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1 Introduction

This paper addresses the problem of how to efficiently allocate multiple heterogeneous

inherently indivisible items or goods among a group of bidders who can be financially

constrained. To be more precise, an auctioneer (or seller) wants to sell n indivisible

items to m potential bidders. Every bidder acquires at most one item and views his n

valuations over those items and his budget as his private information. Every bidder is

initially endowed with a budget but his budget is limited and may not be able to pay up

to his valuation. In this setting, it is not possible to follow the traditional approach of

using market-clearing prices as an effective means to allocate goods, as market-clearing

prices are not guaranteed to exist due to budget constraints. We aim to develop a new

dynamic auction mechanism that can not only overcome the nonexistence problem of

market-clearing prices but also give bidder right incentives to achieve an efficient market

outcome.

Auctions have been long used for the sale of a variety of items since a few thousand

years ago when they were applied by the Babylonians. Nowadays auctions can be con-

ducted online and off-line. They are powerful market mechanisms and have been widely

explored by both private and public sectors to carry out a broad range of and a huge

volume of economic activities. They are used by governments to sell radio spectrum

licenses, treasury bills, timber rights, off-shore oil leases, mineral rights and pollution

permits, and to procure public projects including goods and services, and to privatize

state companies (in the former Soviet Unions and other eastern European socialist states),

and by private sectors to sell all kinds of commodities and services ranging from antiques,

art works, flowers and fish, to airline routes, takeoff and landing slots, and keywords; see

e.g., Klemperer (2004), Milgrom (2004), and Krishna (2010).

A key assumption in auction theory has been that all potential bidders are not

subject to any budget constraints so that they can pay up to their valuations on the goods

for sale. It is well-known that financial or budget constraints pose a serious obstacle to the

efficient allocation of resources; see Che and Gale (1998, 2000), Laffont and Robert (1996),

Maskin (2000) and Krishna (2010) among others. A longstanding guiding economic prin-

ciple is that efficient allocation of goods can be achieved through market-clearing or

Walrasian equilibrium prices. In the presence of budget constraints, this principle can
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no longer be applied, because market-clearing prices are not guaranteed to exist.

To overcome the absence of market-clearing prices caused by financial constraints,

we have to adopt a more general approach—the notion of core—to the current challeng-

ing allocation problem. The concept of core is a generalization of Edgeworth’s contract

curve and is one of the most fundamental solution concepts in game theory and general

equilibrium theory; see Gillies (1953), Debreu and Scarf (1963), Scarf (1967), Shapley and

Shubik (1971), Shapley (1973), Shapley and Scarf (1974), Quinzii (1984), and Predtetchin-

ski and Herings (2004) among others. A core allocation consists of an assignment of items

and its supporting price system and is Pareto efficient. It specifies a feasible distribution

of items and incomes among all market participants that is stable against every possible

deviation from any coalition. Because of budget constraints, agents will not be able to

transfer part of their utilities to others. In spite of budget constraints and non-transferable

utilities we prove that there exists at least one strongly Pareto-efficient core allocation in

the market and thus a strongly Pareto efficient allocation can be achieved. Our major

contribution goes further by designing a dynamic auction for actually locating a strongly

Pareto efficient core allocation and inducing bidders to bid truthfully.

We consider a basic auction market in which there are a finite number of heteroge-

nous indivisible items like houses for sale and a finite number of potential bidders. Every

bidder wants to consume at most one item but faces a budget constraint and may not

be able to pay up to his valuations on those items. When bidders are not budget con-

strained, this market model becomes the classic assignment market models as studied by

Koopmans and Beckmann (1957), Shapley and Shubik (1971), Crawford and Knoer (1981),

Leonard (1983), Demange et al. (1986), Mishra and Talman (2010), Andersson et al. (2013),

Andersson and Erlanson (2013), and Herings and Zhou (2022). In the current model, both

valuations and budgets are bidders’ private information and bidders are not assumed to

be price-takers and may therefore act strategically as long as it serves their interests. In

the auction literature, private information concerns typically every bidder’s valuations

on goods; see e.g., Ausubel (2004), Perry and Reny (2005), Ausubel (2006), Mishra and

Parkes (2007), and Sun and Yang (2014). The current model has an additional dimension

of private information concerning also budgets and makes the design more challenging,

as it becomes a multi-dimensional dynamic auction design problem; see Armstrong and

Rochet (1999) for a survey on the multi-dimensional static contract design. We propose

3



an ascending auction in which bidders determine their own bids and pay as they bid. We

will show that the proposed auction always induce bidders to bid truthfully and finds a

strongly Pareto efficient core allocation when bidders are budget constrained, otherwise

a Walrasian equilibrium with the minimum equilibrium prices. So when bidders are not

budget constrained, the proposed auction can recover the well-known results of Leonard

(1983) and Demange et al. (1986).

The proposed auction works roughly as follows. Every bidder reports his initial

bids to the auctioneer. The auctioneer then selects a provisional assignment based on

the reported bids to maximize her revenues. If a bidder gets no item from the provisional

assignment and can make new bids or withdraw some of his previous bids, the auctioneer

chooses again a provisional assignment based on reported renewed bids. The auction

stops when no bidder is willing to make any new bid. This ascending auction shares

several common features with other ascending auctions. Compared with the sealed-

bid auctions such as the VCG mechanism, our ascending auction has the advantage

of demanding less information from bidders, allowing them to learn and adjust, being

detail-free, and being independent of any probability distribution. This feature is very

important and attractive for auction design; see Wilson (1987), Rothkopf et al. (1990),

Ausubel (2004), Perry and Reny (2005), Ausubel (2006), Bergemann and Morris (2007),

Milgrom (2007), and Rothkopf (2007) among others.

1.1 A Brief Literature Review

This article relates to the early literature on auctions of selling one or two items with

budget constrained bidders. Che and Gale (1998, 2000), Laffont and Robert (1996), Maskin

(2000), Krishna (2010), and Zheng (2001) have examined the cases of selling a single item

when bidders face budget constraints. Hafalir et al. (2012) have studied a sealed-bid

Vickrey auction for selling one divisible good to budget constrained bidders. Benoit and

Krishna (2001), Brusco and Lopomo (2008), and Pitchik (2009) have analyzed auctions for

selling two items under budget constraints.

Our article further connects with a number of recent studies on models with mul-

tiple items. Ausubel and Milgrom (2002) have briefly discussed a stylized model with

budget constraints in their Section 8. In their model, bidders’ budgets and utility func-
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tions are not given instead they require that every bidder has a strict preference relation

over a finite set of choices. They propose a procedure for finding a core allocation. Ashlagi

et al. (2010) have investigated a position auction model with budget constrained bidders.

They obtain incentive compatibility and Pareto efficiency results under the assumption

that every bidder has a different private budget and one private valuation. Dobzinski

et al. (2012) have examined an auction model in which several identical items are sold to

budget constrained bidders. They have shown that there does not exist a deterministic

mechanism which satisfies individual rationality, incentive compatibility and no positive

transfers.

Our current study is very closely related to the recent works by Talman and Yang

(2015), van der Laan and Yang (2016), Rong et al. (2019), and Herings and Zhou (2022)

on the assignment markets with budget constrained bidders. The first paper proposes

a dynamic auction that finds a core allocation. The second one introduces an ascending

auction that locates a constrained equilibrium, which possesses some desirable properties

but is not necessarily a core allocation. The third proposes a novel criterion for mechanism

design that exhibits various appealing properties. Herings and Zhou (2022) introduce a

new notion of quantity-constrained competitive equilibrium. At this equilibrium, bidders

form expectations about possible trades and may foresee that a trade will not take place

if the corresponding budget constraint is binding. They establish the existence of their

equilibrium through a dynamic process and the equivalence between equilibrium out-

comes and stable outcomes. These papers, however, do not discuss the incentive issue.

Their algorithms are considerably different from ours. Our current model deals with an

incomplete information environment in which every bidder is assumed to have private

valuations over multiple items and a private budget. We achieve both efficiency and

strategy-proof results through a new dynamic auction design. Our model can accommo-

date all kinds of budget constraints. For instance, budget constraints can be soft so that

a Walrasian equilibrium exists. Budget constraints can be also hard so that there is no

Walrasian equilibrium at all.

