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Abstract

We use a SIRD model to predict the dynamics of the COVID-19 epidemic in the Italian

regions at 1 to 4 weeks ahead. Out of sample forecasting results indicate that national

forecasts obtained by aggregating regional forecasts are more accurate than predictions

from a national model. These results suggest that national health authorities should

take into account the level of heterogeneity across regions when predicting the spread

of a national epidemic.
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Milano, Via Conservatorio 7, 20122 Milano, Italy. Email: fabrizio.iacone@unimi.it.

1



1 Introduction

Accurate forecasts for the diffusion of a pandemic are crucial to inform public health inter-

ventions, and their effectiveness. During a pandemic, public health authorities are called to

take decisions such as diverting, postponing or cancelling elective surgeries, imposing social

distancing, school closures or lockdowns. These measures can contain and reduce the spread

of the infection, but they create care backlogs, and are costly for the economy and for the

mental health of the population. It is thus important that the timing and intensity of these

actions are based on accurate forecasts, to balance effectively their benefits and costs.

Mechanistic compartment models, such as the SIR (Susceptible-Infectious-Recovered) model

introduced by Kermack and McKendrick (1927), are the standard tools in infectious disease

epidemiology to understand the dynamics of epidemics and predict their evolution. In this

type of models, people within a population move between different compartments as a

pathogen spreads from person to person. For example, in the standard SIR model people

move between being “Susceptible”, “Infected”, and “Recovered”. This implies that these

models can produce realistic forecasts, even with a long term horizon, and for this reason

SIR-type models have been routinely used to predict the COVID-19 pandemic.

Predictions from SIR-type models are obtained by first fitting the model on the country/region

of interest, and then projections are generated from the estimated model. This is what in the

forecasting literature is referred to as “direct” approach. However, one could alternatively use

an “indirect” approach, where a SIR-type model is fitted to each of the components/sub-units

and then a forecasts is obtained by aggregation of the forecasts of each component/sub-units.

Heuristically, the direct approach may be seen as more parsimonious, but it has the drawback

of imposing the same parametric model for all the components. Thus, there is a trade-off in

terms of variance and bias, and it is an empirical question which of the two approaches is

preferable for each case.

In this paper, we compare the predictive ability of a national model for the spread of the
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COVID-19 epidemic in Italy to projections obtained by aggregating forecast from models

fitted at a regional level. Italy was hit severely by the pandemic, and the spread of the

epidemic was heterogeneous across regions. The response of the Italian health authorities

was modulated across the regions, matching this diversity. The structure of the Italian health

system, that contemplates a strong governance devolution to the regional authorities, may

have facilitated this heterogeneity, occasionally resulting in very different regional policies

adopted in face of the pandemic. These considerations suggest the possible presence of a

degree of diversity across regions that cannot be captured by a model at the national level,

implying that an indirect approach to forecasting the evolution of the pandemic might be

more accurate than the standard direct one.

We forecast the evolution of the COVID-19 epidemic in Italy over the period October

18th, 2020 to January 31st, 2021 by using SIRD (Susceptible-Infectious-Recovered-Deceased)

compartment models at national and regional levels. We then compare the predictive accuracy

of the predictions of these two approaches using the Diebold and Mariano (1995) test of equal

predictive accuracy with fixed-smoothing asymptotics, as recently proposed by Coroneo and

Iacone (2020) to overcome the small sample size distortions of the standard test.

Our results indicate that the indirect approach of generating a national forecast by aggregating

regional forecasts delivers more accurate predictions for the spread of the COVID-19 epidemic

in Italy than directly forecasting the national series. We conjecture that this is primarily due

to the heterogeneity of the dynamics and interventions across regions, that is amplified by the

exponential nature of the SIRD models and also by the fact that movement across regions

was restricted, reducing the correlation of regional shocks. Overall, this evidence caution

public health authorities to consider the level of heterogeneity across regions when producing

projection of the national spread of the epidemic. In the presence of substantial heterogeneity

across regions, public health decisions should not be based on standard projection of the

national spread of the epidemic obtained from models fitted at national level. A better
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approach in this case is to fit a model for each region and then obtain the national prediction

by aggregating the regional ones.

