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1 Introduction

This paper aims to study a general implementation problem of reduced-form allo-

cation rules for assigning multiple heterogeneous indivisible objects to many agents.

The problem can accommodate a variety of distributional constraints across objects

and agents in the environments of incomplete information. It has long been recognized

that studying economies with indivisibility poses a serious challenge as indivisibility

is an extreme form of nonconvexity; see e.g., Koopmans and Beckmann (1957), De-

breu (1959), Arrow and Hahn (1971), Kelso and Crawford (1982), and Budish et al.

(2013). We will identify a very general condition called total unimodularity for im-

plementation and establish several general characterization results.

The reduced-form approach goes back to Myerson (1981) on auction design. In

his paper, the seller’s problem is expressed as a revenue maximization over the set of

feasible and incentive compatible allocation rules and transfers. A buyer’s incentive

constraint is then used to express his transfers in terms of interim allocation probabili-

ties, which reduce the problem to an optimization over interim allocation probabilities

only, i.e., the reduced-form. To apply this approach, one should be able to describe

the set of feasible interim allocation rules (or reduced forms). In single-item auctions,

Maskin and Riley (1984) and Matthews (1984) first study the implementability con-

dition, and Border (1991) derives a characterization, nowadays known as Border’s

theorem.

In this paper we investigate the reduced-form allocations of multiple indivisible

items to many agents with a variety of distributional constraints, going beyond those

traditional ones mentioned above. We briefly discuss several important cases of dis-

tributional constraints that our model intends to cover. In many practical situations,

markets are regulated by distributional policies or constraints such that allocations

across different objects are not independent. A typical example is the regional cap

in Japanese residency matching program (Kamada and Kojima, 2015) that matches

hospitals (agents) with doctors (objects). To regulate the geographical distribution

of doctors, the total number of the doctors matched within a region is subject to

a regional cap. Another important example is college admission. Higher education

institutions usually set lower quotas for each of their particular areas of study. If

the number of assigned students is less than this quota for a particular area, then

the project has to be cancelled for that year (Biró et al., 2010, Ehlers et al., 2014,
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Fragiadakis and Troyan, 2016). Course allocation is yet another example (Budish

and Cantillon, 2014, Budish et al., 2013, Sönmez and Ünver, 2010). In a university

department, students seek to take multiple courses as part of their programs. Each

student can take at most one seat in each course. For each course, there are ceil-

ing and floor constraints on the number of seats. In addition, an aggregate capacity

constraint may restrict the total number of seats for the courses within the depart-

ment. In China, every region requires a certain minimum number of doctors as a

floor constraint in its area hospitals and hospitals also face hierarchical constraints of

recruiting doctors (Cheng and Yang, 2017). The presence of these distributional con-

straints poses a challenge for reduced-form allocation implementation: The problem

cannot be treated as separate single-object problems and the reduced form for every

agent is multidimensional.

To be precise, the problem under consideration concerns the allocation of a finite

set of heterogeneous indivisible objects to a finite set of agents subject to distribu-

tional constraints. Objects can be private goods which will be consumed privately

and independently by agents. Objects can be public or club goods like courses shared

by students. Every agent may demand several objects and is associated with a fi-

nite set of types representing her private information about her preferences. There

will be distributional constraints across different combinations of agents and objects.

Constraints include floor and ceiling constraints across both agents and objects. We

use a lift-and-project approach to obtain characterization results of implementability.

This approach was first introduced in polyhedral combinatorics (Balas, 2001, Balas

and Pulleyblank, 1983) and later used by Vohra (2013) to study linear characteriza-

tions for combinatorial objects, including reduced-form auctions. Briefly speaking,

in this approach, by lifting, the combinatorial object of interest (i.e., reduced forms)

is first formulated by a linear system in some higher-dimensional space. Then by

constructing a projection cone and finding its finite generators, it gives arise to the

linear system of interest. We find this approach surprisingly powerful.

To obtain a complete description of the generators, we investigate geometric and

combinatorial properties of the projection cone. We discover a general sufficient con-

dition on the projection cone such that a complete description of the generators is

possible. The general condition underlying our characterization is called total unimod-

ularity, which is probably the most general one we could possibly have. It concerns

3



so-called totally unimodular matrices, a class of well-behaved and well-studied ma-

trices with simple entries of −1, 0, or 1 in discrete optimization (Schrijver, 1986).

It is also well-known that there exists a polynomial time recognition algorithm for

totally unimodular matrices; see Seymour (1980, 1981) and Schrijver (1986). In other

words, it is very easy to verify the general condition. We show that if the projection

cone preserves total unimodularity, then the generators of the projection cone can be

completely described.

We identify four large classes of constraint structures where the projection cone

preserves total unimodularity: Hierarchies, bihierarchies, adjacency, and paramodu-

larity. Hierarchical structures are common in organizations (firm, hospital, or uni-

versity) and various markets, and have been well studied in the literature; see e.g.,

Williamson (1975) and Demange (2004). They are called laminars in mathemat-

ics; see Fujishige (2005). Bihierarchies are the union of two disjoint hierarchies as

a generalization of hierarchies and are recently investigated by Budish et al. (2013).

Adjacency is a basic notion from networks and graphs that reflects close relationships

between agents or objects; see e.g., Bondy and Murty (1976) and Schrijver (1986).

Adjacent agents can cooperate and obey shared rules and conventions. The property

of adjacency has been used for cooperative games with communication structure by

e.g., Myerson (1977) and Herings et al. (2010). Paramodularity has been used by

Che et al. (2013) and others and is closely related to the basic concept of submodu-

larity/supermodularity in combinatorial optimization; see e.g., Fujishige (2005). It is

imposed upon the floor and ceiling constraints of the supply side. Roughly speaking,

submodularity means substitutability.

Our framework allows us to deal with two major classes of implementation prob-

lems: Universal or quotas-independent implementation and quotas-dependent imple-

mentation. Universal implementation does not depend on the specification of quotas,

while quotas-dependent implementation relies on the specification of quotas. In many

situations, the designer may have no information on capacity and a universal imple-

mentation is therefore very desirable (Budish et al., 2013), while other situations

may face capacity constraints and therefore quotas-dependent implementation may

arise (Che et al., 2013). We offer characterization results on both universal imple-

mentation and quotas-dependent implementation. Our characterization results are

algebraic and very general, covering a variety of distributional constraints such as
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floor constraints, ceiling constraints, and mixed floor and ceiling constraints.

Our first major result (Theorem 1) establishes a general characterization on uni-

versal implementation, showing that total unimodularity is a sufficient condition. Our

second and third major results (Theorems 2 and 3) prove that hierarchies, bihierar-

chies, and adjacency each suffice to guarantee total unimodularity. Our fourth result

(Theorem 4) concerns a general characterization on quotas-dependent implementation

where capacity constraints are paramodular and a model of multiple heterogeneous

goods with multi units for each good is considered. This generalizes a well-known

result of Che et al. (2013) on a multi-unit model of a single good and is similar

to a recent independent result of Zheng (2021) which appeared earlier than ours

Theorem 4. Our approach is quite different from those given by Che et al. (2013)

and Zheng (2021).1 It is worth pointing out that both total unimodularity and the

lift-and-project approach are used to establish our characterization results on both

universal implementation and quotas-dependent implementation. We also discuss a

variety of applications with practical interest including systems of multiple suppliers,

assignment markets with both ordinal and cardinal utilities, allocation of club goods,

assignment of radio spectrum licenses, bilateral trade, and compromise model.

We close this introductory section by further discussing some literature. For an

auction model with multiple identical goods and capacity constraints, Che et al.

(2013) develop a network flow method to characterize the implementability condi-

tion. In their method, the implementation problem is first transformed into a feasible

network flow problem and then existence results from graph theory are invoked to

obtain their characterization results. Goeree and Kushnir (2016, 2022) propose a

geometric approach (i.e., support function of convex sets) to study implementation in

social choice problems. Alternative characterizations have also been found. Manelli

and Vincent (2010) and Gershkov et al. (2013) establish an important equivalence

of Bayesian and dominant strategy implementation. Hart and Reny (2015) obtain

a characterization by majorization. Alaei et al. (2019) study a polymatroidal de-

composition method and obtain their characterization results. Meanwhile, Gopalan

et al. (2015), Cai et al. (2012), and Alaei et al. (2019) examine the computational

complexity of the reduced-form approach. A common feature of these models is that

there are no side constraints across different items.

1More precisely, Che et al. (2013) use a network flow approach and Zheng (2021) applies a
separating hyperplane approach.
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The rest of this paper is organized as follows. Section 2 presents a general model

on reduced-form implementation. Section 3 introduces our main characterization

theorems on implementation. Section 4 discusses the lift-and-project approach and

several lemmas which play a key role in proving the characterization theorems. Section

5 discusses several applications of practical interest. Section 6 concludes.

2 The Model

We study a model in which a finite set A of m types of heterogeneous indivisible

objects (e.g., workers, doctors, goods, and courses) is allocated to a finite set N of n

different agents (e.g., firms, hospitals, and students) under a variety of constraints.

Each object in the set A can accommodate multiple identical units. A pure outcome

x = (x(i, j)) is described as an n ×m matrix indexed by all agents i and objects j,

where each entry x(i, j) ∈ Z+ is the quantity of object j that agent i receives.2 Note

that it is possible for each agent to receive several objects with different units and

also for one object like course to be shared by several agents. Generally speaking, in

the allocation of private goods, no unit of any object will be assigned to more than

one agent, while in the case of shared or public goods, every object can be jointly

consumed by multiple agents.

A set G ⊆ N × A of agent-object pairs is called a constraint set. Every pair

(i, j) is called a singleton. For a constraint set G, we define x(G) =
∑

(i,j)∈G x(i, j).

Each constraint set G is associated with two integer numbers b(G), c(G) ∈ Z+ with

b(G) ≤ c(G) as its floor and ceiling quotas, respectively. We assume b(∅) = c(∅) =
0. A collection of constraint sets G ⊆ 2N×A is called a constraint structure. A

constraint structure G and a quotas system b, c : G → Z+ define a system (G, b, c),
which restricts the set of feasible outcomes. We say a pure outcome x is feasible if

b(G) ≤ x(G) ≤ c(G) for each G ∈ G. (1)

Clearly, for every feasible pure outcome x, we have x(i, j) ≥ 0 for all (i, j) ∈ N × A

and so G contains all singletons.

Let X denote the set of feasible pure outcomes. A random outcome is a matrix

2The sets Z and Z+ stand for the sets of all integers and all nonnegative integers, respectively.
Similarly, we can define the sets Zm and Zm

+ for the m-dimensional integral vectors.
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x = (x(i, j)) indexed by agents and objects where x(i, j) ≥ 0 is a fractional allocation

of object j ∈ A assigned to agent i ∈ N . A random outcome x is feasible if it can

be described as a lottery over the set of feasible pure outcomes, that is, if there exist

nonnegative numbers λk summing up to one and feasible pure outcomes xk ∈ X such

that

x =
∑
xk∈X

λkxk. (2)

Let ∆(X) denote the set of all feasible random outcomes. We let (N,A,G, b, c) denote
an allocation problem.

Our model covers a variety of allocation problems. We briefly discuss two major

allocation problems and their implications on their quotas system. Suppose each

object j has a fixed supply z(j) ∈ Z+ and we denote the supply vector z = (z(j)) ∈ Zm
+

for all objects. In any allocation problem of private goods, usually no unit of any

object j ∈ A will be assigned to more than one agent. Then, for each object j, the

total demand x(N ×{j}) is bounded above by z(j) and we may assume N ×{j} ∈ G.
It also implies x(G(j)) ≤ c(G(j)) = z(j) where G(j) = {(i, j) | (i, j) ∈ G} for G ∈ G.
However, for any allocation problem of shared goods like courses or public goods,

every unit of any object j ∈ A can be typically shared by multiple agents and we

may have x(G(j)) ≤ c(G(j)) where c(G(j)) is no less than z(j).

