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Abstract

In the context of the matching-with-contracts model, we generalize the cumulative
offer process to allow for arbitrary subsets of doctors to make proposals in each round.
We show that, under a condition on the hospitals’ choice functions, the outcome of
this generalized cumulative offer process is independent of the sets of doctors making
proposals in each round. The flexibility of the resulting model allows it to be used to
describe different dynamic processes and their final outcomes.

Keywords: Matching with contracts, cumulative offer mechanism, asynchrony, order
independence.
JEL Codes: C78; D44; D47.

1 Introduction

In the domain of matching and discrete allocation problems, very often algorithms that
are used as mechanisms or tools to produce allocations share many characteristics with
descriptions of processes, involving economic agents, which converge to some outcome.

Gale and Shapley (1962), for example, describe an algorithm—the deferred acceptance
(DA)—that produces a matching of students to colleges by simulating a process involving
a sequence of applications by students and tentative acceptances and rejections by colleges.
The authors use the description both as a method for producing a stable matching and as
a method for proving that stable matchings always exist in the domain that they consider.
Dubins and Freedman (1981) and Roth (1982) evaluate the incentives that participants have
to reveal their true preferences when that algorithm is used as a direct mechanism.

Similarly, when considering a labor market, Crawford and Knoer (1981) and Kelso and
Crawford (1982) describe processes in which firms make offers sequentially to workers, ad-
justing the salaries accordingly, until a stable equilibrium is reached. Hatfield and Milgrom
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(2005) extend the standard matching model to include contracts between doctors and hos-
pitals, generalizing both the college admission and labor market models above, and intro-
ducing an algorithm—the cumulative offer process (COP)—that under certain conditions on
the preferences of the participants, produces stable matchings. Similarly to DA, the COP
involves a sequence of contractual offers by doctors, tentative acceptances, rejections and
renegotiations by hospitals.

While not always emphasized in these papers, many of these algorithms could be in-
terpreted as describing dynamic processes that can take place in the real world—students
applying to schools and being “waitlisted”, firms making offers to workers and adjusting
salaries, etc. One obstacle in this interpretation is that the description of these algorithms
often involves unrealistic sequences and timing of decisions. In DA, all students who are not
held at some college make simultaneous offers. In Crawford and Knoer (1981) and Kelso
and Crawford (1982), firms still looking for workers to hire also make offers simultaneously.1

In the matching with contracts model, the COP process was defined in Hatfield and Mil-
grom (2005) similarly to DA, where every doctor who makes an offer does so simultaneously.
Hatfield and Kojima (2010), on the other hand, describe the process as involving an offer
from a single doctor at a time. Hirata and Kasuya (2014) showed that, under certain con-
ditions, all single-offer COPs (regardless of the order in which the doctors make their offers)
induce the same outcome as the simultaneous-offer COP. Hatfield et al. (2021) provide an
alternative order independence result for single-offer COPs.

In this paper, we extend the COP to allow for arbitrary subsets of doctors to make offers
in every period. This generalized COP includes both the single-offer and simultaneous-offer
COPs as special cases. We obtain an “order independence” of this offer process, generalizing
the result of Hirata and Kasuya (2014) to show that under the same conditions considered
by these authors, any arbitrary subset of doctors making offers in each period results in the
same outcome (Theorem 1). In section 5 we establish the relation between the conditions
used for the order independence results in Hirata and Kasuya (2014) and Hatfield et al.
(2021).

More than providing an additional family of algorithms for computing stable matchings
with contracts, the generalized COP can be used to describe more realistic dynamic processes.
For example, it can be used to describe a process in which doctors make offers to hospitals
asynchronously, and these process pending proposals asynchronously as well. This includes
processes in which, whenever a contract is rejected, the most preferred remaining contract
of the rejected doctor could immediately be made available for consideration by another
hospital. Such processes can arise in applications that are susceptible to delays in decision
making, but can not be described by single-offer or simultaneous-offer COPs. Single-offer
COPs require offers to be evaluated in order, one at a time, while the simultaneous-offer
COP requires all hospitals to finish evaluating their current offers in each round before any
hospital can move on to evaluate the offers in the next round. The generalized COP does
not require coordination of this kind and Theorem 1 shows that a lack of synchrony in these
decisions is inconsequential to the final outcome. Section 6 concludes with brief descriptions

1One notable exception is Roth and Xing (1997), which describes the entry-level market for Clinical
Psychologists as a decentralized process involving, among other phases, an asynchronous and stochastic
version of the DA algorithm.
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of other applications for the model. All proofs can be found in Appendix A.