These results are in line with the economics literature, where the prevalent finding is that the

indirect approach provides more accurate predictions (see Rose 1977, Tiao and Guttman 1980,

Kohn 1982, Lütkepohl 1984, Marcellino, Stock and Watson 2003); however some evidence

to the contrary also exists (see Hubrich 2005, Benalal, Diaz del Hoyo, Landau, Roma and

Skudelny 2004). In epidemiology, very few analyses using regional aggregation have been

presented in the literature. One example is in Ben-Nun, Riley, Turtle, Bacon and Riley (2018)

who calculated the US influenza incidence forecast as the weighted sum of some regional

profiles, with the weights given by the relative populations of US regions. Therefore, to the

best of our knowledge, this is the first analysis formally comparing the predictive accuracy of

national SIR-type models to projections obtained by aggregating predictions from regional

SIR-type models.

The rest of the paper is organised as follows: in Section 2 we review the literature on

forecasting using the indirect approach; in Section 3 we present the data. We discuss the

model and its estimation in Section 4 and in Section 5, respectively. The forecast evaluation

is introduced in Section 6 and it is discussed in Section 7. Conclusions are in Section 8.

2 Literature review on the indirect approach to fore-

casting aggregated time series

The indirect approach of generating forecasts by aggregating its components has a long

tradition in econometrics. Rose (1977), Tiao and Guttman (1980) and Kohn (1982), among

others, discussed the advantage of aggregating the forecasts of individual components. These

early contributions are mainly theoretical, and consider the case in which the Data Generating

Process (DGP) is known. Lütkepohl (1984), however, showed that the superiority of the
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indirect approach is no longer warranted when the DGP is not known and the model has

to be selected and the parameters estimated. Thus, in practice a decision regarding this

question can only be taken on a case by case basis after a comparison of the performances of

the two approaches with real data.

In an empirical study in which the aggregated consumption and investment series are

considered against their components, Lütkepohl (1984) found that the indirect approach still

delivered the best forecasts. This finding that aggregating individual forecast gives better

performance seems to be prevalent in the economic literature, but evidence to the contrary

also exists. Hubrich (2005) found that forecasts generated by means of the indirect approach

did not improve the year-on-year forecast of inflation 12 months ahead; Benalal et al. (2004)

also found that forecasting the aggregate HCPI for the euro-area had a better root Mean

Square Error (RMSE) performance.

In practice, the two main arguments in favour of the indirect approach are that in this way

it is possible to make a specific model for each variable, which may induce a forecast bias,

and that idiosyncratic shocks that cause forecast errors may cancel out as the forecasts are

aggregated. On the other hand, when model and parameter uncertainties are taken into

account, direct forecasting may be advantageous because it may provide a more parsimonious

model. It is interesting that both Hubrich (2005) and Benalal et al. (2004) have a rather short

sample, as their finding may suggest that in that case the advantage of using a parsimonious

model is stronger.

In other studies, Bermingham and D’Agostino (2014) again considered forecasting inflation by

looking at its components. One interesting aspect of this work is that one may conjecture that

if disaggregating into components is beneficial for forecasting, then one could try and refine

the disaggregation and consider as many components as possible. Considering disaggregation

up to 164 items for the US and 32 for the euro-area, Bermingham and D’Agostino (2014)

find that the indirect approach does indeed improve forecasts, although it is not clear if the
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improvement is statistically significant.

Indirect forecasting over such wide range of components poses a problem in terms of di-

mensionality. Lütkepohl (1984) considered only two or three components, and modelled

these with a VAR. However, when a large quantity of components is used, the number of

parameters that must be estimated in a VAR becomes very large. Hubrich (2005), Berming-

ham and D’Agostino (2014) and Marcellino et al. (2003) all found that a VAR was overall

outperformed by scalar autoregressions, thus providing support for the more parsimonious

modelling approach. Indeed, Bermingham and D’Agostino (2014) and Marcellino et al. (2003)

found that the aggregation of the scalar autoregressions performed well, even when compared

against forecasting using a principal component approach.