Our model is flexible to incorporate two large classes of constraints: quotas-

independent constraints and quotas-dependent constraints. To illustrate their

difference, we write the feasibility constraints in the following matrix form[
M

−M

]
x ≤

[
c

−b

]
, (3)

where M is the constraint matrix for constraint structure G. The quotas-independent
problems impose constraints on the left hand side of the system (i.e., on G) only. The
quotas-dependent problems impose constraints on the right hand side of the system

(i.e., on (b, c)) only. The two classes of constraints then correspond to two different

notions of implementation problems that we will discuss later. In particular, we call

c the supply vector.

Generalized capacity function. We now consider a generalized capacity func-

tion which extends the domain of quotas system (b, c) from G to the collection of
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all subsets of N × A and provides a unified representation for the ceiling and floor

constraints. Define the set of all ordered pairs of disjoint constraint sets 3N×A =

{(U, V ) : U, V ⊆ N × A, U ∩ V = ∅}. We introduce the concept of the generalized

capacity function.

Definition 1. Let (N,A,G, b, c) be given. The generalized capacity function is a biset

function β : 3N×A → R where for every (U, V ) ∈ 3N×A,

β(U, V ) = max{x(U)− x(V ) | x ∈ ∆(X)}. (4)

Intuitively, the generalized capacity function gives all supporting hyperplanes of

the set of feasible outcomes with −1, 0, 1-valued weights. The bounds defined by β are

effective, i.e., for each U and V , the bounds β(U, ∅) and β(∅, V ) can be attained by

some feasible outcomes. When condition (1) completely describes the set of feasible

random outcomes (i.e., a bihierarchy), a supporting hyperplane argument implies that

P = {x | x(U) − x(V ) ≤ β(U, V ) for all (U, V ) ∈ 3N×A} also describes the original

feasible set, since it contains inequalities of the constraint sets in G as a subset.

Note that from the definition of a supporting hyperplane, β is sublinear: for all

(U, V ) ∈ 3N×A,

β(U, V ) ≤ β(U, ∅) + β(∅, V ). (5)

We say β is linear if the inequality (5) holds with equality for all (U, V ) ∈ 3N×A.

In Section 3, we will discuss the implication of this property for our characterization

(Corollary 1).

2.1 Quotas-independent constraints

The first class of constraints allows an unspecified structure of quotas. A well-

known example concerns the classical model of assignment markets; see Koopmans

and Beckmann (1957), Shapley and Shubik (1971), Crawford and Knoer (1981), De-

mange et al. (1986), Bogomolnaia and Moulin (2001). Note that in the classical

model, every buyer demands one item and every seller supplies one item, i.e., the

supply vector c = (1, · · · , 1) is the vector of ones. Here we actually allow every buyer

to demand more than one item and the supply vector c to be any nonnegative integer

vector. Following Budish et al. (2013), we call a constraint structure G a canonical

two-sided constraint structure, if G contains all sets {i}×A for each i ∈ N (i.e.,
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all rows) and all sets N ×{j} for each j ∈ A (i.e., all columns). This is a special and

important class of constraint structures obviously covered by the general framework

of constraint structures described above.

We introduce three large classes of constraint structures on which several char-

acterization results will be built. The first one is the class of hierarchies, which has

been studied by Williamson (1975) and Demange (2004) in different contexts, also

called laminars in mathematics (Fujishige, 2005).

Definition 2. A constraint structure G is a hierarchy (or a laminar) if for all

G,G′ ∈ G,
G ⊂ G′, or G′ ⊂ G, or G′ ∩G = ∅.

Our second one concerns a richer and more general class of constraint structures

due to Budish et al. (2013), called bihierarchies. The canonical two-sided assignments

are included as a special case.

Definition 3. A constraint structure G is a bihierarchy if it is the union of two

disjoint hierarchies G1 and G2, i.e., G = G1 ∪ G2 and G1 ∩ G2 = ∅.

For bihierarchical constraint structures, Budish et al. (2013) obtain a generaliza-

tion of Birkhoff-von Neumann theorem which is used to characterize their feasible

random outcomes; see their Theorem 1.3 For our current model, we will use bihier-

archies as an example of our general conditions to obtain implementation results.

We now introduce the third class of constraint structures, called adjacency-a basic

concept used in networks and graphs (Bondy and Murty (1976) and Schrijver (1986)).

The constraint structure will be described by the structure of a graph H = (N,E),

where N is the set of agents which are represented by the vertices of the graph, and E

is the set of edges which indicate the relationship between agents. An edge is denoted

by a pair e = {i1, i2} of vertices i1, i2 ∈ N . Two agents or vertices i1 and i2 are said to

be adjacent if they are connected by edge {i1, i2}. Adjacent agents have some kind of

relationship and can cooperate and obey shared rules or conventions (i.e., constraints)

3Note that the model and objective of Budish et al. (2013) are considerably different from ours.
They develop ex ante efficient and fair random allocation mechanisms for environments with various
constraints. We deal with a general model with incomplete information and various constraints and
investigate interim incentive-compatible allocation mechanisms. In our model every agent i ∈ N has
a finite set Ti of types, while in Budish et al. (2013) incomplete information is not discussed and in
their model the set Ti of every agent i could be understood to contain only one element.
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to advance their interest; see e.g., Myerson (1977) and Herings et al. (2010) for the

use of graphs in cooperative games. The constraint structure G is the set E of all

edges in the graph H. For this constraint structure, we focus on the basic case of

multiple identical goods or services and therefore ignore the set A of objects by using

only the sets N and E.

Definition 4. A constraint structure G with the set N of agents and the set A of

identical objects has the adjacency property if G is given by the set of all edges in

the graph H = (N,E), as described above, i.e., G = E.

In the current setting, only adjacent agents will face their relevant constraints.

In Section 5, we will discuss this notion of adjacency in the allocation of bands of

radio spectrum (Rothkopf et al., 1998). Adjacency is related to but different from

the notion of consecutiveness; see Greenberg and Weber (1986).

Below we give three examples of different constraint structures. The first two

concern bihierarchies and the last one concerns adjacency.

Example 1 (Buyer-seller problem). Suppose that there are two buyersN = {i1, i2}
and two sellers A = {j1, j2}. Each buyer i has at most c(i) ∈ Z+ units of demand and

each seller j has at most c(j) ∈ Z+ units of supply. The following system of linear

inequalities describes all possible outcomes:∑
j∈A x(i, j) ≤ c(i) for every i ∈ N,∑
i∈N x(i, j) ≤ c(j) for every j ∈ A,

x(i, j) ∈ Z+ for every i, j.

Example 2 (Course allocation problem). Suppose that there are two students

N = {i1, i2}, one compulsory courses c1, and three optional courses O = {o1, o2, o3}.
Every optional course j ∈ O faces a floor constraint which requires the course being

selected by at least one student for it to open and has at most two seats; Every

student i is required to take at least one and at most two of the optional courses. The

family of constraint sets is given by (i, o) for every i ∈ N and j ∈ O ∪ {c1}, {i} × O

for every i ∈ N , and N ×{o} for every j ∈ O ∪ {c1}, which is a bihierarchy, having a

canonical two-sided constraint structure. The following system of linear inequalities
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describes all possible outcomes:

1 ≤
∑

j∈O x(i, j) ≤ 2 for every i ∈ N,

1 ≤
∑

i∈N x(i, j) ≤ 2 for every j ∈ O,∑
i∈N x(i, c1) = 2

x(i, j) ∈ {0, 1} for every i, j.

This following example demonstrates that adjacency and bihierarchy do not imply

each other and are therefore two independent concepts.

Example 3 (Adjacency). Assume that we have five agents denoted by N =

{1, 2, 3, 4, 5} and many identical objects. The graph is given by H = (N,E) with

E = {{1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4}, {3, 5}}. Each pair {i, j} ∈ E has a floor

quota b({i, j}) and a ceiling quota c({i, j}). The constraint structure G is given by

the set E of edges. The following system of linear inequalities describes all possible

outcomes:

b({i, j}) ≤ x(i) + x(j) ≤ c({i, j}) for every {i, j} ∈ E,

x(i), x(j) ∈ {0, 1} for every {i, j} ∈ E.

Observe that G has the adjacency property but is not bihierarchical as it contains

three distinctive hierarchies G1 = {{1, 4}, {2, 5}}, G2 = {{1, 5}, {3, 4}}, and G3 =

{{2, 4}, {3, 5}}.
On the other hand, if we have the bihierarchical constraint structure

G ′ = {{1, 2}, {1, 2, 3}, {3, 4, 5}},

this obviously does not satisfy the adjacency property.

2.2 Quotas-dependent constraints

The second class of constraints requires detailed information about the quotas.

Suppose the constraint structure is unrestricted and contains all possible sets of agent-

object pairs:

b(G) ≤ x(G) ≤ c(G), for each G ⊆ N × A. (6)

We introduce the following family of paramodular constraints imposed upon the
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supply side.

Definition 5. The pair (b, c) : 2N×A → R+ is paramodular if

(1) −b and c are submodular.4

(2) b and c are compliant: for all G,G′, c(G)− b(G′) ≥ c(G \G′)− b(G′ \G).

Submodularity on the ceiling capacity roughly says that marginal supply of goods

over agents and types of goods is decreasing, while supermodularity on the floor ca-

pacity says that marginal supply of goods over agents and types of goods is increasing.

Compliance requires consistency across the upper and lower bounds. Note that this

definition has been used by Che et al. (2013) for the case of multiple units of a single

goods, in which both c and b are defined on each group of agents. In the current set-

ting of heterogeneous goods, both c and b involve each group of both agents and types

of goods. It is well known that if the pair (b, c) is paramodular, then the upper and

lower bounds determined by the generalized capacity function β are also paramodular

and coincide with (b, c): β(G, ∅) = c(G) and β(∅, G) = b(G) for all G ⊆ N × A.

Paramodularity has been widely used in the literature and encompasses a broad

range of problems, including hierarchies and matroids as special cases. The following

example shows that bihierarchy fails paramodularity. It is a simple canonical bihier-

archy (i.e., a simple assignment market model). Its upper quotas are not submodular

and hence the constraints are not paramodular.

Example 4. Let N = {i1, i2} be two buyers and let A = {j1, j2} be two sellers.

Suppose the constraint structure is canonical (with row and column constraints) with

quotas c({(i, j1), (i, j2)}) = 1, c({(i1, j), (i2, j)}) = 1, c({(i, j)}) = 1, and b = 0. Then

for all i ∈ N and j ∈ A,

x(i, j1) + x(i, j2) ≤ 1,

x(i1, j) + x(i2, j) ≤ 1,

0 ≤ x(i, j) ≤ 1.

It follows that the upper bound for G = {(i1, j1), (i1, j2), (i2, j2)} is found by solving

4Let E be a finite ground set. We say f : 2E → R+ is submodular if for all G,G′ ⊆ E,
f(G) + f(G′) ≥ f(G ∩G′) + f(G ∪G′)
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the problem maxx∈∆(X) x(G), which is equal to 2. Then

c({(i1, j1), (i1, j2)}) + c({(i1, j2), (i2, j2)}) = 2 < 3 = c(G) + c({(i1, j2)}).

Hence c fails to be submodular.

2.3 Reduced-form implementation

Given any welfare objective at the ex ante or interim stage, we are interested

in Bayesian incentive compatible allocation rules that may allow random outcomes.

Using the reduced-form approach, we first optimize over the set of incentive compat-

ible interim allocation rules and find an optimal solution. We then ask whether this

interim optimal solution can be implemented by an ex post feasible allocation rule

or not. The reduced-form implementation problem is to characterize implementable

allocation rules based on interim incentive compatibility.

