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Abstract

This paper fills the gap in the literature by introducing an efficient, incentive compatible

audit policy that can minimise the social loss created by the audit cost while maximising social

welfare. We apply this within a loan auditing context, but the method is also applicable to any

accounting and tax audit context. We explain why the loan contract design for finance of projects

varies between different situations. Each project outcome is random and private information of its

individual owner, but reported outcomes can be audited at a cost. Our framework simultaneously

determines incentive compatible auditing policies, interest rates and default probabilities to yield

an efficient contract design. We show how the socially best loan audit policy and repayments

depend on the degrees of information asymmetry and risk correlation between projects, the number

of agents in the agreement and the agents’ perception of loan default.

Key words: Optimal contract, Incentive compatible audit policy, Heterogeneous and correlated
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1 Introduction

In this paper, we derive the optimal audit policy which maximises expected social welfare and, at the

same time, minimises the deadweight loss created by the audit cost for both one-to-one and multiple

auditor-auditee settings. Our study provides a connection between report auditing in the accounting

literature and welfare maximisation as well as incentive compatibility in the economic literature. In the

accounting literature, the issue of audit arises from the facts that the information of each subsidiary

of a holding company or each division within a multidivisional organisation can be private. There are

spillover effects between these units such that the total organisation performance depends on that of

its units and the rewards for each unit depend on the performance of all units (Healy, 1985). As a

result, the principles of component auditing have developed. Similar issues arise in economics in the

context of group lending where the joint liability for loan repayment is similar to the overall financial

viability of the multidivisional firm depending on the net performance of its divisions. The project

outcome can be private information to each borrower, so some incentive compatibility devices must

be used to ensure truthful reporting of outcomes and repayment by individual borrowers. In both

literatures, there are also some implications for how the umbrella organisation (the loan group and the

central arm of the multidivisional firm) does or should behave (see, e.g., Besley and Coate, 1995; De

Quidt et al., 2016; Feltham et al., 2016) although in the former case the rules are often taken as given.

Auditing the reported outcomes of individuals who declare low or defaulting returns is a common

way to deal with asymmetric information problems between the principal and agents or between the

lender and borrowers. Typically in the accounting literature, the audits are complete (every unit is

audited for sure) and randomization in the audit policy is not widely considered (Demski, Patell,

and Wolfson, 1984). In accounting knowing that each audit is costly, some researchers (e.g., Yim,

2009) suggest that the audit budget can be conserved by implementing audit on a random sample of

projects with low or defaulting returns1. While accounting and economic literature also considers other

1Yim (2009) states "An overly-committed audit budget ties up resources that could have been allocated for better

alternative uses" p. 2000.
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incentive problems e.g. controlling or monitoring agents/borrowers choice of project (Stiglitz, 1990;

Madajewicz, 2011) or choice of effort in carrying out the project (Laffont and Rey, 2003; Drymiotes,

2007), surprisingly little attention has been paid to incentive problems in loan auditing especially for

loans with joint liability and positively correlated risk. In this paper, we fill the gap in the literature

by introducing an efficient, incentive compatible audit policy that can minimise the social loss created

by the audit cost while maximising social welfare. We apply this within a loan auditing context, but

the method is also applicable to any accounting and tax audit context.

In economics, typically the incentive for borrowers to cheat is controlled by requiring individual

borrowers to report their outcome to the auditor(s) and then focussing audit (usually at a random rate)

on those reporting lower financial results. This is to control the incentive for successful borrowers to

misreport their outcome, hiding some of their profit. If a report is found to be falsely low by audit, the

borrower can be punished. Particularly, a cheating borrower who is discovered can have all his revenue

confiscated. Knowing this, each borrower has an incentive to report their outcome truthfully. However,

audit has a cost and in microfinance this cost, which include transport and communication, can be

high. Some prior studies emphasise the effects of peer pressure in group lending to give incentives for

repayment (e.g., Besley and Coate, 1995; De Quidt et al., 2016; Karlan, 2007)

Typically, group lending has some special empirical features. It is designed to assist economic

and social development in poorer regions (Ahlin et al., 2011; IMF, 2005). Its advantages are seen

as a way of enabling excluded borrowers to access finance because it reduces the problems of lack of

collateral, asymmetric information (ex-ante adverse selection as well as ex-post moral hazard), and

administration costs of a large number of small loans. Historically, one common pattern is for lenders

to start with group lending comprised with loans of small size per capita for small scale projects2 . A

typical Grameen bank group loan in the 1990’s had no more than five borrowers and often the first

2Many empirical studies of conventional bank lending find a positive relationship between loan size and interest rate

(e.g., Godlewski and Weill, 2011) and that the larger loan size is associated with the lower default probability (e.g.,

Agarwal and Hauswald, 2010). On the other hand, Gonzalez (2010) finds that smaller loans have a higher operation

cost and so lenders set a higher interest rate premium. Brick and Palia (2007) find too that the smaller borrower firms

are charged a higher interest rate. In order to allow the interest rate charged to small borrowing to be low, microfinance

institutions lend to groups of small borrowers and peer monitoring and peer pressure have been employed.
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loan is to a group of just two borrowers. However, some groups have been much larger than this. For

example, German rural credit cooperatives usually had 75-250 members (Ghatak and Guinnane, 1999).

The Foundation for International Community Assistance (FINCA) establishes "village banks", a form

of microlending, with group sizes between 10 and 50 members and claims that they have achieved a

high repayment rate3. later, the loans evolve into increasing size of loans to individuals4, or increasing

interest rates for groups with low average loan sizes (Gonzalez, 2010). Using 124 institutions in 49

countries, Cull, Demirguc-Kunt and Morduch (2007) find that an increase in loan size is associated

with lower cost, leading to a higher rate of return on assets for individual-based lenders. Other writers

find a small group size is important in determining group loan success (see, e.g., Devereux and Fishe,

1993). An important issue in auditing practice is that the number of auditees or reports submitted

impacts on the quality and cost of audit; a random audit policy is therefore adopted to reduce the

number of audited reports. Motivated by this issue, we attempt to explain how the efficient audit

probability can be set up and how it varies between individual and group loans and depends on the

numbers of borrowers and reports submitted.

This paper makes two main contributions to the economic and accounting literature. First, we

contribute to the literature by introducing the efficient, incentive compatible audit policy for both one-

to-one and multiple auditor-auditee settings. Looking at loan auditing as an example, our framework

allows an audit probability to be endogenous, unlike literature that has deterministic, exogenous

audit and punishment large enough to ensure a fair return to lenders. Here, we study individual and

group loans with costly state verification under risk neutrality with a loan outcome known only by

the particular borrower. Borrowers have zero collateral and use the loan to generate risky returns

which may be low enough to compel a borrower to default on repayment, but on average each loan is

profitable and socially desirable. To prevent a high-output borrower falsely declaring that his output

is low, some audit on lower reports combined with some punishment when these are discovered to be

false is necessary. A report of a low defaulting return can be randomly audited at a fixed cost per

3Source: FINCA (www.finca.org)
4Vigenina and Kritikos (2004) find that the size of individual loans tends to be larger than that of group loans.
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audit, similar to Yim (2009) who proposes a bounded simple random sampling rule for tax auditing.

Analogous to a principal/multi-agent model of Feltham et al. (2016) in which the principal either

contracts with all parties directly or delegates part of the contracting authority to an agent, our

framework has the lender perform the audit for individual loan contracts and two borrowers perform

the audit in group loan contracts. In group lending, the joint liability or group expected surplus is

an incentive for peer auditing. According to Stiglitz (1990), Madajewicz (2011) and Laffont and Rey

(2003), monitoring is most efficiently done by fellow borrowers in the group rather than by lenders (see,

e.g., Armendariz and Morduch, 2005; Madajewicz, 2011). A reason for this is that the group members

are better informed than the lender (see, e.g., Brau and Woller, 2004; Agarwal and Hauswald, 20105)

and that the borrowers belong to a social group which may allow nonpecuniary social sanctions as

well as pecuniary sanctions being imposed on cheats (see, e.g., Karlan, 2007 Besley and Coate, 1995;

De Quidt et al., 2016). This helps prevent cheating, and audit by borrowers is therefore more efficient

than audit by the lender; thus, each audit is cheaper if performed by a borrower than the lender (see,

e.g., Stiglitz, 1990; Varian, 1990; Armendariz and Morduch, 2005; Assadi and Ashta, 2014). Hence,

it makes sense for two of the borrowers to have special status. One is appointed as chief auditor and

audits the reports of other defaulting borrowers. The second audits the outcome of the chief auditor

when the latter declares default. This is a generalization of the setup first proposed by Banerjee,

Besley and Guinnane (1994) and is also related to the idea of delegated audit of Diamond (1984).

Our framework shows that, with a group loan, the way incentive compatibility works depends

crucially on how each borrower thinks his own report will affect the solvency of the group; the group

is classified as (i) unprofitable, (ii) marginal and (iii) non-marginal depending on whether the group

is expected to default if he cheats. The results highlight that the group size has strong implications

for the nature of incentive compatibility constraints in a group loan. In other words, the efficient,

incentive compatibility condition and the audit probability depend on the total number of agents (e.g.,

the number of taxpayers in the tax audit context) although the audit is randomly performed only on

5Agarwal and Hauswald (2010) documented that some private credit information is primarily local and that it is

more likely that the bank will face non-payment of borrowers located farther away.
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those reporting low or defaulting outcomes (i.e., tax payers reporting low income).