In much of the empirical literature, the indirect approach was considered aggregating series in

the economic sense. For example, in Lütkepohl (1984) the personal consumption expenditure

series was decomposed as the sum of the expenditure for durable goods, services and

nondurable goods; and Hubrich (2005) disaggregated inflation in five components: unprocessed

food, processed food, industrial goods, energy and services prices. On the other hand,

Marcellino et al. (2003) considered geographical aggregation instead, and forecasted HCPI

inflation and other relevant macro variables for the Euro-area aggregating forecasts for the

individual countries, finding that the indirect approach to forecasting yielded better results.

In view of the geographical nature of the aggregation, our exercise seems closer to the one

in Marcellino et al. (2003), but the basic units of interest in our models are individuals

rather than prices of baskets of goods. This is novel in this literature, and it adds a level of

uncertainty, because individuals may move across regional boundaries.

3 Data

We use weekly data on Covid-19 new cases, deceased and recovered people available at the

national level and for each region in Italy from the Italian Presidency of the Council of
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Ministers (PCM) - Department of Civil Protection Agency (CPA). Italy is constituted by

21 EU Nomenclature of Territorial Units for Statistics (NUTS) level 2 regions, as shown in

Figure 1, that are very heterogeneous for size and population.

We focus our attention in particular on the so-called pandemic’s “second wave”, i.e. the

period from October 2020 to January 2021. In particular, our sample for the estimation starts

on August 31st, 2021, and we evaluate the forecasts on the period October 18th, 2020, until

January 31st, 2021. This period seems particularly interesting and crucial, as it comes after

the experiences learnt in the first wave in spring 2020, and before the vaccination campaign

began in earnest, as the first vaccine jab in Italy was delivered on December 27th, 2020, but

during the first month of the campaign only very few vaccinations, and solely for health

personnel, have been administered.

During the second wave, the health authorities had the opportunity to use what was learnt

during the first wave, and implement policies that could minimise damage to the country

while waiting for the development and the rollover of the vaccine. The Italian government

managed this period with a combination of national and regional measures with an alert

system based on four colours characterising the level of alert for each region: white (very

low restrictions), yellow (mild restrictions), orange (strong restrictions) and red (very high

level of restrictions, comparable to that of a real lockdown). Sometimes restricted areas

within regions had different alert colours with respect to the region colour. This system

resulted in a widespread reduction of mobility between regions, if not an almost complete

ban on inter-regional movements on the basis of the regional situations, with the intention

to prevent the spread of the virus. This level of heterogeneity of interventions across

regions, coupled with the mobility restrictions, provide a strong motivation for constructing

national forecast aggregating forecasts from regional models rather than directly from a

national one. In addition, we take into account the level of restriction using a stringency

index computed since the beginning of the pandemic by the Covid-19 Response Tracker
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Figure 1: Regions in Italy
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Figure 2: SIRD model schematic

Research Group at the University of Oxford, United Kingdom (https://www.bsg.ox.ac.

uk/research/research-projects/covid-19-government-response-tracker).

4 Model

We model the dynamics of the COVID-19 epidemic in Italy and the 21 regions by means of

a SIRD compartmental model. This is a generalisation of the classic SIR model where the

population is divided into four different groups: susceptible individuals (S) who are healthy

and can contract the disease; infected individuals (I); recovered individuals (R) who are

immune to the disease; and deceased individuals (D). All the population starts in a single

compartment, the susceptible compartment, and, with the evolution of the pandemic, can

move to the compartment of the infected and then to the one of recovered people. See Figure

2 for a visual idea of the flows in a SIRD model.