We first extend (N,A,G, b, c) to the incomplete information environment. Every

agent i ∈ N is associated with a finite set Ti of possible types, which represents agent

i’s private information about her preference. A type ti ∈ Ti may represent agent i’s

preference ordering ≿i over the set A of objects, or it may determine her cardinal

utility function, i.e., a payoff vector vi ∈ RA that assigns a valuation vi(j) for object

j. Hence our model allows for domains that cover ordinal and cardinal preferences.

Let T = ×i∈NTi denote the entire type set, i.e., the product of the type set Ti over

all agents i ∈ N , and T−i = ×j ̸=iTj. For every i ∈ N , let λi : Ti → ∆(T−i) be a belief

function, i.e., λi(t−i|ti) is the probability that agent i assigns to other agents’ type

t−i ∈ T−i when i’s type is ti. We assume that there exists a common prior probability

λ ∈ ∆(T ) such that the beliefs of the agents are the posteriors, and λ(t) > 0 for all

t ∈ T . Let λi denote agent i’s marginal probability of λ.

A feasible ex post allocation rule p : T → RN×A
+ assigns a feasible random

outcome p(·, t) for each type profile t ∈ T , where p(i, j, t) is a fractional quantity of

object j ∈ A assigned to agent i ∈ N . In particular, an allocation rule is deterministic

if it assigns a pure outcome for each type profile. A feasible ex post allocation rule

p induces an interim allocation rule Q = (Qi)i∈N , where Qi : Ti → RA is agent i’s
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interim expected random allocation. For each i ∈ N , ti ∈ Ti, and j ∈ A,

Qi(ti, j) :=
∑

t−i∈T−i

p(i, j, t)λi(t−i|ti). (7)

An interim allocation rule Q is implementable if there exists a feasible ex post

allocation rule p such that (p,Q) satisfies (7). We then say Q is the reduced form

of p and p implements Q. Let Q denote the set of all implementable interim al-

location rules. Let (N,A,G, T, λ, b, c) represent the implementation problem.

We call (N,A,G, T ) the implementation structure. Define d := |N ||A||T | and
l :=

∑
i∈N |Ti||A| and r := |G||T |. Note that the set of feasible ex post allocation

rules is defined by a set of linear inequalities and the reduced form operation is a

linear map. Hence for the given set Q the implementable interim rules can be also

defined by a set of linear inequalities:

Q = {Q ∈ Rl | MQ ≤ u}

for some matrix M and vector u. The goal of our implementation problem is to find a

linear system of (M,u) that describes the set Q. The system (M,u) is called a linear

characterization on the set of implementable interim allocation rules.

2.4 Implementability conditions

We first present two intuitive necessary conditions for implementability and dis-

cuss their sufficiency in the next sections. For any Si ⊆ Ti×A, i ∈ N , let S = ∪i∈NSi.

For any t ∈ T and S ⊆ ∪i∈N(Ti × A), we define their intersection by

I(t, S) = {(i, j) ∈ N × A | (ti, j) ∈ Si}.

Proposition 1. (Condition A) Let (N,A,G, T, λ, b, c) be an implementation problem.

If Q is implementable, then for all S+
i , S

−
i ⊆ Ti × A, S+

i ∩ S−
i = ∅, for each i ∈ N ,∑

i∈N

[
∑

(ti,j)∈S+
i

Qi(ti, j)λi(ti)−
∑

(ti,j)∈S−
i

Qi(ti, j)λi(ti)]

≤
∑
t∈T

λ(t)β(I(t, S+), I(t, S−)). (A)
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Condition (A) provides a compact description of the implementability condition

with both the ceiling and floor constraints, as the left hand side may contain both

positive and negative entries and the generalized capacity β is implicitly determined

by the ceiling and floor in condition (4). In the Appendix, we provide an example to

illustrate Condition (A).

We provide an intuitive interpretation for Condition (A). Consider a market where

each agent i can be a seller or a buyer of each good, and (S+
i , S

−
i ) defines a trading

strategy of agent i. That is, agent i buys one unit of good j if her type is in S+
i ∩(Ti×

{j}) and sell one unit of good j if her type is in S−
i ∩ (Ti × {j}). Given a strategy

profile of the agents, Condition (A) requires that the ex ante expected demand and

supply over all agents and goods are approximately equal, i.e., the difference between

the demand and supply are bounded by the maximum difference constrained by the

generalized capacity function. The feasibility requires that the condition holds for all

possible strategy profiles of agents.

The following proposition provides a subset of inequalities in Condition (A), which

contains only separate inequalities for ceiling and floor constraints by setting S− = ∅
or S+ = ∅. Hence it also gives a necessary condition for implementability.

Proposition 2. (Condition B) Let (N,A,G, T, λ, b, c) be an implementation problem.

If Q is implementable, then for all Si ⊆ Ti × A, for each i ∈ N ,

−
∑
t∈T

λ(t)β(∅, I(t, S)) ≤
∑
i∈N

∑
(ti,j)∈Si

Qi(ti, j)λi(ti) ≤
∑
t∈T

λ(t)β(I(t, S), ∅). (B)

It is well known that when there is a single type of good with multiple units, Con-

dition (B) reduces to the characterization condition obtained by Che et al. (2013).

Condition (B) further reduces to the classical condition of Border (1991) for a single

object. In Section 3, we will provide sufficient conditions on an implementation prob-

lem such that Condition (A) or (B) is necessary and sufficient for implementability.

3 Main Results

In this section, we establish our main characterization theorems for the imple-

mentation problem. To obtain these results, we use a lift-and-project approach. This

approach starts with a linear system in terms of both ex post and interim allocation
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rules. By projecting away the variables of ex post allocation rules, we obtain a linear

system of interim allocation rules. The procedure then reduces the implementation

problem to a problem of characterizing the generators of the projection cone. Since

the analysis is involved, we first state our characterization theorems in this section

and then discuss the lift-and-project approach in the next section. Most of the proofs

will be deferred to the Appendix.

For the convenience of the reader we first review several basic mathematical con-

cepts concerning cones, generators, and extreme rays that will be often used in our

analysis. In the paper, 0 can be the number of 0, a vector of 0’s, or a matrix of 0’s

whose dimension can be understood from the context. Let x1, . . . , xk ∈ Rq be given

vectors. A linear combination α1x1 + · · ·+ αkxk is conic if α1, . . . , αk ≥ 0. The cone

generated by a finite set X ⊂ Rq is the set of all conic combinations of the elements

from X, denoted by cone(X), and we call the vectors in X the generators. A cone P

is polyhedral if P = {x ∈ Rq | Mx ≤ 0} for some matrix M . We say P is pointed

if Mx = 0 implies x = 0. Otherwise, we say P is non-pointed. A nonzero element x

of a pointed cone P is called an extreme ray if there are q − 1 linearly independent

constraints binding at x. For detail we refer to Schrijver (1986). In the following, we

often say {0, 1} or {−1, 0, 1} rays or generators if all of their entries are in {0, 1} or

{−1, 0, 1}.
We first consider the implementation problem (N,A,G, T, λ, b, c) with general con-

straint structures and quotas. To proceed, we introduce the following two {0, 1}
matrices B and C which will be central for our analysis.

• For every p ∈ Rd, Q ∈ Rl and b, c ∈ Rr, we define the corresponding probability

weighted variables x, y, bλ, and cλ by multiplying each p(i, j, t), b(G), c(G) by

λ(t), and each Qi(ti, j) by λi(ti).

• Matrix C: An r× d incidence matrix where each row is indexed by (G, t), each

column is indexed by (i, j, t), and the entry in row (G, t) and column (i, j, t′) is

1 if (i, j) ∈ G and t = t′, and 0 otherwise.

• Matrix B: An l×d incidence matrix where each row is indexed by (i, ti, j), each

column is indexed by (i, j, t), and the entry in row (i, ti, j) and column (i′, j′, t′)

is 1 if i = i′, j = j′, and ti = t′i, and 0 otherwise.
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We use Example 1 to illustrate how the matrices B and C are constructed. For

any positive integer k, let Ik denote the identity matrix of order k.

Example 5. (Example 1 continued) Suppose there are two agents, two goods, and

each agent has two types. The constraint matrices B and C are given by B =[
B1

B2

]
, C =


C1,1 C1,2

C2,1

C2,2

I16

 , where B1 = B2 = [bk,l]4×8 with bk,l = 1 if k = (i, ti, j)

and l = (i, j, t), and bk,l = 0 otherwise, and C1,1 = C1,2 = I8, C2,1 = C2,2 =
[
I4 I4

]
.

Here each Bk denotes the constraint matrix of the reduced-form equalities for each

good jk, and C1 and C2 denote the constraint matrices of the canonical row and col-

umn constraints, and I16 denotes the constraint matrix for singletons.

The implementation system associated with the matrices B and C arising from

the implementation problem described above is given by

F = {(x, y) ∈ Rd × Rl | bλ ≤ Cx ≤ cλ, y = Bx}. (8)

We define the projection cone of the set F by

W = {(f, g, h) ∈ Rl × Rr × Rr | −B⊤f + C⊤g − C⊤h = 0, g ≥ 0, h ≥ 0}. (9)

The constraint matrix of the projection cone W is given by

M(W ) =

−B⊤ C⊤ −C⊤

0 Ir 0

0 0 Ir

 . (10)

Remark 1. The projection cone W depends on the implementation structure

(N,A,G, T ) but not on the quotas and the beliefs. It implies that the same set of

generators would arise if two problems differ only in the quotas and beliefs.

The following lemma provides a conic characterization of implementability with

all vectors in the projection cone and is the common starting point for all of our

following characterizations.
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Lemma 1. (Conic characterization) y ∈ Rl is implementable if and only if

f⊤y ≤ g⊤cλ − h⊤bλ for all (f, g, h) ∈ W. (11)

Overview. From now on, we will discuss two major problems of implementa-

tion. One is the universal implementation for which the constraint structure

is quotas-independent and imposed on the demand side (i.e., W ), while the other

is the quotas-dependent implementation for which the constraint structure is

quotas-dependent and imposed on the supply side (i.e., (b, c)). For each of these two

problems, we provide sufficient conditions such that a characterization with a finite

set of inequalities is possible.

(1) Universal implementation. Given certain conditions on the implementation

structure (N,A,G, T ) and hence the projection cone W , we show that it is possible to

obtain an explicit characterization of the generators of W in Lemma 1 (Theorems 1,

2 and 3).

(2) Quotas-dependent implementation. If no conditions are imposed onW , a direct

computation of the generators of W will be less tractable. However, we show that

with certain conditions on quotas system (b, c), we can circumvent this problem by

first reducing the projection cone W in Lemma 1 into two separate cones. Then we

can obtain an explicit characterization of the generators of each cone (Theorem 4).

3.1 Universal Implementation

The first main result (i.e., Theorem 1) of the paper will provide a sufficient con-

dition on the projection cone W such that a complete description of the generators

Ŵ can be found. The characterization depends on a class of integral matrices called

totally unimodular matrices. This is a class of well-known and well-studied matrices

(Schrijver, 1986). Formally, a matrix M is totally unimodular (TUM), if every

nonsingular square submatrix has determinant equal to either −1 or +1. It is well

known that there exists a polynomial time recognition algorithm for totally unimod-

ular matrices; see Seymour (1980, 1981) and Schrijver (1986). In other words, one

can easily verify whether a matrix is TUM or not.

Definition 6. Let (N,A,G, T ) be an implementation structure. We say (N,A,G, T )
(or equivalently the projection cone W ) preserves total unimodularity, if the
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constraint matrix M(W ) given by (10) is totally unimodular.

Theorem 1 describes a key characterization of the implementability condition. It

shows that if W preserves total unimodularity, then every generator (up to positive

scaling) of W is a {0,±1} vector. That is,

(f, g, h) ∈ Ŵ =⇒ (f, g, h) ∈ {0,±1}l × {0,+1}2r.