Second, to the best of our knowledge, we are among the first to show how the optimal incentive

compatible audit policy, default and interest rates and social welfare vary with general degrees of

correlation of outcomes between auditees. It is commonly known that most group loans are to borrowers

who are similar to one another or live in the same area (Assadi and Ashta, 2014). Local shocks are

likely to affect all borrowers, leading to positive correlation of revenues and reducing the possibilities

for risk diversification between group members. Our framework emphasises the impact of correlation

on the optimal group contract. To date, only a handful of studies have looked at the role of correlation

of returns between borrowers (e.g., Ahlin and Townsend, 2007; Katzur and Lensink, 2012; Kurosaki

and Khan, 2012)6. Goodstein, Hanouna, Ramirez and Stahel (2017) find that a higher delinquency

rate in surrounding zip codes increases the probability of a strategic default and Varian (1990) notes

that borrowers’ homogeneity can make the lender worse off. How to model correlated risks is still

an issue. The few existing studies on group lending take very specific models of correlation (see, for

example, Sinn, 2013). Here, we introduce the use of the beta-binomial distribution in the analysis of

group lending, as it allows for varying degrees of correlation. The positive correlation of returns induces

a higher chance of many fails and many successes within a group as compared with independent risks,

heightening the chance of group default.

For ease of exposition, the paper analyses how different group conditions (e.g., the size of group and

the distribution of returns of individual borrowers) will result in different incentive compatible auditing

contracts. We find that, with uncorrelated borrower risks, group loans with our group rules dominate

individual loans in terms of social welfare with the two forces at work being risk diversification and

a lower audit cost per project. Our results extend those of Baland, Somanathan and Wahhaj (2013)

who allow for some self-finance and a variable loan size; under their assumptions, they find that the

expected surplus for a risk neutral borrower in a group loan is highest when the default rate on the

group loan is lowest. Our paper finds that, with correlation, the advantage of group lending in relation

6Most studies assume identical independent risks (iid) of each borrower; some studies analyse lending with independent

but heterogeneous risks of borrowers (see, for example, Stiglitz, 1990).
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to risk diversification disappears and that the audit probability increases with the degree of correlation

between individuals’ outcomes and group size. Our approach and findings should apply to other

audit problems such as audit with correlated risk by setting a higher random audit probability in the

financial statement or tax audit. We would expect more efficiency and lower cost through identifying

the correlation between component successes, randomising the audit on components and adopting the

audit policy that leads to the highest welfare of the organisations.

The rest of the paper is outlined as follows. The next section introduces a simple model for in-

dividual and group loans, describing the time line and audit mechanism for both individual lending

(one-to-one setting) and group lending (multiple auditors-auditees setting). The section then derives

the socially optimal audit probability for each loan form and each risk distribution. It also establishes

the borrower’s welfare for each loan form and analyses the relative social merits of individual and

group lending based on welfare for different numbers of agents and different types of risks. In Section

3, the binomial distribution is used in simulation to reflect independent risk while the beta binomial

distribution is used to reflect positively correlated risk of auditees’ projects. In Section 4, assumptions

such as the possibilities of collusion between auditors and auditees as well as dynamic settings (e.g.,

renegotiation or sequential group lending) are considered. Section 5 concludes and provides the impli-

cations of our findings to other auditing practices and policymaking. Technical proofs are relegated to

the appendix.

2 A Simple Model

2.1 Assumptions

2.1.1 Distribution of risk

In this section, we introduce a simple framework to derive the optimal incentive compatible audit

policy that can minimise the social loss created by the audit cost while maximising social welfare.

In our framework, there are a risk neutral lender, who has access to a safe interest rate (), and

 risk-neutral borrowers. Each borrower  has a project requiring finance of . In common with
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much of the literature (see, e.g., Stiglitz, 1990; Banerjee et al.1994, Laffont, 2003; Laffont and Rey,

2003; Ahlin and Townsend 2007), we assume that each project  yields one of two returns; with

some probability , the project succeeds and yields high revenue of  and with probability 1 − 

the project fails and yields low revenue of . A set of success probabilities (1 ) is a sample

draw from a distribution (1 ) in which each  has an identical mean of . In general, the

random probabilities of successes (1 ) may be mutually correlated. Define the number of successes

as  and the joint distribution of risk as ( 1) The distribution of the outcomes is common

knowledge. Let  be any permutation of  integers for  ∈ [0 ]; for example, if  = 5 and  = 4,

there are five permutations: {1 2 3 4} {1 2 3 5} {1 2 4 5} {1 3 4 5} {2 3 4 5} The number of

elements  ∈  is actually

µ




¶
. The conditional density of the number of successes being  is

(|1 ) = ΣΠ∈Π∈(1− ) So

( 1) = (|1)(1)

= ΣΠ∈Π∈(1− )(1)

It follows that7

(|1) = Σ

(|1) = 

Even if individual project risks are identically distributed, success on different projects can be

correlated. Allowing (especially positively) correlated risks is empirically important. Given that group

7As stated above the contract is written on the basis of the individual risks being a draw from the distribution

(1 ) We are particularly interested in the distribution of the number of successes on the  projects. We give

some general results; let (1) be a sample from an arbitrary multivariate distribution with mean vector ().

For  = 1, it is just the binomial case (1|) =  For  = 2,

(|12) = 2Pr( = 2) + 1 ∗ Pr( = 1) + 0Pr( = 0)
= 212 + [1(1− 2) + 2(1− 1)] = 1 + 2

Suppose that it is true for − 1: (|1−1) = Σ−11 ; then, for  borrowers, we have the recurrence rule:

(|1) = (1 +(|1−1) + (1− )(|1−1)
=  +(|1−1)

Therefore,

(|1) = Σ

(|1) = 
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loans are typically to geographically close borrowers, the idea of common systemic risk on a group

loan is attractive. Due to the localised nature of group lending, group members may face some

common risks and thus the success of projects may be correlated (see, e.g., Varian, 1990). The

dependence of outcomes violates the independence assumption of the binomial distribution. The

tail probabilities (especially the lower tail) are likely to be higher than with independent risks, since

downside catastrophic risk is probably more common in the developing economy context in which group

lending occurs. Particular events such as extreme weather (e.g., droughts and floods), geological events

(e.g., earthquakes) and economic and political events (e.g., commodity price shocks and revolution)

are likely to cause common high downside risk in the borrower group. Similarly, good shocks are likely

to be correlated across borrowers if they are localised. That is why we model an exante situation in

which the risks facing different borrowers are initially random variables and positively correlated.

2.1.2 Auditing

Only the borrower can costlessly see the outcome of his project. The outcome of a project can be

revealed to the lender and all other borrowers only by costly audit which will then reveal publicly

the revenue of audited borrowers. With individual loans on multiple projects, there is a separate

contract between each borrower and the lender which is set to give the lender a fair return allowing

for borrower default and the cost of audit. Each borrower only has an interest in his own contract, so

audit of defaulting outcomes must be performed by the lender.

With a single group loan financing the projects of all individual borrowers, all borrowers report

their project outcome to the group which then organises any audits and makes a group repayment

to the lender. Any remaining group surplus is distributed equally between successful borrowers and

truthful fails. The group contract again ensures that, with truthful reports, the lender receives the

fair return on the total group loan. Unlike individual loans, there is joint liability for the group loan

amongst borrowers. So long as the total group revenue can cover the fair repayment on the group loan,

successful borrowers bail out defaulting borrowers to avoid seizure of all group revenue. Thus, each

borrower has an incentive to audit his fellow borrowers to ensure that they truthfully report successful
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outcomes. There are strong arguments in the literature that the group is better informed about the

situation of group members than the lender and is also in a position to impose tougher sanctions for

truth-telling on group members than the lender (see, e.g., Assadi and Ashta, 2014; Everett; 2015).

In Stiglitz (1990) and Karlan (2007), strong emphasis is put on the role of the group of borrowers in

enforcing truthful revelation and repayment through peer pressure. In such cases, it is the group of

borrower(s), not the lender, who pay the audit cost. In Banerjee et al. (1994), one group member is

designated as the auditor, but most group loans are to symmetrically placed borrowers, each with a

risky project. To operationalise this in our framework, two group members have an audit role set by

the group collectively: the first borrower receives all −1 reports from the other borrowers and audits

each of the fail reports, and the second audits only the reported fail outcome of the first auditor.

We assume that the lender can audit fail reports at a cost of  per borrower8 and borrowers

can audit a failed report at the cost per borrower of  (≤ ). In common with the literature, the

audit probability is selected to ensure truthful reporting and all revenues of detected false reporters

are seized, satisfying the revelation principle (see, e.g., Townsend, 1979; Gale and Hellwig, 1985) and

maximum punishment (see, e.g., Border and Sobel, 1987)9.

2.1.3 Lending and repayment

In our framework, the timing is as follows:

(i) Initially, each borrower receives finance for a risky project. The individual or group repayments

for solvent agents are agreed. The lender does not know  for each borrower  but knows the distri-

bution from which  is a draw. The amount of repayment is set to give the lender a zero expected

excess return above the safe rate. The rule that, if default occurs with either an individual or group

loan, the lender seizes all the discovered assets of the borrowers is agreed10. The audit probability on

8Vigenina and Kritikos (2004) find that the size of individual loans tends to be larger than that of group loans. Using

124 institutions in 49 countries, Cull et al. (2007) find that an increase in loan size is associated with lower cost especially

for individual-based lenders - but only upto a point. In addition, Cull et al. (2009) report that the institutions with the

higher cost per unit lent charges the higher interest rate. Similarly, Brick and Palia (2007) find that smaller loans have

a higher operation cost and so lenders set a higher interest rate premium. This is reinforced by Gonzalez (2010).
9 It is well known that applying maximum punishment on false defaulters minimises the risk of false reporting and

helps attain incentive compatibility under risk neutrality (see, for example, Border and Sobel, 1987; Besley and Coate,

1995).
10The projects in this framework are differentiated only by the chance of success. The setup is equivalent to one in

which the project yields 0 if it fails, but the borrowers have to post collateral of  that can then be seized if the project

10



an agent who declares a fail () is also set in the initial contract.