Building on what recently proposed by Ferrari, Gerardi, Manzi, Micheletti, Nicolussi, Biganzoli

and Salini (2021), the SIRD model we use to forecast the development of the pandemic is an
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adjusted time-dependent SIRD model. Denoting S, I, R and D as the number of susceptible,

infected, deceased and recovered people, respectively, the differential equations governing the

SIRD model are the following:

dS(t)

dt
= −β(t)S(t)I(t)

n
dI(t)

dt
=

(
β(t)S(t)

n
− γR(t)− γD(t)

)
I(t)

dR(t)

dt
= γR(t)I(t)

dD(t)

dt
= γD(t)I(t)

subject to the constraint S(t) + I(t) + R(t) + D(t) = n (where n is the total population).

We don’t take into account new births and deaths (not related to Covid-19) in the period

considered, so n is considered constant. The parameters of interest, that govern the dynamics,

are β(t), γR(t) and γD(t): these are the time varying transmission rate, the recovery rate,

and the mortality rate, respectively.

This model is deterministic in the sense that the dynamics ruling the evolution of the variables

of interest S(t), I(t), R(t), D(t) are not random, nor they are subject to random fluctuations.

Once the current values are observed, and given the parameters β(t), γR(t) and γD(t), the

trajectories of the variables of interest are certain. In practice, as S(t), I(t), R(t), D(t) are

observable, the only uncertainty in this model comes from the three rates parameters, that

are not constant and are not observed at time t.

Given that our data is observed at weekly frequency, we transform the previous system of

10



ODEs into a system of discrete time difference equations,

St+1 − St = −βtStIt
n

(1)

It+1 − It =

(
βtSt
n
− γR,t − γD,t

)
It (2)

Rt+1 −Rt = γR,tIt (3)

Dt+1 −Dt = γD,tIt (4)

for St, It, Rt, Dt observed at week t. Given the pandemic rates βt, γR,t and γD,t, equations

(1)-(4) can be used to forecast future values of the variables of interest. We thus now turn to

discussing the estimation of the parameters. We start by rewriting equations (1)-(4) as

βt =
n(St+1 − St)

StIt
(5)

γR,t =
Rt+1 −Rt

It
(6)

γD,t =
Dt+1 −Dt

It
(7)

where equations (5)-(7), given observations up to time t, allow to compute the series of

parameters (β1, ..., βt−1)
′, (γR,1, ..., γR,t−1)

′, (γD,1, ..., γD,t−1)
′; on the other hand, βt, γR,t, γD,t

are not observable at time t, so these must be estimated. We assume a simple AR model for

each parameter, and estimate the coefficients of the autoregression by minimising a ridge

regression-type loss function:

ĉj,t = argmincj,t

(
t−1∑

s=t−w

(θs − θ̂s)2 − λt
J∑
j=0

c2j,t

)
(8)

θ̂s = c0,t +
J∑
j=1

cj,tθs−j (9)

where θt denotes each of the evolving parameters of the model, i.e. βt, γR,t, γD,t, and c0,t

and cj,t are the usual intercept and autoregression coefficients parameters. The penalty
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term λt is applied to the sum of squares of the regression coefficients, so this is therefore a

ridge regression regularization, based on a `2 norm. J and w and are the number of lags

in the autoregression and the length of the rolling window in the estimation, respectively.

We selected these using the Akaike Information criterion, fitting the AR model on data

corresponding to observations from February 2020 up to September 2020. We considered

pairs w = 2J and selected w = 10 and J = 5 as they provided the best performance for most

models.

We first obtain the estimates θ̂t from the AR part of the model, then regularize them using

the shrunken cj,t coefficients from the ridge regression, see Hoerl and Kennard (1976). Ridge

regularization alters the bias variance trade-off of the estimates, reducing the variance at the

expense of increasing the bias. This reduces the overfitting and improves the reliability of the

predictions. It has been widely used in applied times series econometrics, both in simulation

studies comparing its performance versus other regularization methods, as for example in

Inoue and Kilian (2008), and in applications, for example to improve the forecasts of urban

traffic times, see Haworth, Shawe-Taylor, Cheng and Wang (2014). In our work, different

penalty values have been used for λt in the ridge regressions to estimate the transmission,

recovery and death rates. The values of λt for each parameter has been obtained using a

K-fold cross-validation and picking the value of λt minimizing the mean square error.