Hence every f corresponds to a sign function of some sets S+
i , S

−
i ⊆ Ti × A for each

i ∈ N . In this way we obtain a complete description of the set of implementable

reduced forms.

We are ready to present the first major characterization result.

Theorem 1. (Universal Implementation) Let (N,A,G, b, c, T, λ) be an implementa-

tion problem. Suppose the projection cone preserves total unimodularity. Then Q ∈ Rl

is implementable if and only if Condition (A) holds.

In general, Condition (A) is not separable in S+ and S−, since a priori both S+

and S− can take non-empty collections of sets, and sublinearity of β implies that

condition for (S+, S−) is weakly tighter than a combination of separate conditions for

S+ and S−.

Below we provide a sufficient condition on β that leads to a reduction of Condition

(A) to separate expressions for ceiling constraints and floor constraints.

Corollary 1. Suppose the projection cone W preserves total unimodularity and the

generalized capacity function β is linear. Then Q ∈ Rl is implementable if and only

if Condition (B) holds.

A simple example of linearity is that there is no floor constraints except the usual

non-negativity constraints (see Theorem 5 in Section 5).

Characterization of the projection cone. Now we will introduce our second

and third major results (i.e., Theorems 2 and 3 below), which identify three classes of

constraint structures G under which the projection cone preserves total unimodularity.

If G is a hierarchy, then we show that the conic constraint matrix M(W ) consists of

two laminars. Since the union of two laminars is total unimodular (Edmonds, 1970),

we obtain that the projection cone preserves total unimodularity. However, when G is

a bihierarchy, M(W ) has three laminars (i.e., C is two laminars and B is a laminar)
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to which the Edmonds theorem cannot be applied. Fortunately, we can still show

that the projection cone preserves total unimodularity in this case if the set Ti for

every i ∈ N contains at most two elements, which is called binary.

Theorem 2. Let (N,A,G, T ) be an implementation structure. The projection cone

preserves total unimodularity, if

(1) G is a hierarchy.

(2) G is a bihierarchy and the set Ti for every i ∈ N has at most two elements.

(3) G is a bihierarchy and the set Ti for every i ∈ N has one element.

We remark that the case (3) of this theorem corresponds to Theorem 1 of Budish

et al. (2013) on their universal implementation where they provide an alternative

proof for this result. The proof is deferred to the Appendix.

Here we provide a sketch of proof for (2) of Theorem 2 for the bihierarchy and

binary type case. Let Ci be the submatrix of C for the constraint sets in Gi, i = 1, 2.

Let B denote the constraint matrix of the reduced-form implementation equalities.

Since total unimodularity is preserved by deleting unitary column5 and duplicated

column, and by transpose, we only need to show that the following matrix

M∗ =

C1

C2

B

 (12)

is totally unimodular.

We first prove the result for the problem with the standard constraints, i.e., for

each hierarchy Ci, each column contains at most one 1 (in addition to the rows for

singletons). Then we will show that all other cases can be reduced to the cases with

the standard constraints. To show that M∗ is TUM, we prove that it is sufficient to

show that every square submatrix M ′ of M∗ with exactly two nonzero entries per row

and per column, the sum of the entries is a multiple of four, i.e., M ′ is balanced. We

define a cycle P in M ′ as a series of changes of entries in M ′ with the two nonzero

entries in each row and column adjacent. To complete the proof, we show that each

cycle P in M ′ is even (i.e., the sum of entries in P is a multiple of four), given the

bihierarchical and binary conditions.

5We call a column or row unitary if it has one nonzero entry.
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

(1a, t1t2) (1b, t1t2) (1b, t1t′2) (2b, t1t′2) (2b, t′1t
′
2) (2c, t′1t

′
2) (3c, t′1t

′
2) (3c, t1t′2) (3a, t1t′2) (1a, t1t′2)

(1, t1t2) 1 1
(2, t′1t

′
2) 1 1

(3, t1t′2) 1 1
(a, t1t′2) 1 1
(b, t1t′2) 1 1
(c, t′1t

′
2) 1 1

(1a, t1) 1 1
(1b, t1) 1 1
(2b, t′2) 1 1
(3c, t3) 1 1


Table 1: Cycle P in submatrix M ′.

PN×A =



1a 1b 2b 2c 3c 3a

t1t2 1 1
t1t

′
2 1 1

t′1t
′
2 1 1

t′1t
′
2 1 1

t1t
′
2 1 1

t1t
′
2 1 1

 PT =


t1t2 t1t

′
2 t′1t

′
2 t1t

′
2

1b 1 1
2b 1 1
3c 1 1
1a 1 1



Table 2: Cycles on N × A and T .

For illustration, suppose N = {i1, i2, i3}, A = {ja, jb, jc} and the constraints are

canonical. Let Ti = {ti, t′i}, i ∈ N . Consider the following square submatrix M ′ of

M∗ with exactly two nonzero entries per row and per column in Table 1 (since M ′

has no index change for t3, we abbreviate the coordinate t3 for each row and column

index).

First note that the non-zero entries in M ′ form a unique cycle P . For any pair of

two 1s in each row, there are two types of possible changes of column indexes, either

on N × A or on T . Then P induces two cycles PN×A and PT (see Table 2). The

numbers of index changes in PN×A and PT are 6 and 4. So P is even and hence M ′

is balanced. In the Appendix, we show that this property holds for all such square

submatrices.

Before presenting another major characterization result, we recall some concepts

from graph theory; see Bondy and Murty (1976) and Schrijver (1986). A cycle in the

graph H = (N,E) is a sequence (i0, e1, i1, e2, · · · , it−1, et, it), where i0, i1, · · · , it are
distinct vertices in N except i0 = it and e1, e2, · · · , et are distinct edges in E with

ed = {id−1, id} for d = 1, 2, · · · , t. A cycle is odd (even) if the number of edges on

the cycle is odd (even). The next theorem shows that constraint structures with the

adjacency property can also ensure the projection cone preserves total unimodularity.
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Its proof is deferred to the Appendix.

Theorem 3. Let (N,A,G, T ) be an implementation structure. The projection cone

preserves total unimodularity, if the graph H = (N,E) does not contain any odd cycle

and G is given by the set E of edges and T is binary.

3.2 Quotas-dependent Implementation

To characterize the finite generators of the projection cone W requires some in-

formation on the implementation structure (i.e., total unimodularity). For charac-

terization of implementability, however, it is not necessary to compute all generators

of W , i.e., we only need to find the non-redundant generators with the tightest up-

per bounds in Lemma 1. Given paramodular property, we show that it is possible

to characterize all (f, g, h) ∈ W that attain the tightest upper bounds in Lemma 1

(not necessary the generators of W ). This enables us to reduce the projection cone

into two separate cones. It turns out each cone is totally unimodular. The sets of

generators for the two cones then correspond to the implementability inequalities for

the floor and ceiling constraints.6

Theorem 4. (Quotas-dependent Implementation) Let (N,A,G, T, λ, b, c) be an im-

plementation problem. Assume that (b, c) is paramodular. Then we have

(1) The projection cone can be decomposed into two cones both preserving total

unimodularity.

(2) Q ∈ Rl is implementable if and only if Condition (B) holds.

Theorem 4 generalizes in a meaningful way the classic characterization results of

reduced form auctions (e.g., Border, 1991, 2007; Che et al., 2013) from a single good

with multiple units to heterogeneous goods of which each good can have multiple

units. It should be noted that Zheng (2021) is the first to obtain an elegant charac-

terization similar to our Theorem 4. He presents his main result for a model with a

continuum of types, while we present our Theorem 4 for a model with a finite number

of types and our approach is totally different from his.7 To obtain his characteri-

zation, he skillfully uses a separating hyperplane argument and constructs extreme

6We wish to thank anonymous referees for explicitly and implicitly raising the quotas-dependent
implementation issue which led us to establish Theorem 4 and have related discussions.

7As pointed out by Zheng (2021), one can use a finite number of types to achieve results on a
continuum of types by applying a technique as used by Che et al. (2013).
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points of feasible reduced forms through a greedy algorithm. Zheng (2021) assumes

that the goods can be divisible and hence allows real-valued quotas. It can be seen

that our Theorem 4 continues to hold for real-valued quotas.

3.3 Necessity of conditions in Theorems 1 and 4

Che et al. (2013) have shown that paramodularity is necessary for their charac-

terization, i.e., if the capacities fail paramodularity, then their characterization (and

Theorem 4 in our paper) does not describe the set of the feasible reduced forms. We

show that total unimodularity is necessary for our characterization Theorem 1. Here

we revisit a very interesting example of Che et al. (2013) (their Remark 1).

Suppose there are three agents N = {i1, i2, i3}, each independently and equally

likely to be of type t1i or t2i , and one type of good. The floor constraints are set zero

and the ceiling constraints are given by

x1 + x2 + x3 ≤ 6,

x1 + x2 ≤ 4,

x1 + x3 ≤ 4,

x2 + x3 ≤ 4,

x1, x2, x3 ≤ 3.

Observe that the problem is neither paramodular nor totally unimodular. How-

ever, all of the ceiling constraints are effective (i.e., c(G) = β(G, ∅) for all G ⊆ N)

and all extreme points are integral.8

Since there are only nonnegativity constraints in this example, the generalized

capacity is linear and Condition (A) further reduces to Condition (B) (see also The-

orem 5). Furthermore, since all of the constraints are effective, Condition (B) coin-

cides with Condition (B′) in Che et al. (2013). Then we know from Che et al. (2013)

that the characterization with (B′) is not valid: If we maximize a linear function∑
i Qi(t

1
i ) + 2Qi(t

2
i ) subject to Condition (B′) and compare the result to the maxi-

mum of the same objective function subject to the constraints (6) and (7), the value

is strictly higher for maximization subject to (B′) (18.375 > 18). Hence, this example

8The system has 14 extreme points, including (0, 0, 0), (2, 2, 2), (3, 1, 0), (3, 0, 0) and the vectors
by permuting coordinates in (3, 1, 0), (3, 0, 0).
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also shows that total unimodularity is necessary for Theorem 1.

4 The Lift-and-Project Approach

In this section we present the mathematical method, i.e., the lift-and-project

approach, to establish our characterization results introduced in the previous sec-

tion. This is a powerful method in polyhedral combinatorics (Balas and Pulleyblank,

1983) and has been explored by Vohra (2013) in economics. The basic idea of the

method goes as follows: The first step is to construct a linear system in some higher-

dimensional space, or lifting. The second step is to obtain a linear system by properly

projecting away previously added variables. Below we will keep the presentation as

simple as possible while maintaining rigor.

First we describe a general lift-and-project method. Suppose we are given a poly-

hedron

Z = {(x, y) ∈ Rp × Rq | A1x+B1y = b1, A2x+B2y ≤ b2}, (13)

where A1, B1, A2, B2 are matrices, b1, b2 are vectors. Let Y denote the projection of

Z onto the subspace of y variables, that is,

Y = {y ∈ Rq | there exists x ∈ Rp such that (x, y) ∈ Z}. (14)

We wish to obtain a linear system whose solution set is Y .

We define the projection cone of Z by

P = {(f, g) ∈ Rr × Rs | f⊤A1 + g⊤A2 = 0, g ≥ 0}. (15)

Let P̂ be any finite set of generators of P . The following lemma shows that finding

the linear inequalities that define Y reduces to finding finite generators of P .

Lemma 2. The projection of the polyhedron Z given by (13) onto y is given by

Y = {y ∈ Rq | (f⊤B1 + g⊤B2)y ≤ f⊤b1 + g⊤b2 for all (f, g) ∈ P̂}. (16)

Characterizing the generators of P appears to be difficult in general. The following

lemma provides a sufficient condition on P such that a complete description of the

generators can be found. The lemma is developed from and slightly more general
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than a result in Hoffman (1976), where the result there is proved for pointed cones.

We show that the same result holds also for non-pointed cones.