(ii) Each borrower executes the project, observes his revenue outcome, and reports either a success

or fail to the lender and other borrowers. In particular, with individual loan contracts between a

borrower and the single lender, all borrowers report their outcome to the lender. With a group

loan, borrowers report their outcome to the group. These individual borrower reports are made

simultaneously.

(iii) The auditor(s) carry out random audits on reported fails. With any loan form and any audit

arrangements, if there are  reported successes, − audits must be undertaken each with probability

. With individual loans, the lender performs the audit and a detected cheating borrower loses his

whole revenue to the lender. With a group loan, audit by two group members is socially preferred to

audit by the lender (see Appendix A). The results of these audits become public knowledge to the

lender and all borrowers11 . If a borrower is audited and is found to have cheated, the group seizes all

the revenue of that borrower and denies him any share of group surplus.

(iv) Based on truthful reports, payments are made out of the project(s) revenues after auditing.

For an individual loan, the lender seizes the revenue of a fail following the audit. For a group loan, the

group either repays and divides up its remaining surplus equally between all borrowers or defaults in

which case the lender seizes the group revenue.

2.1.4 Social desirability condition

We assume social desirability conditions of the project:   (1 + ) +    and

 + (1− )  (1 + ) + (1− )  (1 + ) + (1− ) (1)

where  is the mean probability of success for each project. Therefore, only successes can repay their

own loan in full, and each loan has a positive net expected social return even with the high audit cost.

Multiplying the first inequality of Eq. (1) by  yields

 + (− )  (1 + ) + (− ) (2)

fails and the borrower defaults.
11 Since audit results are public to all including the lender, the group itself or its auditors cannot cheat.
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As shown above, the mean number of successes in a population of  borrowers: (|1) = ,

so Eq.(2) can be rewritten as

(|1) + (−(|1))  (1 + ) + (−(|1)) (3)

That is, on average each project is profitable whatever happens to the other projects, and at the mean

number of successes the group revenues are sufficient to repay the loan. There is the usual audit

commitment problem for the auditor (the lender in this case); he has to commit to pay the cost to

discover the borrower assets even though he knows that the borrowers are truthfully reporting. If

  , then the lender can always cover the audit cost.

2.2 Individual loans

The lender directly contracts with each borrower, setting the required repayment from a successful

borrower () and the audit probability on a loan which reports a failure. The borrower reports the

outcome to the lender. If fail is reported, he is audited with the agreed probability  . A successful

borrower makes the repayment to the lender, a truthful failed borrower pays his entire revenue  and

a detected cheating successful borrower loses his whole revenue  to the lender. The lender sets the

terms of each loan identically on each borrower. With an assumption that the lender knows only the

distribution of  (̄ is the mean of  in the marginal distribution), the repayment per loan  is set to

give the lender a non-negative expected surplus above the risk-free interest rate () on each individual

loan12:

 ̄+ (1− ̄) ≥ (1 + ) +(1− ̄)

where  is the audit cost. Since on average individual projects fail with probability 1 −  this is

also the expected default rate of an individual loan. Given our assumptions on returns and loan size,

12 If the lender treats each borrowers  loan in isolation from other loans, the marginal distribution of  is used to

compute the repayment on each loan, but the mean of the marginal distribution is again .

The lender sets the common repayment per loan to just give a zero expected surplus on the  loans in total

(|1) + (−(|1)) = (1 + ) +(−(|1))
(|1) =  so the repayment is set identically for  borrowers.
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borrowers who fail must default, but successful borrowers should repay. Borrower surplus is

 = ( − ) with probability 

= 0 with probability 1− 

Then, the expected surplus of the  borrower is

 = ̄( − )

If the successful borrower reports fail and the loan is audited (with probability ), all his revenue is

confiscated. As a result, a successful borrower will truthfully report if

(1−)( − ) ≤  −  (4)

The individual loan contract solves the problem of choosing  and  to maximize the total

welfare between the lender and borrower subject to the lender at least breaking even in expected value

terms and a constraint on the borrower which requires truth-telling behaviour (Eq. (4)). We note that

if the lender participation constraint binds, the lender’s surplus is zero and the total welfare is equal

to the expected individual borrower surplus per loan.

The contract problem is

max
 

 = ̄( − )

s.t. lender participation constraint :  ≥ (1 + ) + ( − )(1− )

incentive compatibility : (1−)( − ) ≤  − 

Both the lenders participation constraint and the incentive compatibility constraint must bind. If the

participation constraint is slack,  can be reduced which slackens the incentive constraint and raises

the objective. If the incentive constraint is slack,  can be reduced which slackens the participation

constraint allowing  to also be reduced. Jointly solving the two binding constraints for the variables
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 and  yields the solutions:

 =
(1 + ) − 

̄( − )− (1− ̄)
(5)

 =
(1 + ) + ( − )(1− ̄)

̄

= ( − )
(1 + ) − 

̄( − )− (1− ̄)
+  (6)

With social desirability  + (1− )  (1 + ) + (1− ̄), the optimal audit probability is strictly

between zero and one. The required repayment  reflects the feasibility of the project with the first

term’s denominator reflecting the audit cost transferred from the lender. With   1 Eq. (6) also

shows that at the optimum  is set to be equivalent to the lender’s expected gain from loan auditing:

 + (1 − ). Knowing   we can find the interest rate () required for an individual loan

as  is equal to (1 + ). Eq. (6) is consistent with many empirical studies of conventional bank

lending which document a positive relationship between loan size and repayment (interest rate) (see,

e.g., Godlewski and Weill, 2011). The optimal expected surplus of the  borrower is then

 = ̄( − )

= ( − )

∙
1− (1 + ) − 

( − )− (1− )

¸
 0

It shows that the higher the audit probability, the lower the expected surplus of the borrower and the

total welfare.

2.3 Group loan

The group has a fixed size  with a known distribution of the number of successes . (|1) is

the mean number of successes from a population of size  (Hereinafter (|)). The realized outcome

of any one borrower is private information to that borrower unless the borrower is audited. Each

borrower makes a report of his outcome to the group. If audited, the true outcome of the borrower is

known by all borrowers and the lender. Audit per borrower costs . Following from Eq.(1) and Eq.

(3), the  individual projects are socially desirable in the sense that (|)(−)+− (1+)−

(−(|))  0. That is, the mean group revenue covers the investment cost of the lender plus the
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cost of auditing each of the mean number of fails.

Recall the time line in Section 2.1.3, loans to individuals are made, and the lender only knows the

exogenous individual loan size, the group size and the distribution of the number of successes. The

loan contract sets the repayment required from the group ( ) and the probability with which each

reported fail will be audited ()13. The group repayment and  are set so that the lender gets a

non-negative expected surplus above the safe rate, allowing for joint liability between borrowers, for

group default when many borrowers fail and also for the audit cost on reported fails.

The group undertakes and pays for the audit. There are two reasons for this. First, as well docu-

mented the audit cost per borrower may be lower for a group member because of better information.

Second and more fundamentally, part of the costs of incentive compatibility are internalised if the

group audits. A successful borrower knows that if he cheats, he will reduce the group revenue and his

share of the surplus of a nondefaulting group because of his expected audit.

With truthful reporting, group revenue received is

 + (− )− (− ) = ( − + ) + (− )

when there are  successes. If the revenue received by the group is lower than the required group

repayment, the group defaults and the lender seizes all the group revenue; otherwise, the group repays

the amount set in the group loan contract. There will be a critical number of successes ∗, the lowest

number of successes which allows the group to repay (See proof in Appendix B). If   ∗, the

group defaults and pays all its revenue ( −  + ) + ( − ) to the lender. So conditional

on the group defaulting, the average return to the lender from all the defaulting states is ∗(| 

∗ )( − + ) + (− ) where ∗(|  ∗) is the mean of the truncated distribution of the

number of successes, i.e., (|  ∗ )Pr(  ∗ ) Pr(  ∗ ) is the default probability on the

group loan. Hence, in expected terms the lender receives

(i)  with probability Pr( ≥ ∗ )

13To ensure truthful reports on all projects requires each reported fail to have a positive probability of audit (  0).

This is costly and decreases the group’s surplus. The audit probability is optimally set at its lowest level ensuring

truthful reporting.
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(ii) ∗(|  ∗ )( − + ) + (− ) with probability Pr(  ∗ ).

The lender has to at least break even on the group loan in expected terms. Thus,  and ∗ are

jointly determined by

Pr( ≥ ∗ ) +(|  ∗ )( − + ) + (− ) Pr(  ∗ ) ≥ (1 + )

∗( − + ) + (− ) ≥ 

The surplus of the group () depends on  :

 =  + (− )− (− )−  if  ≥ ∗

= 0 if   ∗

Hence,

 = (| ≥ ∗ )( − + ) + Pr( ≥ ∗ )[(− )−  ]

which is shared equally between the truthful reporting borrowers.

2.3.1 Group incentive compatibility

Each borrower has to decide what he should report: a success or a fail, knowing the audit probability

 but not at this stage knowing the outcome of other borrowers. If they are truly a fail, the best

the borrower can do is "reporting a fail and paying  to the lender/group"; such a borrower still has

a chance of a share of the surplus if enough other borrowers have succeeded and the group does not

default.

If they are a success, what should they report? Their payoff depends on whether the group defaults

after their report. In the case that successes tell the truth, they report  and get (i) a share of the

surplus if the group does not default or (ii) nothing if the group does default and has no surplus to

distribute. Alternatively, they could cheat, report a fail, keep  for themself and give the group 

If they are audited, their cheating is discovered for sure and they lose not only  but also any right

to a share of the group surplus if the group does not default. If they are not audited, then they gain

 − directly and, if the group does not default even after their cheating, they also get a share of the
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surplus coming from the other − 1 borrowers. Hence, the best report for a success to make depends

on the reports of other borrowers which set whether the group defaults or not.