Forecasts h periods ahead are computed iteratively using equations (2)-(4). For example, for

the number of infected Ît+h|t = E(It+h|St, It, Rt, Dt) and, abbreviating the notation to Ît+h,

this is

Ît+h = Ît+h−1 +

(
β̂t+h−1Ŝt+h−1

n
− γ̂R,t+h−1 − γ̂D,t+h−1

)
Ît+h−1

where β̂t+h−1, γ̂R,t+h−1, γ̂D,t+h−1 are obtained by iterating the AR(J) projections, so for

example for two periods ahead we compute θ̂t+1 = ĉ0,t + ĉ1,tθ̂t + ĉ2,tθt−1... where ĉ0,t, ĉ1,t, ...

are the estimates from (8)-(9).

To take into account the effect of the social distancing policies adopted in Italy, we multiply
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the predictions of the transmission rate β̂t+h−1, for h = 1, . . . , 4, by a factor 1 − s, where

s is the national average of the Italian Covid-19 stringency index, computed according to

Hale (2021). The stringency index is a composite indicator formed by equally weighting 9

sub-indicators related to the measures adopted to contrast the pandemic, i.e. school closures,

workplace closures, cancel public events, restrictions on gatherings, close public transport,

public information campaigns, stay at home, restrictions on internal movement, international

travel controls, testing policy, contact tracing, face covering, and vaccination policy. Each

sub-indicator is formed by three to five levels of measure intensity. Data about the stringency

index are available on the Our World in Data repository. For the forecasts in this exercise,

we use the national sample mean over the period March 2020 to October 11, 2020, which

the period before the starting date of the evaluation period for our out of sample exercise.

The stringency index is also convenient to accommodate a well known shortcoming of the

SIRD models, namely the tendency of these models to overpredict when there is a fast

increase of the infections, and to underpredict when there is a sudden decrease, see Boguá,

Pastor-Satorras and Vespignani (2003).

The Forecasting Algorithm

At each point in time t, variables S1, ..., St, I1, ..., It, R1, ..., Rt, D1, ..., Dt are observed,

and we use the following algorithm to predict the evolution of these variables h steps ahead:

(i) Compute series of parameters (β1, ..., βt−1)
′, (γR,1, ..., γR,t−1)

′, (γD,1, ..., γD,t−1)
′ using

equations (5)-(7).

(ii) Estimate parameters ĉ0,t−1, ..., ĉJ,t−1 for βt−1, γR,t−1, γD,t−1, using (8).

(iii) Predict parameters β̂t, γ̂R,t, γ̂D,t using (9), and scale parameter β̂t using the stringency

index.

(iv) Compute one-step ahead forecasts Ît+1, R̂t+1, D̂t+1, using equations (2)-(4) and the
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predicted parameters β̂t, γ̂R,t, γ̂D,t:

Ît+1 = It +

(
β̂tSt
n
− γ̂R,t − γ̂D,t

)
It

R̂t+1 = Rt + γ̂R,tIt

D̂t+1 = Dt + γ̂D,tIt

(v) Compute h-step ahead forecasts Ît+h, R̂t+h, D̂t+h in two steps:

1. Predict β̂t+h−1, γ̂R,t+h−1, γ̂D,t+h−1, using (9). For example, for h = 2,

θ̂t+1 = ĉ0,t+1 + ĉ1,t+1θ̂t +
J∑
j=2

ĉj,t+1θt−j

and scale parameter β̂t+h−1 using the stringency index.