The rest of the paper is organized as follows. Section 2 presents the model and basic

concepts. Section 3 introduces and analyzes the auction and present the main results.

Section 4 concludes.
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2 The Model

An auctioneer (seller) wishes to sell a set of n heterogeneous indivisible goods (items)

N = {1, 2, . . . , n} to a group of m potential bidders M = {1, 2, . . . , m}. Let 0 represent

the seller (she) and let M0 = M ∪ {0} stand for all agents in the market. We also use 0

to denote a harmless null item which has no value and let N0 = N ∪ {0}. Every bidder

i ∈ M attaches a monetary value (units of money) to each item, namely, each bidder has

a valuation function vi : N0 7→ Z+ with vi(0) = 0. Every bidder i is endowed with

an amount mi ∈ Z+ of money. We say that bidder i is budget or financial constrained

if mi < maxa∈N vi(a), that is, the valuation of bidder i for some bundle exceeds what

he can afford. Otherwise, bidder i is not budget constrained. We use ((vi, mi), i ∈ M, N) to

represent this model. Without loss of generality we have assumed that the seller’s reserve

price for every item is zero.

The following mild assumptions are imposed upon the model:

(A1) Private Information on Values and Budget: Every bidder i ∈ M knows privately his

own valuation function vi and budget mi.

(A2) Quasilinear Utility: For any bidder i ∈ M, if he pays p(a) in exchange for item a ∈ N,

he gets utility of vi(a) + mi − p(a) for p(a) ≤ mi and utility of −∞ for p(a) > mi.

When no bidder is financially constrained, the model reduces to the celebrated

assignment market models as studied by Koopmans and Beckmann (1957), Shapley and

Shubik (1971), Crawford and Knoer (1981), Leonard (1983), Demange et al. (1986), Mishra

and Talman (2010), Andersson et al. (2013), Andersson and Erlanson (2013), and Herings

and Zhou (2022).

An assignment π = (π(0), π(1), . . . , π(m)) assigns every bidder i ∈ M exactly one

item π(i) ∈ N0 such that no real item a ∈ N is assigned to more than one bidder and any

item which is not assigned to a bidder is retained by the seller 0. So an assignment may

assign the null item to several bidders. At π, a real item a ∈ N is unassigned if it is not

assigned to any bidder. So π(0) contains all unassigned items. Let A denote the family

of all assignments. An assignment π is fully efficient if for every assignment ρ, we have

∑
i∈M

vi(π(i)) ≥ ∑
i∈M

vi(ρ(i)). (1)
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A vector r = (r0, r1, . . . , rm) is a feasible income distribution if ri ≥ 0 for all i ∈
M0 and ∑i∈M0

ri = ∑i∈M0
mi. A pair (π, r) of an assignment π and a feasible income

distribution r is called an allocation. At (π, r), agent i ∈ M receives item π(i) and holds

ri a total amount of income. Then the utility that the bidders and the seller achieve are

given by

ui(π, r) = vi(π(i)) + ri, ∀i ∈ M, and u0(π, r) = r0 = ∑
i∈M

(mi − ri),

respectively.

When bidders face no budget constraints, the Walrasian equilibrium has been the

most widely used solution for auction and equilibrium models and market-clearing prices

are used in auction design. Given a price vector p =
(

p(a)
)

a∈N0
which specifies a price

for each item with p(0) = 0, the demand set of bidder i is defined by

Dp(i|vi, mi) =
{

a ∈ N0 | p(a) ≤ mi and vi(a)− p(a) ≥ vi(b)− p(b)

for any b ∈ N0 and p(b) ≤ mi
}

.

We always omit vi and mi when there is no confusion. The set Dp(i) contains all optimal

affordable items of the bidder at prices p.

Definition 1. A Walrasian equilibrium is a pair (π, p) of assignment π and prices p such that

π(i) ∈ Dp(i) for every i ∈ M and p(a) = 0 for every unassigned item a ∈ π(0).

At equilibrium, every bidder gets his best item at the prices within his budget and

the price of every unsold item is equal to zero.

If (π, p) is a Walrasian equilibrium, then p is called an equilibrium or market-clearing

price vector and π a Walrasian equilibrium assignment. It is well-known from Koopmans

and Beckmann (1957) and Shapley and Shubik (1971) that there will be at least one Wal-

rasian equilibrium and the set of Walrasian equilibrium price vectors forms a lattice when

no agent is budget constrained. It is known when bidders are not budget constrained, any

Walrasian assignment must be fully efficient. However, if bidders are budget constrained,

a Walrasian assignment need not be fully efficient.

The following example shows that when buyers are budget constrained and even if
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their budgets are different, the Walrasian equilibrium still cannot be guaranteed to exist.

Example 1. A seller has two items {a, b} for sale. There are three bidders 1, 2 and 3. Each bidder

demands no more than one item and has valuation and budget as given in Table 1.Observe that

each bidder has a different budget and both bidders 2 and 3 are financially constrained.

Table 1: Valuation and budget

Bidder vi(0) vi(a) vi(b) Budget mi

1 0 8 6 9
2 0 7 0 5
3 0 0 6 3

We will prove that there exists no Walrasian equilibrium due to budget constraints.

Suppose there would be a Walrasian equilibrium price vector p =
(

p(a), p(b)
)
. It is easy

to see that both items must be sold. This means that it is necessary to have p(a) ≤ 8 and

p(b) ≤ 6. We need to consider the following cases in which the two inequalities hold.

Case 1. When p(a) = p(b) + 2, we have Dp(1) = {a, b}. If p(a) ≤ m2 = 5, then we

have Dp(2) = {a} and Dp(3) = {b} and the set {a, b} is over-demanded. If p(a) > m2 =

5, then Dp(2) = Dp(3) = 0 and the set {a, b} is under-demanded. In either case, there is

no equilibrium.

Case 2. When p(a) < p(b) + 2, we have Dp(1) = {a}. In order to have an equi-

librium we must have p(b) ≤ m3 = 3, which implies p(a) < 5 = m2. Then we have

D2(p) = {a}. So item a is over-demanded and we cannot have an equilibrium.

Case 3. When p(a) > p(b) + 2, we have Dp(1) = {b}. In order to have an equi-

librium we must have p(a) ≤ m2 = 5, which implies p(b) < 3 = m3. Then we have

Dp(3) = {b}. So item b is over-demanded and we cannot have an equilibrium.

Observe that because goods are indivisible and bidders are budget constrained,

some utilities cannot be transferred from one agent to another. This example motivates

us to make use of a more general solution: the core. The notion of core has been widely

used in general equilibrium theory and cooperative game theory; see e.g., Debreu and

Scarf (1963), Scarf (1967), Shapley (1973), Shapley and Scarf (1974), Quinzii (1984), and

Predtetchinski and Herings (2004). We now introduce this concept of core for nontrans-

ferable utility environments.
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An allocation (π, r) is individually rational if every agent i ∈ M0 achieves no less

utility than they stand alone, i.e., ui(π, r) ≥ mi for every i ∈ M and u0(π, r) ≥ 0 for

the seller. An allocation (π, r) is Pareto efficient if there does not exist another allocation

(ρ, τ) such that ui(ρ, τ) > ui(π, r) for all i ∈ M0; otherwise, we say that (π, r) is strongly

Pareto dominated by (ρ, τ). An allocation (π, r) is strongly Pareto efficient if there does

not exist another allocation (ρ, τ) such that ui(ρ, τ) ≥ ui(π, r) for all i ∈ M0 with at

least one strict inequality; otherwise, we say that (π, r) is Pareto dominated by (ρ, τ). A

nonempty subset S ⊆ M0 is called a viable coalition if S consists of either the seller with

any number of bidders or a single bidder. Given a viable coalition S including the seller,

an allocation (ρS, τ) is feasible for S, if τ = (τi)i∈M0 is an income distribution such that

∑i∈S τi = ∑i∈S mi, and ρS(i) = ∅ and τi = mi for every bidder i ∈ M0 \ S. An allocation

(π, r) is blocked by a single bidder i ∈ M if it is not individually rational for i such that

mi > ui(π, r). An allocation (π, r) is blocked by a viable coalition S ∋ 0 if there exists a

feasible allocation (ρ, τ) such that ui(ρ, τ) > ui(π, r) for all i ∈ S; the allocation (π, r) is

weakly blocked by a viable coalition S ∋ 0 if there exists a feasible allocation (ρ, τ) such

that ui(ρ, τ) ≥ ui(π, r) for all i ∈ S and with at least one strict inequality.