In deciding whether to cheat in his report, a successful borrower has to assess whether the group

will default if he either tells the truth or cheats. His decision depends on information/beliefs he has

about the outcomes of other borrowers. He knows the distribution of the number of successes and

that the audit probability is incentive compatible for all borrowers. Hence, he assumes rationally that

all other borrowers report truthfully14 and thus that expected reported group revenue from the other

 − 1 borrowers is (|− 1)( − ) + ( − 1)− (− 1 − (|− 1)) Here, (| − 1) is the

mean number of successes out of − 1 borrowers.

With truthful reporting, this successful borrower expects reported group revenue will be


 = ((|− 1) + 1) + (− 1−(|− 1))− (− 1−(|− 1))

= ((|− 1) + 1)( − + ) + (− )

Note that (|) can be any real number between 0 and , but ∗ and  must be integers. Instead,

suppose the successful borrower cheats, paying just  to the group and retaining  −  for himself.

He knows there is a chance he will be audited and the expected cost of this  has to be added into

his view of group revenue if he cheats. If he is audited, he loses  −  (in addition to  that has

already paid to the group loan) and the right to a share of the group surplus (if any). However, if not

audited, he keeps  − and gets a share of the group surplus if any. If he cheats and may be audited

with probability , he thinks group revenue will be


 = (|− 1)( − ) + (− 1)+ − (−(|− 1))

= (|− 1)( − + ) + (− )

Of course, 
  

 (in fact 

 = 

 − ( − + )). It shows that a successful borrower expects

group revenue to be higher if he truthfully declares a success rather than cheats.

14Rai and Sjöström (2004) document that a contract inducing truthful revelation about the success of individual

projects can dominate in both individual and group lending.
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If ∗  (| − 1) + 1  (| − 1) 
   ; a successful borrower thinks that the group will

default even if he tells the truth. He also expects the group to default if he cheats. We call this an

unprofitable group. If (|− 1)  ∗ ≤ (|− 1) + 1 , then 
   ≤ 

 ; he thinks the number

of successes for the other − 1 borrowers will be (|− 1) and believes that, on average, the group

will be solvent if he truthfully reports and that the group will be insolvent if he cheats. We call this

group a marginal group. If ∗ ≤ (| − 1), a successful borrower thinks that on average the group

will be solvent whatever he reports. We call this a non-marginal group. This gives us three cases:

(i) unprofitable group: 
  

   with ∗  (|− 1) + 1

(ii) marginal group: 
   ≤ 

 with (|− 1)  ∗ ≤ (|− 1) + 1

(iii) nonmarginal group:  ≤ 
  

 with ∗ ≤ (|− 1)

To work out his own return from his report, the individual borrower has to judge if the group will

be solvent or insolvent after he either cheats or tells the truth since this determines if the group has

any surplus to distribute. Thus, incentive compatibility requires the expected gain from unaudited

cheating to be lower than the expected gain from telling the truth:

(1−)[ − +
max(0

 −  )


] ≤ max(0 


 −  )



The group contract sets and ∗ to maximize the expected surplus per borrower whilst ensuring

that the lender participation and the incentive compatibility constraints are satisfied. Thus, the

contract problem is

max
∗

( ≥ ∗)( − + )+Pr( ≥ ∗)[− − ] (7)

s.t. Pr( ≥ ∗ ) +(|  ∗ )( − + ) + (− ) Pr(  ∗ ) ≥ (1 + ) (8)

∗( − + ) + (− ) ≥  (9)

(1−)[ − +
max(0

 −  )


] ≤ max(0 


 −  )


(10)

Eq. (8) and Eq. (9) are the lender’s participation constraints. Eq. (10) is the incentive compat-

ibility constraint. Notice that the precise way in which incentive compatibility controls truth-telling
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is determined endogenously through the contracts choice of  ∗; hence, the form of the group

(non-marginal, marginal or unprofitable) is also endogenous. We can combine the conditions in Eq.

(8) and Eq. (9) yielding

[Pr( ≥ ∗ )∗ +(|  ∗ )] ( − + ) + (− ) ≥ (1 + )

Even with cheating controlled, the lender receives a nonnegative expected return. Optimally, the lenders

participation constraint in Eq. (8) must bind. If it were slack, then  could be reduced which would

raise the objective in Eq. (7), slacken Eq. (9) and slacken or have no effect on Eq. (10) depending on

whether it is an unprofitable group. Similarly, Eq. (10) must bind optimally since otherwise  could

be reduced which would raise the objective. With a binding lender’s participation constraint in Eq.

(8), the group repayment in terms of ∗ and  is

 =
(1 + ) − ( − + )(|  ∗ )− (− ) Pr(  ∗ )

Pr( ≥ ∗)
(11)

Substituting out  , a non-defaulting group has surplus

 = ( − +) + (− )− 

= ( − +) +
(|  ∗ )( − +)

Pr( ≥ ∗)
+

(− )− (1 + )

Pr( ≥ ∗)

Hence,

 = (| ≥ ∗)( − +) +(|  ∗ )( − +) + (− )− (1 + )

= (|)( − )−(−(|))− (1 + ) + 

It shows that the investment cost of the lender is transferred to the group of borrowers, and that the

audit creates a deadweight loss.

2.3.2 Incentive compatible audit policies

As mentioned earlier, there are three possible cases: (i) an unprofitable group if ∗  (|−1)+1; (ii)

a marginal group if (|−1)  ∗ ≤ (|−1)+1 and (iii) a non-marginal group if ∗ ≤ (|−1).
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The form of the incentive compatibility (IC) constraint differs between unprofitable, marginal and non-

marginal groups:

(1−)[ − ] ≤ 0 for an unprofitable group

(1−)[ − ] ≤ 
 − 


for a marginal group

(1−)[ − +

 − 


] ≤ 

 − 


for a nonmarginal group

and hence the solutions for ,  and ∗ will vary between these groups.

(i) Unprofitable group: 
  

  

Any successful borrower, who thinks the group will default regardless of his decision, should always

cheat since he gets 0 from telling truth but has a chance of − from cheating. Each of the successful

borrowers thinks the same (they all use the expected return to form beliefs) and cheats, resulting in

default of the group loan. In order to stop everyone cheating, the group has to set the audit probability

 = 1

(ii) Marginal group 
   ≤ 



For a marginal group, we know (|− 1)  ∗ ≤ (|− 1) + 1 and IC requires

(1−)[ − ] ≤ 
 − 



Appendix C shows that we must have the audit probability   0 Basically, in a marginal group if

 = 0, the payoff from truth-telling (his share of the expected group surplus) is less than the gain

from cheating, violating the above IC constraint. Therefore, to ensure truth-telling requires   0

We must also have   1 optimally. Otherwise, the left-hand side of IC is 0 and 
 −   0; it

would be possible to reduce , raise borrower surplus, and still satisfy IC:




= −[−(|)]  0

So, in fact the group must have 0    1 For a marginal group which requires audit,  solves

(1−)[ − ] =
(

 −  )=


(12)
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Appendix D shows that

 =
((1 + ) − ) + [Pr( ≥ ∗)(− 1−(|− 1))−(|  ∗ )]( − )

[Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )− ] + Pr( ≥ ∗)( − )

(iii) Nonmarginal group:  ≤ 
  



Incentive compatibility (IC) requires

(1−)[ − +
(

 −  )=


] ≤ (


 −  )=



Since optimally IC binds, using the expressions for 
 −  and 

 −  generates a convex quadratic

function of  (see Appendix E):

 () =
−(|− 1)Pr( ≥ ∗)−(|  ∗)

Pr( ≥ ∗)
2



+

∙
(1 + ) − 

Pr( ≥ ∗)
− ( − )



µ
+(|− 1) + (|  ∗)

Pr( ≥ ∗)

¶
− 



¸


+
( − )(− 1)


= 0

The first term is positive because (−(|− 1))Pr( ≥ ∗)+(−|  ∗)  0 The slope at

 = 0 is negative because the second term is negative (see proof in Appendix E). The intercept (the

last term) is positive for all   1. Thus,  () is convex and there are two positive roots (1 2)

as shown in Figure 1. Incentive compatibility with efficient audit requires the lowest  ensuring that

 () is non-positive; hence, the lower root of the quadratic gives the required audit probability.

[Insert Figure 1 about here]

The root must be less than unity since if  = 1 the IC constraint becomes 
 −  ≥ 0. The

nonmarginal group has 
   , so the IC constraint is slack and reducing  marginally still satisfies

IC but raises group surplus with truth-telling. Hence, any  for a nonmarginal group must be in

(0 1).

2.4 Group lending vs individual lending

Appendix F derives the difference in interest rates between individual and group loans and shows that
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 − =
( − ) + 


+

[(|  ∗ )]− (1 + )

Pr( ≥ ∗ )
(13)

where  is the individual loan’s interest rate and  is the group loan’s interest rate for a group

size . The first term in Eq. (13) is the lender’s expected gain from loan auditing relative to the

total size of  individual loans assuming that all projects reporting fail. When   ∗, the group

revenue is less than the repayment required which is set to break even with the lender’s investment

cost i.e. [(|  ∗ )]  (1 + ); therefore, the second term is negative. The numerator of

the second term reflects the lender’s expected maximum loss from group’s default. As the size of the

second term increases, the gap between  and  becomes smaller. If group lending has a ratio of

the expected maximum loss to non-default probability higher than the lender’s expected gain from

auditing  individual loans, then  can be higher than  . That is, whether  is less or greater

than  depends on various factors such as the distribution of , the group size , the loan size 

and the values of  − , the safe rate  the group audit cost , and optimal audit probabilities for

both individual and group lending.