2. Compute the forecasts using (2)-(4). For example,

Ît+2 = Ît+1 +

(
β̂t+1Ŝt+1

n
− γ̂R,t+1 − γ̂D,t+1

)
Ît+1

5 Evolution of the Reproduction Numbers

Using a simplified definition, the basic reproduction number at time t is

R0,t =
βt

γR,t + γD,t
,

with parameters βt, γR,t and γD,t as defined in Equations (5) - (7) (for a more general

definition considering multiple compartmental states, see Diekmann, Heesterbeek and Metz

(1990)). The basic reproduction number is the number of people infected by one individual in

a population in which all the individuals are susceptible. This number is of great importance
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as it summarises the future dynamics of the pandemic, for example R0,t > 1 means that the

infection is spreading. A larger value of R0,t is also informative about the speed at which the

pandemic is spreading, and it is therefore a primary object of interest for health authorities.

Given that in our simple model past values of βt, γR,t and γD,t can be computed directly

from the observations of St, It, Rt and Dt, and their past values, this is not a direct object of

investigation in the forecast evaluation exercise. We nonetheless compute this number as a

heuristic measure of the heterogeneity that is present at regional level, in contrast with a

one-size-fits-all feature of the national model.

Figure 3 displays the values of the R0,t for the Italian regions compared with the value of

the R0,t for Italy in the considered evaluation period. These plots document that the real

behavior of the pandemic is mainly characterized by local infection surges and hotspots, and

the national R0,t does not capture all the regional variability, especially in the first part of

the sample. The dispersion of the values of R0,t drops in the second part of the sample,

but a certain variation in the regional R0,t remains even for that period. As a result of this

heterogeneity across regions, the indirect approach may prove more effective at forecasting

the epidemic. This will be tested formally in Section 7.

6 Forecast Evaluation

We assess the out of sample forecasting performance using the Diebold and Mariano test of

equal predictive accuracy (see Diebold and Mariano 1995, Giacomini and White 2006). To

obtain reliable size properties, we apply fixed-smoothing asymptotics, as recently proposed

for this test by Coroneo and Iacone (2020).

We denote by e
(j)
t|t−h the forecast error at time t for forecast j formulated h periods ahead,

where j = 1 refers to the indirect forecast obtained aggregating regional forecasts into a

national one, and j = 2 to the direct forecast from a national model. Given a user-chosen
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Figure 3: Reproduction numbers for Italy and its regions, by week

loss function L(.), for example a squared loss, we define dt,h = L
(
e
(1)
t|t−h

)
− L

(
e
(2)
t|t−h

)
and

dh = 1
T

∑T
t=1 dt,h. Under regularity conditions, such as that e

(j)
t|t−h is mixing with sufficient rate,

L(.) continuous, and E(dt,h) = d for all t, then a standard CLT gives
√
T (dh−d)→d N(0, σ2),

where σ2 is the long run variance of dt,h. Under the hypothesis of equal predictive ability,

then d = 0. To test this hypothesis we need to standardise
√
T (dh − d), as σ is unknown,

however, we need an estimate, say σ̂.

A commonly used approach is to use a weighted covariance estimate with Bartlett kernel,

σ̂2 = γ̂0+2
∑M

l=1 (1− l/M)γ̂l, where γ̂l is the lag-l sample autocovariance of the loss differential

dt,h. As long as this estimate is consistent, the limit distribution of
√
T (dh−d)

σ̂
remains a

standard normal. The standard DM test is particularly unreliable when only a few out-of-

sample observations are available, as the test is heavily size distorted, especially for multi-step

forecasts, Clark and McCracken (2013). However, Sun (2014) showed that the approximation

in the limit distribution may be improved upon by taking the ratio b = M/T fixed. In this

case, the limit distribution of
√
T (dh−d)

σ̂
is not normal, but it may be tabulated, see Kiefer

and Vogelsang (2005). Thus, using fixed-b asymptotics we can test the null hypothesis of
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equal predictive ability as H0 : E(dt,h) = 0 using the statistic |
√
T dh

σ̂
| and checking if its

realisation exceeds the fixed-b critical value tabulated in Kiefer and Vogelsang (2005).