Definition 2. An allocation (π, r) is in the core and is called a core allocation if it is not blocked

by any coalition. It is in the strong core and is called a strong core allocation if it cannot be weakly

blocked by any coalition.

Clearly, every core allocation or element is Pareto efficient and every strong core

allocation is strongly Pareto efficient. It can be shown that if no bidder is budget con-

strained, then every strongly Pareto efficient allocation is fully efficient. However, when

bidders face budget constraints, a strongly Pareto efficient need not be fully efficient.

Let us return to Example 1 which has no Walrasian equilibrium due to budget con-

straints. However, it is easy to verify that this example has the following core allocations

(π, r) =
(
(0, a, 0, b), (9, 3, 5, 0)

)
and (π′, r′) =

(
(0, a, b, 0), (9, 5, 0, 3)

)
. These are not in the

strong core as they can be weakly blocked by a coalition.1

1The strong core of this problem is not empty. For example, allocation (π′′, r′′) =(
(0, a, 0, b), (10, 2, 5, 0)

)
is a strong core allocation.
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3 Main Results

In this section we present the main results of the paper including the new dynamic auc-

tion in Section 3.1, an illustrative example in Section 3.2, a strategic result in Section 3.3,

and several results on the core and equilibrium in Section 3.4.

3.1 The Design of Dynamic Auction

We introduce an ascending auction which is a variant of the deferred acceptance algo-

rithm (Gale and Shapley, 1962) and is also related to Crawford and Knoer (1981), Leonard

(1983), Demange et al. (1986), Bernheim and Whinston (1986), Ausubel and Milgrom

(2002), Andersson et al. (2013), Andersson and Erlanson (2013), and Herings and Zhou

(2022) among others which were designed to deal with the situation without budget

constraints. Differing from these existing auctions, this new auction can accommodate

all kinds of budget constraints and induce bidders to act truthfully. The basic idea of

the auction can be roughly described as follows. At the first round, each bidder makes

some bids or no bid to the seller, and the seller chooses a set of bids yielding the highest

(artificial) revenue to her and asks every provisionally losing bidder to make new bids.

At the following rounds, the losing bidder will make possible new bids to or withdraw

some of his earlier bids from the seller. The auction process continues until no bidder is

rejected. When the auction stops, the chosen bids become finally accepted.

We now give a detailed description of the dynamic auction mechanism.

The Dynamic Auction

Initialization: Set k = 1 being the first round. Every bidder i ∈ M decides whether to

bid or not. He can make a bid pi
1(a) ∈ Z+ on some item a ∈ N0 or several bids if he

is indifferent to them. Go to the Assigning stage.

Bidding stage: After being offered to make new bids, every provisionally losing bidder

i increases at least one of his previous bids by one unit or withdraws some of his

previous bids or makes a bid pi
k(a) ∈ Z+ on some item a ∈ N0 which he has not

bid previously. He can do this operation on several items if he is indifferent to
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them. Any other bidder j keeps his bids unchanged by setting pj
k = pj

k−1. Go to the

Assigning stage.

Assigning stage: If a bidder i does not bid on the null item, he is said to be active and his

price of the null item is set as pi
k(0) = −2−i. Otherwise, bidder i is inactive and he

must bid pi
k(0) = 0. In this way we have the price system Pk = (pi

k)i∈M at time k.

Based on the current bidding prices Pk = (pi
k)i∈M, the seller finds an optimal assign-

ment πk by solving the following maximization problem

max
ρ∈A ∑

i∈M
pi

k(ρ(i)). (2)

At πk, bidder i is said to be a provisional loser, if he is active and assigned the null

item, i.e., pi
k(0) = −2−i and πk(i) = 0. If there is no provisional loser, go to the Final

Assignment. Otherwise, the seller asks all provisional losers to submit new bids at

next round. Set k = k + 1 and go to the Bidding stage.

Final Assignment The auction stops. The auctioneer assigns every bidder i ∈ M with

item πk(i) specified by the current provisional assignment πk and receives the cor-

responding payment pi
k(πk(i)) from bidder i for the item.

The proposed auction rules are very intuitive, general, easy to implement, and do

not impose any unreasonable restriction on bidders’ behavior. In the auction, every

bidder can decide whether to bid or not and what items to bid, and can also withdraw

bids. The auction has a unique and specific activity rule on the null item. When a bidder

i ∈ M does not bid on the null item, the price of the null item is set to be pi
k(0) = −2−i,

depending on the bidder. Otherwise, the bid on the null item is set to be pi
k(0) = 0. This

means that every bidder just needs to indicate if he wants to demand a null item or not.

The auctioneer will set the bid on the null item. The rule can be easily implemented and

can prevent any bidder’s flagrant manipulation. More importantly, this is a novel tie-

breaking rule and will play an indispensable rule in establishing several basic properties

of the auction. Observe that when the auction terminates, any bidder who is assigned a

null item must have bid it and will pay nothing.

Notice that the objective function of the problem (2) can be seen as an artificial

11



revenue of the seller before the auction stops, because it contains the artificial price of

pi
k(0) = −2−i. However, it will become the true revenue of the seller when the auction

stops. The important and novel point of the problem (2) is that it always has a unique

set of winners, and its solution is also an optimal solution to the following revenue

maximization problem

max
ρ∈A ∑

i∈M
p̂i

k(ρ(i)), (3)

where p̂i
k(0) = 0 and p̂i

k(a) = pi
k(a) for all i ∈ M, k, and a ∈ N. It can be easily

understood that an optimal solution of the problem (3) need not be an optimal solution

of the problem (2).

When facing the auction, every rational bidder could act sincerely or strategically

as long as it serves his interest. Because both valuations and budgets are private in-

formation, a manipulative bidder may not necessarily behave honestly according to his

true valuations or budget. In the following we will investigate various properties of the

auction. When facing the auction, it is best or optimal for every bidder to bid truthfully.

In other words, sincere bidding will be a Nash equilibrium of the underlying dynamic

auction game with incomplete information. We will also show that when bidders bid

sincerely, the auction will find a strongly Pareto-efficient core allocation when bidders are

budget constrained, otherwise a Walrasian equilibrium with the minimum equilibrium

price vector, thus always yielding an efficient outcome in all circumstances.

We now specify and focus on a class of sincere bidding strategies that can facilitate

the bidding process. In such strategies bidders make bids according to their true valu-

ations and budgets. Every bidder i ∈ M initially sets a target utility ûi
1 ∈ Z+ that the

bidder wishes to achieve

ûi
1 ≥ max

a∈N0
vi(a) + mi.

On each round, he will make bids according to this target and also update this target

utility by gradually decreasing it. On each round k, for every item a ∈ N0, the bidder

calculates a possible bidding price

p̂i(a|ûi
k) = vi(a) + mi − ûi

k,
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and makes a bid pi
k(a) = p̂i(a|ûi

k) on every item a ∈ N0 if the bidding price pi
k(a) is

nonnegative and does not exceed his budget mi. Because agents are rational, no bidder

will make any nonsense bid such as a negative price for any item or any bid which makes

his position worse than his status quo mi. The seller will not sell any of her items if its

price is below 0.

On each subsequent round k > 1, if a bidder i is a provisional loser, he will be

offered new opportunities to make new bids. He will need to reduce his target utility by

a decrement min
{

d ∈ Z++ | p̂i(a|ûi
k − d) ∈ [0, mi] for some a ∈ N0

}
. This is the minimal

integer that leads to new bids. In most cases, the decrement is one. However, when the

bidding price of some item reaches the budget, the decrement can be larger than one.

3.2 An Illustrative Example

We illustrate the proposed dynamic auction mechanism and compare it with the well-

known DGS auction through the following example. It should be pointed out that the

DGS was proposed to deal with the assignment market without budget constrained bid-

ders. If the DGS auction applies to the current example, it starts with prices p1(0, a, b) =

(0, 0, 0) and ends up with p7(0, a, b) = (0, 6, 4), at which no bidder demands item a.