The ranking of the welfare (expected surplus per borrower) of individual and group loans is identical

to that by the expected audit cost:

 −  = (|)( − )−(−(|)) + − ̄ − (−)(1− ̄)

= (− ̄)( −)

where  is the audit probability varying with whether the group is unprofitable, marginal or non-

marginal. Because   ̄, whether the group loan’s expected surplus is greater than the individual

loan’s depends on the difference between the expected audit cost per borrower of both loan forms.

Thus, the relative audit probabilities of an individual loan and a group loan play a large role in their

relative efficiency.

Proposition 1 In an unprofitable group,  must be equal to 1. In this case, the borrower’s surplus
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would be greater in a group loan if

 
(1 + ) − 

̄( − )− (1− ̄)


Proposition 2 For a marginal group,    iff

̄ + (1− ̄)− (1 + ) − (1− ̄)

(1 + ) − 


(
 −  )=1

( − )− (
 −  )=0

(14)

The proof is in Appendix D.

The left-hand side of Eq. (14) in Proposition 2 is the profit rate on an individual loan with

truth-telling and  = 1 Its numerator is the expected social revenue net of the audit cost and its

denominator is the social cost of the project, so the ratio measures the social profit rate on an individual

loan. While  = 1 ensures truth-telling, borrowers are tempted to cheat if  = 0. Thus, the ratio on

the right-hand side of Eq. (14) is the borrower’s gain from truth-telling with  = 1 relative to the net

gain from cheating with  = 0. If the net gain from cheating is large enough to make the condition in

Eq. (14) hold,  will need to be sufficiently high to deter cheating.

Proposition 3 For a nonmarginal group,    iff

 
(− 1− )( − )



− (
 −  )=



equivalent to

(1−)

∙
( − ) +

(
 −  )=



¸

(

 −  )=


(15)

where at the individual loan optimum

 =
(1 + ) − 

( − )− (1− )

See the detail in Appendix E.

Proposition 3 shows that if the group applies  =  and the gain from truth-telling is lower than

that from non-audited cheating, more cheats are encouraged until all successes cheat as they know that

the group will not default no matter whether they tell the truth or lie. This indicates that the audit

probability applied is too low. To avoid this, the group should raise the audit probability, resulting in

   .
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3 Simulation

The above comparisons of the features of optimal individual and group loans are implicit. In order to

identify the loan form with the highest welfare, we choose a parametric form for the distribution of 

which allows for a wide range of the positive correlation of risks between borrowers, its mean and its

variance. In Section 2, the distribution of  was in a general form ( 1) = (|1)(1)

(|1) is a binomial distribution, but the restriction we add is that (1) is the product of

beta distributions. That is, the probability of (1) is the probability of a sample of size  drawn

from a beta distribution with positive parameters  and , i.e., ( ) where

( ) =
Γ()Γ()

Γ(+ )
=
(− 1)!( − 1)!
(+  − 1)!

As the parameters  and  vary, the values of mean, variance and correlation between the chance of

success for different borrowers differ. With positive  and , the correlation must always be positive.

Keeping ̄ constant, the lower are both  and , the higher are the correlation and the variance of

risks (see Figure 2).

[Insert Figure 2 about here]

Each borrower receives a draw of a chance of success  from the beta distribution; given this, the

actual number of successes then follows a binomial distribution (|1)15 . This is called the beta

binomial16 which can cover a variety of skewness situations and degrees of correlation between project

outcomes. Here, the number of successes coming from the sample drawn for  borrowers has density

(|1) = (|1)( ) (16)

The mean number of successes of the beta binomial-distributed probability is (+ ).

15Here,  is the outcome for the  borrower ( = 0 1 with 1 being success), the conditional distri-

bution | is Bernouilli() and the marginal distribution of  is Beta( ) Thus the joint probability of

( ) =Bernouilli()Beta( ) Recall that the Bernoulli() density is (1 − )1−  = 0 1; Bernouilli() has

mean  and variance (1 − ). The mean of the beta-distributed probability ̄ is ( + ) and its variance is

̄(1 − ̄) = [( + )2(1 +  + )] (Moraux, 2010). The correlation between the binary outcomes across any

two individual projects is  = 1(1 + + ).
16The correlated binomial distribution can be viewed as a special case of heterogeneous distribution where risks are

heterogeneous but correlated.
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For the simulations, we take a range of values of  and  yielding combinations of the probability of

success ̄ and correlations  (e.g.,  = 0132  = 0198 yields ̄ = 04 and  = 075, and  = 05  = 05

yields ̄ = 05 and  = 05). We also provide the simulation result for the case of zero correlation

which is equivalent to the binomial case with identical and independent risks (iid). For the individual

loan, the mean probability of success from the binomial and betabinomial are identical. In each case,

we take  = 10  = 4  = 01 and vary the combinations of group size (), the revenue of a failed

project or "collateral" value ( = 2 3), audit cost for individual loans ( = 01 02) and audit cost for

group loans ( = 01 02) to simulate the impact of the variation of  − (gain from cheating), audit

costs ( ) and group size on the interest rate, default rate, welfare and thus the optimal lending form

(individual loans correspond to  = 1).

The optimal  and ∗ are obtained for each scenario. These variables depend on each other

as well as the parameters set above; ∗ determines whether the group is unprofitable, marginal or

nonmarginal. The simulation results in Figures 3-7 show six selected cases17:

(i)  = 2  = 01  = 02  = 0 ̄ = 05 (our benchmark case);

(ii)  = 2  = 01  = 02  = 05 ̄ = 05 (higher correlation compared to the benchmark case);

(iii)  = 2  = 01  = 02  = 0 ̄ = 04 (lower mean probability of success compared to the

benchmark case);

(iv)  = 2  = 01  = 02  = 075 ̄ = 04 (higher correlation and lower mean probability of

success compared to the benchmark case);

(v)  = 2  =  = 02;  = 05 ̄ = 05 (no cost advantage between borrowers’ audit and lenders’

audit);

(vi)  = 3  = 01  = 02  = 0 ̄ = 04 (higher expected project return18 compared to the

benchmark case);

For each combination of parameters, we contrast the optimal outcomes for the group loan (  1)

with those of an individual loan ( = 1).

17The full simulation results are available from the authors upon request.
18 It is also equivalent to a case with higher value of the collateral.
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3.1 Interest and default rates

Figure 3 illustrates that the individual loan’s interest rate () is higher than the group loan’s interest

rates for all group sizes () - that is, effectively repayment per borrower is lower with a group loan.

The exceptions to this generalization is case (iv) where risk is high and highly correlated (e.g., ̄ = 04

and  = 075); the interest rate for the group with two borrowers (115.37%) is higher than that for

the individual loan (105.84%). It also shows that the interest rate generally declines as  increases,

especially when the outcomes of projects are iid. Consequently, the default rate shown in Figure 4

declines but in an up-and-down pattern19 as the group becomes larger, consistent with Baland et al.

(2013). We, however, note that with iid risk the decrease in interest rates becomes insignificant once

the group has more than five members.

For a given mean, higher correlation raises the risk for group loans and hence the interest rate and

repayment required. This requires a higher number of successes for the group to be solvent (compare

cases (iii) and (iv) with ̄ = 04 in Figure 5). As a result, the expected default rate is higher (compare

cases (iii) and (iv) in Figure 4). For case (iv) where  = 075  = 04, the individual loan’s default

rate is lower than that of the group loan20. In this case, the interest rate for a 2-borrower group loan

is higher than that for an individual loan, causing the default rate in the group loan to be higher than

the individual loan. Although the interest rate declines for a 3-borrower group, the default rate does

not fall; the correlation raises the chance of a large number of simultaneous fails requiring high ∗ for

the group to be solvent (see Figure 5). For the correlated groups with more than three borrowers,

neither the interest rate nor the default rate drops significantly as the group becomes larger.

[Insert Figures 3-5 about here]

Figures 3 and 4 also highlight that not only do the interest rate and default rate fall with an

increase in  in iid cases, but they also fall with an increase in  and ̄ (compare (iii) with (vi) for 

19The graph shows a downward trend, but with an up-and-down pattern which is due to the discrete value of .
20Baland et al. (2013) also documented that with bank and social sanctions, MFIs’ lending may shift toward individual

loan when there is a risk of strategic default by risk-neutral borrowers.
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and compare (i) and (iii) for ̄). This finding is consistent with the evidence of negative relationships

between collateral and the interest rate in the literature (see, for example, Agarwal and Hauswald,

2010; Menkhoff, Neuberger and Rungruxsirivorn, 2012) and between collateral and default risk (see,

for example, Jiménez, Salas and Saurina, 2006). Moreover, comparing cases (ii) and (v) in Figure 3

highlights that the group interest rate rises with an increase in the audit cost. When the group’s audit

cost () increases from 01 to 02, the interest rate shifts up.

3.2 The relative social merits of individual and group lending

As shown in Figure 5, the groups can be classified into three types: (i) an unprofitable group if

∗  (| − 1) + 1 e.g., any  with  = 075 ̄ = 04; (ii) a marginal group if (| − 1)  ∗ ≤

(| − 1) + 1 e.g., any  with  = 05 ̄ = 05 or  = 0 ̄ = 04 and (iii) a non-marginal group if

∗ ≤ (|− 1) e.g.,   4 with  = 0 ̄ = 05. In accordance with the type of group, Figure 6 plots

the values of  for 1 ≤  ≤ 10. The group should apply  = 1 if the mean and correlation of risk is

high (the group is unprofitable). In other cases, optimally the value of  is lower than 1. The higher

the value of ̄, the lower the value of . In addition, the lender or borrowers can apply a lower  as

the collateral value () increases.