Lemma 3. If the constraint matrix of the projection cone P given by (15) is totally

unimodular, then P is generated by a set P̂ of {0,±1} generators.

Remark 1. If P is pointed, the set of extreme rays provides a unique (up to positive

scaling) minimal set of generators. While Lemma 2 shows that the extreme rays of

P provide a complete description of Y , certain extreme rays may be redundant.

Remark 2. Lemma 3 is useful on its own since it identifies finitely many linear

inequalities. In particular, it implies that we can pick P̂ to be all {0,±1} vectors in

P , i.e., P ∩ {0,±1}r+s.

Remark 3. Hoffman (1976) also showed a converse to Lemma 3, i.e., if the con-

straint matrix of P is not totally unimodular, then there exists some extreme ray that

is not {0,±1}.
To prove Theorem 1, the first step is to apply the lift-and-project method to our

implementation problem. First note that if the projection cone preserves TUM, then

the constraint matrix of G is also TUM, as every submatrix of a TUM matrix is

TUM. Hence, the set of feasible ex post random allocations has a linear character-

ization defined by Condition (1). Then the linear constraints F in (8) describe the

implementation system and hence Lemma 1 applies to F . Since the projection cone

W is totally unimodular, applying Lemma 3 to W we obtain Lemma 4 below, which

characterizes the generators of the projection cone in Theorem 1.

Lemma 4. Suppose W preserves total unimodularity. Then y ∈ Rl is implementable

if and only if

f⊤y ≤ g⊤cλ − h⊤bλ for all (f, g, h) ∈ Ŵ , (17)

where Ŵ consists of generators of W given by (9) with entries −1, 0, and +1.

To prove Theorem 4, first note that when (b, c) is paramodularity, integral poly-

matroids imply that the linear constraints (6) completely describe the set of feasible

random allocations. Then the linear constraints F in (8) describe the implementation

system and hence Lemma 1 applies to F . We next characterize all (f, g, h) ∈ W that

attain the tightest upper bounds in Lemma 1, not necessarily generators of W . This

leads to a reduction of the projection cone into two separate cones, which can be

shown to be totally unimodular. We then characterize the generators of each cone.
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Below we provide some intuition for this reduction at one type profile. For any

given f ∈ RN×A, we maximize f⊤x subject to constraints (6). Consider its dual

problem

min g⊤c− h⊤b s.t. g, h ≥ 0, (g⊤ − h⊤)χ = f, (18)

where χ denotes the matrix whose rows are the characteristic vectors χU of the subsets

U ⊆ N × A.

For any optimal solution (g, h) to (18), let supp(g) and supp(h) denote the support

of the solution. We say the pair (b, c) is totally dual laminar (TDL) if for every f with

finite optimum, some optimal dual solution to (18) is laminar, i.e., supp(g)∪supp(h)

is a laminar. It is well known that paramodularity implies TDL. Moreover, Theorem

6 in Frank et al. (2013) shows that we can gradually make an optimal dual solution

more and more structured.

Lemma 5. Suppose the pair (b, c) is TDL. Then the problem (18) has an optimum

(g, h) such that supp(g) and supp(h) are laminar families on disjoint ground sets.

Furthermore, supp(g) and supp(h) are chain families on disjoint ground sets.

Intuitively, Lemma 5 suggests that floor and ceiling constraints can be treated

separately if g and h have disjoint ground sets. Below we extend this pointwise

analysis to the entire implementation system. We need to introduce a definition.

Given a nonempty ground set K, let F be a family of subsets of the set K. We say

that F is a chain on K if we have either G ⊆ G′ or G′ ⊆ G for any G,G′ ∈ F . Now let

C = (Ct)t∈T be a profile of chains, where every Ct is a chain on N ×A. Let CT denote

all possible profiles of chains. For every pair of profiles of chains (C1, C2), define the

cone

W (C1, C2) = {(f, g, h) ∈ W | g, h have supports C1 and C2}.

From Lemma 5, if (f, g, h) obtains a tightest bound in Lemma 1, then (f, g, h) ∈
W (C1, C2) for some pair of profiles of chains (C1, C2) where C1 and C2 have disjoint

ground sets (i.e., each Ct
1 and Ct

2 have disjoint ground sets). This further implies that

a reduction of W (C1, C2) into two separate cones with ceiling and floor constraints is

possible. To state the following lemma, we define two separate cones

W+(C1) = W (C1, ∅) ∩ {f ≥ 0, h = 0},

W−(C2) = W (∅, C2) ∩ {f ≤ 0, g = 0}.
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Lemma 6. Let (N,A,G, T, λ, b, c) be an implementation problem. Suppose quotas are

paramodular. Then y ∈ Rl is implementable if and only if

f⊤y ≤ g⊤c for all (f, g) ∈ ∪C1∈CTW+(C1), (19)

and

− f⊤y ≥ h⊤b for all (f, h) ∈ ∪C2∈CTW+(C2). (20)

From Lemma 6, each C1 is a laminar on N×A×T since each Ct
1 is a profile of chains

on N × A. Also, the constraint sets in reduced-form submatrix B is a laminar on

N×A×T . By Edmonds (1970), the union of two laminars forms a totally unimodular

matrix. Then Lemma 3 implies that the cone W+(C1) is generated by extreme rays

with 0, 1 entries. Similarly, W−(C2) is generated by extreme rays with 0,−1 entries.

The next lemma provides a characterization of the sets of extreme rays of W+(C1)
and W−(C2). Define Γ(S) = {t ∈ T | (ti, j) ∈ Si, for some i ∈ N}.

Lemma 7. (1) Let C1 be any profile of chains. (f, g) is an extreme ray of the set

W+(C1) if and only if

f(i, ti, j) =

{
+1, if (ti, j) ∈ Si,

0, otherwise,

and

g(U, t) =

{
+1, if t ∈ Γ(S) and U = I(t, S),

0, otherwise.

(2) Let C2 be any profile of chains. (f, h) is an extreme ray of the set W−(C2) if

and only if

f(i, ti, j) =

{
−1, if (ti, j) ∈ Si,

0, otherwise,

and

h(U, t) =

{
+1, if t ∈ Γ(S) and U = I(t, S),

0, otherwise.
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5 Applications

In this section, we provide several applications of practical interest. The examples

include systems of multiple suppliers, assignment markets, allocation of club goods,

assignment of radio spectrum licenses, bilateral trade, and compromise problem.

5.1 Systems of multiple suppliers

Consider the automobile manufacturing industry with multiple suppliers. Each

supplier (e.g., Toyota) decides how to set its capacities for different models (i.e.,

Corolla, Camry, etc) and sell its products. While the maximum capacity for each

model is fixed in the short run, the supplier can adjust its maximum capacity in the

long run, in which case all possible capacities may arise.

Let L be a finite set of suppliers or car makers. Each supplier l ∈ L can produce

a finite set Al of models. Note that Al ∩ Al′ = ∅ for any l ̸= l′. Denote A = ∪l∈LA
l.

For each model j ∈ A, the cost to install capacity kj ≥ 0 is Cj(kj). In society there

are two types of consumers (e.g., families), type X and type Y , with X ∪ Y = N . A

type X family wishes to buy at most one car, while a type Y family wants to buy at

most two cars of different models.

Given a capacity profile k ∈ RA
+, the resource constraints for the suppliers are

given by

0 ≤ x(N, j) ≤ kj for all j ∈ A. (21)

The constraints for families of two types are given by

0 ≤ x(i, A) ≤ 1 for all i ∈ X, (22)

0 ≤ x(i, A) ≤ 2 for all i ∈ Y, (23)

x(i, j) ∈ {0, 1} for all i ∈ N, j ∈ A. (24)

The type of each family is public information. We have the following result.

Lemma 8. Conditions (21)-(24) are bihierarchical.

Note that each supplier l’s decisions are usually made at two stages. At the

first stage the supplier chooses the capacities kl ∈ RAl

+ for all types of its products.

The capacities determine a set of resource feasible allocations satisfying (21). At
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the second stage, the supplier chooses feasible allocations to assign its products. Let

Rl(p; kl) denote the supplier’s expected payoff (i.e., revenue) from a feasible allocation

rule p and let Rl(kl) denote the continuation payoff from any revenue-maximizing

allocation rule. The supplier’s problem at the first stage is to choose capacity profile

kl to maximize the profit. In this case, all possible capacities can arise in the second

stage and a characterization of feasibility with arbitrary quotas is desirable.

Similar problems can arise from other manufacturing industries. Another inter-

esting application concerns systems of policy-determined quotas. Markets can be

regulated by distributional policies in many situations. A typical example is the re-

gional cap in Japanese residency matching program (e.g., Kamada and Kojima, 2015).

In school choice problems, the regional cap applies to each district (e.g., Biró et al.,

2010, Ehlers et al., 2014, Fragiadakis and Troyan, 2016).

For the revenue maximization design with transfers, quasi-linear preferences allow

us to separate out transfer and allocation rule, by a revenue equivalence argument.

The literature has been devoted to identifying sufficient conditions on the type space

for all allocation rules from a certain class to satisfy revenue equivalence. It can be

shown that our model satisfies the sufficient conditions identified in the literature

(Heydenreich et al. (2009), Theorem 8). We refer to Heydenreich et al. (2009) for an

in-depth study.

5.2 Assignment markets

We now discuss the implementation problem for the classical model of assignment

markets studied by Koopmans and Beckmann (1957), Shapley and Shubik (1971),

Crawford and Knoer (1981), Demange et al. (1986), and Bogomolnaia and Moulin

(2001). For the classical model it is typically assumed that every buyer demands one

item and every seller sells one item. Here we drop this assumption. In the following

we examine two important cases: Ordinal preferences and cardinal preferences.

With the constraints x ≥ 0, the generalized capacity function β is linear, since

β(∅, V ) = 0 for all V and β(U, V ) = β(U, ∅) for all (U, V ) ∈ 3N×A. Hence Corollary 1

implies that the floor and ceiling constraints are separable and we obtain the following

result.

Theorem 5. Let b = (0, · · · , 0) and let c be any vector in Z|G|
+ . Suppose the projection

cone preserves total unimodularity. Then Q is implementable if and only if for all i

29



and (ti, j) ∈ Ti × A, Qi(ti, j) ≥ 0, and for all Si ⊆ Ti × A, i ∈ N ,∑
i∈N

∑
(ti,j)∈Si

Qi(ti, j)λi(ti) ≤
∑

t∈Γ(S)

λ(t)β((I(t, S)), ∅). (25)

In the theorem, if we set the supply vector c = (1, · · · , 1), the model reduces to the

classical assignment market. It is worth mentioning that computing the generalized

capacity function β̄(U) := β(U, ∅) for each U ⊆ N×A is a maximum weight matching

problem. We provide three useful representations of β̄(U). From the definition of β̄,

we first obtain the support function representation:

β̄(U) = max{χU · x : x ≥ 0,
∑
j∈A

xij ≤ 1,
∑
i∈N

xij ≤ 1}

where χU
ij ∈ {0, 1} can be interpreted as the surplus for a buyer-seller pair (i, j) and

β̄ is the efficient social surplus. It is well known that the solution to this problem can

be computed efficiently through the Hungarian method (Demange et al., 1986). By

strong duality of linear programming (e.g., Shapley and Shubik, 1971),

β̄(U) = min{
∑
i∈N

si +
∑
j∈A

pj : si, pj ≥ 0, si + pj ≥ χU
ij}

where si and pj are the payoffs for buyer i and seller j. From the the König-Egeváry

theorem (see Schrijver, 1986), we can further obtain the following minimum cover

representation

β̄(U) = min{|P| : P ⊆ G is a cover of U}.

