance of the different disease groups. Hospitalization effects are
evenly distributed across diagnostic categories. The effects of one Hot Day is relatively moderate
but always significant. They range between 2% and 6% across disease categories. With increasing
duration, heat particularly triggers infections as well as metabolic health issues, whereas cardio-

vascular and neoplasmic admissions occur at the onset of heat events (Figure [Tp).
[Insert Figure (7| about here]

The latter may be due to the fact that people with cancer die at a significantly higher rate
during heat events (Figure [7c and d). Figures |7k and d also illustrate that cardiovascular (50%)
and neoplasmic (25%) deaths make up 75% of all heat-related deaths. Omne Hot Day slightly

elevates the rate of these two types of deaths, and also respiratory deaths, but only by between

17 The results are similar for Approach I but more pronounced and available upon request.



2% and 4%. Ongoing heat boosts all type of deaths, independent of diagnoses—in particular
respiratory deaths (+35%) and deaths dues to infections (+60%), but also cardiovascular (+9%)
and metabolic (+17%) deaths.

4.6 Robustness Checks

Table [4] presents a series of robustness checks. The reference specification is always the effect
of one Hot Day on the hospital admission rate in the Unconditional Approach I (column (1) in
Table . All findings also hold when using the mortality rate as the dependent variable. These

results are available upon request.

Column (1) in Panel A of Table {4 reports results with standard errors clustered at the state
instead of the county level (Cameron and Miller, 2011)). Column (2) applies two-way clustering
by county and date (Cameron et al., [2011). As compared to the standard specification, standard
errors roughly double, but the coefficient estimates remain highly significant at the one percent

level.

The next three columns add nation-level (column (3)), state-level (column (4)), and county-
level (column (5)) time trends to the model. The latter two specifications reduce the magnitude
of the estimated Hot Day coeflicients somewhat. However, they remain highly significant and of

an economically meaningful size (4.7% and 3.4%) [
[Insert Table 4] about here]

The first column in Panel B show results from another way of modelling the heat-health relation-
ship illustrated in Figures [f] and [6} Here, the model includes the maximum daily temperature as
a continuous variable, along with the Hot Day dummy and an interaction between Hot Day and
a continuous variable that captures the difference between the average maximum temperature
that prevails on Hot Days, 31.9° C (89.4°F), and the county-specific maximum temperature on
a given Hot Day. In other words: The interaction term indicates the degree to which hospital-
izations additionally increase with every temperature increase above 32°C (89 °F). An average
Hot Day increases admissions by about 3%. For every degree Celsius above 32° C (90 " F), the
admission rate rises by another 1%—a factor four times as large as the general impact factor of
a one degree increase in temperature. This tells us that increasing temperatures are especially

harmful once the Hot Day threshold has been surpassed.

18 The slightly larger decrease found with the addition of county-level trends is partly due to the fact that we
have to restrict this specification to the years 2006 to 2008 due to computer memory constraints.
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Column (2) of Panel B interacts Hot Day with a dummy for weekends. This specification
indirectly tests behavioral adaptations to heat—under the assumption that individuals have more
and better options to engage in adaptation behavior on weekends as compared to weekdays.
Although the coefficient estimate of the interaction term carries a negative sign, it is small in size
and not statistically significant from zero. This suggests that adaptation behavior may exist but
is unlikely to play an economically significant role here. However, other mechanisms may be at
work on weekends. For example, stress related to work may exacerbate the adverse health effects
of heat on weekdays. This is in line with the sharp decrease in hospitalizations on weekends—by a
staggering 50%. To the extent that this hypothesis is true, it would reinforce a potential positive
adaptation effect on health on weekends. Thus, finding no significant reduction in heat-related
admissions on weekends strengthens the notion that behavioral adaptation behavior may exist
but, at least in Germany, there is suggestive evidence that it is of secondary importance to the
general heat-health relationship. Other explanations for the strong decrease in admissions on

weekends could result from institutional factors related to hospital management.

Columns (3) and (4) indirectly test another form of adaptation behavior: Namely, whether the
human body adapts to heat and warmer temperatures when humans live in warmer versus colder
regions. Econometrically, we define a “warm region” as a region where the mean annual county-
level temperature falls into the highest temperature quartile for Germany (>10.2°C (50 “F)).
Analogously defined is a “cold region” which is a county with a mean annual temperature below
the lowest temperature quartile (<9.0° C (48 " F)). Accordingly, we define two dummy variables,
Cold and Warm Region and add them to the models in levels and in interactions with the Hot Day
indicator. There is clear evidence in line with the human body adaptation hypothesis since, in
warm regions, the effect of a Hot Day is 0.8 ppt. (1.4%) smaller than the average Hot Day effect.
Likewise, in cold regions, the effect of a Hot Day is 0.8 ppt. larger, although it is imprecisely
estimated. Note that this finding would also be in line with heat-(in)sensitive individuals sorting
into colder (warmer) regions. In any case, although human body adaption or sorting seems to
exist, it is also clear that it amounts to a relatively small overall effect and does not alter our
basic findings: In warm regions, Hot Days still lead to 4.2% more hospital admissions and in cold

regions, to 6.7% more admissions.
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5 Monetized Health Costs of One Additional Hot Day: Implica-

tions of Climate Change

5.1 Increase in Deaths Due to Heat: Who Dies and Is There “Harvesting”?

Next, we explore in more detail: Who dies during weather events? Obviously, the conclusion
from this analysis has important implications in assessing the economic relevance of additional
heat events due to climate change. The literature discusses a phenomenon called the “harvesting
hypothesis” (cf.|Rabl, 2005; [Fung et al., 2005)). According to the harvesting hypothesis heat events
temporarily lead to a higher mortality rate, particularly among the elderly who are already in bad
health. The hypothesis suggests that people who die during heat events would have died a few
days later, even in the absence of the heat event. If this were true, then the overall effect of heat
events on population health would be dramatically reduced since heat would only reduce the life
expectancy of the old and sick by a few days. Empirically, a decline in mortality rates in the days

following a heat event is often cited as evidence strongly in line with the harvesting hypothesis.

This paper makes several contributions to the harvesting debate. First of all, we do not only
focus on mortality but also on hospital admissions. In the Hospital Admission Census, we see
the age (group) of the admitted patients, how long they stayed in the hospital, and whether they
died subsequent their admission. This allows us to pinpoint the population health loss of heat
in a much more precise way. For people who do not die after an admission, one knows precisely
how many days they had to stay in the hospital. This allows us to calculate the overall number
of hospital days triggered by a heat event. Thus, our research design allows us to evaluate the
harvesting hypothesis with reference to several different endpoints in order to gain a much deeper

understanding of its practical relevance.

Second, this paper tests whether mortality rates actually decline in the days after a heat
event. If the results were completely driven by harvesting, one would expect the mortality effect
observed on Hot Days to be completely reversed during the next few days. Figure [§] provides a
test. It is based on the Unconditional Approach I not considering contemporaneous weather and
pollution conditions and plots the development of the mortality rate during the days preceding
and following a Hot Day. As expected, the adverse health effects peak on the Hot Day itself.
Within three days following a Hot Day, the effect decreases strongly to below +2%, but is still

significantly greater than zero. As expected, during the days prior to a Hot Day, as well as after
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day three following a Hot Day, there are virtually zero remaining effects of the heat event@ This
can be interpreted as evidence against the harvesting hypothesis because one would expect that

harvesting would lead to a decrease in mortality rates in the days immediatetly after a heat event.
[Insert Figure (8 about here]

However, the results presented in Figure 8| may potentially suffer from omitted variable bias:
the temporal correlation of temperature and also pollution is significant. The plain correlation
coefficient between the maximum daily temperatures on a Hot Day and the following day is 0.6.
For ozone it is even higher, 0.7. More specifically, the average maximum temperature on a day
preceding a Hot Day is 28.9°C (84°F) and on a day following a Hot Day is 28.4°C (83 °F).
Consequently, maximum ozone levels on the days prior and subsequent to a Hot Day are also
highly elevated, between 129 and 127ug/m?. The underlying model displayed in Figure |8 does
not disentangle the health effects due to high temperatures and adverse pollution conditions during
the days surrounding a Hot Day. Nor does it take into account that the leads and lags are likely
to be Hot Days as well. Since we know that environmental conditions on the days preceding and
following a Hot Day are likely to lead to adverse health (and thus increases in hospitalizations and
mortality), it becomes clear that this impact factor works in opposition to potential harvesting

effects and may actually obscure it. Disentangling the two opposing forces is challenging.

Next, Figure [9] plots the coefficient estimates from interaction terms between Hot Day and
5-year age group dummies that have been added to the model@ It is easy and nice to see that
the hospitalizations on Hot Days are driven by people above 55, and in particular by the elderly
between 71 and 80 years of age@ This finding yields strong evidence in favor of the harvesting
hypothesis. It may be reconciled with the apparent refutation of a harvesting effect in Figure
with reference to the time frame: the four-day window in Figure [§| might have been too short to

identify a reversal of mortality rates. Thus we now turn to a more long-term perspective.
[Insert Figure [9] about here]

Finally, a sound test for the empirical relevance of the harvesting hypothesis is to aggregate
data at the year-county level. Using this method, one can test whether the occurrence of one

additional Hot Day has a significant impact on the annual mortality and hospital admission

19 The according graph for hospitalizations looks very similar and is available upon request.

20 The results here are for the Unconditional Approach I but are almost identical for the Conditional Approach
II.

21 The plain Hot Day coefficient estimate is of magnitude 0.16 (i.e. 0.3% of the mean) and not statistically
different from zero. 34



rate. In other words: If it were true that heat events triggered persistent adverse health effects
that would not have occurred in the counterfactual state, then an additional Hot Day should
also significantly elevate the annual mortality and hospitalization rate, not only the daily one.
However, due to data limitations and power issues, researchers often cannot implement this test
since one obviously needs enough years of observation with enough variation in the annual number
of Hot Days. In addition, the number of regional units of observations—in this case counties—
should be sufficiently large. Our data and setting fulfills all of these conditions. Column (5) in
Panel B of Table [4] reports results from the test and uses data aggregated at the county-year
level, resulting in 4,356 observations. The results show a coefficient of size 0.03—i.e. reduced
by a factor of 100(!) as compared to the standard estimate in column (1) of Table [Il However,
this coefficient is statistically significant at the five percent level. It translates into 25 additional
hospital admissions due to one additional Hot Day per year. This means that we can assume
that these 25 people would not have been hospitalized during that year in the absence of one Hot
Day. Obviously, this finding delivers strong support for the harvesting hypothesis. The finding
is reinforced by the mortality data which yields a highly significant coefficient of 0.0024. Again,
the yearly coefficient is more than 100 times smaller than the daily one, and translates into only

minor annual mortality increases of 0.08% or 2 people per additional Hot Day in Germany.