Given a group size , nonmarginal groups can apply a lower  compared to their marginal coun-

terparts. With the same value of  but lower  the expected audit cost is lower and the expected

surplus is higher in nonmarginal groups. So, for a fixed group size, the borrower would prefer to be in

a group whose optimal policy makes it more profitable.

In contrast, the audit probability is higher in larger groups. As the group size increases, the interest

rate and the default rate for group loans are typically lower and thus the excess number of successes

(−∗) is higher. For a given case as  increases, the gain from undetected cheating tends to increase

due to the increase in the excess number of successes which allows the undetected cheat a share of the

group surplus; to discourage cheating requires a sufficiently high probability that a fail will be audited.

Similarly, group loans require a higher audit probability than individual loans as shown in Figure 6.
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[Insert Figure 6 about here]

[Insert Figure 7 about here]

The expected audit cost in Figure 6 shows two main features of interest. Firstly, it is generally

highest for individual loans largely due to the audit cost advantage of the group. Secondly, for group

loans the 2-member group has the lowest expected audit cost. The audit cost in a group loan rises with

group size both because the number of reported fails rises and because  rises. Overall on balance

when   , a 2-member group has the lowest expected audit cost and hence the highest expected

surplus per borrower (see Figure 7). When the cost of audit by borrowers is as large as the cost of

audit by the lender, the expected audit cost of an individual loan is below the per capita audit cost

of a group loan (see case (v) with  =  = 02). In other words, the advantage of group lending over

individual lending disappears if the audit costs per failed borrower are identical in the two loan forms.

The results indicate that, choosing  optimally, a two-person group loan dominates individual

loans exactly because of the lower policing cost of the group loan, consistent with the finding of Cason,

Gangadharan and Maitra (2012)21. But if the audit costs are identical, then individual loans dominate

group loans in welfare terms. Other indications are that the expected surplus per borrower rises

with ̄ and  but falls slightly as the group becomes larger and the borrowers’ outcomes have higher

correlation.

To sum up, we know that, with risk neutrality and an audit cost advantage for the group, group

loans dominate individual loans in terms of interest and default rates and indeed welfare (expected

surplus per borrower). On interest and default rates, the only exception is when the group has two

members with high individual risk which is also highly correlated among borrowers. With iid risk,

the group loan with joint liability is often seen as having better risk diversification possibilities than

individual loans because it has possibilities of cross subsidisation within the group, and largely because

the chance of a high number of simultaneous fails and group default is low. This diversification gain

21With the subgame perfect equilibrium approach, Cason et al. (2012) reports their experimental finding that when

peer-monitoring cost is lower than the monitoring cost of the lender, group lending has higher monitoring and lower

default rate than individual lending.
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should increase with the size of the group. However, the advantage can be dissipated since (i) with

correlated risks, the chance of simultaneous failures is greater than independent risks and (ii) with

asymmetric information and the need for costly audit, fail reports within the group must be audited.

We find that the benefit of a larger group loan from decreasing interest rates becomes insignificant

if the group has more than five members with iid risk or three members with correlated risk. But in

terms of expected surplus, the advantage of the group loan rests strongly on the group having a cost

advantage in audit. Amongst different size groups, small groups ( = 2) are welfare preferable but

the difference between  = 2 and  = 10 in welfare is small. With a slight fall in expected surplus per

borrower as  increases, the group’s lower interest rate and default rate may be taken into consideration

and the group could choose 2 ≤  ≤ 5 (except for the group which has low mean probability of success

and outcomes are highly correlated). This finding supports the empirical evidence and arguments

provided by the existing literature. For example, Devereux and Fishe (1993) find that a small group

size is important in determining group loan success and a common group size is 3-5 members. The

heuristic argument of Abbink, Irlenbusch and Renner (2006) is that 3 is sufficient to get reasonable

risk diversification and 5 is an upper bound set by the requirement for high solidarity in the borrower

group to police repayment by individuals. Therefore, on all these counts group loans to small groups

tend to be preferred to individual loans unless there is high correlation and low .

If group lending does not have a cost advantage in auditing ( = ), group lending still has

lower interest and default rates, but individual loans dominate group loans on welfare grounds. This

may explain why individual loans are more common in urban areas where there is less information

asymmetry (e.g., commercial banks have better information system about borrowers living nearby)

and why group loans through cooperatives or self-help groups are more common in rural areas where

transaction and information costs are higher for urban banks.
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4 Extensions

Two common problems in the literature on costly state verification are handling the commitment and

collusion problems. We largely sidestep these issues by assuming that audit and its outcome are public

knowledge to the lender. This is consistent with empirical practice, e.g., bankruptcy law, filing of

audited company accounts, etc.

With regard to the usual commitment problem, if an exante contract is incentive compatible with

truth-telling ensured by an exante contracted audit probability, then auditors know that expost reports

are truthful and hence a group or individual borrower which reports a fail must truly have failed.

Hence, the auditor has no incentive to carry out the contracted costly audit but can save  by just

not auditing.

In the literature, this is addressed either by adding a renegotiation constraint to the exante contract

which ensures that the expost best action is for the auditor to carry out the contracted audit policy

(see, e.g., Laffont, 2003; Gagnepain, Ivaldi and Martimort, 2013; Ali, Miller and Yang, 2016) or by

abandoning the search for incentive compatibility and allowing the reporting and audit strategy to

be determined expost in a noncooperative game between the auditor and the reporting borrowers.

Typically, the latter involves a Nash equilibrium in the audit probability and the probability that the

reporters cheat in their report (e.g., Khalil and Parigi, 1998; Krasa and Villamil, 2000; Phelan, 2017).

In this context, the lack of commitment costs some loss of welfare; ultimately, it could bring borrowers

and lenders to an impasse (i.e., borrowers know that they will actually never face audit and so they

always cheat) and prevent any contract being signed.

In Gagnepain et al. (2013) and Ali et al. (2016), there is a long term contract covering several

periods of project returns and repayments, uninformed parties gain information over time from the

behaviour of informed parties and may wish to renegotiate the contractual arrangement in light of

this. Renegotiation proofness nullifies this incentive. In contrast, we work with a single period model.

The auditor initially is contracted to audit all fail reports at least stochastically. In order to ensure

that the contracted audit is carried out expost, the renegotiation proof constraint in our context for
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an individual loan must give the auditor some gain from audit:

(1− )( − ) ≥ 0

i.e., there is a fail report wp 1− ; auditing this generates  additional income for the auditor(s) but

costs at most  So long as the above condition holds, the auditor(s) gains from carrying out the

audit. With a group loan and group audit, the two group auditors know that their audit costs will be

reimbursed. As the audit result is common knowledge, the lender would know if some failed reports

are not audited and thus no additional renegotiation constraint is necessary. In an extreme case, the

group itself could expost not pay the auditors and collectively decide to report a group failure, but

again audits and their outcomes are public to the lender; therefore, it is not a viable strategy for the

group to falsely report group failure.

Collusion can only arise with a group loan and group audit. Collusion could conceivably be between

the first auditing borrower and a non-audit borrower. For example, a successful borrower could pay

part of his gain − to the auditor in exchange for the auditor approving a report that he has failed.

The auditor will only accept this if, given all the borrower reports, the auditor believes that the group

is solvent even if this one borrower is allowed to cheat. However, even if this is so, the auditor will not

accept the deal if the bribe is less than his loss of the group surplus share. Since all borrowers are in a

symmetric position, all successes would offer this deal to the auditing borrower, but then for sure the

auditor would lose surplus share.

The other possibility is that the two auditors could colllude if they are both successful. The two

auditors could agree to allow both to report that the other has failed without any audit. However,

this will be revealed to the lender who will see that two failed reports have not been audited.

5 Conclusion

We fill the gap in the economic literature by deriving the optimal audit probabilities, which mini-

mize the audit cost while maximizing social welfare, for both one-to-one and multiple auditor-auditee

settings. The information about individual project outcomes is asymmetric between auditor(s) and
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auditee(s) and individual outcomes can be correlated. Our framework is developed within a loan audit-

ing context which has rarely been deeply studied, but the method is also applicable to any accounting

and tax audit context.

Our framework contains some conceptual innovations. With asymmetric information and costly

audit possibilities, incentive compatibility comes into play. The nature of the incentive compatibility

restrictions varies across loans. There are alternative ways to achieve truth-telling; the incentive

compatibility requirement makes the audit probability endogenous as part of the contract problem

which depends on various factors such as the number of auditee(s), the risk level and the distribution

of risk. Hence, the optimal audit probability of reported fails varies between groups of borrowers and

between individual and group loans. We characterize the optimal contract forms in terms of exante

welfare. The key contract variables are the interest rate, the probability of default and the audit

probability. We derive some theoretical comparisons of these in different loan situations.

Our general framework also deals with one important feature of most group loan settings which are

geographically concentrated, creating correlation between different borrower risks. While prior studies

tend to take a specific value of correlation (e.g., 0.5) in their analysis, our framework allows any degrees

of correlation between borrowers’ risk, consistent with empirical studies using the proximity between

borrowers to reflect the correlation of risk (e.g., Goodstein et al., 2017). To identify the best form

of loan and the best size of group, we conduct some numerical simulations using a beta binomial

distribution of individual project risks. This allows for varying degrees of positive correlation between

individual borrower risks. Here, we find that the audit cost advantage, the degree of correlation and

the chance of success on individual projects all play important roles in determining the best incentive

compatible contract, the best type of loan and the optimal group size. Usually, small group loans (i.e.,

2 members in the group) are the best form for welfare so long as the group has an audit cost advantage

over the external lender. A group size of up to 5 members allows the benefits of lower interest and

default rates. Our results are consistent with the finding of Bourjade and Schindele (2012) that the

optimal group size is limited, and support the empirical evidence that group-lending institutions prefer
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providing loans to small groups (see, e.g., Devereux and Fishe, 1993; Abbink et al. 2006; Assadi and

Ashta, 2014).