Intuitively, let MU ∈ RN×A denote the matrix representation of U . Then the König-

Egeváry theorem asserts that the maximal number of nonzero elements of MU with

no two of these elements on a line is equal to the minimal number of lines of MU that

contain all the nonzero elements of MU . Without loss of generality, let us assume that

m = n. Let σ : {1, . . . , n} → {1, . . . , n} be a permutation and Pσ be a permutation

matrix of order n where p1σ(1) = p2σ(2) = · · · = pnσ(n) = 1. Denote

Pσ ◦MU = MU
1σ(1) + · · ·+MU

nσ(n)

the diagonal sum of MU corresponding to Pσ. We obtain the following maximum-sum
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diagonal representation

β̄(U) = max{Pσ ◦MU : Pσ is a permutation matrix of order n}.

Example 6. Suppose N = {i1, i2, i3}, A = {j1, j2, j3} and U = {(i1, j1), (i1, j3), (i2, j2)}.
Then β̄(U) = 2. The minimum covers are either {row i1, row i2} or {row i1, column j2}.
The maximum diagonal sum is equal to MU

11 +MU
22 = MU

13 +MU
22 = 2.

The case of ordinal types. We first consider the model with ordinal preferences.

For each agent i, a type ti ∈ Ti denotes a strict preference over A, denoted by ≻ti .

For any good j and type ti, let B(a, ti) := {j} ∪ {k ∈ A : k ≻ti j}. For any

random outcomes x and x′, we say x first-order-stochastically-dominates (FOSD) x′

according to ti (x ⪰ti x
′) if

∑
j∈B(k,ti)

x(i, j) ≥
∑

j∈B(k,ti)
x′(i, j), for all k = 1, ...,m.

An interim allocation rule Q is ordinally Bayesian incentive compatible (OBIC) if for

all i ∈ N we have

Qi(ti) ⪰ti Qi(t
′
i) for all ti, t

′
i. (26)

The following result provides a characterization of the set of ordinally Bayesian

incentive compatible allocations for random assignment problems.

Corollary 2. Let Ti, i ∈ N be type sets of ordinal preferences. The set of OBIC and

implementable allocation rules is given by Conditions (25) and (26).

Notice that when there are two types of objects, i.e., |A| = 2, each agent has a

binary type set (i.e., Ti = A). From Theorem 2 the projection cone preserves total

unimodularity.

The case of cardinal types. Now we turn to the model with cardinal utilities.

Suppose each agent i has a set Ti of types that represent her payoff vectors over the

objects, i.e., ti ∈ RA. Assume the payoffs over objects are additive. For any random

outcomes x and x′, we say agent i with type ti prefers x to x′ if x(i) · ti ≥ x′(i) · ti.
An interim allocation rule Q is incentive compatible if for all i ∈ N ,

Qi(ti) · ti ≥ Qi(t
′
i) · ti for all ti, t′i. (27)

Corollary 3. Let Ti, i ∈ N be type sets of cardinal utilities. The set of incentive

compatible and implementable allocation rules is given by Conditions (25) and (27).
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5.3 Allocation of club goods

Consider an allocation problem of excludable public goods (club goods) where

any agent’s consumption can be restricted at zero cost to any level below the total

quantity produced. Examples range from airports, zoos, museums to TV channels,

database, and different community clubs. We show how the conic approach can be

applied to this problem, which allows a joint implementation of public and private

goods.

Suppose that a monopolist can produce y ∈ [0, 1] units of the excludable public

good by incurring costs cy ≥ 0. There are two agents 1 and 2. Each agent i has

a consumption level of the public good qi ∈ [0, y], with the strict inequality holding

whenever exclusion is exercised. Since the monopolist derives no intrinsic utility from

the public good, we can set y = max{q1, q2}. Suppose each agent has l > 0 units of

the private good and a payment pi ∈ [0, l]. We say an allocation (q, p) is feasible if

the project’s input covers the cost

p1 + p2 ≥ cmax{q1, q2}. (28)

We can rewrite this inequality into two separate inequalities:

p1 + p2 − cqi ≥ 0, for each i. (29)

Denote xa
i = cqi and xb

i = l− pi as the allocation of the public good and the residual

private good for agent i. The problem fits our model with two types of goods a and

b. Observe that the constraint structure of (29) is non-canonical but bihierarchical.

5.4 Allocation of radio spectrum licenses

Suppose that some radio spectrum licenses are allocated to seven service providers

N = {i1, i2, ..., i7} located in different geographic regions. Let H = (N,E) denote the

interference graph for the providers, where a pair {i, j} of providers form an edge if

and only if i and j are close to each other and can have radio frequency interference

when i and j are both on-air. An example of the interference graph H is given by

Figure 1.

The licenses are identical but labelled differently and have multiple units. For

each pair of neighbors {i, j} ∈ E, at most one provider can be allocated a license
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Figure 1: Radio frequency interference graph H

to avoid radio interference. The following system of linear inequalities describes all

possible outcomes:

0 ≤ x(i) + x(j) ≤ 1 for every {i, j} ∈ E,

x(i), x(j) ∈ {0, 1} for every {i, j} ∈ E.

Here we give a simple example for the purpose of illustration. We refer to Rothkopf

et al. (1998) and Milgrom and Segal (2020) for detailed studies on the topic.

5.5 Bilateral trade

We revisit the classic bilateral trade problem of Myerson and Satterthwaite (1983).

The probability simplex constraint assumes that for any type profile of the buyer i1

and the seller i2, the probabilities of each agent obtaining the object satisfy p1+p2 = 1

and p ≥ 0. In many scenarios, the agents may be forced to take the status quo if their

type profiles are incompatible. In other practical settings, the players can deliberately

choose to implement the status quo for some profiles (e.g., ex post efficiency).

To incorporate such side constraints on allocation rules, we introduce an extended

problem with side constraints. Let (T1 ∪ T2;E) be a bipartite graph on the type

sets T1 and T2, where (t1, t2) ∈ E means that there is an edge between t1 ∈ T1 and

t2 ∈ T2, i.e., (t1, t2) is a compatible pair ex post. We say a feasible allocation rule p is

E-feasible if p2(t) = 1 for all t /∈ E. The problem with no side constraints corresponds

to a complete graph on T1 ∪ T2.

We show how the conic method can be applied to this problem. Observe that

the problem corresponds to the case of our model where |A| = 1, G = {N}, b(N) =
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c(N) = 1, and b({i}) = 0. Moreover in B and C only the entries restricted to t ∈ E

are non-zeros. The equal ceiling and floor constraint implies that g is free in the set

W given by (9). By eliminating h ≥ 0, the projection cone reduces to

W = {(f, g) ∈ Rl+|E| | −f⊤B + g⊤C ≥ 0}.

We characterize the generators of the projection cone for this bilateral trade prob-

lem. In contrast to Theorem 5 whose projection cone is pointed, we show that the

projection cone of a bilateral trade is non-pointed.

Lemma 9. For bilateral trade with constraints (T1 ∪ T2;E), we have: (1) W is non-

pointed. (2) M(W ) is TUM.

The next result gives a detailed characterization of the projection cone concerning

bilateral trade.

Lemma 10. For bilateral trade with constraints (T1 ∪ T2;E), if (f, g) is a {0,±1}
generator of W , then one of the following conditions holds:

(1) (f, g) = (1, . . . , 1) or (f, g) = (−1, . . . ,−1).

(2) f(i, ti) = −1 for a unique (i, ti) and 0 otherwise, and g = 0.

(3) (f, g) is the incidence vector of some (S,Γ(S)), where Si ⊆ Ti for all i ∈ N

and Γ(S) = {t ∈ E | ti ∈ Si for some i ∈ N}. That is,

f(i, ti) =

{
+1, if ti ∈ Si,

0, otherwise,

and

g(t) =

{
+1, if t ∈ Γ(S),

0, otherwise.

The generators in condition (1) of this lemma correspond to a basis of the linearity

space of the projection cone defined by {x ∈ W : Mx = 0}. These generators

correspond to the equality constraint in the implementability condition:∑
i=1,2

∑
ti∈Ti

Qi
i(ti)λi(ti) =

∑
t∈E

λ(t). (30)

Note that if the projection cone is non-pointed, the linear description is not unique
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and (30) can be used to generate different descriptions. For bilateral trade, as both

the seller and the buyer are interested in the interim expected probability of trade

(i.e., Q1
i (ti)), we can obtain the following characterization result.

Proposition 3. For bilateral trade with constraints (T1 ∪ T2;E), Q ∈ Rl
+ given by

(30) is implementable if and only if∑
t1∈T1

Q1
1(t1)λ1(t1)−

∑
t2∈T2

Q1
2(t2)λ2(t2) = 0, (31)

and for all S1 ⊆ T1, S2 ⊆ T2,∑
t1∈S1

Q1
1(t1)λ1(t1)−

∑
t2∈S2

Q1
2(t2)λ2(t2) ≤ λ((S1 × Sc

2) ∩ E). (32)

That is, at the ex ante stage, the two players must have the same expectations on

the probability of trade, and the difference in the seller’s and the buyer’s interim

probabilities of trade for any set of types S1 × S2 cannot be too distinct.

We provide some interpretation of the implementability conditions, by comparing

an auction with a bilateral trade. In Border’s theorem, only coefficients “+1” appear

in the linear inequalities. In contrast, the implementability condition for bilateral

trade here contains coefficients not only “+1” but also “−1” in the linear inequalities.

The interpretation for this result is intuitive: In Myerson (1981), the “+1” coefficient

means that if for buyer 1 the expected probability of winning becomes higher, then

for buyer 2 the expected probability of winning must be lower as the buyers are

competing for the probabilities of winning. In Myerson and Satterthwaite (1983),

however, the “+1” coefficient refers to that for each player her expected probability

of trade for some types is obtained by summing up her interim probabilities of trade

for these types, the “−1” coefficient means that the difference between the seller’s

ex ante expected probability of trade and the buyer’s cannot be too large. This

is because increasing the probability that trade occurs would increase both players’

expected probabilities of trade.

5.6 Compromise

Our final application concerns the compromise problem studied by Börgers and

Postl (2009) which is totally different from the previous ones. In their model there
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are two players (i.e., N = {1, 2}) and three alternatives (i.e., A = {a0, a1, a2}).9 The

players have opposite preferences: a1 ≻1 a0 ≻1 a2 and a2 ≻2 a0 ≻2 a1. That is,

the best alternative to one player is the worst alternative to the other player. We

normalize ui(a0) = 0 for i = 1, 2. Each player i has private information about her

payoffs on a1 and a2, given by a type ti ∈ Ti.
10

While the number of types in Börgers and Postl (2009) can be any positive integer,

for illustrative purpose we focus on the case of two types, i.e., |T1| = |T2| = 2. In this

problem a feasible allocation rule q : T → ∆(A) assigns each type profile a lottery

over alternatives. Hence for each player with type ti, the reduced form allocation

probability is multidimensional: Qi(ti) = (Qi(ti, a1), Qi(ti, a2)).

To apply our approach in this setting, let B be an incidence matrix where each

row is indexed by (i, a, ti), each column is indexed by (a, t), and the entry in row

(i, a, ti) and column (a′, t′) is 1 if a = a′ and ti = t′i and 0 otherwise. Let C be an

incidence matrix where each row is indexed by t, each column is indexed by (a, t),

and the entry in row t and column (a′, t′) is 1 if t = t′ and 0 otherwise. The projection

cone is given by

W = {(f, g) | −f⊤B + g⊤C ≥ 0}.

We will prove that when each player has two types, the projection cone is non-pointed

and the constraint matrix of the projection cone is totally unimodular.

Lemma 11. For compromise with binary type sets, we have: (1) W is non-pointed.

(2) M(W ) is TUM.

It is worth noting that while M(W ) does not form two laminars (it contains

three laminars), which differs from the bilateral trade problem, the constraint matrix

remains totally unimodular.

The above result implies that the projection cone is generated by {0,±1} vectors.

To present the implementability condition, let K = {a1, a2}. It can be verified that

9See Lang and Mishra (2023) for a recent study on a related voting problem with two public
alternatives.