5.2 Monetizing the Health Loss of One Additional Hot Day

As a last step, this paper seeks to assess and monetize the total health effects triggered by extreme
weather conditions and to derive implications from climate change. Although this exercise requires
many assumptions, we believe that it is an important first step to conduct an evidence-based cost-

benefit analyses of climate change regulation.

Given the complex nature of climate change, it is not surprising that projections are relatively
vague. According to the [Stern| (2006) report, over the past 100 years, the world’s temperature
increased by 0.74° C (1.33 " F) and will further increase by between 1.8 and 4 ° C in the next 100
years. However, concrete statements are hard to find in this report. The INTERGOVERNMENTAL
PANEL ON CLIMATE CHANGE (IPCC) states that it is very likely that hot extremes, heat waves
and heavy precipitation events will continue to become more frequent (Intergovernmental Panel
on Climate Change (IPCC)| (2007)), p. 46, 53). The underlying state-of-the art global climate
model of the INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) is the third version of
the so-called Hadley Centre Coupled Model (HadCM3) (Pope et al., [2000). These climate models

are_extremely complex and require many nndmél%/ing assumptions and scenarios. |Deschénes and



Greenstone (2011)) make use of the HadCM3 model and the “business-as-usual” scenario to predict
the change in the number of Hot Days for 2070 to 2099 relative to 1968 to 2002 and different US
regionsF_Z] For the region whose climate comes closest to Germany’s, New England, [Deschénes
and Greenstone (2011]) estimate a 20% increase in the number of Hot Days. Hiibler et al.| (2008)
make use of the Regional Climate Model REMO and predict “two to five times as many hot days

[for Germany from 2071 to 2100 relative to 1971 to 2000]” (p. 383).

Given the difficulty and inherent uncertainty of making such long-term predictions (Heal and
Millner, 2013), for the following reasons, the remainder of the paper focuses on the monetized
health effects of one additional Hot Day: (i) Additional Hot Days are extremely plausible climate
change predictions and are always referred to in predictions of climate change models. (ii) One
additional Hot Day is an intuitively plausible concept. The monetized health effects can be easily
adapted to varying climate change predictions. (iii) One additional Hot Day represents an increase
of about 14% in the total number ofHot Days, which is very much in line with the Deschénes and
Greenstone (2011) prediction for New England using HadCM3. (iv) Finally, we abstain from
estimating the impact of fewer Cold Days for two reasons: First, the empirical models do not
yield strong evidence for the notion that extreme cold significantly affects population health in
Germany. Second, climate change projections concerning Cold Days are not unambiguous. On
the one hand, the Intergovernmental Panel on Climate Change (IPCC)| (2007) projects that snow
cover will contract (globally) in the future. On the other hand, loss of arctic sea ice has been
linked to the recent extreme cold weather in North America and Europe (Liu et al., 2012). The
latter finding suggests that climate change would lead to both more heat and cold events in the

mid-latitudes.

Table [5| summarizes the results from the empirical models and calculates the total health costs
of one Hot Day under competing assumptions. The basis for these calculations is Table [I| and
equivalent tables using the dependent variables Hospital Days and Hospital Death reported in
Appendix The health effects that we monetize consist of (i) hospital days due to a Hot Day,
(ii) death after a hospital stay due to a Hot Day, (iii) immediate death due to a Hot Day—in
accordance with the dependent variables (see Table and . Table [5| presents the results
using estimates obtained from three main models: Approach I, Approach II on the day-county
level, and the approach outlined in column (5) of Table 4, which aggregates at the year county

level, completely internalizing the harvesting effect.

The first three columns of Table [5| show results that evaluate the economic value of hospital

22 Hot Days are in this case defined as days with a mean daily temperature above 90 ° F.
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days that are triggered by one additional Hot Day. Column (1) shows results where we simply
multiply the number of triggered hospital days by the average health care costs of one hospital
day in Germany, which is €500 (German Federal Statistical Office, 2013b]). Column (2) shows
the value of the Hot Day-induced loss in labor productivity by multiplying the rough share of the
working population, 50%, by the number of hospital days and the average daily gross wage in 2012,
including employer-mandated benefits: € 150 (German Federal Statistical Officel,2013a). Columns
(3) and (4) show results where we convert the number of hospital days into Quality-Adjusted Life
Years (QALYs) by assuming that 365 hospital days equal a loss of one QALY (column (3)) and
half a QALY (column (4)). We evaluate one QALY with € 100,000 ($130,000) (Shiroiwa et al.,
2010; |[Kniesner et al., [2010; Robinson et al., 2013). Note that alternative assumptions about the

value of a QALY do not significantly alter the main findings below.
[Insert Table [5| about here]

Column (5) shows results that assess the value of the total number of deaths, which is the sum of
deaths after a hospital stay as well as immediate deaths. Again, one QALY is evaluated at a value
of €100,000. Results in the first two rows are derived from the two approaches that use the data
at the day-county level and that ignore harvesting, we assume that people who died would have
lived another calendar year absent the heat event. For the third approach—results displayed in
the third row—which aggregates at the year-county level and accounts for harvesting, we assume

that people who died would have lived another 30 years@

As can be seen in the final two columns: (i) the upper and lower bound QALY assumptions
barely affect the estimates (and neither do varying assumptions about their value). (ii) The
Unconditional Approach I yields the largest monetized health loss estimates and the approach
that aggregates at the year-county level, and thus accounts for harvesting, yields the lowest
monetized health loss. (iii) All estimates are relatively close and relatively small in size. The
estimated monetized losses range from €6m to €43m per Hot Day for an entire nation with a
GDP of €2.5 trillion and 82 million residents. The according values for the US would lie between
$30m and $212m. The values equal between € 0.07 ($0.10) and € 0.52 ($0.68) per resident@ (iv)
Assuming that climate change leads to a permanent increase of one additional Hot Day per year
and taking the largest annual loss estimate of € 43m, the nominal health-related welfare loss over

one life cycle, i.e., 80 years, would accumulate to € 3.4bn for Germany. Applying a discount rate

23 30 years is roughly the difference between the average current age of Germans and their life expectancy.
Alternative assumptions do not alter the main findings.
24 Assuming an exchange rate of 1.3 and that the US él%s 311/82=3.8 times as many residents.



of 2.5% reduces this sum to €470m or about €6 ($8) per resident. The according values for the

US would be $16.8bn and $2.3bn, respectively.

Finally, it should be stressed that these back-of-the-envelope calculations solely consider the
health-related costs of one additional Hot Day. They also ignore any health effects that do not
manifest in immediate hospital admissions or death. We also abstract away from costs associated
with health-related avoidance behavior, as well as from any health effects stemming from potential
climate change-related increases in flooding, hurricanes, and tornados. As a comparison, the
second costliest hurricane in US history—Hurricane Sandy—is estimated to have cost 72 human
lives in the US, most of whom would not have died absent the hurricane (Blake et al., 2012).
Assuming that these humans would have lived another 30 years, the monetized mortality-loss of
Sandy would be $280m or about $1 per US resident. The total loss is an estimated $50bn, the

large majority of which is attributed to property damage.

6 Conclusion

Around the world, climate change—with its potentially adverse effects on mankind—and the
question of appropriate regulatory measures are heavily debated. The issue will continue to be
at the top of policy agendas. To put policymakers into a position to be able to seriously evaluate
and balance costs and benefits of climate change and according regulatory efforts, scientists have

to provide state-of-the art empirical analyses and cost projections.

This paper assesses more comprehensively than any previous paper the adverse population
health effects of extreme temperatures and pollution. Weather and pollution are inherently linked.
Thus it is necessary to consider many high quality measures of both. At the day-county level,
we link an extensive set of administrative weather and pollution measures from more than 2,000
ambient monitors obtained over a time period of 10 years to two register datasets: (i) a mortality
census comprising all deaths on German territory from 1999 to 2008, and(ii) a hospital census
of all admissions from 1999 to 2008. All databases together allow us to comprehensively analyze
the short-term, immediate, health effects of weather and pollution and to draw conclusions of the

implications of climate change for population health.

This study makes the following important contributions: First, in line with the existing liter-
ature, it finds that extreme heat triggers significant increases in adverse health events that lead
to hospital stays or deaths. The length of a heat wave determines which types of diseases are

primarily triggered. For example, infectious and metabolic hospital admissions strongly increase
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with the length of a heat event. However, the admission rate for other disease categories, e.g.,
cardiovascular or neoplasmic diseases, are front-loaded and tend to occur at the beginning of heat
events. Thus the average impact of a Hot Day—a day with maximum temperatures above 30 ° C
(86 ° F)—on hospital admissions is about 5% and remains relatively stable over time. A Hot Day
also leads to a 10% increase in the overall mortality rate. Again, as for hospitalizations, the
heat-related causes of death vary with the length of the heat event, e.g., metabolic and infectious
deaths are not affected at the beginning of heat events; ongoing extreme heat particularly boosts

respiratory and infectious deaths.

Second, we do not find empirical evidence that extreme cold significantly affects population
health. All estimated effects are very small or even negative. The latter applies to the impact of
cold waves on hospital admissions and is very likely an artifact of the associated bad outdoor and

driving conditions that may prevent some hospital admissions.