2 Preliminaries

Let D be a finite set of doctors, let H be a finite set of hospitals, and let X ⊆ D ×H × Θ
be a finite set of contracts where Θ is a finite set (e.g., wages and job descriptions), with
d ∈ D, h ∈ H, x ∈ X, and θ ∈ Θ being their typical elements. For each contract x ∈ X, let
d(x) and h(x) denote the doctor and hospital involved in x, respectively. For any X ′ ⊆ X,
let X ′i := {x ∈ X ′ | i ∈ {d(x), h(x)}} for every i ∈ D ∪ H. For any X ′ ⊆ X, let d(X ′) :=⋃
x∈X′{d(x)} and h(X ′) :=

⋃
x∈X′{h(x)}. We call X ′ ⊆ X an allocation if |X ′d| ≤ 1 for each

d ∈ D. At an allocation X ′, each doctor in D \ d(X ′) is assigned the null contract x∅.
For each doctor d ∈ D, let �d be the doctor’s strict preference relation over Xd∪{x∅} and

Pd be the set of all possible strict preference relations over Xd ∪ {x∅}. Let PD :=
∏

d∈D Pd
be the set of all possible preference profiles, with �D∈ PD being a typical element of PD.
A contract x ∈ Xd is acceptable to doctor d if x �d x∅. Let AC(�d) := {x ∈ Xd | x �d x∅}
be the set of acceptable contracts to a doctor with preference relation �d. We assume that
|AC(�d)| ≥ 1 for each �d∈ Pd and each d ∈ D.

Each hospital h ∈ H has a choice function Ch : 2X → 2Xh , such that for any X ′ ⊆ X,
Ch(X

′) ⊆ X ′h. For each h ∈ H, Ch chooses at most one contract for each d ∈ D; that is,
for any X ′ ⊆ X and any h ∈ H, Ch(X

′) is an allocation. Let CH = (Ch)h∈H be a profile
of hospitals’ choice functions. For any X ′ ⊆ X evaluated by hospital h, h’s choice function
could take into account the set of contracts not involving h, denoted by X ′−h ⊆ X ′. This
possibility is, however, ruled out by the common and widely accepted assumption that choice
functions satisfy irrelevance of rejected contracts (see Lemma 1 below).

Definition 1 (Aygün and Sönmez (2013)). Hospital h’s choice function Ch satisfies the
irrelevance of rejected contracts (IRC) condition if for any X ′ ⊂ X and x ∈ X,2 if
x /∈ Ch(X ′ ∪ {x}), then Ch(X

′) = Ch(X
′ ∪ {x}).

Note that Definition 1 does not require contract x to involve hospital h.

Lemma 1. Suppose that each hospital h’s choice function satisfies the IRC condition. Then
for each h ∈ H and each X ′ ⊆ X, Ch(X

′) = Ch(X
′
h).

That is, the IRC condition implies that the choice of a hospital h is only affected by the
contracts involving h. Throughout the paper, we assume that all choice functions satisfy the
IRC condition.3

3 Generalized Offer Process

In this section, we introduce a generalized COP, or the GCOP. It generalizes the two different
types of COPs previously considered in the literature: (i) the simultaneous-offer COP eval-
uating the contracts of all eligible doctors in each step (e.g., Hatfield and Milgrom (2005)),

2The original definition in Aygün and Sönmez (2013) requires that x ∈ X \ X ′. This formulation is
equivalent since the statement immediately holds if x ∈ X ′.

3Hirata and Kasuya (2014) and Hatfield et al. (2021) assume the IRC condition.
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and (ii) the single-offer COPs evaluating only a single contract at a time (e.g., Hatfield and
Kojima (2010)). In the GCOP, an arbitrary set of eligible doctors is considered in each step.

Let AC0(�d) = AC(�d) for each d ∈ D, UK0 = ∅, and X0 = ∅. The GCOP is defined
by the following procedure and finishes in T ≥ 1 rounds.

Round 1:

– Choose an arbitrary non-empty set of doctors D1 ⊆ D and identify the most
preferred contract, x1d ∈ AC0(�d), of each d ∈ D1 according to �d.

Update:

• Let X̃1 be the set containing x1d for each d ∈ D1, and let X1 = X̃1 ∪X0.4

• For each doctor d ∈ D1, make x1d unavailable in later rounds;

AC1(�d) =

{
AC0(�d) \ {x1d}

AC0(�d)

}
if d

{
∈
/∈

}
D1.

For each t ≥ 1, we define X t and ACt(�d) recursively. For each t ≥ 1, X t is the
set of contracts to be considered in round t. For each doctor d ∈ D and each
t ≥ 1, we call ACt(�d) the set of fresh contacts and AC(�d) \ ACt(�d) the set
of offered contracts.

– For each hospital h ∈ H, the contracts in Ch(X
1) are reserved.

Update:

• Let U1 := {d ∈ D | AC1(�d) = ∅} be the set of doctors with no fresh
contracts for later rounds.

• Let K1 :=
⋃
h∈H d(Ch(X

1)) be the set of doctors with offered contacts re-
served by hospitals. Their fresh contracts will not be considered in the next
round.

• Let UK1 := U1 ∪K1 be the set doctors whose fresh contracts may not be
reviewed in the next round.