Example 2. A seller has two items {a, b} for sale. There are four bidders 1, 2, 3, and 4. Each bidder

has valuations and a budget as given in Table 2. Observe that bidders are financially constrained.

Table 2: Valuation and budget

Bidder vi(0) vi(a) vi(b) Budget mi

1 0 10 2 5
2 0 10 4 5
3 0 2 7 4
4 0 7 7 3

Table 3 collects the information generated by the current auction mechanism. When

a bidder does not make a bid on an item or withdraws a bid on an item, the symbol −
will be used.

Observe that on the first round, bidder 1’s initial target utility is 16 and does not

make any offer. No bidder bids for the null item, so they are all active. Observe that when
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Table 3: Illustration of the proposed auction mechanism for Example 2.

k (û1
k, û2

k, û3
k, û4

k) p1
k(0, a, b) p2

k(0, a, b) p3
k(0, a, b) p4

k(0, a, b) πk(0, 1, 2, 3, 4)
1 (16, 15, 11, 10) (−1

2 ,−,−) (−1
4 , 0,−) (−1

8 ,−, 0) (− 1
16 , 0, 0) (0, 0, a, b, 0)

2 (15, 15, 11, 9) (−1
2 , 0,−) (−1

4 , 0,−) (−1
8 ,−, 0) (− 1

16 , 1, 1) (0, a, 0, 0, b)
3 (15, 14, 10, 9) (−1

2 , 0,−) (−1
4 , 1,−) (−1

8 ,−, 1) (− 1
16 , 1, 1) (0, 0, a, b, 0)

4 (14, 14, 10, 8) (−1
2 , 1,−) (−1

4 , 1,−) (−1
8 ,−, 1) (− 1

16 , 2, 2) (0, a, 0, 0, b)
5 (14, 13, 9, 8) (−1

2 , 1,−) (−1
4 , 2,−) (−1

8 ,−, 2) (− 1
16 , 2, 2) (0, 0, a, b, 0)

6 (13, 13, 9, 7) (−1
2 , 2,−) (−1

4 , 2,−) (−1
8 ,−, 2) (− 1

16 , 3, 3) (0, a, 0, 0, b)
7 (13, 12, 8, 7) (−1

2 , 2,−) (−1
4 , 3,−) (−1

8 ,−, 3) (− 1
16 , 3, 3) (0, 0, a, b, 0)

8 (12, 12, 8, 3) (−1
2 , 3,−) (−1

4 , 3,−) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

9 (12, 11, 8, 3) (−1
2 , 3,−) (−1

4 , 4,−) (−1
8 ,−, 3) (0,−,−) (0, 0, a, b, 0)

10 (11, 11, 8, 3) (−1
2 , 4,−) (−1

4 , 4,−) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

11 (11, 10, 8, 3) (−1
2 , 4,−) (−1

4 , 5,−) (−1
8 ,−, 3) (0,−,−) (0, 0, a, b, 0)

12 (10, 10, 8, 3) (−1
2 , 5,−) (−1

4 , 5,−) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

13 (10, 9, 8, 3) (−1
2 , 5,−) (−1

4 ,−, 0) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

14 (10, 8, 8, 3) (−1
2 , 5,−) (−1

4 ,−, 1) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

15 (10, 7, 8, 3) (−1
2 , 5,−) (−1

4 ,−, 2) (−1
8 ,−, 3) (0,−,−) (0, a, 0, b, 0)

16 (10, 6, 8, 3) (−1
2 , 5,−) (−1

4 ,−, 3) (−1
8 ,−, 3) (0,−,−) (0, a, b, 0, 0)

17 (10, 6, 7, 3) (−1
2 , 5,−) (−1

4 ,−, 3) (−1
8 ,−, 4) (0,−,−) (0, a, 0, b, 0)

18 (10, 5, 7, 3) (−1
2 , 5,−) (0,−, 4) (−1

8 ,−, 4) (0,−,−) (0, a, 0, b, 0)

the auction moves from the 7th round and the next round, the target utility of bidder 4

decreases from 7 to 3 as his bid reaches his budget. On the 8th round, bidder 4 withdraws

his bids on items a and b.

The auction stops at k = 18 when there is no provisional loser. On this round, bidder

2 bids on the null item and becomes inactive, while both bidder 1 and bidder 3 are still

active. Observe that although both bidders 2 and 3 offer the same bid of 4 on item b,

bidder 3 has a higher priority over bidder 2, as bidder 2’s bid on the null item is 0 but

bidder 3’s bid on it is −1
8 . Clearly, π∗ = (0, a, 0, b, 0) is the unique optimal assignment. So

in the final outcome, bidder 1 gets a and pays 5 and bidder 3 gets b and pays 4, and all

others get nothing and pay nothing. It is easy to verify that this is a core allocation.
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3.3 Incentive Results

In this subsection we will show that sincerely bidding is a Nash equilibrium of the under-

lying auction game with incomplete information on valuations and budgets. To establish

this result, we need to prove that sincere bidding is optimal for every bidder, provided

that all other bidders bid truthfully. To facilitate a better understanding of this result,

we will first give an intuitive but informal argument for the basic case of a single item

a. To see this, assume that bidder i∗ is the unique winner of the item in the proposed

dynamic auction when all bidders act truthfully according to their true valuations and

budgets. By the auction rule bidder i∗ will pay a price proposed by him pi∗(a) which

equals the ‘second’ highest price pj∗(a) = maxj∈M\{i∗}
(
min{vj(a), mj}

)
for i∗ < j∗ or

equals pj∗(a) + 1 otherwise. He will make a loss if he withdraws earlier or if any of his

budget and valuation is below the value pi∗(a). Clearly, sincerely bidding is an optimal

strategy for bidder i∗. For any other bidder j ̸= i∗, nothing will change if he acts according

to a budget and a valuation of which minimum is still below pi∗(a). Otherwise, he will

win the item but make a loss. Clearly, sincerely bidding is also an optimal strategy for

any bidder j ̸= i∗.

Let us now make preparations to establish our general incentive result which re-

quires more sophisticated arguments. We first recall and examine the rule of the Assign-

ing Stage of the proposed auction. On each round k, the seller solves the constrained

integer linear programming problem maxρ∈A ∑i∈M pi
k(ρ(i)), where pi

k(0) is negative for

each active bidder i. We will consider an equivalent variant of this problem and investi-

gate its properties. Let Ma
k and Mi

k denote the set of active bidders and the set of inactive

bidders of round k, respectively. For every active bidder i ∈ Ma
k , we add an increment 2−i

on his bidding price vector and obtain an adjusted price vector qi
k. In this way, we have

qi
k(0) = 0. For every inactive bidder i ∈ Mi

k, just let qi
k = pi

k. Let Qk = (qi
k)i∈M be the

adjusted price vector profile of round k. Then the seller solves the following constrained
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integer linear programming problem

max
ρ∈A ∑

i∈M
qi

k(ρ(i)) = max
ρ∈A ∑

i∈M
pi

k(ρ(i)) + ∑
i∈Ma

k

2−i, (4)

which shares the same solution with the original problem (2).

Let α =
(
α(a)

)
a∈N0

∈ R
|N|
+ with α(0) = 0 be an optimal solution of the dual

of the problem (4). Each component a ∈ N0 of this solution gives a post price α(a)

for item a. Given the post price vector α and the adjusted price vector profile Qk, let

βα =
(

βα(i|Qk)
)

i∈M ∈ R
|M|
+ be an extra bidding price vector such that βα(i|Qk) =

max
{

maxa∈N
(
qi

k(a)− α(a)
)
, 0
}

for each i ∈ M. The demand set of bidder i at this round

is defined by

Dα(i|Qk) =
{

a ∈ N0 | qi
k(a)− α(a) = βα(i|Qk)

}
.

Let Dα(R|Qk) =
⋃

i∈R Dα(i|Qk) denote the set of items demanded by a group R of bidders,

i.e., R ⊆ M. Similarly, let D−1
α (a|Qk) = {i ∈ M | a ∈ Dα(i|Qk)} be the set of bidders who

demands item a ∈ N and D−1
α (S|Qk) =

⋃
a∈S D−1

α (a|Qk) the set of bidders who demand

at least one item from the set S ⊆ N.