Third, pollution levels above EU alert thresholds are significantly associated with both in-
creased hospitalizations and deaths. However, this only holds when ignoring simultaneous weather
conditions and other pollutants that may also drive adverse health effects. Climate remains a
poorly understood, complex system, but it is well known that certain climatic conditions serve
as input factors for the formation of others. For example, ozone is an oxidant and the chemical
product of CO and NO, under the influence of high temperatures and sunshine. This explains
why these climatic factors are correlated. When one disentangles and controls for these simulta-
neous climatic factors, the impact of a single pollutant via elevated ambient concentration levels
converges to zero. This is in line with findings from medical scientists and epidemiologists who
showed in laboratory experiments that surprisingly high pollution levels of single pollutants are
required before significant adverse health effects could be detected in humans. These and the
findings from this study suggest that the real-life adverse health effects of pollutants mostly stem
from a combination of several adverse climatic factors and elevated pollutants that generally pre-
vail on days with high ambient air pollution. Thus, high pollution levels of single pollutants can
also be interpreted as general indicators of adverse outdoor environmental conditions. However,
since—to date—regulators around the world only regulate “unconditional” pollution levels and do
not consider contemporaneous climatic conditions or implement action plans accordingly, we see
the unconditional effects as the relevant policy parameters of interest. When ambient pollution
levels of O3, NOy and P Mg increase above the current EU thresholds, which happens on 10% of
all days in Germany, hospitalizations and deaths clearly and significantly increase by between 1

and 9%. This strongly suggests that lower EU pollution alert thresholds would be beneficial for
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population health and would save lives—at least to the extent that lower thresholds actually lead
to lower pollution. For example, one day with ozone levels above 120 pg/m3—a value very similar
and regularly exceeded for both the US and the EU—would lead to 1.3 fewer deaths per 1 million
residents. In the US, NOs and PMj( regulatory thresholds as well as actual concentration levels
are two to three times higher than in the EU (Environmental Protection Agency (EPA), 2011,
2013). To the extend that our findings are transferable to the US, tightening the regulation to
EU standards and enforcing it strictly could translate into 38 (NO2) and 74 (P M) fewer deaths
per 100 million residents and avoided high pollution day. Obviously, the same applies to a stricter
enforcement of the EU regulation, which has been violated in more than 10% of all German day

observations.

Fourth, in general, all findings differ significantly in size depending on whether one considers
a rich set of simultaneous weather and pollution conditions in addition to the temperature or
pollution variable of interest. For example, the adverse health effects of a Hot Day decrease
by factors of two or more when comprehensively controlling for all contemporaneous climatic

conditions like high ozone or particular matter concentrations that typically prevail on Hot Days.

Fifth, we apply several methods to assess the validity of the harvesting hypothesis according
to which mostly older people die or are admitted to hospitals during heat events—and that those
people would have died or would have been admitted absent the heat event. We provide strong
support in favor of the harvesting hypothesis by (i) looking at the evolution of mortality and
admission rates before and after heat events, (ii) looking at the age structure of those admitted on
Hot Days and finally, and most convincingly, (iii) exploiting the richness of the data by aggregating
it at the year-county level and using annual variation in the number of Hot Days as the identifying
variation. If one applies the latter test that accounts for harvesting comprehensively at the annual
level, the basic heat-health relationship remains robust and highly significant, but the strength of
the dose-response function is reduced by the factor 100. This finding strongly supports the view
that the adverse health effects of heat we study are overwhelmingly temporary phenomena with

little long-lasting impact on population health.

Finally, we monetize the health effects of one additional Hot Day—a very concrete and plausi-
ble prediction of climate change. We provide the results for three main approaches: (a) estimates
obtained at the day-county level, which ignore contemporaneous climatic conditions and harvest-
ing, (b) estimates at the day-county level that consider contemporaneous climatic conditions, but
ignore harvesting, and (b) the year-county level estimates, which ignore contemporaneous climatic

conditions, but account for harvesting. The totiloestimated health loss of one Hot Day represents



a monetary welfare loss of between € 6m and €43m for the whole of Germany ($30m to $212m
for the US)—or up to €0.52 ($0.68) per resident. The size of the overall loss decreases as we
move from approach (a) to (¢). Whether one considers contemporaneous environmental condi-
tions or not affects the results by a factor of two. Even more important is whether one considers

harvesting: consideration of the harvesting phenomenon affects results by a factor of six.

As alast point, we would like to stress the limitations of this study. First of all, this paper solely
studies the health effects of extreme temperature and pollution. Second, it does not consider health
effects that lead to ambulatory doctor visits or no treatments at all. However, our calculations
demonstrate that mild health effects do not seem to matter a lot when it comes to the overall
monetized health effects. Moreover, a very large share of the serious health effects should be
captured by this study. One important exception may be fetal health effects which may have
long-lasting and expensive impacts (Currie et al., 2013). We acknowledge that we do not consider
adverse health effects of avoidance behavior in the estimates but, at the same time, this omission
should not significantly impact the central findings of this study, which incorporates avoidance
behavior in its estimatesﬁ More importantly, to the extend that climate change leads to an
increase in floods, tornadoes, and hurricanes, we underestimate the total health effects. However,
in the time period from 1993 to 2006, the average total number of deaths from all these natural
disasters combined was 273 in the US (Goklany, 2009). Even if 20% of these incidences were
triggered by climate change, the overall impact on the total cost estimates would be relatively
moderate. Lastly, this study solely focusses on short-term adverse health effects of extreme
climatic conditions. It entirely disregards any long-term effects that extreme temperatures or
high pollution concentrations may have on health (cf. van den Berg, [2006; (Currie and Almond,

2011} |Zivin and Neidell, 2013; |Currie et al.l 2013).

We see this study as a first step to better assess climate change-related social costs. More
studies on other regions and other outcome measures are instrumental for a better understanding

of how weather, pollution and human health interact.
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Figure 1: Distribution of Official German Ambient Weather and Pollution Monitors
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Figure 2: (a) Boxplot of Mean Temperature Over Month and (b) Temperature Variation Over 10 Years
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Figure 3: Distributions of Max. and Min. Temperatures and Number of Hot and Cold Days

Distribution of (i) max. temperature per county-day obs. (black) and Distribution of (i) min. temperature per county-day obs. (dark blue) and
(ii) # of Hot Days (max. temp. >30°C [86°F]) per county and year (red) (ii) # of Cold Days (min. temp. <-10°C [14°F]) per county and year (light blue
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Figure 4: Distribution of Ozone (O3) Concentration and Non-Compliance Days: Identifying Variation

Distribution of (i) max. O3 concentration per couny-day obs. (black) and
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Figure 5: Nonparametric Relationship Between Temperature, Pollution and Hospitalizations
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Figure 6: Semiparametric Relationship Between Temperature, Pollution and Hospital Amissions Net of
Seasonal and County Effects (Unconditional Approach I, equation )

Heat Effects on Hospital Admissions Cold Effects on Hospital Admissions
7 2
B
E 1
= 5 — .
c I ® 5
‘w 4 - E X A -
g ol . (2 28\sE
£° S HE E-ENE A%
i WAL, T RN, £ .
H 0 - T T 3 .u' 'E
T m -3
1 oS e B SO P2 B
- T © ®'.m m &
5 B E E SEyE B -4
-3 .54
maximum daily temperature *>X"C minimum daily temperature <X"C
NO2 Effects on Hospital Admissions PM10 Effects on Hospital Admissions
20 A g
8
15 7
P P
ugl,m °g', 5
5° 5 3
E -E 2 Bt
0
E E o
5 0 S
10 -2 — - — - S —
NO2 concentration in pg/m3 PM10 concentration in pg/m3

Figure 7: Effect of Heat on Cause-Specific Hospitalizations and Mortality (Conditional Approach II,

equation )
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Figure 8: Mortality Rates 4 Days Before and After a Hot Day Net of Seasonal and County Effects

(Unconditional Approach I, equation (3]))
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Figure 9: Age Structure of Hospital Admissions on Hot Days: Plotted Interaction Terms Between Hot

Day and Age Groups (Unconditional Approach I, equation )
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Table 1: The Impact of Extreme Temperature on Health: Conditional and Unconditional on Contemporaneous Pollution and Weather Conditions

Panel A: Hospitalizations (1) (2) (3) (4) (5)
Hot Day 3.1063*** 1.4075%**
(0.1037) (0.1389)
Heat Wave Day 3.5085%** 0.5781%*
(0.2261) (0.2559)
Cold Day -1.2093%** 0.7235%**
(0.1271) (0.1899)
Cold Wave Day -4.4559%** -5.5656***
(0.3533) (0.5137)
change in % +5.4% +6.1% -2.1% -T1.7%
N 1,590,454 1,590,454 1,590,454 1,590,454 1,429,928
R? 0.4030 0.4028 0.4028 0.4030 0.4030

Panel B: Mortality

Hot Day 0.2939%** 0.05069***
(0.0098) (0.0114)
Heat Wave Day (>3 Hot Days) 0.5935%** 0.3476%**
(0.0308) (0.0311)
Cold Day 0.0246* -0.0118
(0.0130) (0.0167)
Cold Wave Day (>3 Cold Days) 0.0455 0.0223
(0.0330) (0.0343)
change in % +9.8% +19.8% +0.8% +1.5%
N 1,518,000 1,518,000 1,518,000 1,518,000 1,364,921
R? 0.0172 0.0170 0.0169 0.0166 0.0177
County, week, & month-year fixed effects yes yes yes yes yes
Age, gender, county & hospital controls yes yes yes yes yes
7 continuous weather measures + 15 interactions no no no no yes
5 continuous pollution measures + 5 quadratic + 5 cubic no no no no yes
+ 10 interaction terms
3 pollution EU Non-Compliance Indicators (O3, NO2, PMig) no no no no yes
25 interaction terms weather & pollution no no no no yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Data sources are discussed in Section Iz] All specifications estimate the model
in equation by OLS. Each column in each panel represents one model. Models only differ by the sets of covariates included as indicated. In Panel A, the dependent variable
is the daily incidence of hospital admissions per 100,000 population at the county level (mean: 57.99, see Appendix A). In Panel B, the dependent variable is the daily mortality
rate per 100,000 population at the county level (mean: 2.99, see Appendix B). For example, according to column (1) in Panel A, a Hot Day—defined as the max. temperature
exceeding 30 ° C (86 ° F)—triggers 3.1 additional hospital admissions per 100,000 pop. This represents an increase by 5.4% and translates into 2,542 additional admissions for the
whole of Germany with its 82 million inhabitants, or roughly 1 additional daily admission per hospital. As shown in Table about 2% of all days are Hot Days in Germany,
between 7 and 8 per year. Columns (1) to (4) show the Unconditional Approach, where the regressor of interest absorbs the effects of all contemporaneous weather and pollution
conditions, whereas column (5) shows the Conditional Approach that nets out all contemporaneous weather and pollution conditions. Weather conditions are specified and defined
as explained in Section |5|and Appendix C. Column (5) has fewer observations since PM1o data for 2000 is not available.