For each doctor d ∈ D \UK1, no hospital reserves her contract and she has fresh
contracts available for later rounds. In other words, D\UK1 is the set of doctors
who can be included in D2. If UK1 = D, the process is complete and stops at
T = 1. Otherwise, the process moves to the next round.

Round t ≥ 2:

– Choose an arbitrary non-empty set of doctors Dt ⊆ D \ UKt−1 and identify
the most preferred contract, xtd ∈ ACt−1(�d), of each d ∈ Dt according to �d.

Update:

4Note that since X0 = ∅, X̃1 ∪X0 = X̃1. We use this expression to be consistent across different rounds.
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• Let X̃ t be the set containing xtd for each d ∈ Dt, and let X t := X̃ t ∪X t−1.

• For each doctor d ∈ Dt, make xtd unavailable in later rounds;

ACt(�d) =

{
ACt−1(�d) \ {xtd}

ACt−1(�d)

}
if d =

{
∈
/∈

}
Dt.

– For each hospital h ∈ H, the contracts in Ch(X
t) are reserved.

Update:

• Let U t := {d ∈ D | ACt(�d) = ∅},
• let Kt :=

⋃
h∈H d(Ch(X

t)), and

• let UKt := U t ∪Kt.

If UKt = D, the process is complete and stops at T = t. Otherwise, the process
moves to the next round.

If Dt = D \UKt−1 for each t ∈ {1, . . . , T}, the process corresponds to the simultaneous-offer
COP. If |Dt| = 1 for each t ∈ {1, . . . , T}, the process corresponds to a single-offer COP. We
call the resulting set of contracts reserved by hospitals,

⋃
h∈H Ch(X

T ), an outcome. We say
that two GCOPs are outcome-equivalent if they have the same outcome.

4 Generalized Order Independence

Hirata and Kasuya (2014) compared single-offer COPs and the simultaneous-offer COP and
showed that (i) any two single-offer COPs are outcome-equivalent and (ii) any single-offer
COP and the simultaneous-offer COP are outcome-equivalent, assuming that the choice
functions of all hospitals satisfy the IRC and bilateral substitutes conditions. This means
that the order in which contracts are considered does not affect the outcome of single-offer
COPs, and that all single-offer COPs induce the same outcome as the simultaneous-offer
COP. To achieve these results, the bilateral substitutes condition is only used to ensure that
the following condition holds.5

Definition 2. Hospital h’s choice function Ch satisfies the Hirata-Kasuya (HK) condition
if for any d, d′ ∈ D with d 6= d′, any x ∈ Xd, and any X ′ ⊆ X with d, d′ /∈ d(Ch(X

′)),
d′ /∈ d(Ch(X

′ ∪ {x})).

We generalize the results in Hirata and Kasuya (2014) by showing that all GCOPs are
outcome-equivalent, assuming that choice functions satisfy the HK condition. This means
that the set of contracts considered in each round of a GCOP has no impact on its outcome
and that all GCOPs induce the same outcome as the simultaneous-offer COP. To establish
this, we show that for any GCOP, there always exists a single-offer COP which replicates
it. Combined with the outcome equivalence of single-offer COPs, the generalized order
independence result immediately follows.

Theorem 1. Given �D and CH , if Ch satisfies the HK condition for each hospital h ∈ H,
then all GCOPs are outcome-equivalent.

5Stated as a Lemma in Hirata and Kasuya (2014).

5



5 Relation with Hatfield et al. (2021)

The order independence results of Hirata and Kasuya (2014) rely on their Theorem 1, which
shows that the single-offer process is outcome-equivalent under the HK condition, also shown
as Lemma 3 in Appendix A. Hatfield et al. (2021) also provided a condition (discussed in
Appendix B) under which the outcome-equivalence of single-offer processes (Proposition 3
in Hatfield et al. (2021)) is established.6 Hatfield et al. (2021) (footnote 43) state that this
result generalizes that of Hirata and Kasuya (2014), since their condition is weaker than the
bilateral substitutability condition that Hirata and Kasuya (2014)’s outcome-equivalence
result relies on.

One natural question is the following: can the outcome-equivalence result in Theorem 1
be established under the condition from Hatfield et al. (2021)?

Two points. First, the condition from Hatfield et al. (2021)) is applicable only to single-
offer processes, and thus is not readily applicable to the GCOP. Second, as we observed
above, the results in Hirata and Kasuya (2014) rather rely on their Lemma (Definition 2),
which is implied by the bilateral substitutability condition (in addition to the IRC condition,
which is assumed throughout). The relationship between the condition in Hirata and Kasuya
(2014) (Definition 2) and that in Hatfield et al. (2021) is still unclear.