Define M+(α|Qk) = {i ∈ M | βα(i|Qk) > 0} and N+(α|Qk) = {a ∈ N | α(a) > 0}.

A set of bidders R ⊆ M+(α|Qk) is under-supplied if |R| > |Dα(R|Qk)|. In this case, the

set of items Dα(R|Qk) is called over-demanded. A set of items S ⊆ N+(α|Qk) is under-

demanded if |S| > D−1
α (S|Qk)|. If there is neither under-supply nor under-demand, the

post price vector α is said to be balanced, and there exists an assignment, πk, at which

every item with positive post price is assigned to a bidder who demands it and every

bidder with positive extra bidding price is assigned an item in his demand set. If so, we

have ∑i∈M qi
k(πk(i)) = ∑a∈N α(a) + ∑i∈M βα(i|Qk) by the fundamental duality theorem

(Schrijver, 1986).

It follows from Shapley and Shubik (1971) and Gul and Stacchetti (1999) that the set

of balanced post prices forms a nonempty complete lattice. Specifically, let αk denote the
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maximum balanced price vector under Qk. The following two properties of the maximum

balanced price vectors will be used to establish our incentive result.

The first result shows that αk(a) is the threshold of round k for every item a ∈ N,

so bidder i provisionally wins if and only if there is at least one item a ∈ N such that

qi
k(a) ≥ αk(a).

Lemma 1. If i is a provisional loser at round k, then qi
k(a) < αk(a) for all a ∈ N.

Proof. Observe that if qi
k(a∗) > αk(a∗) for some a∗ ∈ N, then βαk(i|Qk) > 0 implies that

bidder i should win at the provisional assignment πk.

Suppose that αk(a∗) = qi
k(a∗)(= pi

k(a∗) + 2−i) for some a∗ ∈ N. Recall that a

provisional loser i is active. Here we need to introduce an additional concept. A set R

of bidders with R ⊆ M+(α|Qk) is called weakly under-supplied if |R| = |Dα(R|Qk)|. By

Theorem 2 of Mishra and Talman (2010), there is no weakly under-supplied set at the

maximum balanced price vector. Let S = {a ∈ N | αk(a) = ℓ+ 2−i for some integer ℓ}.

Clearly, S contains a∗. Let R = {j ∈ M | πk(j) ∈ S}. For every bidder j ∈ R, that j ̸= i

implies βαk(j|Qk) = qj
k(πk(j))− ℓ− 2−i > 0 and j ∈ M+(αk|Qk). For every b ∈ Dαk(j|Qk),

αk(b) = qj
k(b) − βαk(j|Qk) = pj

k(b) − pj
k(πk(j)) + ℓ + 2−i implies that b ∈ S and thus

Dαk(j|Qk) ⊆ S. In summary, we have R ⊆ M+(αk|Qk) and |R| = |Dαk(R|Qk)| = |S|. This

contradicts the fact that there is no weakly under-supplied set at the maximum balanced

price vector αk.

The next lemma says that the threshold vector αk monotonically increases with the

time k.

Lemma 2. The maximum balanced price vector αk weakly increases with the time k, i.e., αk ≤

αk+1 for all k.

Proof. Since αk is a balanced post price under Qk, there is no under-demand at αk. Specif-

ically, every item a ∈ N+(αk|Qk) is demanded at least by a provisional winner i with

πk(i) = a. On round k + 1, the provisional winners of round k keep their bidding prices
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unchanged, so there is no under-demand at αk under Qk+1. By Theorem 2 of Mishra and

Talman (2010) we know that there exists a balanced post price vector α′k+1 for Qk+1 such

that α′k+1 ≥ αk. Since αk+1 is the maximum balanced post price vector for Qk+1, we have

αk+1 ≥ αk.

An immediate implication of the above two lemmas is that if bidder i bids pi
k(a) and

provisionally loses on round k, then he cannot win item a on any latter round k′ > k by

repeating the same bid pi
k′(a) = pi

k(a).

We are now ready to establish the first major result of this paper which shows that

in the face of the proposed dynamic auction, it is an optimal strategy for every bidder to

bid truthfully.

Theorem 1. Sincerely bidding by every bidder is a Nash equilibrium of the dynamic auction

game with incomplete information.

Proof. Take an arbitrary bidder i0 ∈ M and assume that all bidders but i0 always bid

sincerely. If i0 also bids sincerely, we use (Pk, Qk, αk, πk, rk)1≤k≤K to describe the truthful

auction process. Suppose i0 can manipulate the auction and get a better outcome. We use

(P̃k̃, Q̃k̃, α̃k̃, π̃k̃, r̃k̃)1≤k̃≤K̃ to describe the manipulated auction process.

Let a0 = π̃K̃(i0). i0 strictly prefers (π̃K̃, r̃K̃) to (πK, rK) and thus to (0, mi). So up to

some round k ≤ K of the truthful auction (in which i0 also bids sincerely), i0 proposes the

offer pi0
k (a0) = p̃i0

K̃(a0) but is rejected and is required to make new bids on next round. On

round k, he must not have bid on the null item and thus qi
k = pi

k + 2−i. We now compare

the two outcomes (π̃K̃, r̃K̃) and (πk, rk).

If item a0 is not assigned at πk, then the assignment which assigns a0 to i0 and all

other items to the bidders as πk does would yield a higher value for the optimal problem

maxρ∈A ∑i∈M qi
k(ρ(i)) than πk does. Thus a0 should be assigned to some bidder at πk.

Let i1 be the bidder such that πk(i1) = a0. If i1 (weakly) prefers (π̃K̃, r̃K̃) to (πk, rk), then

a1 = π̃K̃(i1) ̸= 0. If item a1 is not sold at (πk, rk), then the assignment which assigns a0
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to i0, assigns a1 to i1, and assigns all other items to the bidders as πk does, would yield a

higher value for the optimal problem maxρ∈A ∑i∈M qi
k(ρ(i)) than πk does. So a1 should

be assigned at (πk, rk) and let i2 denote the bidder such that πk(i2) = a1. If i2 (weakly)

prefers (π̃K̃, r̃K̃) to (πk, rk), we can repeat the same argument and define i3 as the bidder

such that πk(i3) = a2 = π̃−1
K̃ (i2), and so on. i0 gets 0 at πk and gets item a0 at π̃K̃, so there

is at least one bidder who gets an item at πk but gets 0 at π̃K̃. By repeating the above

argument, we can always find a bidder, say iL, who strictly prefers (πk, rk) to (π̃K̃, r̃K̃).

Similarly, let aL = π̃K̃(iL). In this case, aL may be 0.

i0 i1 i2 · · · iL

π̃K̃(·) a0 a1 a2 · · · aL

πk(·) ∅ a0 a1 · · · aL−1

That bidder i0 loses at (πk, rk) but wins a0 at (π̃K̃, r̃K̃) implies that αk(a0) > qi0
k (a0) =

q̃i0
K̃(a0) ≥ α̃K̃(a0). Let’s show that αk(aℓ−1) > α̃K̃(aℓ−1) implies that αk(aℓ) > α̃K̃(aℓ) for all

ℓ ∈ {1, . . . , L − 1}.