Table 2: The Impact of High Pollution Levels (“EU Non-Compliance Days”) on Health: Conditional and Unconditional on Contemporaneous Weather Conditions
and Other Pollutants

Panel A: Hospitalizations (1) (2) (3) (4)
NO2 EU Non-Compliance Day 5.0272%** 0.5595***
(0.1230) (0.1599)
Os EU Non-Compliance Day 0.4064*** -1.6547*%*
(0.0649) (0.1241)
PMio EU Non-Compliance Day 0.6842%** 0.2725
(0.0838) (0.1723)
change in % +8.7% +0.7% +1.2%
N 1,590,454 1,590,454 1,590,454 1,429,928
R? 0.4030 0.4028 0.4028 0.4664

Panel B: Mortality

NOy EU Non-Compliance Day 0.0375%** 0.0083
(0.0041) (0.0068)
O3 EU Non-Compliance Day 0.1348%*** -0.006
(0.0051) (0.0069)
PMio EU Non-Compliance Day 0.0741%%* 0.0039
(0.0087) (0.0148)
change in % +1.3% +4.5% +2.5%
N 1,518,000 1,518,000 1,518,000 1,364,921
R? 0.0166 0.0171 0.0166 0.0486
County, week, & month-year fixed effects yes yes yes yes
Age, gender, county & hospital controls yes yes yes yes
7 continuous weather measures + 15 interactions no no no yes
5 continuous pollution measures + 5 quadratic + 5 cubic no no no yes
+ 10 interaction terms
4 extreme temp. indicators (Hot Day, Heat Wave, Cold Day, Cold Wave) no no no yes
25 interaction terms weather & pollution no no no yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Data sources are discussed in Section IZI All specifications
estimate the model in equation by OLS. Each column in each panel represents one model. Models only differ by the sets of covariates included as indicated.
In Panel A, the dependent variable is the daily incidence of hospital admissions per 100,000 population at the county level (mean: 57.99, see Appendix A). In
Panel B, the dependent variable is the daily mortality rate per 100,000 population at the county level (mean: 2.99, see Appendix B). For example, according to
column (1) in Panel B, a NO2 EU Non-Compliance Day—defined as a day with the average NO2 level exceeding the EU alert threshold of 40 ug/mS—triggers
0.0375 additional deaths per 100,000 pop. This represents an increase by 1.3% and translates into 31 additional deaths for the whole of Germany. As shown in
Table about 12% of all days are NO2 EU Non-Compliance Days in Germany, 44 per year. Columns (1) to (3) show the Unconditional Approach, where the
regressor of interest absorbs the effects of all contemporaneous weather and pollution conditions, whereas column (4) shows the Conditional Approach that nets
out all contemporaneous weather and pollution conditions. Pollution conditions are specified and defined as explained in Section and Appendix D. Column (4)
has fewer observations since PM1g data for 2000 is not available.




Table 3: The Impact of Extreme Temperature on Health by Diagnoses: Conditional on Weather Conditions and Other Pollutants

) ) @) @ ®) ©)

Panel A: Hospitalizations all causes heart respiratory infections metabolism neoplasm

Hot Day 1.4075%** 0.1680%** 0.0946%** -0.0195%* 0.0954%** 0.3805%**
(0.1389) (0.0275) (0.0164) (0.0093) (0.0110) (0.0276)

Heat Wave Day (>3 Hot Days) 0.5781%* 0.0548 0.1061%** 0.1403%** 0.1960%** -0.0825
(0.2559) (0.0527) (0.0342) (0.0218) (0.2610) (0.0553)

Cold Day 0.7235%** 0.1823%** 0.0588%** 0.0244** -0.0027 0.0435
(0.1899) (0.0369) (0.0224) (0.0117) (0.0134) (0.0394)

Cold Wave Day (>3 Cold Days) -5.5656%** -0.8324%%* -0.2908%** -0.0338 -0.2035%** -1.0375%**
(0.5137) (0.0998) (0.0589) (0.0253) (0.0304) (0.1066)

share of all causes 100% 15.7% 6.2% 2.3% 2.8% 11.3%

N 1,429,928 1,429,928 1,429,928 1,429,928 1,429,928 1,429,928

R? 0.4030 0.3869 0.1967 0.0691 0.1733 0.3958

Panel B: Mortality all causes heart respiratory infections metabolism neoplasm

Hot Day 0.0507*** 0.0233%** 0.0085%** 0.0008 0.0009 0.0143**
(0.0114) (0.0079) (0.0036) (0.0014) (0.0023) (0.0062)

Heat Wave Day (>3 Hot Days) 0.3476%** 0.1248%** 0.0708%** 0.0227%** 0.0165%** 0.0467***
(0.0311) (0.0193) (0.0091) (0.0039) (0.0053) (0.0138)

Cold Day -0.0118 -0.0106 -0.0042 0.0011 0.0041 0.0017
(0.0167) (0.0124) (0.0044) (0.0021) (0.0028) (0.0085)

Cold Wave Day (>3 Cold Days) 0.0223 0.0033 -0.0007 0.0023 0.0097 -0.0152
(0.0343) (0.0264) (0.0106) (0.0043) (0.0074) (0.0177)

share of all causes 100% 46.3% 6.4% 1.3% 2.4% 25.7%

N 1,364,921 1,364,921 1,364,921 1,364,921 1,364,921 1,364,921

R? 0.0177 0.0486 0.0139 0.0023 0.0028 0.0426

County, week, & month-year fixed effects yes yes yes yes yes yes

Age, gender, county & hospital ind. yes yes yes yes yes yes

7 cont. weather ind. + 15 interactions yes yes yes yes yes yes

5 cont. pollution ind. + 5 quadratic + 5 cubic  yes yes yes yes yes yes

+ 10 interaction terms

3 pollution EU Non-Compliance Indicators yes yes yes yes yes yes

25 interactions weather & pollution yes yes yes yes yes yes

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level. Data sources are discussed in Section All specifications estimate the
model in equation by OLS. Each column in each panel represents the Conditional Approach that nets out all contemporaneous weather and pollution conditions. In
Panel A, the dependent variable is the daily incidence of hospital admissions per 100,000 population at the county level (mean: 57.99, see Appendix A). In Panel B, the
dependent variable is the daily mortality rate per 100,000 population at the county level (mean: 2.99, see Appendix B). For example, according to column (1) in Panel A, a
Hot Day—defined as the max. temperature exceeding 30 ° C (86 ° F)—triggers 1.4 additional hospital admissions per 100,000 pop. This represents an increase by 2.4% and

translates into 1,148 additional admissions for the whole of Germany. Weather conditions are specified and defined as explained in Section and Appendix C.




Table 4: The Impact of Extreme Heat on Normalized Hospitalizations: Robustness Checks

cluster linear & linear & linear & quadratic
at state level 2-way cluster quadratic quadratic state county time
Panel A (1) (2) time trend(3) time trends (4) trends [2006-2008](5)
Hot Day 3.1063%** 3.1063*** 3.1063** 2.7266%** 1.9695***
(0.1918) (0.1918) (0.1037) (0.0954) (0.1942)
change in % +5.4% +5.4% +5.4% +4.7% +3.4%
N 1,590,454 1,590,454 1,590,454 1,590,454 1,590,454
aggregated
X (temp.>32° C) x weekend Xwarm region xcold region at annual level
Panel B (1) (2) (3) (4) (5)
Hot Day x[column header]  0.6848%** -0.1238 -0.9710%** 0.5438**
(0.0519) (0.1671) (0.1642) (0.2429)
Hot Day 1.8235%** 2.3651%%* 3.4272%%* 3.0156%** 0.0298**
(0.1026) (0.0944) (0.1305) (0.1103) (0.0133)
max. daily temp. 0.1737%**
(0.0043)
Weekend -31.5713%%*
(0.2838)
N 1,590,454 1,590,454 1,590,454 1,590,454 4,356

* p<0.1, ** p<0.05, *** p<0.01; standard errors in parentheses are clustered at the county level except for columns (1) of Panel A which clusters
at the state and column (2) of Panel A which clusters at the county and day level (2-way cluster). Data sources are discussed in Section [2| Each
column in each panel represents one Unconditional Approach model, i.e., the model does not control for other contemporaneous weather and pollution
conditions. The dependent variable is always the hospitalization rate (mean: 57.99, see Table ; the reference estimate is the one in Column (1)
of Table|l| All specifications estimate a model similar to equation by OLS. More precisely, in Panel A, column (3) adds a nation-wide linear and
quadratic time trend. Column (4) adds state-level time trends and column (5) adds county-level time trends (for 2006-2008 only because of computer
memory constraints). The first column in Panel B adds a continuous measure for the maximum daily temperature as well as an interaction term
between the maximum daily temperature and the average maximum Hot Day temperature (31.9° C (89.4° F)). Thus, the interaction term estimates
the marginal effect of one temperature degree above 31.9 ° C. Column (2) of Panel B adds a weekend dummy and interacts it with Hot Day. Column
(3) and (4) add a dummy for warm region (mean annual county-level temperature falls into the highest temperature quartile for Germany (>10.2° C
(50 °F))) and cold region (mean annual temperature below the lowest temperature quartile (<9.0° C (48 “F))) as well as their interactions with Hot
Day. Column (5) in Panel B aggregates the data at the annual county level and estimates the impact of one additional Hot Day per year.