To address the question above, we first provide a condition, which we term the Hatfield-
Kominers-Westkamp (HKW) condition. The HKW condition is a natural extension of the
original condition from Hatfield et al. (2021) called observable substitutability across doctors
since the HKW condition not only coincides with the condition of observable substitutability
across doctors within the framework of Hatfield et al. (2021)), but is also applicable to
the GCOP.7 We then compare the HK and HKW conditions. We will show below that
the HK and HKW conditions are indeed identical, and thus the condition of observable
substitutability across doctors from Hatfield et al. (2021) and the HK condition are identical
in the framework of Hatfield et al. (2021). This also implies that the HK and the HKW
conditions can be used interchangeably in the current framework. We first provide the
Hatfield-Kominers-Westkamp (HKW) condition.

Definition 3. Hospital h’s choice function Ch satisfies the Hatfield-Kominers-Westkamp
(HKW) condition if for any X ′ ⊆ X, any d /∈ d(Ch(X

′)) and any x ∈ (Xd ∩ Xh) \ X ′d,
x′ ∈ Rh(X

′) \Rh(X
′ ∪ {x}) implies d(x′) ∈ d(Ch(X

′)).

Note that while the HKW condition has d(x′) ∈ d(Ch(X
′)) with x′ ∈ Rh(X

′)\Rh(X
′∪{x}),

the HK condition has d′ /∈ d(Ch(X
′)) with d′ /∈ d(Ch(X

′ ∪ {x}). We now show that the two
conditions in Definitions 2 and 3 are equivalent.

Proposition 1. Hospital h’s choice function Ch satisfies the HK condition if and only if it
satisfies the HKW condition.

6Hatfield et al. (2021) also assume the IRC condition.
7Appendix B describes the framework as well as the condition in Hatfield et al. (2021).
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6 Discussion

In this paper, we extended the cumulative offer process to allow for arbitrary subsets of
doctors to make proposals at any time, and show that, when hospitals’ choice functions satisfy
the HK condition, the outcome does not depend on the order and sets of doctors making
these proposals at any time. In addition to providing an alternative family of algorithms
for the COP, we argue that the model becomes general enough to be able to represent more
realistic dynamic processes. In this concluding section, we provide examples of processes that
can be modeled as instances of the generalized cumulative offer process. These highlight the
flexibility that the model provides to represent many dynamic matching processes.

The key characteristics that a matching process must have to be modeled as a GCOP,
in addition to the assumptions about doctors and hospitals preferences we introduced in
Section 2, are that (i) doctors can have at most one proposal being held by a hospital at
any time, and (ii) the process only ends when there are no doctors waiting to make another
proposal or proposals not yet processed by the hospitals.

Doctors and Hospitals working asynchronously Doctors can, each one independently
and at any time, make a proposal to a hospital, including the contractual terms that
they desire. Similarly, hospitals can, each one independently and at any time, process
the pending proposals, holding some of these offers, renegotiating some of them, and
rejecting others. The process ends when no doctor wants to make some additional
proposal and all hospitals processed their pending proposals.

Doctors arrive at different times The market starts, initially, with a subset of the doc-
tors, who can start making their proposals, which are processed accordingly by the
hospitals. As new doctors arrive, they can make their proposals and hospitals process
them.8

Limited communication bandwidth The communication channels are such that, in each
period, at most K proposals can be made.

Statistical reduction of interactions in university admissions Based on historical data,
university entrance administrators design the sets of students who are called for making
applications in each period such that the total number of times students are called to
make a new proposal is reduced. The identities of the students who are called at each
period can be dynamically determined not only on the basis of the historical data, but
on the proposals that students make in each period.9

It is important, however, to emphasize that we are not claiming that our results say
anything about whether we can predict the behavior of strategic agents in these scenarios to

8Notice that a model in which hospitals can also arrive at different times would involve less appealing
assumptions: doctors with fresh contracts involving hospitals that have not yet arrived would wait for that
to happen before making their next proposal.

9A simple motivating example is the case in which students have highly correlated preferences over
universities. By asking first the high-grading students to make their proposals, and providing definite
information about entry requirements to the students, those with lower grades might skip unnecessary
proposals.
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be “truthful”. That is, it might be that for some of these scenarios some doctors would be
better off by making proposals that don’t simply follow their preferences, as described in the
GCOP. It is outside of the scope of this paper to evaluate the incentives of doctors and/or
hospitals in these dynamic processes. Our results show that when the agents involved make
proposals following their preferences over contracts, all of these processes will converge to
the same outcome as the COP. Therefore, if the hospitals’ (or universities’) choice functions
satisfy bilateral substitutes, the outcome will be stable.

It is known that under certain additional conditions on the hospitals’ choice functions,
a direct revelation mechanism that produces the same outcome as the GCOP is strategy-
proof for doctors (Hatfield and Kojima, 2010; Hatfield and Kominers, 2015; Hatfield et al.,
2021). This fact might in some cases be combined with a model that represents the game
induced in the participants by these dynamic processes, obtaining equilibrium predictions for
these outcomes (see, for example, Mackenzie and Zhou (2020) and Bó and Hakimov (2016)).
Theorem 1 would likely have an important role in these analyses.
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A Proofs

A.1 Lemma 1

Proof. Consider any h ∈ H and any X ′ ⊆ X. Let X1 = X ′−h\{x1} for some x1 ∈ X ′−h. Since
Ch(X

′) ⊆ X ′h by definition, x1 ∈ X ′−h implies that x1 /∈ Ch(X ′). By IRC, we then have that
Ch(X

′) = Ch(X
′
h∪X ′−h) = Ch(X

′
h∪X1). If X1 = ∅, then Ch(X

′) = Ch(X
′
h∪X1) = Ch(X

′
h).