10Note that Börgers and Postl (2009) normalize ui(ai) = 1 and ui(aj) = 0 and assume each player
has private information about her payoff on the compromise alternative a0, i.e., ui(a0) = ti. The
reduced-form implementation problem is the same irrespective of the normalizations.
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the implementability inequalities are given by: for all a ∈ K,∑
t1∈T1

Q1(t1, a)λ1(t1)−
∑
t2∈T2

Q2(t2, a)λ2(t2) = 0, (33)

and for all G ⊆ K, S1 ⊆ T1, S2 ⊆ T2,∑
a∈G

∑
t1∈S1

Q1(t1, a)λ1(t1)−
∑
t2∈S2

Q2(t2, a)λ2(t2) ≤ λ(S1 × Sc
2). (34)

6 Concluding Remarks

Many practical problems and markets face various complex distributional con-

straints going beyond the traditional ceiling or capacity constraints. In this paper,

we have studied the implementation problem of reduced-form allocation of multi-

ple heterogeneous indivisible objects to many agents with distributional constraints.

In our model, objects can be private goods or public/club goods, every agent may

demand several objects and has private information over her preferences. Her pri-

vate information is described by a finite set of types. Distributional constraints are

described by a variety of families of pairs of agent and object.

Using a lift-and-project method, we have been able to obtain a conic approach for

studying two major classes of implementability problems: Universal implementation

and quotas-dependent implementation. We have demonstrated how the approach al-

lows for a unified treatment of different classes of problems. We have succeeded in

identifying a fundamental and very general condition called total unimodularity and

establishing four general characterization results on implementation. Total unimod-

ularity reflects the essential property of the class of well-studied totally unimodular

matrices. Analyzing these matrices offers also interesting criteria that can be explored

to classify different classes of economic problems. For each problem, the main task is

to check whether its projection cone preserves total unimodularity or not. In fact, we

have proved that four large classes of constraint structures: hierarchies, bihierarchies,

adjacency, and paramodularity each can ensure total unimodularity. We have also

provided several applications of practical interest including systems of multiple sup-

pliers, assignment markets, allocation of club goods, assignment of radio spectrum

licenses, bilateral trade, and compromise problem.
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We hope this study has shed new light on implementation of reduced-form alloca-

tion and will provide a useful and necessary basis for further study on many complex

real life resource allocation problems.

A Appendix

A.1 Illustration for Condition (A)

Example 7. (Example 2 continued) Suppose that there are two students N =

{i1, i2}, one compulsory course c1 and three optional courses O = {o1, o2, o3}, and

T1 = {t11, t21} and T2 = {t12, t22}. Every student is required to take c1, and at least one

and at most two of optional courses. Each optional course is required to enroll at least

one and at most two of students. Notice that the compulsory course can be treated

separately and we restrict our attention to optional courses. Pick S+
1 = {(t21, o2)},

S+
2 = {(t12, o1), (t12, o2), (t12, o3)}, S−

1 = {(t11, o1), (t11, o2), (t11, o3)}, S−
2 = {(t22, o2)}. We

calculate β in Table 3. In particular, for (t11, t
1
2) consider the following problem:

Table 3: Parameters in Example 7.

t I(t, S+) I(t, S−) β
(t11, t

1
2) {(i2, o1), (i2, o2), (i2, o3)} {(i1, o1), (i1, o2), (i1, o3)} c({i2} ×O)− b({i1} ×O)

(t11, t
2
2) {∅} {(i1, o1), (i1, o2), (i1, o3), (i2, o2)} −b({i1} ×O)

(t21, t
1
2) {(i1, o2), (i2, o1), (i2, o2), (i2, o3)} {∅} c({i1} × {o2}) + c({i2} ×O)

(t21, t
2
2) {(i1, o2)} {(i2, o2)} c({i1} × {o2})

max x(i2, o1) + x(i2, o2) + x(i2, o3)− x(i1, o1)− x(i1, o2)− x(i1, o3)

s.t. 1 ≤ x(i, O) ≤ 2, i ∈ N,

1 ≤ x(N, o) ≤ 2, j ∈ O, 0 ≤ x ≤ 1.

An optimal solution is given by x∗(i1, o1) = x∗(i2, o1) = x∗(i2, o3) = 1, and x∗(i, o) = 0

otherwise. Note that at x∗ the floor constraint for i1 and the ceiling constraint for

i2, and the floor constraints for all optional courses are all binding. Similarly, we

calculate β for the other type profiles. The corresponding implementability condition

is given by

Q2
1,2 +Q1

2,1 +Q2
2,1 +Q3

2,1−Q1
1,1 −Q2

1,1 −Q3
1,1 −Q2

2,2 ≤ λ11 − λ12 + 3λ21 + λ22,
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where Qj
i,k := Qi(t

k
i , oj)λi(t

k
i ) and λkl := λ(tk1, t

l
2).

A.2 Proof of Theorem 1

Proof of Theorem 1. By Lemma 4, if (f, g, h) is a generator of W , then f corresponds

to a sign function of some sets S+
i , S

−
i ⊆ Ti × A for each i ∈ N . The projection of f

onto t ∈ T , denoted by ft, is given by

signI(t,S+),I(t,S−)(i, j) =


+1 if (i, j) ∈ I(t, S+),

−1 if (i, j) ∈ I(t, S−),

0 otherwise.

To obtain the tightest upper bound in Lemma 4 for each such f , we minimize g⊤cλ−
h⊤bλ subject to (f, g, h) ∈ W . For every t ∈ T , the pointwise optimization is given

by

min g⊤t c− h⊤
t b s.t. gt, ht ≥ 0, (g⊤t − h⊤

t )χ = signI(t,S+),I(t,S−),

where gt, ht are the projection of g, h onto t and χ denotes the matrix whose rows

are the characteristic vectors χU of the subsets U ∈ G. By a strong duality of

linear programming, we have the value of this minimization problem is equal to

β(I(t, S+), I(t, S−)). □

A.3 Proof of Theorem 2

Proof of Theorem 2. (1) If G is one hierarchy, then C is a laminar on N × A × T ,

since C restricted to each t ∈ T is a laminar. Notice that B is also a laminar on

N × A× T . From Edmonds (1970), the union of two laminars is TUM.

(2) Without loss of any generality, we consider a case where each agent has exactly

two types. Let M∗ be given in condition (12). Since TUM is preserved by deleting

unitary rows, it is without loss to consider non-singleton constraints in M∗. We first

show that result holds for standard bihierarchies where each column contains two

ones.

(a) Standard constraints. In this case, each column of M∗ contains exactly three

1s. Note that if a matrix A with at most three nonzero entries in each column, then

A is TUM if and only if each submatrix of A with at most two nonzero entries in

each column is TUM (Schrijver, 1986, Truemper, 1977). To show that M∗ is TUM,
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we only need to show that each submatrix M of M∗ with at most two nonzero entries

in each column is TUM. By a characterization theorem of Camion (Schrijver, 1986),

it is sufficient to show that M is balanced, i.e., in every square submatrix M ′ of M

with exactly two nonzero entries per row and per column, the sum of the entries is a

multiple of four.

Note each column and each row in M ′ contains two 1s. So start from any entry

and alternate between rows and columns, if it returns to the starting entry, we find

a cycle. If not, we continue adding entries and it eventually returns to the starting

entry. It implies that M ′ contains finitely many (entry) disjoint cycles, where each

cycle contains a submatrix of M ′ with exactly two 1s entries per row and per column.

We show that each cycle P is even, i.e., the sum of entries in P is a multiple of four.

First note that for any pair of two 1s in each row of P , there are two types of

possible changes of column indexes: (i) from (i, j, t) to (i, j′, t) in row (i, t) of C1, and

from (i, j, t) to (i′, j, t) in row (j, t) of C2, and (ii) from (i, j, ti, t−i) to (i, j, ti, t
′
−i) in

row (i, j, ti) of B. That is, P induces index changes P1 on N × A and P2 on T . The

number of index changes (or rows) in P1 (i.e., (i, j) → (i′, j) → (i′, j′) → · · · → (i, j))

is even as there are two hierarchies. The number of index changes in P2 (i.e., t−i →
t′−i → · · · → t−i) is also even since each player has two types. So the number of rows

in P is even. This implies that P is an even cycle.

We conclude that each cycle P contains an even number of rows. This completes

the proof that M ′ is balanced, and M (and M∗) is TUM.

(b) General constraints. Pick any square submatrix M of M∗. It is sufficient to

prove that det(M) ∈ {0,±1}. We claim that after some elementary row operations

M can be converted into a matrix M̃ where for each column, there is at most one 1

for each hierarchy. Specifically, for any two rows of Cl (l = 1, 2), (k, t) and (k′, t), let

Gk and Gk′ be the corresponding sets in Gl. Suppose Gk ⊂ Gk′ . Negate row (k, t)

and add it to row (k′, t). The elementary row operation changes only the sign of the

determinant of M and hence |det(M)| = |det(M̃)|. It is sufficient to show that M̃ is

TUM. Since M̃ now contains at most three 1s in each column, we only need to show

that each submatrix of M̃ with at most two nonzero entries in each column is TUM.

Following the proof of part (a), we obtain this result.

(3) Suppose each Ti has one element. Then matrix B has only one entry in

each row. Since TUM is preserved under deleting unitary columns, we only need to
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show that C is TUM. Since G is the union of two hierarchies, the Edmonds theorem

follows the result. Pick any submatrix M of C and we show |det(M)| ∈ {0,±1}.
By elementary row operations, the submatrix in each hierarchy reduces to a matrix

with at most one 1 in each column. The resulting matrix M̂ contains at most two

1s in each column and |det(M)| = |det(M̂)|. If there is some column with no ones,

|det(M̂)| = 0. If there exists a column with a single one, we can expand by minors

about that entry and the proof follows by induction. If all columns have two ones, the

sums of the rows from two hierarchies must equal and |det(M̂)| = 0. This completes

the proof. □

A.4 Proof of Theorem 3

Proof of Theorem 3. By a well-known characterization theorem on total unimodular-

ity (see Theorem 19.3 (vi), p.269 of Schrijver (1986)), to show that the conic constraint

matrix M∗ =

[
B

C

]
is TUM, we only need to show that in any square submatrix M

of M∗ with even row and column sums, the sum of the entries in M is divisible by

four. Without loss of generality, assume M has rows from both B and C (without

singletons). Notice that if the graph H contains no odd cycle, then H can be repre-

sented as a bipartite graph H = (V1 ∪ V2, E). So for the rows from C in M , each row

has exactly two ones. Also note that for the rows from B, each row contains an even

number of ones.

We claim that M can be decomposed into finitely many (entry) disjoint cycles,

where each cycle has even row and column sums. To see this, start with any entry

(i, ti, t) inM , find an adjacent entry in the same column and alternate between entries

in the same rows and columns. If it returns to the starting entry, we find a cycle P :

(i, ti, t) → (i, t) → (i′, t) → · · · → (j, t) → (j, tj, t) → (j, tj, t
′) → · · · → (k, tk, t

′) →
· · · → (i, ti, t

′′) → (i, ti, t). Remove all entries of the cycle and repeat. If it does not

return to (i, ti, t), we can continue adding new entries and it eventually returns to

(i, ti, t) since the non-zero entries in M are finite.

We now show that for each cycle P , the sum of the entries in P is divisible by

four. First consider the projection Pt of P onto t ∈ T (i.e., the index changes within

each t): (i, ti, t) → (i, t) → (i′, t) → · · · → (j, t) → (j, tj, t). Then Pt is a path with

tail i and head j, i.e., Pt = P i,j
t . Pt is called an odd path if i and j are in the same

partition Vl; and Pt is an even path if i and j are in the different partitions Vl and
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Vl′ . If Pt is odd (even), then the sum of entries in Pt is a multiple of two (four).