Table 5: The Monetized Health Effects of One Additional Hot Day

Hospitalizations Mortality Total
Health Care Lost Lost QALYs Lost QALYs remaining life (1)-(3) (1)+(2)
Expenditures Labor (upper bound) (lower bound) years (5) +(5) +(4)4+(5)
€3] (2 (3) (4
Unconditional Approach, 19,000 x€ 500 0.5%19,000x€150  (19,000/365)x€ 100,000x1.0  (19,000/365)x€ 100,000x0.5  270x 1 x€ 100,000
daily county level, (Approach I) =€9.5m =€ 1.4m =€5.2m =€2.6m =€27m ~€43.1m ~€40.5m
Conditional Approach, 8,000x€ 500 0.5x8,000x€ 150 (8,000/365) x€ 100,000x 1.0 (8,000/365) x<€ 100,000%0.5 78x1x€ 100,000
daily county level, (Approach II) =€4.0m =€0.6m =€2.2m =€1.1m =€7.8m ~€ 14.6m ~€13.5m
Unconditional Approach, 180x<€ 500 0.5x180x<€ 150 (180/365) x<€ 100,000x 1.0 (180/365) x<€ 100,000%0.5 2x30x<€ 100,000
annual county level =€ 90,000 =€ 13,000 =€ 50,000 = €25,000 =€ 6m ~€6.2m ~€6.1m

The table shows the health-related costs associated with one Hot Day. The first row is based on the Unconditional Approach I that does not consider additional weather or pollution
control variables other than Hot Day. The underlying models that estimate how many hospital days are triggered by a Hot Day are similar to equation but use Hospital Days
as dependent variable (see Appendix . The second row is based on the Conditional Approach II and a saturated model that simultaneously considers a rich set of weather and
pollution controls. These first two approaches are based on daily county-level observations and include potential harvesting effects. The third row considers harvesting and is based
on aggregated annual county-level data (see column (5) in Panel B of Table . Column (1) makes use of the fact that an average hospital day in Germany is reimbursed with € 500.
Column (2) considers that the average daily wage in Germany is € 150. Columns (3) and (4) assume that 365 hospital days equal a loss of 1 and 0.5 QALYSs, respectively. One QALY
is evaluated with € 100,000. Column (5) assumes that the remaining life expectancy for those who die during heat events is 1 year for rows one and two (excluding harvesting) and 30
years for row three (including harvesting). We do not discount the monetized health-related loss in welfare. Under Approach I in the first row, a discount rate of 2.5% would reduce the
costs over 80 years from € 3.2bn to € 1.4bn or € 17 per resident. The table does not consider health issues that lead to outpatient treatments. Neither does it consider health-related

avoidance behavior costs or adverse health effects due to tornados, hurricanes, or floods.




Appendix A: Hospital Admission Census

The first register dataset is the Hospital Admission Census. It contains the universe of hospital
admissions from 1999 to 2008. This is a restricted access dataset provided by the GERMAN
FEDERAL STATISTICAL OFFICE (Statistische Amter des Bundes und der Lénder). We observe
every single of the more than 17 million annual hospital admissions. The data contain the following
information on the individual admission level:

e age in 18 age groups
(0-2 yrs., 3-5 yrs., 6-9 yrs., 10-14 yrs.,..., 60-64 yrs., 65-75 yrs., >75 yrs.)

e gender (binary indicator)

e county of residence [between 442 (1999) and 413 (2008) counties]
e day of admission

e length of stay (censored at 85 days)

e died in hospital (binary indicator)

e primary diagnosis (ICD-10, 3 digit)

e surgery needed (binary indicator)

e primary hospital department (43 categories)
e Fhospital beds (12 categories)

e hospital location (federal state level; 16 states)
e private hospital (binary indicator)

e hospital identifier

As described in Section [2.5, we normalize, aggregate, and merge this dataset with the other
datasets at the day-county level. As such, we obtain the following descriptive statistics for the
hospital admission data:
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Table A1l: Hospital Admission Census: Dependent Variables per 100,000 pop. (Daily County-Level,

1999-2008)
Variable Mean Std. Dev. N
All-cause hospitalization rate 57.99 25.71 1,590,454
Hospital days 488.87 267.21 1,590,454
Cardiovascular hospitalization rate  9.1116 4.9216 1,590,454
Cardiovascular hospital days 83.69 55.96 1,590,454
Cardiovascular deaths 0.4532 0.6423 1,590,454
Respiratory hospitalization rate 3.6013 2.5195 1,590,454
Respiratory hospital days 27.93 23.39 1,590,454
Respiratory deaths 0.1557 0.3685 1,590,454
Infectious hospitalization rate 1.3442 1.1759 1,590,454
Infectious hospital days 10.45 13.36 1,590,454
Infectious deaths 0.0509 0.2072 1,590,454
Neoplastic hospitalization rate 6.54 5.1076 1,590,454
Neoplastic hospital days 56.92 49.24 1,590,454
Neoplastic deaths 0.2812 0.5022 1,590,454
Metabolic hospitalization rate 1.6476 1.5454 1,590,454
Metabolic hospital days 15.48 18.39 1,590,454
Metabolic deaths 0.02534 0.1489 1,590,454

Source: GERMAN FEDERAL STATISTICAL OFFICE (Statistische Amter des Bundes
und der Lédnder). The German Hospital Admission Census includes the county of
residence and the day when the patient was hospitalized. The hospitalization rate
counts the daily incidence of hospitalizations per 100,000 pop. on the county level.
Hospital days is the sum of all hospital days that were triggered on a given day, i.e.,
it is the product of the hospitalization rate and the length of stay. Deaths counts the
number of hospital deaths per 100,000 pop. on the county level. Reference point is
always the day when the patient was hospitalized. The patient died sometime after
being admitted, but not necessarily on the day of admission. German data protection
laws prohibit us from reporting min. and max. values.
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Appendix B: Mortality Census

The second register dataset is the Mortality Census. It contains the universe of deaths on German
territory from 1999 to 2008. This is a restricted access dataset provided by the GERMAN FEDERAL
STATISTICAL OFFICE (Statistische Amter des Bundes und der Lénder). We observe all of the 0.8
million annual deaths. The data contain the following information at the individual admission
level:

e age in years

gender (binary indicator)

county of residence [between 442 (1999) and 413 (2008) counties|

day of death

e primary cause of death (ICD-10, 3 digit)

As described in Section [2.5, we normalize, aggregate, and merge this dataset with the other
datasets at the day-county level. As such, we obtain the following descriptive statistics.

Table B1: Mortality Census: Dependent Variables per 100,000 pop. (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. N
Mortality rate 2.9897 1.5229 1,518,000
Cardiovascular mortality rate  1.3839 1.0788 1,518,000
Respiratory mortality rate 0.1918 0.4039 1,518,000
Infectious mortality rate 0.0374 0.1749 1,518,000
Metabolic mortality rate 0.0973 0.2889 1,518,000
Neoplasmic mortality rate 0.7676 0.2889 1,518,000

Source: GERMAN FEDERAL STATISTICAL OFFICE (Statistische Amter des Bundes
und der Lander). The mortality statistic includes the county of residence and the day
of death. The mortality rate counts the daily mortality rate per 100,000 pop. at the
county level. German data protection laws prohibit us from reporting min. and max.
values.
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Appendix C: Official Weather Data

The third register dataset contains daily weather measures from up to 1,044 ambient weather
stations. The data are provided by the GERMAN METEOROLOGICAL SERVICE (Deutscher Wet-
terdienst (DWD)). It covers the years from 1999 to 2008. The following weather measures were
collected on a daily basis:

average temperature in * C [measured 2 m (6’7”) above ground)]
minimum temperature in ° C [measured 2 m (6’7”) above ground|

maximum temperature in ° C [measured 2 m (6°7”) above ground)]

total hours of sunshine

precipitation level in mm per day

average humidity in percent

average storm force

max. wind speed in km per hour (Beauford scale)
average cloud coverage in percent

vapor pressure in hectopascal (hPa)

min. air pressure in hectopascal (hPa) measured [5 cm (2 inches) above ground]

As described in Section in a first step, we interpolate the point measure into the county
space. Then we merge the weather dataset with the other datasets at the day-county level.

Figure 10: Scatter Matrix Illustrating Associations Between Temperature, Sunshine, and Precipitation
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Panel A of Table [CI] shows the descriptive statistics for the raw measures as collected by the
DWD. Figure [10]illustrates the associations between the temperature, the hours of sunshine and
the precipitation levels. Panel B contains the generated weather condition indicators, i.e., our

main variables of interest in the regression models.

Table C1: Weather Data (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. Min. Max. N
A. Raw Measures
Average temperature in *C 9.5573 7.3047 -19 30.6 1,590,454
(2 m (6’7”) above ground)
Minimum temperature in ° C 5.4671 6.4965 -25.01 23.8 1,590,454
(2m (6’77) above ground)
Maximum temperature in ° C 13.8912 8.5608 -14.1 39.07 1,590,454
(2m (6’77) above ground)
Total hours of sunshine 4.6252 4.2373 0 16.7 1,590,454
Precipitation level 2.2246 4.2154 0 144.98 1,590,454
Average humidity 78.3161 11.4307 10 100 1,590,454
Average cloud coverage 5.3128 2.1534 0 8.23 1,590,454
Average storm force 3.6065 2.0856 0 26.3 1,590,454
Max. wind speed 10.4964 4.4462 0 54 1,590,454
Vapor pressure 9.8876 3.9981 0.5 25.9 1,590,454
Min. air pressure 3.8456 6.5299 -29.01 22 1,590,454
(5 cm (2 inches) above ground)
B. Extreme Temperature Indicators
Hot Day (max temp. >30°C (86" F)) 0.0197 0.1389 0 1 1,590,454
Heat Wave Day (4'h¢ consecutive Hot Day) 0.0032 0.0568 0 1 1,590,454
Cold Day (min temp. <-10°C (86 " F)) 0.0124 0.1106 0 1 1,590,454
Cold Wave Day (4*"¢ consecutive Cold Days)  0.0018 0.0421 0 1 1,590,454

Source: GERMAN METEOROLOGICAL SERVICE (Deutscher Wetterdienst (DWD)). The information was recorded
on a daily basis by up to 1,044 ambient weather monitors that are distributed across the German counties (see
Figure 1). The number of weather stations varies from year to year. The weather indicators displayed cover the
years 1999 to 2008. As described in Section all point measures from the stations are interpolated into the
county space by means of deterministic inverse distance weighting (IDW). Level of analysis is the day xcounty
level. Hence, with exactly 400 counties in each year, we would obtain 400 x 365 x 10 = 1,460, 000 observations.