If X1 6= ∅, let X2 = X1 \ {x2} for some x2 ∈ X1. By the same logic as above, IRC
requires that Ch(X

′) = Ch(X
′
h ∪ X1) = Ch(X

′
h ∪ X2). Repeating this argument yields

Ch(X
′) = Ch(X

′
h ∪X1) = · · · = Ch(X

′
h ∪X |X

′
−h|) = Ch(X

′
h). The final equality follows from

the fact that X |X
′
−h| = ∅. ♣

A.2 Theorem 1

Proof. Fix �D and CH . Take a COP requiring T rounds of iteration and its corresponding
X̃ t, for each t ∈ {1, . . . , T}. Arrange the elements of X̃1 . . . X̃T as follows.

x1, . . . , x|X
1|︸ ︷︷ ︸

X̃1

, x|X
1|+1, . . . , x|X

2|︸ ︷︷ ︸
X̃2

, . . . , x|X
T−1|+1, . . . , x|X

T |︸ ︷︷ ︸
X̃T

The internal ordering of the elements within each X̃ t is arbitrary. In order to make use
of Hirata and Kasuya’s order independence result, we need to show that the sequence of
contracts above represents a single-offer COP.

Definition 4 (Hirata and Kasuya (2014, Definition 4)). Given �D and CH , a finite se-
quence of contracts (xt)Tt=1 represents a single-offer COP if the following conditions are
satisfied:

(1) For each t ∈ {1, . . . , T} and h ∈ H, d(xt) 6∈ d(Ch({x1, . . . , xt−1})).10

(2) For each t ∈ {1, . . . , T} and x ∈ X, if d(xt) = d(x) and x �d(x) xt, there exists τ < t
such that x = xτ .

(3) For each d ∈ D, either (i) d ∈ d(Ch({x1, . . . , xT})) for some h ∈ H or (ii) AC(�d) ⊆
{x1, . . . , xT}.11

Note that, by construction, no doctors involved in the contracts in X̃ t are reserved in round
t− 1 of the GCOP. That is, d(x) /∈ Ch(X t−1) for all x ∈ X̃ t. Furthermore, d(x) 6= d(x′) for
all x, x′ ∈ X̃ t such that x 6= x′. This implies that the sequence of contracts satisfies condition
(1) in Definition 4. We construct a single-offer COP within our framework which has the
sequence of contracts shown above and demonstrate that it satisfies condition (2) and (3) as
well.

To differentiate the single-offer COP from the original COP, we use y, Y and Ỹ for the
single-offer COP instead of x, X and X̃. Furthermore, we use ĀC, D̄, Ū , K̄ and ¯UK for the

10This corresponds to the notion of observability in Hatfield et al. (2021).
11Note that (i) and (ii) are not mutually exclusive. There may exist doctor d whose least-preferred contract

in AC(�d) is accepted in round T .
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single-offer COP instead of AC, D, U , K and UK. We call the sequence corresponding to
X̃ t the X̃ t-sequence.

Suppose that the two COPs described above have considered the same set of contracts up
until the end of the X̃ t−1-sequence. That is, the set of contracts that have been considered
in the original COP after t − 1 steps equals the set of contracts that have been considered

in the single-offer COP after |X t−1| steps; X t−1 = Y |X
t−1| and ACt−1(�d) = ĀC

|Xt−1|
(�d)

for all d ∈ D. We will show that the two COPs will then also have considered the same
set of contracts by the end of the X̃ t-sequence. By induction, we can then conclude that
XT = Y |X

T |, implying outcome-equivalence.

Base case: By construction, X0 = Y |X
0| = Y 0 = ∅ and AC0(�d) = ĀC

|X0|
(�d) = ĀC

0
(�d

) = AC(�d) for all d ∈ D.

Induction hypothesis: Assume that there exists some t such that X t−1 = Y |X
t−1| and

ACt−1(�d) = ĀC
|Xt−1|

(�d) for all d ∈ D.

Induction step: We will now demonstrate that X t = Y |X
t| and ACt(�d) = ĀC

|Xt|
(�d) for

all d ∈ D. Consider the X̃ t-sequence. The following argument applies to the X̃1-sequence
by taking X0 = ∅.

. . . x|X
t−1|, x|X

t−1|+1, . . . , x|X
t|︸ ︷︷ ︸

X̃t

, . . .