Consider the following two cases. Case 1: bidder iℓ strictly prefers (π̃K̃, r̃K̃) to

(πk, rk). On some round k′ < k of the truthful auction process, iℓ proposes piℓ
k′(aℓ) =

p̃iℓ
K̃(aℓ) but is rejected and required to submit new bids. This implies that αk(aℓ) ≥

αk′(aℓ) > qiℓ
k′(aℓ) = q̃iℓ

K̃(aℓ) ≥ α̃K̃(aℓ). Case 2: bidder iℓ is indifferent to the two allocations

(π̃K̃, r̃K̃) and (πk, rk). Then we have qiℓ
k (aℓ) = q̃iℓ

K̃(aℓ) and qiℓ
k (aℓ−1) = q̃iℓ

K̃(aℓ−1). On round

k of the truthful auction process, that iℓ wins aℓ−1 implies that aℓ−1 ∈ Dαk(iℓ|Qk) and

thus qiℓ
k (aℓ−1) − αk(aℓ−1) ≥ qiℓ

k (aℓ) − αk(aℓ). Similarly, on round K̃ of the manipulated

auction process, that iℓ wins aℓ implies that aℓ ∈ Dα̃K̃
(iℓ|Q̃K̃) and thus q̃iℓ

K̃(aℓ)− α̃K̃(aℓ) ≥

q̃iℓ
K̃(aℓ−1)− α̃K̃(aℓ−1). In summary, we have

αk(aℓ) ≥ αk(aℓ−1) +
(

qiℓ
k (aℓ)− qiℓ

k (aℓ−1)
)
> α̃K̃(aℓ−1) +

(
q̃iℓ

K̃(aℓ)− q̃iℓ
K̃(aℓ−1)

)
≥ α̃K̃(aℓ).

19



By induction, we have αk(aL−1) > α̃K̃(aL−1). Since iL strictly prefers (πk, rk) to

(π̃K̃, r̃K̃), then on some round k̃ ≤ K̃ of the manipulated auction process iL makes the bid

p̃iL
k̃
(aL−1) = piL

k (aL−1) but is rejected and required to make new bids. We have α̃K̃(aL−1) ≥

α̃k̃(aL−1) > q̃iL
k̃
(aL−1) = qiL

k (aL−1) ≥ αk(aL−1), yielding a contradiction.

3.4 Core and Equilibrium Properties

In the previous section we have proved that sincere bidding is an optimal strategy for

every bidder in the face of the proposed dynamic auction. In this subsection, we will

explore other important properties of the auction in the environment where all bidders

bid sincerely. For the auction model ((vi, mi), i ∈ M, N), let K denote the last round of the

dynamic auction. The final assignment is πK, and the corresponding income distribution

is r0 = ∑i∈M pi
K(πK(i)) for the seller, and ri = mi − pi

K(πK(i)) for every bidder i ∈ M.

Bidder i is said to be a loser if he is assigned the null item πK(i) = 0; otherwise, he is a

winner. Let (πK, r) be the final outcome generated by the auction.

Lemma 3. The outcome (πK, r) generated by the proposed auction is individually rational and

gives every bidder i ∈ M his target utility ûi
K and the seller her highest revenue under PK.

Proof. Observe that bidder i receives item a ∈ N0 only if he bids on a, that is pi
K(a) =

vi(a) − ûi
K + mi. So bidder i’s utility is ui(πK, r) = vi(a) + mi − pi

K(a) = ûi
K. Once a

bidder’s target ûi
k equals his budget mi, then p̂i(0|ûi

k) = 0 implies that he bids on the null

item and becomes inactive. An inactive bidder cannot be a provisional loser and therefore

would not make any new bid, so ûi
k ≥ mi.

Suppose there is another assignment ρ ∈ A that gives the seller a higher revenue
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under PK such that ∑i∈M:ρ(i) ̸=0 pi
K(ρ(i)) ≥ r0 + 1. Then we have

∑
i∈M

pi
K(ρ(i)) = ∑

i∈M:ρ(i) ̸=0
pi

K(ρ(i)) + ∑
i∈M:ρ(i)=0

(−2−i)

> ∑
i∈M:ρ(i) ̸=0

pi
K(ρ(i))− 1 ≥ ∑

i∈M
pi

K(πK(i)),

which contradicts the fact that πK is an optimal solution to the problem (2) on the last

round K. Since the no-sale assignment is feasible and gives the seller the utility of zero,

the seller’s optimal choice guarantees her rationality.

The next result states that the outcome generated by the auction is in the core and it

is a strongly Pareto efficient allocation.

Theorem 2. The outcome (πK, r) generated by the proposed auction is in the core and strongly

Pareto efficient.

Proof. We first extend every bidder i’s price vector on the last round by defining

p̃i
K(a) =


mi, if p̂i

K(a|ûi
K) > mi;

pi
K(a), otherwise.

Using a definition similar to the one in Section 3.3, we define the extended bidding price

by letting q̃i
K(a) = p̃i

K(a) + 2−i for every active bidder i ∈ Ma
K, and q̃i

K(a) = p̃i
K(a) for

every inactive bidder i ∈ Ma
K. Here we show that πK also solves

max
ρ∈A ∑

i∈M
q̃i

K(ρ(i)), (5)

We use (Pk, Qk, αk, πk, rk)1≤k≤K to describe the auction process. For every bidder i ∈ M

and every item a ∈ N such that p̂i
K(a|ûi

K) > mi, i must bid pi
k(a) = p̂i

k(a|ûi
k) = mi on

some round k < K and must be a provisional loser. By Lemma 1 and Lemma 2, we
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have αK(a) ≥ αk(a) > mi + 2−i and thus a /∈ DαK(i|Q̃K). So DαK(i|QK) coincides with

DαK(i|Q̃K). At the extended optimal problem (5), αK is balanced and πK is a solution.

Similar to the conclusion of Lemma 3, πK maximizes seller’s revenue under P̃K.

We now prove that the outcome (πK, r) is a core allocation. By Lemma 3, (πK, r) is

individually rational. Suppose to the contrary that (πK, r) is not in the core, then there

exist a coalition S consisting of the seller and at least one bidder and an allocation (ρS, τ)

such that ui(ρS, τ) > ui(πK, r) for all i ∈ S. For every bidder in the coalition i ∈ S \ {0},

he wins ρS(i) ̸= 0 and prefers ui(ρS, τ) to his target utility of round K, i.e., ui(ρS, τ) =

vi(ρS(i)) + τi > ui(πK, r) = ûi
K. This implies that he sets a higher possible price on item

ρS(i), that is p̂i
K(ρ

S(i)|ûi
K) = vi(ρS(i)) + mi − ûi

K > mi − τi and p̃i
K(ρ

S(i)) ≥ mi − τi. For

the seller, we have

∑
i∈M:ρ(i) ̸=0

p̃i
K(ρ

S(i)) ≥ ∑
i∈S\{0}

(mi − τi) = u0(ρS, τ) > u0(πK, r) = ∑
i∈M:πK(i) ̸=0

p̃i
K(πK(i)).

It contradicts the fact that πK maximizes the seller’s revenue under P̃K. Thus, (πK, r) is in

the core.

We next show that (πK, r) is strongly Pareto efficient. Suppose to the contrary that it

is Pareto dominated by an outcome (ρ, τ) such that ui(ρ, τ) ≥ ui(πK, r) for all i ∈ M0 with

at least one strict inequality. Because every bidder is (weakly) better off at (ρ, τ), as in the

above proof, every bidder i ∈ M sets target utility ûi
K ≤ vi(ρ(i)) + τi and p̃i

K(ρ(i)) ≥

mi − τi if ρ(i) ̸= 0. Since the seller is also weakly better off, we have

∑
i∈M: ρ(i) ̸=0

p̃i
K(ρ(i)) ≥ ∑

i∈M: ρ(i) ̸=0
(mi − τi) = u0(ρ, τ) ≥ u0(πK, r) = ∑

i∈M: πK(i) ̸=0
p̃i

K(πK(i)).

Recall that πK maximizes the seller’s revenue under P̃K. So the seller is indifferent to the

two outcomes (πK, r) and (ρ, τ), and every bidder i ∈ M sets p̃i
K(ρ(i)) = mi − τi.
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Then there should be at least one bidder, say bidder j, who strictly prefers (ρ, τ) to

(πK, r). If p̃j
K(ρ(j)) = p̂j

K(ρ(j)|ûj
K), then j also gets his target utility at (ρ, τ) and thus is not

strictly better off. The only possibility is that p̂j
K(ρ(j)|ûj

K) > p̃j
K(ρ(j)) = mj. It means that,

on some round k < K, j must have bid pj
k(ρ(j)) = mj but has been rejected. By Lemma 1

and Lemma 2, we have αK(ρ(j)) ≥ αk(ρ(j)) > mj + 2−j and thus ρ(j) /∈ DαK(j|Q̃K). The

assignment ρ which assigns bidder j an item not in his demand set under a balanced post

price is not an optimal solution of the problem (5). We have

∑
i∈M

p̃i
K(ρ(i)) < ∑

i∈M
p̃i

K(πK(i)) ⇒ ∑
i∈M: ρ(i)=0

p̃i
K(ρ(i)) < ∑

i∈M: πK(i)=0
p̃i

K(πK(i)) = 0.