However, the number of counties varies across years from 442 (1999) to 413 (2008).
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Appendix D: Official Pollution Data

The fourth register dataset contains daily pollution measures from up to 1,314 ambient monitors.
The data are provided by the GERMAN FEDERAL ENVIRONMENTAL OFFICE (Umweltbundesamt
(UBA)). It covers the years from 1999 to 2008. Measures of the following pollutants have been
recorded on a daily basis:

average concentration of carbon monoxide (CO) in parts per million (ppm)
minimum concentration of carbon monoxide (CO) in ppm

maximum concentration of carbon monoxide (CO) in ppm

average concentration of ozone (O3) in micrograms per cubic meter of air (ug/m?)
minimum concentration of ozone (O3) in ug/m?

maximum concentration of ozone (O3) in ug/m3

average concentration of nitrogen dioxide (NOs) in ug/m?
minimum concentration of nitrogen dioxide (NOg) in ug/m3

maximum concentration of nitrogen dioxide (NO3) in ug/m3

average concentration of sulphur dioxide (SO2) in ug/m?

average concentration of particular matter (PMyg) in ug/m?3; since 2000

As described in Section [2.5] in a first step, we interpolate the point measure into the county space
via IDW. Then we merge the pollution dataset with the other datasets at the day-county level.
Panel A of Table shows the descriptive statistics for the raw measures. The next section
describes the chemical composition of the five pollutants, their health hazards, and discusses their
tempo-spatial variation. Panel B of Table contains the generated high pollution concentration
indicators. The thresholds are modelled after the alert thresholds of the European Union (see
Section and [European Environment Agency| (2012)).
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Table D1: Pollution Data (Daily County-Level, 1999-2008)

Variable Mean Std. Dev. Min. Max. N

A. Raw Measures

Average CO in ppm 0.4342 0.1794 0.0023 1.3083 1,594,154
Min. CO in ppm 0.2326 0.0911 0 0.6 1,594,154
Max. CO in ppm 0.8145 0.38 0.025 2.8 1,594,154
Average O3 in ug/m3 45.9786 22.0423 0.8612  135.79 1,594,154
Min. O3 in ug/m? 17.9888 13.8282 0 79.6 1,594,154
Max. O3 in ug/m? 73.7943 31.5263 1.1673  192.15 1,594,154
Average NOy in ug/m? 26.8907 10.6284 0.0278  80.3095 1,594,154
Min. NO; in pg/m? 12.6384 5.9959 0 39.5 1,594,154
Max. NOy in ug/m? 46.4607 16.3252 0.5 132.1 1,594,154
Average SO, in ug/m? 3.7256 1.6115 0.0654 12.5435 1,594,154
Average PMyo in pg/m3 24.3097  11.4625  2.0625 64.625 1,432,822

B. Pollution Non-Compliance Indicators

O3 non-compliance day (max level >120 pg/m3)  0.0929 0.2903 0 1 1,594,154
NO, non-compliance day (av. level >40 ug/m3) 0.1194 0.3243 0 1 1,594,154
PM; non-compliance day (av. level >50 ug/m3)  0.1278 0.3339 0 1 1,594,154

Source: GERMAN FEDERAL ENVIRONMENTAL OFFICE (Umweltbundesamt (UBA)). The information was
recorded on a daily basis by up to 1,317 ambient pollution monitors that are distributed across the German
counties (see Figure . The number of counties and weather stations vary from year to year. The pollution
measures displayed cover the years 1999 to 2008. As described in Section all point measures from the
stations are interpolated into the county space by means of deterministic inverse distance weighting (IDW).
Level of analysis is the dayxcounty level. Hence, with exactly 400 counties in each year, we would obtain
400 x 365 x 10 = 1,460,000 observations. However, as explained in Section the number of counties varies
across years from 442 (1999) to 413 (2008). CO stands for “carbon monoxide” and ppm for “parts per million.”
NO, stands for “nitrogen dioxide,” Ogz stands for “ozone,” SO5 stands for “sulphur dioxide,” and PM;g stands
for “particular matter.” ug/m? stands for micrograms per cubic meter of air. The high pollution concentration
“non-compliance” days are modelled after the alert thresholds of the European Union (European Environment
Agencyl, 2012) and Section

NO,, O3, CO, SOy, PM;j: Occurence, Health Hazards, and Varia-
tion across Space and Time

D1.2 Nitrogen Dioxide (NO,)

Nitrogen dioxide is a red-brown toxic gas that is formed by oxidation of nitrogen monoxide (NO).
NQOj;—describing the sum of NO and NOy—is a product of combustion processes under high
temperature that happen in automobile engines or fossil fuel power plants; it is also an important
intermediate in the chemical industry.

Since NO, is one main ingredient in the formation of O3 (see below) and highly correlated
with the other pollutants, isolating its single impact on human health is challenging. One purpose
of this study is to disentangle the health effects of the single pollutants from one another and
the weather conditions. Experts by the WHO and the EU warn that “epidemiological studies of
NO; exposure from outdoor air are limited in being able to separate these effects” (World Health
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Organization, (2003), p. 46; |European Environment Agency| (2012), p. 39). Evidence for negative

health effects mainly comes from indoor toxicological studies showing that NO, has a negative
effect on respiratory functions (cf. Ehrlich et al., [1977; Kerr et al., |1979; |Sandstrom et al., [1991;
Blomberg et al., [1999; Barck et al., 2002).

Figure 11: Nitrogen Dioxide (NOz) Variation Across Counties and Over Time

NO2

80
+

60

60

|
iy
T R 1 "'“m “Uh‘u W‘ ! \h‘),“ HH‘w oy

H NN R «Wu”"‘“w?

o

{rean) na2_mean
40

20
20

T T T T T
01jan1999 01jan2001 01jan20d02 01jan2005 01jan2007
ate

Figure 12: Association Between Nitrogen Dioxide (NO2) and Weather
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The NOy concentration is measured in ug/m?. The European Union (EU) applies a long-term
threshold of 40 pug/m? and an hourly alert threshold of 400 pg/m3. If exceeded for more than
three hours, authorities are required to implement short-term action plans (European Environment|
. The thresholds in the US are much larger—an annual average NOy concentration

64




of 107 pug/m? or a maximum daily hourly concentration of 203 ug/m? (Environmental Protection
Agency (EPA), [2013)).

Figure shows a boxplot of the mean daily NOs levels across German counties and over the
twelve months of a year (averaged over 10 years). There is some seasonal variation with lower NOo
levels during the summer month, but most striking is the huge variation within months across
counties. The average value over all years and counties is 27ug/m? and very similar to the actu-
ally measured values in the US, despite the more generous regulatory thresholds (Environmental
Protection Agency (EPA), 2011)).

Figure shows the mean, minimum, and maximum daily NO; levels over the time period
from 1999 to 2008. First, we observe a significant difference between minimum and maximum
daily values throughout the years. Second, there seems to exist a slightly increasing trend in NO»
levels over the 10-year period.

Figure 13: Distribution of Nitrogen Dioxide (NO3) Concentration and Non-Compliance Days:
Identifying Variation

Distribution of (i) max. NO2 concentration per couny-day obs. (black) and
(ii) # of non-compliance days with EU thresholds per county and year (red)
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Figure [12| reveals the relationship between INOsy and some of the weather indicators in Table
One observes a slightly negative correlation between NQOs, the mean temperature and the wind
speed. On the other hand, humidity levels of more than 80% seem to be positively correlated
with NOy. The is no correlation with hours of sunshine.

Figure is the equivalent to Figure [ for O3, which was discussed in Secion [2.4] Figure
shows that the variation in high concentrations of NOs has wide support across the German
counties—every single county exceeded the EU thresholds several times during the ten years
under consideration. The right upper corner of Figure ) shows the distributions of both
the continuous N O, measure as well as the binary non-compliance indicator. The left lower corner
(Figure ) shows that high NOy concentrations do not seem to be correlated with economic
activity at the annual county level, but rather with the maximum temperature (Figure )
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D1.3 Ground-Level Ozone (O3)

Ozone is an oxidant and may lead to respiratory hazards. It is called a “secondary pollutant” since
it is formed by various photochemical reactions between carbon monoxide (CO), nitrogen oxides
(NO;) and free oxygen molecules (O) (European Environment Agency, 2013). The ground-level
ozone concentration is measured in ug/m?. According to the European Union (EU), values below
100 pg/m?3 do not pose a threat to human health. Very high ozone concentrations of more than
240 pg/m?3 may lead to asthma, bronchitis, chest pain, coughing, throat irritation, or congestion,
but also to more severe conditions such as heart attacks or other cardiopulmonary problems (cf.
[Hackney et al.l 1975} [Lippmann| 1989 (Wright et al., [1990}; Devlin et al., [1997; Broeckaert et al.|
2000).

Figure 14: Ozone (O3) Variation Across Counties and Over Time
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In the EU, an hourly concentration of more than 180 ug/m? requires that the population is
officially informed by the national authorities. The health alert threshold requires the hourly
concentration to not exceed 240 pg/m3. The EU Air Quality Directive specifies that a daily
maximum 8-hour average of 120 pg/m?3 should not be exceeded by the member states to avoid
health hazards (European Environment Agency, |2012)). In the US, the according threshold is an
8 hour average concentration of 160 ug/m? (Environmental Protection Agency (EPA), 2013).

As shown in Table above, in Germany, the average ozone level is 45.98, but average daily
values vary from 0.86 to 135.79. Minimum daily values vary from 0 to 79.6, whereas maximum
daily county averages range between 1.17 and 192.15 ug/m?. In comparison, in the US in 2010,
the average ozone concentration was about 150 ug/m? and thus only slightly below the regulatory
threshold. A quarter of all sites measured above-threshold concentrations on at least four days of
the year (Environmental Protection Agency (EPA ), |[2011).