Coroneo and Iacone (2020) analyze the size and power properties of the test of equal predictive

accuracy using fixed-b asymptotics in an environment with asymptotically non-vanishing

estimation uncertainty, as in Giacomini and White (2006). Results indicate that the test

with fixed-b asymptotics delivers correctly sized predictive accuracy tests for correlated loss

differentials even in small samples, and that the power of these tests mimics the size-adjusted

power. Considering size control and power loss in a Monte Carlo study, they recommend the

bandwidth M =
⌊
T 1/2

⌋
for the weighted autocovariance estimate of the long-run variance

using the Bartlett kernel (where b·c denotes the integer part of a number).

7 Forecasting Results

We compare out of sample predictions at 1 to 4 weeks ahead for the number of infections,

the cumulative number of recovered and the cumulative number of deaths obtained directly

from the national SIRD model and forecasts obtained indirectly aggregating regional level

predictions obtained by fitting regional SIRD models. Our evaluation period is 18 October

2020 to 31 January 2021, for a total of 16 weekly observation.

In Figures 4-6 we report the national forecasts at 1 to 4 weeks ahead obtained using the

indirect and the direct approach, along with the realised values. Summary statistics of the

forecast errors are in Table 1. On balance, both approaches underpredict the number of

deaths and recovered, resulting in a positive average forecast error. For the number of infected,

instead, we can see a marked difference between the direct and the indirect forecasts, with

the direct forecast undepredicting most of the times, and the indirect forecasts overpredicting

the number of infected in the second half of the evaluation period.

Interestingly, it seems that the main weakness of both approaches is that they tend to predict
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Figure 4: Cumulative deaths in Italy, observed vs. forecasts
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Note: Realised values for fatalities and forecasts at 1-week ahead (top left), 2-week ahead (top right), 3-week

ahead (bottom left) and 4-week ahead (bottom right). Blue dots denote realised values, the black line

indicates the national forecast obtained aggregating all the regional forecasts (indirect approach), and the

dashed red line indicates the forecast from a national level model (direct approach).
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Figure 5: Cumulative infected in Italy, observed vs. forecasts
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Note: Realised values for infections and forecasts at 1-week ahead (top left), 2-week ahead (top right), 3-week

ahead (bottom left) and 4-week ahead (bottom right). Blue dots denote realised values, the black line

indicates the national forecast obtained aggregating all the regional forecasts (indirect approach), and the

dashed red line indicates the forecast from a national level model (direct approach).
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Figure 6: Recovered in Italy, observed vs. forecasts
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Note: Realised values for recovered and forecasts at 1-week ahead (top left), 2-week ahead (top right), 3-week

ahead (bottom left) and 4-week ahead (bottom right). Blue dots denote realised values, the black line

indicates the national forecast obtained aggregating all the regional forecasts (indirect approach), and the

dashed red line indicates the forecast from a national level model (direct approach).

20



Table 1: Summary statistics Forecast Errors

Dead

Model h Mean Median Std rMSE AC1 AC2 AC3 AC4

Reg 1 256 285 224 340 0.129 0.104 -0.092 -0.134
Reg 2 825 813 613 1028 0.701 0.233 -0.096 -0.354
Reg 3 1605 1477 1273 2049 0.790 0.378 -0.065 -0.463
Reg 4 2511 1770 2038 3234 0.836 0.456 -0.052 -0.535
Nat 1 779 815 417 884 0.562 0.336 -0.087 -0.530
Nat 2 1968 1982 1020 2217 0.729 0.408 -0.095 -0.505
Nat 3 3317 3166 1829 3788 0.840 0.467 -0.077 -0.606
Nat 4 4742 3865 2912 5565 0.845 0.515 -0.043 -0.579