There must be an active bidder i ∈ Ma
K who gets an null item ρ(i) = 0 and pays 0 at (ρ, τ).

However, the active bidder i wins ûi
K > mi at (πK, r). This contradicts the hypothesis that

(ρ, τ) Pareto dominates (πK, r).

We have shown that the proposed auction can always find a strongly Pareto efficient

core allocation. This does not mean that the auction can guarantee to locate a strong core

allocation even if it exists. This does not contradicts Theorem 3 below, which says that the

proposed auction can always find a strong core allocation when no bidder is financially

constrained.

We know that when bidders face budget constraints, we can guarantee to find a

core and strongly Pareto efficient allocation but we cannot expect to have a strong core

allocation and therefore we have to accept some loss of market efficiency. This raises an

important question whether the auction can find a strong core allocation when bidders

are not budget constrained. Our next result establishes the equivalence between the core

and the strong core when bidders are not budget constrained.

Lemma 4. When no bidder is budget constrained, an allocation (π, r) is in the core if and only

if it is in the strong core.
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Proof. The ‘if’ part is obvious, so we prove the ‘only if’ part. Suppose to the contrary that

(π, r) is in the core but not in the strong core. By definition, (π, r) is individually rational

and cannot be blocked by any single agent. Then there would exist a viable coalition

S ⊆ M0 and an implementable pair (ρS, τ) such that ui(ρS, τ) ≥ ui(π, r) for all i ∈ S with

at least one strict inequality.

Let j ∈ S be one of the agents being strictly improved, i.e. uj(ρS, τ) > uj(π, r).

Define ∆ = uj(ρS, τ)− uj(π, r) > 0. Define a new income distribution τ̃ by

τ̃i =


τ j − |S|−1

|S| ∆, if i = j;

τi + 1
|S|∆, if i ∈ S \ {j};

τi, if i ∈ M \ S.

For every i ∈ M \ S, τ̃i = τi = mi is feasible. For every i ∈ S \ {j}, τ̃i > τi ≥ 0 is also

feasible. Let’s consider the feasibility for agent j. If j is a bidder, then we have

τ j − |S| − 1
|S| ∆ = vj(π(j)) + rj − vj(ρS(j)) +

1
|S|∆

≥ mj − vj(ρS(j)) +
1
|S|∆ ≥ 1

|S|∆.

The first inequality is because (π, r) is individual rationality such that vj(π(j)) + rj ≥

mi; the second inequality is because bidder j is not budget constrained such that mj −

vj(ρS(j)) ≥ 0. If j is the seller, we have a similar condition

τ0 − |S| − 1
|S| ∆ = v0(π(0)) + r0 − vj(ρS(0)) +

1
|S|∆

≥ v0(N)− v0(ρS(0)) +
1
|S|∆ ≥ 1

|S|∆.

The first inequality is because (π, r) is individually rational for the seller; the second

inequality is attributed to monotonicity of the seller’s values. Therefore τ̃ j > 0 is also
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feasible for agent j.

Then consider the implementable allocation (ρS, τ̃). For agent j, we have uj(ρS, τ̃) =

uj(ρS, τ)− |S|−1
|S| ∆ = uj(π, r) + 1

|S|∆. For any other agent i ∈ S \ {j}, we have ui(ρS, τ̃) =

ui(ρS, τ) + 1
|S|∆ ≥ ui(π, r) + 1

|S|∆. This means that (π, r) is blocked by the coalition S with

the allocation (ρS, τ̃), yielding a contradiction.

As an implication of Theorem 2 and Lemma 4, the proposed auction will always

generate a strong core allocation if bidders can afford to pay up to their valuations.

Every strong core allocation must be strongly Pareto efficient. When no bidder is budget

constrained, every strongly Pareto efficient allocation must be fully efficient and thus

every strong core allocation must be fully efficient. In summary, we have the next result.

Theorem 3. When no bidder is budget constrained, the outcome (πK, r) generated by the

proposed auction is in a strong core and thus strongly Pareto efficient and fully efficient.

The following theorem states that when no bidder is budget constrained, the pro-

posed auction will find a Walrasian equilibrium with the minimum equilibrium price

vector. This implies that the proposed auction can recover the classic results of Leonard

(1983) and Demange et al. (1986) for the assignment market without budget constraints

that the VCG payment vector coincides with the minimum Walrasian equilibrium price

vector and any auction for finding it must be strategy-proof for bidders.

Theorem 4. When no bidder is budget constrained, the proposed auction will find a Walrasian

equilibrium with the minimum equilibrium price vector.

Proof. Because no bidder is budget constrained, we have mi ≥ maxa∈N vi(a) for all i ∈ M.

It is well-known from Shapley and Shubik (1971) and Leonard (1983) that there exists

a unique minimum Walrasian equilibrium price vector, which corresponds to the VCG

payment vector. Let (π∗, p∗) be the minimum price Walrasian equilibrium. The utility

every bidder i ∈ M achieves at (π∗, p∗) is ui(π∗, p∗) = vi(π∗(i)) + mi − p∗(π∗(i)). We

use (Pk, Qk, αk, πk, rk)1≤k≤K to describe the auction process. The outcome of the proposed
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auction is (πK, rK). Define the price vector pK =
(

pK(a)
)

a∈N which specifies a price for

every item a ∈ N as pK(a) = pi
K(a) if a ∈ π(i). Note that if a is unsold, then a ∈ πK(0)

implies that pK(a) = p0
K(a) = 0. Let’s prove that p∗ = pK.

We first prove that, on round k, if bidder sets his target utility as ûi
k = ui(π∗, p∗),

then pi
k(a) = p∗(a) for every a ∈ Dp∗(i|vi) and pi

k(a) < p∗(a) for every a /∈ Dp∗(i|vi).

Since bidder i is not budget constrained, his bidding price is pi
k(a) = vi(a) + mi − ûi

k. If

a ∈ Dp∗(i|vi), we have vi(a) + mi − p∗(a) = ui(π∗, p∗) and thus pi
k(a) = p∗(a). If a /∈

Dp∗(i|vi), we have vi(a) + mi − p∗(a) < ui(π∗, p∗) and thus pi
k(a) < p∗(a). Furthermore,

if ûi
k > ui(π∗, p∗), then pi

k(a) < p∗(a) for each a ∈ N.

Next we prove that if bidder i sets his target utility as ûi
k = ui(π∗, p∗) and any other

bidder j ̸= i sets target utility as ûj
k ≥ uj(π∗, p∗), then i cannot be a provisional loser on

round k. We need to consider the following two cases. Case 1: if ûi
k = ui(π∗, p∗) = mi,

then i must have bid on the null item and could not be a provisional loser. Case 2: ûi
k =

ui(π∗, p∗) > mi. Suppose i is a provisional loser. That ûi
k > mi implies that i is active and

must have not bid on the null item. This means that π∗(i) ̸= 0. Let a = π∗(i). Then we

have pi
k(a) = p∗(a). If item a is unsold at πk, then the assignment which assigns a to i and

all other items to the bidders as πk does would yield a higher value than πk does. So a

should be assigned to some bidder at πk. Let j1 be the bidder such that πk(j1) = a. At πk,

j1 wins a and i loses, we have qj1
k (a) ≥ αk(a) > qi

k(a) = p∗(a) + 2−i. If ûj1
k > uj1(π∗, p∗),

then pj1
k (a) < p∗(a), which contradict the above inequality. If ûj1

k = uj1(π∗, p∗) = mj1 ,

then j1 must have bid on the null item and thus qj1
k (a) = pj1

k (a) = p∗(a), which also

contradicts the above inequality. The only possibility is that ûj1
k = uj1(π∗, p∗) > mj1 .