Take τ ∈ {1, . . . , |X̃ t|} and let (i) the set of doctors whose contracts are considered in rounds
|X t−1|+1 through |X t−1|+τ in the single-offer COP be D̃τ ⊆ Dt with |D̃τ | = τ and D̃0 = ∅,
and (ii) D̂τ := Dt \ D̃τ .

Round |X t−1|+τ : By Lemma 2 below, any d′ ∈ D̂τ−1 is available in round |X t−1|+τ . Take
an arbitrary doctor d′ ∈ D̂τ−1.

D1: Identify doctor d′’s most preferred contract in ĀC
|Xt−1|+τ−1

(�d′), yd′ .

Update: Let

• D̃τ = D̃τ−1 ∪ {d′},

• Ỹ |Xt−1|+τ = {yd′} and Y |X
t−1|+τ = Ỹ |X

t−1|+τ ∪ Y |Xt−1|+τ−1, and

• ĀC |X
t−1|+τ

(�d′) = ĀC
|Xt−1|+τ−1

(�d′) \ {yd′} and ĀC
|Xt−1|+τ

(�d) = ĀC
|Xt−1|+τ−1

(�d)
for each d 6= d′. Note that ĀC

|Xt−1|+τ
(�d′) = ACt(�d′).

H1: Let h(yd′) = h′. Hospital h′ reserves yd′ if yd′ ∈ Ch′(Y |X
t−1|+τ ).

By varying the values of t and τ , the process above describes any round in the single-

offer COP. Note that ĀC
|X0|

(�d) = AC(�d) for all d ∈ D and that, by construction, any

x ∈ ĀC |X
0|

(�d) \ ĀC
|Xt|+τ

(�d) has been considered in rounds 1 through |X t|+ τ . Further-

more, since ĀC
|X0|

(�d) is d(x|X
t−1|+τ )’s most preferred contract in ĀC

|Xt|+τ
(�d), condition
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(2) in Definition 4 is also satisfied.

Update: Let

• Ū |Xt−1|+τ = {d ∈ D | ĀC |X
t−1|+τ

(�d) = ∅},

• K̄ |Xt−1|+τ =
⋃
h∈H d(Ch(Y

|Xt−1|+τ )), and

• ¯UK
|Xt−1|+τ

= Ū |X
t−1|+τ ∪ K̄ |Xt−1|+τ .

The following result shows that every remaining doctor d ∈ D̂τ is available for the next
round in the single-offer COP.

Lemma 2. For any remaining doctor d ∈ D̂τ , d /∈ ¯UK
|Xt−1|+τ

.

Proof. Consider any contract y for which d(y) = d ∈ D̂τ and note that d 6∈ Ū |X
t−1|+τ ,

since ĀC
|Xt−1|

(�d) = ĀC
|Xt−1|+τ

(�d) and d /∈ Ū |X
t−1| as d ∈ Dt. Furthermore, d /∈⋃

h∈H d(Ch(Y
|Xt−1|)) for all d ∈ Dt by construction. Suppose d /∈

⋃
h∈H d(Ch(Y

|Xt−1|+σ)) =

K̄ |X
t−1|+σ for all d ∈ D̂σ. By the observation above, the statement holds for σ = 0, since

D̂0 = Dt. Note that Y |X
t−1|+σ+1 = Y |X

t−1|+σ ∪ Ỹ |Xt−1|+σ+1 and Ỹ |X
t−1|+σ+1 is a single-

ton. Since all hospitals satisfy the HK condition, d /∈ d(Ch(Y
|Xt−1|+σ ∪ Ỹ |Xt−1|+σ+1)) =

d(Ch(Y
|Xt−1|+σ+1)) for all d ∈ D̂σ+1 = D̂σ \ {d(Ỹ |X

t−1|+σ+1)} and all h ∈ H. Thus,
d /∈

⋃
h∈H d(Ch(Y

|Xt−1|+σ+1)) = K̄ |X
t−1|+σ+1 for all d ∈ D̂σ+1. That is, if d /∈ K̄ |X

t−1|+σ

for all d ∈ D̂σ, then d /∈ K̄ |X
t−1|+σ+1 for all d ∈ D̂σ+1 as well. Since d /∈ K̄ |X

t−1| for all
d ∈ D̂0 by construction, it follows that d /∈ K̄ |X

t−1|+τ for all d ∈ D̂τ by induction. Since
¯UK
|Xt−1|+τ

= Ū |X
t−1|+τ ∪ K̄ |Xt−1|+τ , d /∈ ¯UK

|Xt−1|+τ
for all d ∈ D̂τ . ♣

The set of doctors that can be considered in the next round is given by D\ ¯UK
|Xt−1|+τ