Figure shows the O3 variation across counties and over calendar months. First, there is
enormous variation in ozone levels across counties within months. Second, ozone levels increase
significantly over the summer months. This is due to the fact that ground-level ozone is highly
and positively correlated with both the temperature and the hours of sunshine and thus negatively
correlated with humidity (Figure. Over the time period from 1999 to 2008, both the variation
and the levels of ozone seem to have been stable (Figure [14D).

The equivalent to Figure [I3] for ozone is Figure @] which has been discussed in the main text
in Section 2.4

D1.4 Particular Matter (PMy)

Particular matter (PM) is a generic term and describes aerosol particles—or athmospheric
aerosol—which can be of different size and chemical composition. PMj( refers to particles with
a diameter of at most 10 micrometres. PM ma%Ghave a “natural” origin and stem from sea salt,



Figure 15: Association Between Ozone (O3z) and Weather
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dust, pollen or ash from volcanos. However, PM may also result from fuel combustion, e.g., burn-
ing of wood, domestic heating, road dust due to traffic, or power generation. Then it is typically
formed from oxidation and transformation of “primary” pollutants such as SOg or NOg
Environment Agency, 2012).

Health effects of PM are caused through lung inhalation, and physical as well as chemical
reactions with lung cells. A plenitude of epidemiological studies demonstrate a strong link between
PM exposure and cardiovascular mortality in particular (cf. Pope III et al.l [2002; Li et al., 2011)).
For example, Abbey et al.| (1999)) find a signficant impact of PMj on respiratory deaths as well
as lung cancer. However, studies that intend to measure the effects of long-term exposure to PM
suffer from various methodological challenges, such as selection into regions and a high permanent
correlation with other pollutants.

The EU short-term limit value is a 24 hour concentration of 50 ug/m3. Effective January
2005, this concentration ought not to be exceeded on more than 35 days per year. However,
various European cities regulary exceed that threshold (European Environment Agencyl 2012)).
The WHO sets the same daily air quality guideline value in addition to a maximum annual mean
value of 20 pg/m?3 and states: “The aim is to achieve the lowest concentration possible. As no
threshold for PM has been identified below which no damage to health is observed [...]” (World
Health Organization, |2011). The [Environmental Protection Agency (EPA)| (2013) defines the
PM; threshold as an 24 hour average concentration of 150 ug/m?, i.e., three times larger than
in Europe.

Table shows that the average daily PMig concentration is indeed relatively high in Ger-
many, namely 24.3 pug/m? and thus lies above the WHO annual guideline value. However, it is
twice as low as in the US. The maximum daily mean is 64.6 ug/m3. Nevertheless, plotting the

daily PMj( concentrations over a decade, it becomes clear that concentrations decreased between
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Figure 16: Distribution of Particular Matter (PM;jo) Concentration and Non-Compliance Days:
Identifying Variation
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1999 and 2008 (graph not shown). Interestingly, there are only very weak seasonal PM;q trends
(not shown). In the US, in 2010, the average measured PM;jy concentration is twice as high
as in Germany and about 60 ug/m3. Ten percent of all sites measure average concentrations
of more than 90 ug/m?, despite a 30% decrease in average national concentrations since 2001
(Environmental Protection Agency (EPA), 2011)).

Figure |16 is the equivalent to Figures [4| (for O3) and (for NOg) for PMjg. As for O3 and
NOsg, one sees that a large set of German counties contributes to the identifying variation in the
PMi¢ concentration. Between 1999 and 2008, all German counties exceeded the thresholds on
between 8 and 558 days per county, i.e., even the least PMg polluted county did not comply to
regulatory thresholds on 8 days within a decade. The bottom graphs of Figure [I6] also show that
high temperatures rather than GDP growth are correlated with high levels of particular matter.
As for high ozone levels, heat is an input factor for the formation process—through oxidation—of
this secondary pollutant (Arya, 1998; |World Health Organization, 2003} [European Environment
Agency, 2012). The relationship between daily PMjg levels and the daily mean temperature
is U-shaped with PM;q levels increasing strongly when temperatures exceed 20 ° C (68 “F). For
maximum daily temperatures above 20" C (68 " F), the correlation between the maximum daily
temperature and the maximum daily O3 concentration is 0.7, for the maximum daily NOs con-
centration it is 0.2, and for mean daily PMyy concentration it is 0.3. Hence, it is reasonable to
think of exogenous heat shocks triggering high pollution levels.

D1.5 Carbon Monoxide (CO)

Carbon monoxide is a colorless odorless gas that is toxic to humans in higher concentrations.
The typical concentration in the atmosphere is about 0.1 parts per million (ppm). Incomplete
burning of carbon-containing materials, such as smoke from fire, is one main source of high CO
concentrations. However, in industrialized countries, automobile fuel combustion is responsible
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for a large fraction of CO concentration in the air. CO concentrations of more than 100 ppm
are considered health damaging, although individual tolerance levels vary significantly (Stewart
et al.l [1970; |Anderson et al. [1973; [Penney, 2000; |Omaye, 2002; Mayr et al., [2005)).

CO decreases the blood oxygen transmission. According to the CENTERS FOR DISEASE PRE-
VENTION AND CONTROL (CDC), in the US, about 450 people die every year from “accidental,
non-fire related exposure to this toxic gas.” CO poisoning would require medical care for thou-
sands more (Centers for Disease Control and Prevention, [2012). Omaye, (2002) notes that CO
poising may be the main cause of more than 50% of all fatal poisonings in industrialized countries
and that many situations would remain un- or misreported. The EU and WHO 8-hour threshold
values are 10 pug/m?> (or 8.7 parts per million (ppm)) (European Environment Agency, 2012).
The US threshold is very similar and an 8-hour average concentration of 9 ppm (Environmental
Protection Agency (EPA), 2013). In 2010, the average actual concentration in the US was 2 ppm.

Table above shows that the daily mean ambient carbon monoxide (CO) concentration in
parts per million (ppm) is 0.43, ranging from 0.002 to 1.31. The daily mean minimum concentra-
tion is 0.23 and the maximum concentration is 0.81. The latter varies between 0.03 and 2.8. A
boxplot of daily CO levels shows the typical seasonal variation with lower CO levels during the
summer month. Over the last decade, average CO concentrations have slightly decreased, but the
standard deviation remains high.

Note that we do not generate binary “non-compliance” indicators for carbon monoxide, simply
because the EU alert threshold was never exceeded during the period of observation in Germany.

D1.6 Sulphur Dioxide (SO,)

Sulphur dioxide is a colorless toxic gas emitted by sulphur containing fuels when burned. Indus-
trial processes lead to SOg emissions as do domestic heating and transportation. For example,
coal contains sulphur and thus coal combustion releases SOs unless the sulphur components are
removed before the burning process. Oxidation of SO may lead to H250, and acid rain. SO, is
also a precursor for particular matter. While SOy is still one of the main air pollutants in devel-
oping countries, due to environmental regulation, SO2 emissions decreased significantly over the
last decades in industrialized countries (World Health Organization, 2000; European Environment
Agency, [2013)).

Epidemiological and experimental studies with small numbers of volunteers show that SOs
concentrations may primarily result in adverse respiratory health effects. It disrupts the ciliary
function, slows the ciliary transport of mucus and may lead to coughing, asthma and chronic
bronchitis. Moreover, for people with heart diseases and among vulnerable populations, SO2
shocks my lead to hospitalizations, premature birth, and deaths (Lawther et al., [1975; [Horstman
et al.l [1988; Shah and Balkhair, [2011)).

Natural SOs concentrations in rural areas are around 5 ug/m?. The EU threshold for daily
SOy concentrations is 125 pg/m3. The hourly alert threshold is 500 pg/m?® and action plans
have to be implemented when this threshold is exceeded in three consecutive hours. The US
thresholds are significantly larger. The “primary” threshold is a one hour concentration of not
more than 75 ppb (=2,120 ug/m?) and the “secondary” threshold a three hour concentration of
not more than 0.5 ppm (= 14 ug/m3) (Environmental Protection Agency (EPA), 2013). The
average concentration measured across the US was about 2.5 ppb (= 71 ug/m?) (Environmental
Protection Agency (EPA), 2011).

As Panel A of Table illustrates, all SOo concentration values measured in all German
counties from 1999 to 2008 are significantly below these thresholds. The average concentration
is 3.7 ug/m? and its maximum 12.5 ug/m3. Thus, as in case of CO, we do not generate binary
non-compliance indicators for SOy. Boxplot graphs (not displayed) show significant variation
across counties with average values slightly lower in the summer months. Plotting values over
time illustrates a significant decline in SOy concentrations from 1999 to 2008.

In principle, pollution regulation in the US is similar to in the EU: the US ENVIRONMENTAL
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Figure 17: Scatter Matrix Illustrating Associations Between Pollutants
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PROTECTION AGENCY (EPA) implements pollution concentration thresholds and requires the US
states to comply. However, the EPA thresholds are significantly less strict: The PMjq threshold
is an 24 hour average concentration of 150 pg/m3. The Os threshold is an 8 hour average
concentration of 160 pg/m3. And the NOj threshold is an annual average concentration of 107
pg/m3 or a maximum daily hourly concentration of 203 pug/m? (Environmental Protection Agency
(EPA), 2013)@ Thus, the threshold levels for NO2 and PMjg are 2 to 3 times larger in the US,
which should be kept in mind when comparing the results of this study to related US studies.
In Germany, from 1999 to 2008, the US regulatory thresholds for PMyy, O3 and NOg were never
exceeded (see Table. The actually measured average concentrations for O3 and PMj( are three
and two times larger in the US than in Germany, respectively, while average NOs concentrations
are—despite larger regulatory thresholds—very similar.

D1.7 Associations Between All 5 Pollutants

Lastly, Figure [17] shows the associations between all five air pollutants discussed above. NQOs is
positively correlated with SO2 and PMjg, but negatively correlated with Os. The same is true
for CO. O3 exhibits only very noisy and weak associations with SOs and PMig. However, SOs
and PMy show a strong and positive association.