Analogously, we can have π∗(j1) ̸= 0 and let b1 = π∗(j1). Then b1 must have assigned

to some bidder at πk, so let j2 be the bidder such that πk(j2) = b1. Lemma 1 implies that

pj2
k (b1) + 2−j2 ≥ αk(b1) > p∗(b1) + 2−j1 and thus ûj2

k = uj2(π∗, p∗) > mj2 . We can repeat

the same argument for j2 and so on. As the number of bidders and items is finite, so it is

impossible.
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We can conclude that during the auction process, no bidder will reduce his target

below his utility at (π∗, p∗). When the auction ends, we have ûi
K ≥ ui(π∗, p∗) and pi

K(a) ≤

p∗(a) for all i ∈ M and a ∈ N. So pK ≤ p∗.

Next we will show that pK(a) ≥ pi
K(a) for all a ∈ N and i ∈ M. Suppose to the

contrary that there are a bidder i1 and an item a0 such that pK(a0) < pi1
K(a0). Let k be the

last round on which i1 was asked to make new bids, then i1 must have made his final bids

on next round (i.e., pi1
k+1 = pi1

K). So we have pi1
k (a) = pi1

K(a)− 1 for every a ∈ N.

Let a1 = πK(i1). First note that a1 ̸= a0. Otherwise pK(a0) = pi1
K(a0) yields a

contradiction. If a1 = 0, then the assignment which assigns a0 to i1 and all other items to

the bidders as πK does would yield a higher utility to the seller than πK does. So a1 ̸= 0.

On round k, i1 demands a1 so a1 must have been assigned to some other bidder at πk. Let

i2 be the bidder such that πk(i2) = a1, and let a2 = πK(i2). If a2 ̸= 0, then a2 must have

been assigned to some bidder at πk. Otherwise, the assignment which assigns a1 to i1,

a2 to i2, and all other items to the bidders as πk does would yield a higher utility for the

seller. Let i3 be the bidder such that πk(i3) = a2, and let a3 = πK(i3). Repeat this process

until a bidder iL is found such that aL = πK(iL) = 0. Let R = {i1, . . . , iL}.

i1 i2 · · · iL

πK(·) a1 a2 · · · 0

πk(·) 0 a1 · · · aL−1

Without loss of generality, we may assume that piℓ
K(aℓ−1) ≤ pK(aℓ−1) for all iℓ ∈

R \ {i1}. If the assumption is not true, then there will be a bidder iℓ̂ ∈ R \ {i1} such that

p
iℓ̂
K(aℓ̂−1) > pK(aℓ̂−1). We can rewrite R = {iℓ̂, iℓ̂+1, . . . , iL} by relabelling i1 = iℓ̂, i2 = iℓ̂+1,

. . . , and so on. We can find a contradiction to the relabelled pi1
K(a0) > pK(a0) as follows.

There are two cases that need to be considered.

Case 1: piℓ
K(aℓ−1) = pK(aℓ−1) for all iℓ ∈ R \ {i1}. Recall that pi1

K(a0) > pK(a0). If
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aℓ ̸= a0 for all iℓ ∈ R, then the assignment ρK given by

ρK(i) =


aℓ−1, if i = iℓ ∈ R;

0, if πK(i) = a0;

πK(i), otherwise;

would yield a higher utility to the seller than πK does in round K. If aℓ̂ = a0 for some ℓ̂,

then the assignment ρ′K given by

ρ′K(i) =


aℓ−1, i ∈ {i1, . . . , iℓ̂};

πK(i), otherwise.

would yield a higher utility to the seller than πK does in round K. It is impossible.

Case 2: there exists at least one bidder iℓ̂ ∈ R \ {i1} such that p
iℓ̂
K(aℓ̂−1) ≤ pK(aℓ̂−1)−

1. Consider the assignment ρk given by

ρk(i) =


aℓ, if i = iℓ ∈ R \ {iL};

0, if i = iL;

πk(i), otherwise.
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On round k, πk solves maxρ ∑i∈M qi
k(ρ(i)). Then we have

0 ≤ ∑
i∈M

qi
k(πk(i))− ∑

i∈M
qi

k(ρk(i))

= qiL
k (aL−1)− qi1

k (a1) +
L−1

∑
ℓ=2

(
qiℓ

k (aℓ−1)− qiℓ
k (aℓ)

)
≤ piL

K (aL−1)−
(

pi1
K(a1)− 1 + 2−i

)
+

L−1

∑
ℓ=2

(
piℓ

K(aℓ−1)− piℓ
K(aℓ)

)
≤ pK(aL−1)− (pK(a1)− 1 + 2−i1) +

L−1

∑
ℓ=2

(pK(aℓ−1)− pK(aℓ))− 1

= −2−i1 ,

which yields a contradiction again. Look at the inequality at the third row. For bidder iL,

if piL
k (aL−1) ≤ piL

K (aL−1)− 1 then qiL
k (aL−1) = piL

k (aL−1) + 2−iL < piL
K (aL−1). If piL

k (aL−1) =

piL
K (aL−1), then iL makes the same bids on round k as on round K. Note that he is inactive

and is assigned the null item 0 on the final round. He is also inactive on round k, i.e.,

qiL
k (aL−1) = piL

k (aL−1). For bidder i1, we have pi1
k (a1) = pi1

K(a1)− 1 by the definition of

round k. For every bidder iℓ ∈ R \ {i1, iL}, he is not budget constrained and we must

have qiℓ
k (aℓ−1)− qiℓ

k (aℓ) = piℓ
k (aℓ−1)− piℓ

k (aℓ) = piℓ
K(aℓ−1)− piℓ

K(aℓ). The inequality at the

fourth row is because the assumption that there is at least one bidder iℓ̂ ∈ R \ {i1} such

that p
iℓ̂
K(aℓ̂−1) ≤ pK(aℓ̂−1)− 1. Note that pK(aℓ−1) = piℓ

K(aℓ−1) by the definition of pK.

Finally we prove that (πK, pK) is a Walrasian equilibrium. For every i ∈ M, if

πK(i) = a, then pK(a) = pi
K(a) and vi(a) + mi − pK(a) = ûi

K. For every other item

b ∈ N \ {a}, we have ûi
K = vi(a) + mi − pi

K(b) ≥ vi(b) + mi − pK(b) for pK(b) ≥ pi
K(b).

So a ∈ Di(pK|vi). Since p∗ is the minimum Walrasian equilibrium price, we must have

p∗ ≤ pK.

In conclusion, we have pK = p∗.
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4 Concluding Remarks

In this paper we have examined an auction model, in which multiple heterogeneous

indivisible items are sold to a group of budget constrained bidders. Every bidder acquires

at most one item and has private valuations on those items. His budget could be so tight

that he may not be able to pay up to his valuation. Besides valuations, his budget is also

his private information. In this market competitive equilibrium is not guaranteed to exist

due to budget constraints. So we had to invoke the more general solution-the core instead

of the competitive equilibrium as a tool for our dynamic auction design. Importantly and

also practically, bidders are not assumed to behave as price-takers and may therefore bid

strategically. We have proposed an ascending auction in which bidders determine their

own bids and can also withdraw their bids. We have shown that the proposed auction

can always induce bidders to bid honestly and lead to a strongly Pareto efficient core

allocation when bidders are budget constrained, otherwise a Walrasian equilibrium with

the minimum equilibrium price vector. More precisely, sincere bidding is proved to be a

Nash equilibrium in the dynamic auction game with incomplete information.

We hope the current study will provide a necessary and useful basis for examining

more challenging and more practical resource allocation problems involving indivisibil-

ities, heterogeneity in preferences and shortage of financial resources. For instance, each

agent may acquire several items not just a single item and goods can be substitutes or

complements. Several efficient dynamic auctions have been proposed for such general

market models without budget constraints; see e.g., Kelso and Crawford (1982), Gul and

Stacchetti (2000), Milgrom (2000), Ausubel (2004, 2006), Hatfield and Milgrom (2005),

Perry and Reny (2005), Mishra and Parkes (2007), and Sun and Yang (2009, 2014). The

first important open question is how to design both efficient and incentive compatible

dynamic auctions for substitutes. Another important question is how to deal with the

auction design problem in the interdependent value setting under budget constraints. For
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the settings without budget constraints, we refer to Milgrom and Weber (1982) on auction

for a single item and Perry and Reny (2002, 2005) and Ausubel (2004) for homogeneous

goods.
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