, where

D̂τ ⊆ D\ ¯UK
|Xt−1|+τ

by Lemma 2. That is, at round |X t−1|+τ for any τ ∈ {1, . . . , |X̃ t|}, all
of the doctors in Dt whose contracts in X̃ t were not considered in rounds |X t−1|+ 1 through
|X t−1| + τ are still available for consideration in round |X t−1| + τ + 1. In each round from
|X t−1|+ 1 to |X t−1|+ τ a new unique contract in X̃ t is considered. By letting τ = |X̃ t|, this
implies that all contracts in X̃ t have been considered in round |X t−1| + |X̃ t| = |X t| of the
single-offer COP. Thus, Y |X

t| = Y |X
t−1|∪X̃ t. Since X t = X t−1∪X̃ t, the induction hypothesis

then implies that ACt(�d) = ĀC
|Xt|

(�d) for all d ∈ D. Furthermore, since X t−1 = Y |X
t−1|,

it follows that X t = Y |X
t| as X t = X t−1 ∪ X̃ t = Y |X

t−1| ∪ X̃ t = Y |X
t|. This concludes the

induction step.

By induction, we have shown that, for all t ≤ T , X t = Y |X
t| and ACt(�d) = ĀC

|Xt|
(�d)

for all d ∈ D. Thus, the original COP terminates in round T and the single-offer COP
terminates in round |XT |, where XT = Y |X

T |. Consequently, Ch(X
T ) = Ch(Y

|XT |) for each
h ∈ H. This implies that

⋃
h∈H Ch(X

T ) =
⋃
h∈H Ch(Y

|XT |). In other words, the original
COP and the single-offer COP are outcome-equivalent.

Since XT = Y |X
T |, the GCOP and the single-offer COP have considered the same con-

tracts in rounds T and |XT | of the GCOP and single-offer COP, respectively. The GCOP
terminates in round T where UKT = D. This means that d ∈ UT ∪KT for all d ∈ D.
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(a) If d ∈ UT , then ACT (�d) = ĀC
|XT |

(�d) = ∅. Note that AC0(�d) = ĀC
|X0|

(�d
) = AC(�d) for each d ∈ D and that the set of contracts involving d that have
been considered in rounds 1 through |X t| + τ in the single-offer COP is given by

AC(�d)\ĀC
|Xt|+τ

(�d). ĀC
|XT |

(�d) = ∅ implies that AC(�d)\ĀC
|XT |

(�d) = ĀC(�d).
In other words, all contracts in AC(�d) have been considered in round |XT | of the
single-offer COP. This means that AC(�d) % Y |X

T | for all d ∈ D.

(b) If d ∈ KT , then d ∈
⋃
h∈H d(Ch(X

T )) =
⋃
h∈H d(Ch(Y

|XT |)).

Both cases (a) and (b) jointly imply that condition (3) in Definition 4 is satisfied. Since
conditions (1), (2) and (3) in Definition 4 are satisfied, the sequence of contracts considered
here represents a single-offer COP.

Lemma 3. (Hirata and Kasuya (2014, Theorem 1)) Suppose that two sequences of contracts
represent some COPs at �D and CH . If every Ch satisfies the HK and IRC conditions, then
they induce the same set of contracts as their outcome.12

We have demonstrated that for any GCOP and any �D and CH , there exists some sequence
of contracts that represents a single-offer COP that induces the same outcome. By Lemma
3, all sequences of contracts that represent a single-offer COP are outcome equivalent at �D
and CH . This implies that all GCOPs are outcome equivalent at �D and CH . ♣

A.3 Proposition 1

Proof. [HK implies HKW] Suppose that Ch violates the HKW condition. This implies
that there exist (i) X ′ ⊆ X, (ii) d /∈ d(Ch(X

′)), (iii) x ∈ (Xd ∩ Xh) \ X ′d and (iv) x′ ∈
Rh(X

′) \ Rh(X
′ ∪ {x}) such that d(x′) /∈ d(Ch(X

′)). Note that x′ ∈ Rh(X
′) \ Rh(X

′ ∪ {x})
implies (i) x′ /∈ Ch(X ′), and (ii) x′ 6∈ Rh(X

′ ∪ {x}) and thus x′ ∈ Ch(X ′ ∪ {x}).

• Suppose d = d(x′). Since Ch chooses an allocation and allocations cannot contain
more than one contract per doctor, x′ ∈ Ch(X ′ ∪ {x}) implies x /∈ Ch(X ′ ∪ {x}). The
combination of x′ /∈ Ch(X ′) and x′ ∈ Ch(X ′ ∪ {x}) implies Ch(X

′) 6= Ch(X
′ ∪ {x}).

However, since x /∈ Ch(X ′ ∪ {x}), the IRC condition requires that Ch(X
′) = Ch(X

′ ∪
{x}). This is a contradiction. Thus, d 6= d(x′).

• Suppose instead that d 6= d(x′). We have X ′ ⊆ X with d, d(x′) /∈ d(Ch(X
′)). Since

x′ ∈ Ch(X
′ ∪ {x}), it follows that d(x′) ∈ d(Ch(X

′ ∪ {x})). This violates the HK
condition.

Thus, a violation of the HKW condition implies that the HK condition is violated, or equiv-
alently, the HK condition implies the HKW condition.