26 The original scales for NO2 and O3 are expressed in “parts per million (ppm)” and have to be converted to
“micrograms per cubic meter of air pg/mS”. The annual threshold for NO3 is 0.053ppm and the hourly maximum
100ppm. For Os, the “annual fourth-highest daily maximum 8 hours concentration, averaged over 3 years,” must
not exceed 0.075ppm. 70



Appendix F: Annual Socio-Economic County-Level Data

Finally, this paper makes use of yearly county-level data provided by the |FEDERAL INSTITUTE
FOR RESEARCH ON BUILDING, URBAN AFFAIRS AND SPATIAL DEVELOPMENT, (2012)) (Bun-
desinstitut fiir Bau-, Stadt- und Raumforschung) in their INKAR (Indicators and Maps on Spatial
Development) database. The data vary by yearm To normalize the hospitalization and death rate
dependent variables, we use county-level total population counts. In addition, we use information
on the unemployment rate and GDP per capita. Supply-side constraints are captured by the #
hospitals per county, hospital beds per 10,000 pop. and physicians per 10,000 pop.

On average, about 190,000 residents live in each German county. The average per capita
income is € 25,000 p.am but varies between €11,282 and € 86,728 across counties and over
years. A similarly strong variation is observed for the county unemployment rate which varies
between 1.6 and 29.3% with an average of 10.5%.

An average county has 5 hospitals. However, in some counties there exist no hospital and one
county counts a staggering 76 hospitals. Consequently, the number of hospital beds per 10,000
residents and county varies between 0 and 24,170. The outpatient physician density varies between
69 and 394 doctors per 10,000 residents of a county.

Table F1: Descriptive Statistics Other (County-Level, 1999-2008, Annual)

Variable Mean Std. Dev. Min. Max. N
Unemployment rate 10.47 5.28 1.6 29.3 4,356
GDP per capita 24971 10146 11,282 86,728 4,354
# hospitals per county 4.84 5.49 0 76 4,354
Hospital beds per 10,000 pop. 1211.19 1593.88 0 24,170 4,354
Physicians per 10,000 pop. 152.72 52.59 69 394 4,358
Total population 189,450 219,753 34,525 3,431,675 4,361
Male 0 to 2 years 2,575 3,034 331 47,489 4,361
Male 3 to 5 years 2,697 2,968 328 42,964 4,361
Male 6 to 9 years 3,776 3,972 409 60,320 4,361
Male 10 to 14 years 5,151 5,277 525 92,611 4,361
Male 15 to 17 years 3,280 3,323 366 55,698 4,361
Male 18 to 19 years 2,241 2,323 383 38,669 4,361
Male 20 to 24 years 5,613 6,704 987 111,475 4,361
Male 25 to 29 years 5,708 7,926 1,007 134,581 4,361
Male 30 to 34 years 6,628 9,117 881 164,445 4,361
Male 35 to 39 years 7,991 10,168 1,056 172,517 4,361
Male 40 to 44 years 8,089 9,634 1,347 164,928 4,361
Male 45 to 49 years 7,195 8,082 1,157 149,742 4,361
Male 50 to 54 years 6,274 7,021 926 116,102 4,361

Male 55 to 59 years 5,589 6,749 845 129,022 4,361
Male 60 to 64 years 5,745 6,929 817 119,554 4,361
Male 65 to 74 years 9,210 10,096 1,108 187,669 4,361

Continued on next page...

2" The hospitalization and mortality data contain the county of residence according to the county codes and
boundaries of the specific year. In contrast, the INKAR database contains all information according to the county
codes and boundaries as of January 1, 2012. From 1999 to 2008, various county reforms, mostly mergers between
two counties, led to changes in the county codes and boundaries. Consequently, the number of counties varies across
years from 442 (1999) to 413 (2008). For counties with county reforms, we imputed pre-reform values using the
post-reform boundary data as of January 1, 2012. In addition to reforms, not all information listed above have
been collected in every single calendar year. We imputed missing values for these cases. See notes to Table for
more details.

28 Tn 2012 values.
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. Table F1 continued

Variable Mean Std. Dev. Min. Max. N
Male > 75 years 4,882 5,087 658 81,884 4,361
Female 0 to 2 years 2,442 2,882 295 44,660 4,361
Female 3 to 5 years 2,561 2,824 313 41,049 4,361
Female 6 to 9 years 3,584 3,770 406 57,060 4,361
Female 10 to 14 years 4,887 4,997 492 88,234 4,361
Female 15 to 17 years 3,109 3,147 358 52,753 4,361
Female 18 to 19 years 2,135 2,275 377 37,463 4,361
Female 20 to 24 years 5,431 7,071 939 117,108 4,361
Female 25 to 29 years 5,516 8,044 828 137,220 4,361
Female 30 to 34 years 6,331 8,559 699 152,632 4,361
Female 35 to 39 years 7,578 9,364 1,046 158,939 4,361
Female 40 to 44 years 7,714 9,012 1,204 153,034 4,361
Female 45 to 49 years 6,998 7,868 1,270 140,548 4,361
Female 50 to 54 years 6,232 7,188 906 117,351 4,361
Female 55 to 59 years 5,634 6,939 855 127,897 4,361
Female 60 to 64 years 5,959 7,239 838 123,874 4,361
Female 65 to 74 years 10,689 11,874 1,952 214,713 4,361
Female > 75 years 10,006 11,110 1,964 164,217 4,361

Source: |[Federal Institute for Research on Building, Urban Affairs and Spatial Development_(2012). The
information varies across counties and over years on an annual basis. Some information has not been
surveyed in every calendar year. In addition, in contrast to the register databases in Appendices A and B,
the INKAR data refers to the county codes and boundaries as of January 1, 2012. Since various county
reforms were implemented between 1999 and 2008, we had to impute information for pre-reform counties
with post-reform data (if possible). For example, if counties A and B simply merged to county C and
we only had the GDP per capita for county C, we would impute the GDP per capita values for A and B
using the population information on A and B which is available for all years and counties. If, as another
example, data was surveyed in every other year, we took the mean value of ¢y and ¢5 to impute information
for t;. However, we were unable to impute values for all measures and all counties in every year according
to the boundaries of that specific year, which is why the number of observations slightly varies between
the measures.
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Appendix G: Cross-Validation of Weather and Pollution Interpo-
lation

Table G1: Cross-Validation of IDW Interpolation

Variable Raw Correlation Time and Season-Adjusted Correlation
IDW Method NN Method IDW Method NN Method
CO Mean 0.477 0.363 0.149 0.082
CO Max 0.413 0.301 0.131 0.069
CO Min 0.607 0.522 0.227 0.182
NO2 Mean 0.562 0.450 0.407 0.321
NO2 Max 0.531 0.423 0.400 0.313
NO2 Min 0.606 0.497 0.434 0.349
03 Mean 0.862 0.797 0.435 0.362
03 Max 0.929 0.896 0.373 0.328
03 Min 0.671 0.555 0.473 0.371
SO2 Mean 0.616 0.532 0.306 0.265
PM10 Mean 0.837 0.814 0.239 0.212
Cloud 0.874 0.821 0.585 0.508
Humidity 0.876 0.826 0.643 0.566
Vapor Pressure 0.979 0.970 0.735 0.678
Temperature 0.981 0.972 0.733 0.661
Air Pressure 0.549 0.579 0.239 0.257
Wind Speed 0.497 0.478 0.219 0.156
Min Temperature 0.968 0.953 0.713 0.637
Max Temperature 0.977 0.966 0.659 0.587
Precipitation 0.788 0.740 0.688 0.634
Sunshine 0.934 0.922 0.556 0.535

Source: GERMAN METEOROLOGICAL SERVICE (Deutscher Wetterdienst (DWD)) and GERMAN
FEDERAL ENVIRONMENTAL OFFICE (Umweltbundesamt (UBA)). The table represents the cross-
validation of the weather and pollution interpolation as described and discussed in Section
2] The underlying data stems from up to 1,044 ambient weather monitors and up to 1,317
ambient pollution monitors between 1999 and 2008. Columns (1) and (3) display the Pearson’s
Correlation Coeflicient between the orginal values of monitior X and its predicted values solely
using all surrounding monitors and Inverse Distance Weighting (IDW). Columns (2) and (4),
in contrast, simply use the Nearest Neighbor (NN) method and thus predict values of monitor
X with the measurement of its nearest neighbor monitor. Columns (3) and (4) are based on
values that have been non-parametrically adjusted for all 3,650 day effects, i.e., the nationwide
daily mean of a specific measure was first removed from all monitor measurements. This exercise
removes time trends, but likewise the “true” correlation in measurements between monitors and
has to be regarded as a very conservative test. More details are in Sectionlﬁl
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Table G2: Share of Correctly Predicted Extreme Weather Indicators

Panel A: IDW

Overall Positives Zeros Reliability
Correct Predicted Correct Predicted Correct Predicted Ratio
Hot Day 0.9904 0.8133 0.9939 0.8071
Heat Wave Day 0.9983 0.8003 0.9989 0.7993
Cold Day 0.9927 0.7680 0.9954 0.7634
Cold Wave Day 0.9982 0.5812 0.9989 0.5801
Panel B: NN
Overall Positives Zeros Reliability
Correct Predicted Correct Predicted Correct Predicted Ratio
Hot Day 0.9881 0.7286 0.9937 0.72233
Heat Wave Day 0.9978 0.7089 0.9989 0.7079
Cold Day 0.9908 0.6699 0.9951 0.6651
Cold Wave Day 0.9965 0.3063 0.9991 0.3054

Source: GERMAN METEOROLOGICAL SERVICE (Deutscher Wetterdienst (DWD)). The underlying data
stems from up to 1,044 ambient weather monitors between 1999 and 2008. Panel A tests the predictive
quality of the Inverse Distance Weighting (IDW) interpolation method into the county space and Panel B
the Nearest Neighbor (NN) method. All numbers are shares of predicted relative to actual values. The
predicted value for monitor X are calculated using solely all surrounding monitors and assuming that
monitor X is non-existent. Column (1) reports the overall share of correctly predicted positive or negative
extreme weather indicator values. Column (2) reports the share x of correctly predicted positives and
column (3) the share § of correctly predicted zero values. Consequently, 1-y represent false positives and
1-6 false negatives. Column (4) shows the Reliability Ratio (RR) a which indicates the ratio between OLS
and IV estimates and thus assesses the size of the potential attenuation bias (Hyslop and Imbens| |2001).

More details are in Sectionlﬁl
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