Next consider index changes in P by varying t ∈ T : P i,j
t → P j,k

t′ → · · · → P l,i
t′′ →

P i,j
t . Since each agent has two types, it implies the number of index changes in type

profiles is even in P , i.e., the number of Pt is even. Further, it implies both the

numbers of odd and even paths are even. Suppose not and the numbers of odd and

even paths are odd. By suppressing all odd paths, an odd number of even paths forms

an odd cycle in H. But it is a contradiction as H is bipartite. Hence there is an even

number of odd paths in P . This shows that the sum of the entries in P is divisible

by four. □

A.5 Proof of Theorem 4

Proof of Theorem 4. Substitute the extreme rays in Lemma 7 into the conditions in

Lemma 6, we obtain the condition in Theorem 4. □

A.6 Proof of Lemmas 1, 2 and 3

Proof of Lemma 1. Applying Lemma 2 to the implementation system F , we obtain

Lemma 1. □

Proof of Lemma 2. We first deal with the ‘only if’ part. Suppose y is implementable

by some x. Pick any (f, g) ∈ P and f⊤A1+g⊤A2 = 0, g ≥ 0. Then (f⊤B1+g⊤B2)y ≤
−(f⊤A1 + g⊤A2)x+ f⊤b1 + g⊤b2 = f⊤b1 + g⊤b2. Hence y ∈ Y .

Now we turn to the ‘if’ part. Suppose y is not implementable. There exists no

x such that A1x = b1 − B1y and A2x ≤ b2 − B2y. By Farkas’ Lemma (Schrijver,

1986, p.89), there exists (f, g) such that f⊤A1 + g⊤A2 = 0, g ≥ 0, and f⊤(b1 −
B1y) + g⊤(b2 − B2y) < 0. But then (f, g) ∈ P . There must be (f̂ , ĝ) ∈ P̂ such that

(f̂⊤B1 + ĝ⊤B2)y > f̂⊤b1 + ĝ⊤b2, and hence y /∈ Y . □

Lemma 3 is immediately obtained by using the following mathematical result,

which gives a nice and clear characterization of general cones defined by a totally

unimodular matrix (TUM) and will be derived from a well-known lemma of Hoffman

(1976).

We first introduce some notations. Let I be the index set of the inequalities in

the cone P . Let J = I=(x) denote the index set in I for which the corresponding

inequalities hold as equations (or active constraints) at x ∈ P . Let MJ be the
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corresponding submatrix for J , and let rkMJ denote the rank of MJ . Note that

x ∈ P is an extreme ray if and only if I=(x) is maximal, i.e., there exists no x′ ∈ P

such that J ′ = I=(x′) and J ⊂ J ′ ⊂ I. If x is an extreme ray, then so is λx for all

λ ≥ 0. Observe that for a pointed cone, the set of extreme rays provides a unique

(up to positive scaling) minimal set of generators.

Lemma 12. Let P = {x ∈ Rp | Mx ≤ 0} be a polyhedral cone and let M be TUM.

(1) If P is pointed, then P is generated by {0,±1} extreme rays.

(2) If P is non-pointed, then P is generated by {0,±1} vectors.

Proof of Lemma 12. (1) Let P be pointed. Assume that z ∈ P is an extreme ray

and J = I=(z). Since rkMJ = q − 1, there is a submatrix M ′ with q − 1 linearly

independent rows in MJ . Since M is TUM, M ′ is also TUM. We need to show that

if M ′ with columns M ′
1, ...,M

′
q has rank q − 1, then M ′z = 0 implies that all nonzero

coordinates of z are either α or −α, for some α > 0. The proof is essentially the same

as Lemma 3.1 of Hoffman (1976). Note that for any zj ̸= 0,

M ′
j =

q∑
i=1,i ̸=j

zi
zj
M ′

i ,

and M ′
i , i ̸= j are linearly independent. The linear system has a unique solution

( zi
zj
), i ̸= j. Since M ′ is TUM, each zi

zj
is integer. As this argument applies to every

nonzero entry in z, for any nonzero zj, zj′ and j ̸= j′,
zj′

zj
and

zj
zj′

are integers and

hence |zj| = |zj′| = α for some α > 0. Therefore every extreme ray of P contains a

{0,±1} vector.

(2) Let P be non-pointed. We write P as a union of finitely many pointed cones.

Notice that the Euclidean space Rq is a union of l := 2q closed orthants i = 1, ..., l.

Let Pi be the intersection of P and orthant i (with some Pi possibly empty). Then

P = ∪l
i=1Pi. We claim that each Pi and hence P is generated by {0,±1} vectors.

By the first part of the lemma, we only need to show that for each i, Pi is a pointed

cone and its constraint matrix Mi is TUM. Notice that by construction, each Pi is a

pointed cone. Since M is TUM and Mi is obtained from M by adding rows with at

most one non-zero entries (1 or −1), Mi is also TUM. □
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A.7 Proof of Lemma 6

We provide a detailed proof for Lemma 6. Denote C2 ⊂ CT × CT the set of all

possible pairs of profile of chains on disjoint ground sets, i.e., if (C1, C2) ∈ C2, then

for each t ∈ T , Ct
1 and Ct

2 have disjoint ground sets.

Lemma 13. Suppose pair (b, c) is paramodular. Then the following two systems on

y ∈ Rl are equivalent:

System F1: f⊤y ≤ g⊤c− h⊤b, for all (f, g, h) ∈ W , and

System F2: f⊤y ≤ g⊤c− h⊤b, for all (f, g, h) ∈ ∪(C1,C2)∈C2W (C1, C2).

Proof of Lemma 13. First notice that ∪(C1,C2)∈C2W (C1, C2) ⊂ W and hence F2 is a

subsystem of F1. We show that the inequalities in F2 implies all the other inequalities

in F1. By Lemma 5, for any f ∈ Rl, the tightest upper bound for f⊤y is attained at

some (g, h) where for each t ∈ T , (gt, ht) have supports given by some chains (Ct
1, Ct

2)

on disjoint ground sets (in N × A). We have (f, g, h) ∈ ∪(C1,C2)∈C2W (C1, C2). Hence

for any f ∈ Rl, the inequalities in F2 gives the tightest bound and imply all the other

inequalities in F1. □

We next show that system F2 in Lemma 13 is equivalent to the system in Lemma

6. That is, we can split the condition in F2 into two separate conditions, which

correspond to ceiling and floor constraints independently.

Proof of Lemma 6. For any f ∈ Rl, suppose the tightest upper bound for f⊤y is

attained at some (g, h) whose supports are some chains C1 and C2 on disjoint ground

sets. For each t ∈ T , let ft denote the projection of f onto t, i.e., ft(i, j) = f(i, ti, j).

Define f+
t the coordinates of ft where ft(i, j) > 0 and f−

t the coordinates of ft where

ft(i, j) < 0. Then ft(i, j) > 0 implies (i, j) ∈ supp(gt) and (i, j) /∈ supp(ht). It implies

−f+
t +

∑
U∈Ct

1
gt(U)χU = 0. Hence (f+, g) ∈ W+(C1). Similarly, we have (f−, h) ∈

W−(C2). Then the inequalities in the sets ∪C1∈CTW+(C1) and ∪C2∈CTW−(C2) imply

all inequalities in ∪(C1,C2)∈C2W (C1, C2). System F2 in Lemma 13 is equivalent to the

system in Lemma 6. □

A.8 Proof of Lemma 7

Proof of Lemma 7. We prove the result for W+(C1) (W−(C2) can be shown analo-

gously). (Only if) Suppose (f, g) is an extreme ray. By Lemma 6, (f, g) is 0-1 valued.
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It implies that f is the incidence vector of some S. Then g satisfies∑
U∈Ct

1

gt(U)χU = χI(t,S), (35)

gt(U) ∈ {0, 1}. (36)

Since each gt(U) ∈ {0, 1}, gt is the incidence vector of some P ⊆ Ct
1: gt(U) = 1 for

each U ∈ P and gt(U) = 0 otherwise. It implies that each (i, j) in I(t, S) is contained

in one and only one U ∈ P . Since P is a chain, P must contain a single element, i.e.,

P = {I(t, S)}.
(If) Suppose (f, g) given in the Lemma is not an extreme ray, i.e., the set of active

constraints in (35)-(36) is not maximal. But then there exists (f̃ , g̃) such that more

constraints in (36) are active. But then g̃t(U) = 0 for all U . Contradiction. □

A.9 Proof of Lemma 8

Proof of Lemma 8. Since for each family i ∈ Y , only two cars of different models

are acceptable, it implies that 0 ≤ x(i, j) ≤ 1, for all j ∈ A. Hence each demand

constraint i ∈ X ∪ Y is canonical, and (22)-(24) form one hierarchy. Combine with

the supply constraints we have (21)-(24) are bihierarchical. □

A.10 Proof of Theorem 5

Proof of Theorem 5. The theorem immediately follows from Corollary 1 when the

floor constraint is standard the general capacity function is linear. □

A.11 Proof of Lemmas 9, 10 and 11

Proof of Lemma 9. (1) (f, g)M(W ) = 0 implies f(i, ti) = g(t) = f(j, tj) = g(t′i, tj) =

f(i, t′i) for all ti, tj, t
′
i. Hence (f, g) = (1, ..., 1) is in the linearity space of W and W

is non-pointed. (2) M(W ) is TUM since by deleting unitary column we obtain the

node-arc incidence matrix of (T1 ∪ T2, E). □

Proof of Lemma 10. Let (f, g) be a {0,±1} generator. Since (f, g) ∈ W , for each

t ∈ E, we have

− f(i, ti) + g(t) ≥ 0. (37)
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When all of the constraints are active, the generators in the linearity space of W

is given by (1, ..., 1) and (−1, ...,−1). We next identify the generators not in the

linearity space. We consider the following two cases.

(a) f(i, ti) ∈ {0,−1} for all (i, ti). Since (f, g) attains a maximal set of active

constraints, then f(i, ti) = −1 for a unique (i, ti) and 0 otherwise, and g = 0.

(b) f(i, ti) = 1 for at least one (i, ti). By (37), for any t ∈ E, if f(i, ti) = 1 for

at least one i, then g(t) = 1. If f(i, ti) = 0 for exactly one i, and f(k, tk) ≤ 0, then

g(t) = 0. If f(i, ti) = −1 for i = 1, 2, then g(t) = −1. Define (f̃ , g̃) by replacing each

f(i, ti) = −1 by 0 and g(t) = −1 by 0. There are more active constraints at (f̃ , g̃)

than at (f, g). Hence if (f, g) has a maximal set of active constraints, f ≥ 0 and

(f, g) is the incidence vector of (S,Γ(S)). □

We introduce the following theorem for the proof of Lemma 11.

Lemma 14. (Ghouila-Houri, 1962; Schrijver, 1986) Let M be an p × q matrix. M

is totally unimodular if and only if for every subset of columns Ω ⊆ {1, ..., q}, there
exists a partition Ω1, Ω2 of Ω such that∣∣∣∣∣∑

j∈Ω1

mij −
∑
j∈Ω2

mij

∣∣∣∣∣ ≤ 1 for i = 1, . . . , p.

Proof of Lemma 11. We show that the constraint submatrix M =

[
B

C

]
is totally

unimodular. Note that M (without singletons) is given by

M =



1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1



.

Partition all columns of M into

Ω1 = {(a1, t11), (a1, t22), (a2, t12), (a2, t21)} and

Ω2 = {(a1, t12), (a1, t21), (a2, t11), (a2, t22)},
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where tkl denotes the type profile (t1k, t2l). For any subset Ω of all columns, let

Ω′
1 = Ω

⋂
Ω1 and Ω′

2 = Ω
⋂
Ω2.

It can be seen that the two 1s in each row either belongs to different sets Ω′
1 and

Ω′
2, or at least one of the two 1s belongs to neither Ω′

1 or Ω′
2. By the Ghouila-Houri

theorem, M is TUM. □
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