In common with much of the literature (e.g., Stiglitz, 1990; Banerjee et al., 1994; Laffont, 2003;

Laffont and Rey, 2003; Ahlin and Townsend, 2007), we have used a simple setting of two state outcomes

for each individual. Exceptions are Besley and Coate (1995), Border and Sobel (1987) and Mookherjee

and Png (1989). We could extend the model to an arbitrary finite number of states. This would

of course expand the number of incentive compatibility constraints and the ideas of unprofitable,

marginal and non-marginal groups. With iid risks, a single continuous distribution could be used

for each project. The mixture distribution idea underlying the beta-binomial distribution could also

still be used, leading to a compound distribution of revenues. Again, there would be implications for

analysing incentive compatibility.

We have restricted attention to ensuring good behaviour through static financial penalties on cheats.

In the literature on group lending especially Karlan (2007), strong emphasis is put on the role of the

group of borrowers in enforcing truthful revelation and repayment through peer pressure. A common

device is to motivate self-policing of the group by refusing future loans to the group if any group

member defaults (Sinn, 2013). This would require a repeated loans context. However, abstracting

from these highlights the relationship between endogenous audit probability, default risk, interest rate

and welfare for different group sizes and probability distributions of project returns.

We have also assumed risk neutrality of all parties to the contract which has been the most widely

used assumption in the literature (see, e.g., Stiglitz, 1990; Banerjee et al.1994; Laffont 2003; Laffont

and Rey, 2003; Ahlin and Townsend 2007; Sinn 2013; De Quidt et al., 2016). Further studies may look

at risk aversion especially of borrowers which could add some dimensions.

Our work has some policy implications. Lenders may apply our approach to determine the right

policy of auditing and the interest rate which allows them to achieve cost efficiency and a low default

rate but still induces truth-telling by borrowers and leaves borrowers with the highest surplus. The

adoption of excessive auditing is costly to both auditors and auditees and require a high interest rate.
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On the other hand, insufficient auditing can induce cheating or, in some extreme cases, loan default.

While individual and group lending can coexist, choosing the loan form appropriate for a particular

economic condition as well as well-designed terms of the loan contract can reduce the probability

of non-repayment and for the economy it can reduce the overall level of non-performing loans while

increasing social welfare. Policymakers may impose some legislation on information provided by both

lenders and borrowers or provide repayment guarantees or insurance for small, risky projects (raising

 in our framework); this will lower audit and monitoring costs as well as the interest rate to both

individual and group loans and thus raise social welfare. In an economy where group lending is the

best loan form, policymakers may provide a platform for borrowers from different areas to form groups.

This will promote group lending with low risk correlation between projects and thus raise social welfare;

in particular, lenders benefit from risk diversification and borrowers benefit from lower interest and

default rates.

Finally, although falling outside the scope of this paper, our approach gives insight into generalising

the study of other audit contexts and one would expect some of the forces we identify to generate similar

findings. While here we can identify the best form of loan and the best size of group for a particular

distribution of risk the borrowers face, a similar approach may be used to compare one-to-one and

multiple auditor-auditee settings and determine the optimal number of auditees in the latter. The

approach of determining the efficient, incentive compatible audit probability in other contexts such as

component audit with correlated risk should be possible. With a higher degree of correlation between

divisions’ outcomes, the risk diversification benefit is diminished so more intensive random audit or

peer review may be required. In practice, we would expect more efficient audit with lower audit cost

and better (overall) firm performance through identifying the correlation between component successes,

randomising the audit on components and adopting the audit policy that leads to the highest welfare

of the organisations.

Appendix A: Audit by the lender is more costly
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Suppose that audit is done by the lender instead of the two assigned borrowers and that the same

audit probability (), repayment ( ) and audit cost per audited loan () are imposed, there will be

increments in the share of expected group surplus (due to the lender paying the audit cost) but the

increment from cheating is higher than from truth-telling since with cheating there is an extra audit

to do. More cheating will be induced if  is the same as when the audit is done by the borrowers. To

avoid this situation, the lender has to raise the audit probability () resulting in expected audit cost

() which, from the lender’s constraint, will require higher  from borrowers to cover the incremental

audit cost.

Proof: With the group loan’s audit by two borrowers, the lender’s constraint is

Pr( ≥ ∗ ) +(|  ∗ )( − + ) + (− ) Pr(  ∗ ) ≥ (1 + ) (17)

where ∗ is the minimum required number of successes which ensures the group has enough revenue

to repay the loan of . With the group loan’s audit by the lender, the lender’s constraint becomes

Pr( ≥ ∗ ) +(|  ∗ )( −) + () Pr(  ∗ ) ≥ (1 + ) +((− )|  ∗ )

which can be rewritten as

Pr( ≥ ∗ ) +(|  ∗ )( − + ) + (− ) Pr(  ∗ ) ≥ (1 + ) (18)

Eq. (18) is identical to the constraint in Eq. (17) if audit is done by the borrowers with the group

loan’s audit cost per borrower equal to . With loans being audited by the lender, the expected group

revenue if the successful borrower tells the truth 
 is


 = 

 + (− 1−(|− 1))

where 
 is the expected group revenue after auditing when the audit is done by two borrowers (so

the audit cost here is ) and the successful borrower tells truth. Likewise, the expected group revenue,

if the successful borrower cheats, is


 = 

 + (− (|− 1))
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where 
 is the expected group revenue after auditing when the audit is done by two borrowers and

the successful borrower cheats. That is, the group saves an audit cost per audited loan () if the audit

is conducted by the lender and the total amount of saving in the group with a borrower cheating is

greater than without this cheating. Each successful borrower has more incentive to cheat; this can

result in the group defaulting and the lender receiving just the low return  (as reported  will tend

to 0). To avoid this, the lender has to raise the audit probability to ́ - that is, the expected cost per

audit in the lender’s constraint increases to ́, requiring a higher  to cover a higher cost. As the

group of borrowers will be required to repay more with the audit by the lender, the required number

of successes and the expected default rate increase resulting in a lower share of surplus if the group

does not default or a higher chance the borrower gains nothing because of the default of his group.

Thus, the borrowers will be worse off if the audit is undertaken by the lender.

Appendix B: Group lending is feasible

Under our assumptions about project returns and cost, there is always a unique smallest ∗22 .

With zero successes, the group cannot afford to repay and hence must default. If all group members

succeed, then group revenue is (|) =   (1+ ) and the group can certainly afford to repay.

Group revenue is increasing in the number of successes; hence, there must be a smallest critical number

of successes ∗ above which the group can repay and below which the group defaults. This just requires

  (1 + ) +    To see this formally, the lender at least breaks even on the group loan in

expected terms

(1 + ) ≤ Pr( ≥ ∗ ) +(|  ∗ )( − + ) + (− ) Pr(  ∗ )

and  ≤ (∗) where (∗) = ∗( − + ) + (− )

(1 + ) ≤ Pr( ≥ ∗ )[( − + )∗ + (− )] +(( − + ) + (− )|  ∗ )

≤ (− ) + ( − + )[Pr( ≥ ∗ )∗ +(|  ∗ )] =  (∗) (19)

22 In some cases, ∗ may not exist - that is, even with  successes, there may not be enough group revenue.
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 (∗) ≤ ((|)) because ((|)) = (− ) + ( − + )(|) and

[Pr( ≥ ∗ )∗ +(|  ∗ )]  (|)

If ∗ = 0  (∗) = ( − )  (1 + ), violating the condition in Eq. (19); hence ∗  0. If

∗ = 

 (∗) = (− ) + ( − + )[Pr()+(|   )]

= (− ) + ( − + )(|) = ((|))  (1 + )

Therefore,  (∗) is increasing in ∗. Applying the maximum audit cost ( = 1) yields the social

desirability condition. As a result, so long as the social desirability condition holds, there is a unique

minimal ∗.

Appendix C: Audit probability in a marginal group must be positive

If  = 0, the successful borrower could cheat; if he does, he expects the group to default and his

expected total gain is  −  If he tells the truth, he gets an equal share of the group surplus with

1 +(|− 1) successes:

(1 +(|− 1))


( − ) +
(|  ∗ )]( − )

Pr( ≥ ∗)
+

− (1 + )

Pr( ≥ ∗)

since


 −  =

[Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )]( − + )

Pr( ≥ ∗)
+

(−  − (1 + ))

Pr( ≥ ∗)

and

(
 −  )=0 =

[Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )]( − ) + (− (1 + ))

Pr( ≥ ∗)
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His gain from truth-telling as compared with cheating at  = 0 is

(
 −  )=0


− ( − ) =

[Pr( ≥ ∗)((|− 1) + 1− ) +(|  ∗ )]( − )

Pr( ≥ ∗)
+

− (1 + )

Pr( ≥ ∗)

=
[Pr( ≥ ∗)(|− 1) +(|  ∗ )]( − ) + (− (1 + ))

Pr( ≥ ∗)

+
1− 


( − )

=
(

 −  )=0


− − 1


( − )  0

as 
   for the marginal group. To prevent this, we need   0

Appendix D: The optimal audit probability for a marginal group loan

For a marginal group,

(1−)[ − ] ≤ ( −  )=



We can then derive an explicit solution for :

(1−)[ − ] =  −  (20)

(1−)[ − ] =
[Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )]( − + )

Pr( ≥ ∗)

+
(− )− (1 + )

Pr( ≥ ∗)

(1 + ) − [Pr( ≥ ∗)((|− 1) + 1− ) +(|  ∗ )]( − )− 

= [Pr( ≥ ∗)( − ) +  (Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )− )]