[HKW implies HK] Suppose that Ch violates the HK condition. Then there exist (i)
d, d′ ∈ D with d 6= d′, (ii) x ∈ Xd, and (iii) X ′ ⊆ X with d, d′ /∈ d(Ch(X

′)) such that
d′ ∈ d(Ch(X

′ ∪ {x})).
12Theorem 1 in Hirata and Kasuya (2014) uses the bilateral substitutability condition rather than the HK

condition. However, bilateral substitutability is only used to ensure that the HK condition is satisfied in
their proof. Their Theorem 1 can therefore be rephrased as in Lemma 3.
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• If x ∈ X ′d, this leads to a contradiction since it implies X ′ ∪ {x} = X ′, while d′ ∈
d(Ch(X

′ ∪ {x})) \ d(Ch(X
′)). Thus, x ∈ Xd \X ′d.

• Since d′ /∈ d(Ch(X
′)) and d′ ∈ d(Ch(X

′ ∪ {x})), there must exist some x′ ∈ X ′d′
such that x′ ∈ Rh(X

′) \ Rh(X
′ ∪ {x}).13 Then the HKW condition is violated, since

d′ /∈ d(Ch(X
′)).

Thus, a violation of the HK condition implies that the HKW condition is violated, or equiv-
alently, the HKW condition implies the HK condition. ♣

B Observable Substitutability across Doctors

We first provide the framework of Hatfield et al. (2021). Hatfield et al. (2021) define an
offer process for h as a finite sequence of distinct contracts (x1, . . . , xm), where xτ ∈ Xh

for all τ ∈ {1, . . . ,m}. An offer process for h, (x1, . . . , xm), is observable if d(xτ ) /∈
d(Ch({x1, . . . , xτ−1})) for all τ ∈ {1, . . . ,m}. In other words, the doctor involved in the
τth contract is not involved in any of the contracts chosen by h when the first τ − 1 con-
tracts are considered.

Let ` represent a strict ordering of the elements of X determining which contract is
considered in each round. Given �D and `, the single-offer COP in Hatfield et al. (2021)
is defined by the following procedure: First, let A0 := ∅ be the set of contracts available to
hospitals.

Round t ≥ 1: Consider the following set:

U t :=

{
x ∈ X \ At−1

∣∣∣∣∣ d(x) /∈ d(Ch(A
t−1)) for all h ∈ H, and

@x′ ∈ (Xd(x) \ At−1) ∪ {x∅} such that x′ �d(x) x

}

If U t = ∅, the process is complete and stops. Otherwise, let x̃ be the highest-ranked element
of U t according to `, and let At := At−1 ∪ {x̃}. Identify Ch(A

t) for all h ∈ H and move to
the next round.

Note that only one contract is considered in each round and that the first condition implies
that the process is observable. Similarly, the resulting offer process for any single-offer COP
in our framework is observable since the fresh contracts of doctors with reserved contracts
in round t− 1 are not considered in round t.

For each hospital h, let Rh(X
′) := X ′h \ Ch(X ′) be the contracts in X ′h rejected by

h. (Hatfield et al., 2021, Proposition 3) show that under the following condition, any two
single-offer COPs lead to the same outcome.

Definition 5 (Hatfield, Kominers, and Westkamp (2021, Definition 8)). Hospital h’s choice
function, Ch, is observably substitutable across doctors if, for any observable of-
fer process (x1, . . . , xm) for h, x ∈ Rh({x1, . . . , xm−1}) \ Rh({x1, . . . , xm}) implies d(x) ∈
d(Ch({x1, . . . , xm−1})).

13Note that x′ 6= x since d(x′) = d′ 6= d = d(x).
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In other words, if x ∈ {x1, . . . , xm−1} – that is, it was considered by hospital h in an earlier
round – is (i) not reserved when the offer process for h involves m−1 contracts and (ii) then
reserved when the m-th contract is added to the offer process for h, there exists another
contract, x̃ 6= x, for the corresponding doctor, d(x) = d(x̃), which is reserved in the offer
process for h involving m− 1 contracts. Note that this implies (i) that x̃ /∈ Ch({x1, . . . xm})
since x ∈ Ch({x1, . . . xm}) and (ii) that d(xm) 6= d(x) since the offer process is observable.

While observable substitutability across doctors only imposes structure to observable of-
fer processes in Hatfield et al. (2021), the HKW condition imposes an analogous requirement
for any subset of contracts. As such, the HKW condition is technically stronger than ob-
servable substitutability across doctors when considering GCOPs. However, the conditions
are equivalent when focusing on single-offer COPs.

The following is the outcome-equivalence result for single-offer COPs in Hatfield et al.
(2021).

Proposition 2 (Hatfield, Kominers, and Westkamp (2021, Proposition 3)). If Ch is observ-
ably substitutable across doctors for each h ∈ H, for any �D and any two orderings ` and
`′, the outcome with ` is identical to the outcome with `′.
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