 =
(1 + ) − [Pr( ≥ ∗)((|− 1) + 1− ) +(|  ∗ )]( − )− 

Pr( ≥ ∗)( − ) +  (Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )− )

We rewrite  as

 =
(1 + ) − [Pr( ≥ ∗)((|− 1) + 1− ) +(|  ∗ )]( − )− 

Pr( ≥ ∗)( − ) +  (Pr( ≥ ∗)((|− 1) + 1) +(|  ∗ )− )

=
(1 + ) − + [Pr( ≥ ∗)−]( − )

Pr( ≥ ∗)( − )− [−]
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where

 = (|  ∗ ) + Pr( ≥ ∗)((|− 1) + 1)

At  = 0,

(
 −  )=0 =

( − )

Pr( ≥ ∗ )
− (1 + ) − 

Pr( ≥ ∗ )

and at  = 1,

(
 −  )=1 =

( − )

Pr( ≥ ∗ )
− (1 + ) − 

Pr( ≥ ∗ )
− (−)

Pr( ≥ ∗ )

(
 −  )=1 = (

 −  )=0 − (−)

Pr( ≥ ∗ )

So

 =
(1 + ) − + Pr( ≥ ∗)( − )−( − )

Pr( ≥ ∗)( − )− [−]

=
Pr( ≥ ∗) [( − )−

 −  )=0]

Pr( ≥ ∗) [( − ) + (
 −  )=1 − (

 −  )=0]

=
(

 −  )=0 − ( − )

(
 −  )=0 − ( − )− (

 −  )=1

=
1

1− (

− )=1

(

− )=0−(−)

Compare  with  :

 =
(1 + ) − 

̄( − )− (1− ̄)


 would be greater than  if

1

1− (

− )=1

(

− )=0−(−)


(1 + ) − 

̄( − )− (1− ̄)

̄( − )− (1− ̄)  ((1 + ) − )

µ
1− (

 −  )=1

(
 −  )=0 − ( − )

¶
̄ + (1− ̄)− (1− ̄)  (1 + ) − (

 −  )=1

(
 −  )=0 − ( − )

((1 + ) − )

̄ + (1− ̄)− (1 + ) − (1− ̄)

(1 + ) − 


(
 −  )=1

( − )− (
 −  )=0

(21)

where

(
 −  )=1 = (


 −  )=0 + ( − )− (− Pr( ≥ ∗)((|− 1) + 1)−(|  ∗ ))

Pr( ≥ ∗ )
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Note that, from social desirability, 0  −(1+)  (1− ̄)− ̄(−) and ̄(−)−(1− ̄)  0

The sign of the left-hand side of Eq. (14) depends on the social desirability condition. The

numerator of the right-hand side is the borrower’s share of surplus and the denominator is the difference

between the borrower’s gain from cheating and his share of surplus if telling the truth.

Appendix E: The optimal audit probability for a non-marginal group loan

For a nonmarginal group,

(1−)[ − +
( −  )=


] ≤ ( −  )=



 solves

(1−)[ − +
( −  )=


] =

( −  )=



(1−)( − )− ( −)=


−

( −  )=


= 0

 − =  − +  for all , so

(1−)( − )−  − + 


−

( −  )=


= 0

(1− − 1

)( − )− 


−

( −  )=


= 0 (22)

Substituting

( −  )=
= [(|− 1) + (|  ∗ )

Pr( ≥ ∗ )
]( − + ) +

(− )

Pr( ≥ ∗)
− (1 + )

Pr( ≥ ∗ )

into the left-hand side of Eq. (22):

(1− − 1

)( − )− 


−

( −  )=



= (1− − 1

)( − )− 



−


{[(|− 1) + (|  ∗ )

Pr( ≥ ∗ )
]( − + ) +

(− )

Pr( ≥ ∗)
− (1 + )

Pr( ≥ ∗ )
}

=

µ
1− − 1


− 


[(|− 1) + (|  ∗ )

Pr( ≥ ∗ )
]

¶
( − )− 

Pr( ≥ ∗)

−
µ
1


+




[(|− 1) + (|  ∗ )

Pr( ≥ ∗ )
− 

Pr( ≥ ∗)
]

¶
 +

(1 + )

Pr( ≥ ∗ )
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Therefore, IC for a nonmarginal group requires

 () =
(−(|− 1)Pr( ≥ ∗)−(|  ∗))2



Pr( ≥ ∗)

+
(1 + ) − − ( − )((+(|− 1))Pr( ≥ ∗) +(|  ∗))− Pr( ≥ ∗)

Pr( ≥ ∗)


+
( − )(− 1)



=
(− +Pr( ≥ ∗))

Pr( ≥ ∗)
2
 − (( − ) +

(
 −  )=0


+




) +

( − )(− 1)


= 0

For any 

− +Pr( ≥ ∗) = −(|− 1)Pr( ≥ ∗)−(|  ∗)


 −  =

[Pr( ≥ ∗)(|− 1) +(|  ∗ )]( − +)

Pr( ≥ ∗ )

+
(−)− (1 + )

Pr( ≥ ∗ )

=
( − Pr( ≥ ∗ ))( − +)

Pr( ≥ ∗ )
+

(−)− (1 + )

Pr( ≥ ∗ )

If  = 1

(
 −  )=1 =

( − Pr( ≥ ∗ ))( − )

Pr( ≥ ∗ )
+

− (1 + )

Pr( ≥ ∗ )
− (− +Pr( ≥ ∗ ))

Pr( ≥ ∗ )

= (
 −  )=0 − (− +Pr( ≥ ∗ ))

Pr( ≥ ∗ )

Substituting

(− +Pr( ≥ ∗ ))
Pr( ≥ ∗ )

= (
 −  )=0 − (

 −  )=1

into  () yields

 () =
[(

 −  )=0 − (
 −  )=1]


2
 − [

(
 −  )=0 + ( − ) + 


] +

( − )(− 1)


The intercept and the first term are positive while the second term is negative. Thus,

 =
(

 −  )=0 + ( − ) + 

2 [(
 −  )=0 − (

 −  )=1]

−
p
[(

 −  )=0 + ( − ) + ]2 − 4( − )(− 1) [(
 −  )=0 − (

 −  )=1]

2 [(
 −  )=0 − (

 −  )=1]
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If    

 
(

 −  )=0 + ( − ) + 

2 [(
 −  )=0 − (

 −  )=1]

−
p
[(

 −  )=0 + ( − ) + ]2 − 4( − )(− 1) [(
 −  )=0 − (

 −  )=1]

2 [(
 −  )=0 − (

 −  )=1]
(23)

Rearraging Eq. (23) yields

(
 −  )=0 + ( − ) + − 2 [(


 −  )=0 − (

 −  )=1]


p
[(

 −  )=0 + ( − ) + ]2 − 4( − )(− 1) [(
 −  )=0 − (

 −  )=1]

That is,

2
 [(


 −  )=0 − (

 −  )=1]− [(

 −  )=0 + ( − ) + ] + ( − )(− 1)  0

where (
 −  )=0 − (

 −  )=1  0;

( − )(− 1)  ((

 −  )=0 + ( − ) + )−2

 [(

 −  )=0 − (

 −  )=1]

( − )(− 1)  ((

 −  )=0 + ( − ))−2

 [(

 −  )=0 − (

 −  )=1] + 

 
( − )(− 1− )



− (
 −  )=0 + [(


 −  )=0 − (

 −  )=1] (24)

So if the condition in Eq. (24) holds,    . Next, we can show that

(
 −  )=0 − [(


 −  )=0 − (

 −  )=1]

= (
 −  )=0 −

(− +Pr( ≥ ∗ ))
Pr( ≥ ∗ )

=
( − Pr( ≥ ∗ ))( − )

Pr( ≥ ∗ )
+

− (1 + )

Pr( ≥ ∗ )
−

(− +Pr( ≥ ∗ ))
Pr( ≥ ∗ )

= (
 −  )=
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Consequently, Eq. (24) can be rewritten as

 
(− 1− )( − )



− (
 −  )=

( − ) +  
(− 1)( − )



− (
 −  )=

(− 1)( − )   [( − ) + (
 −  )=

] +

(1−) [( − ) + (
 −  )=

]−  −(− 1)( − ) + [( − ) + (
 −  )=

]

(1−) [( − ) + (
 −  )=

]  ( − ) ++ (

 −  )=

(1−)

∙
( − ) +

(
 −  )=



¸


(
 −  )=



Appendix F: Comparing individual and group interest rates

From Eq. (6), the required repayment of an individual loan is

1 + =
( − ) + 



From Eq. (11), the required repayment per borrower of a group loan is

1 + =
(1 + ) − ( − + )(|  ∗ )− (− ) Pr(  ∗ )

Pr( ≥ ∗)

Thus, the difference between individual and group interest rates is

 − =
(1 + ) − ( − + )(|  ∗ )− (− ) Pr(  ∗ )

Pr( ≥ ∗)
− ( − ) + 



=
(1 + ) −[(|  ∗ )]

Pr( ≥ ∗ )
− ( − ) + 



=
(1 + ) −[(|  ∗ )]

Pr( ≥ ∗ )
− ( − ) + 



 − =
( − ) + 


+

[(|  ∗ )]− (1 + )

Pr( ≥ ∗ )
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Figure 1: Audit probability for nonmarginal group (mn) 

 

 

Figure 2: Correlation and Variance of pi with varying α and β 
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Figure 3: Interest rates for individual and group lending 

 

 

Figure 4: Probability of default for individual and group lending 
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Figure 5: The minimum required number of successes for individual and group lending 

 

Note: The horizontal lines with markers depict the means of successes shown in the legend 

 

Figure 6: Audit probability and cost per borrower 
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Figure 7: Expected surplus per borrower for individual and group lending 
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