Infected

Model h Mean Median Std rMSE AC1 AC2 AC3 AC4

Reg 1 -12715 -26225 45360 47108 0.754 0.454 0.220 -0.105
Reg 2 -9048 -37303 103924 104317 0.825 0.540 0.257 -0.027
Reg 3 -7633 -61880 166407 166582 0.840 0.610 0.250 0.027
Reg 4 -23695 -87223 249850 250971 0.689 0.489 0.140 -0.042
Nat 1 69395 48523 74530 101835 0.852 0.518 0.167 -0.085
Nat 2 109872 56092 141933 179490 0.869 0.541 0.189 -0.075
Nat 3 141235 63452 199984 244828 0.881 0.577 0.229 -0.058
Nat 4 171675 77422 246897 300716 0.894 0.618 0.277 -0.031

Recovered

Model h Mean Median Std MSE AC1 AC2 AC3 AC4

Reg 1 50091 55596 30610 58704 0.840 0.538 0.130 -0.421
Reg 2 104396 119322 64704 122821 0.888 0.600 0.228 -0.223
Reg 3 163414 186504 101333 192282 0.903 0.673 0.352 -0.066
Reg 4 222462 260647 136344 260920 0.932 0.768 0.497 0.119
Nat 1 67206 77049 40273 78349 0.899 0.646 0.275 -0.218
Nat 2 159383 179829 90094 183084 0.930 0.723 0.402 -0.035
Nat 3 243272 287781 139124 280244 0.944 0.777 0.507 0.132
Nat 4 318779 381352 186036 369092 0.956 0.820 0.596 0.282

This table reports summary statistics for the Forecast errors for the predictions
of Infected, Recovered and Dead. Results from the aggregation at national level
of regional models are summarised in the rows with Model set as Reg; results
from the National model are summarised in the rows with Model set as Nat. The
forecast horizon is denoted by h. rMSE is the root of the mean squared error,
AC(1), AC(2), AC(3), AC(4) report the sample autocorrelations at the specified
lag.
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the number of infected with some lag. Given that infections were rising sharply in the first

part of the period under scrutiny, this resulted in underestimating the number of recovered

and deaths in subsequent weeks. The indirect approach does a better job at keeping the pace

of the fast change of infections, but at the price of overshooting the peak of November 2021,

with the error becoming particularly severe as the forecast horizon is increased, due to the

exponential nature of SIRD models. This might be explained by the fact that the rise of

infections in October 2021 prompted a quick response from the Health Authorities, so the

observed overshoot might well indicate that without those measures the infections would

have spread even further.

The better ability of the indirect forecasts to keep the pace of the fast change of infections in

the first part of the evaluation sample is due to the fact that the infections picked up in autumn

with different speed across the regions as shown in Figure 3. Such heterogeneous dynamics are

better approximated by a regions-specific model, rather than with the “one-size-fits-for-all”

approach of the national model.

The indirect approach also performed better in terms of dispersion of the forecast errors

(except for the prediction of infected cases four periods ahead), as it is expected when the

errors of the regional models composing the indirect forecast are idiosyncratic; finally, we also

observe that the forecast errors from the indirect approach are less persistent (and therefore

less predictable), especially for forecasts one or two periods ahead. Overall, all these empirical

regularities points towards the indirect approach to forecasting as being better.

The outcome of the tests of equal predictive ability of the direct and indirect predictions are

in Table 2. The test statistic is computed using a quadratic loss function and as described

in Section 6, therefore a negative value means that the indirect forecasts constructed from

regional SIRD models are more accurate that forecasts produced directly using a national

SIRD model. Broadly speaking, the test statistic is negative and significant for the prediction

of the number of recovered and dead at all forecasting horizons, signalling that the forecasts
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Table 2: Predictive ability - Italy

Horizon Dead Infected Recovered

1 -3.055∗∗ -1.369 -2.789∗∗

2 -3.125∗∗ -1.235 -3.086∗∗

3 -3.010∗∗ -1.090 -3.058∗∗

4 -2.644∗∗ -0.689 -2.995∗∗

This table reports the Diebold and Mari-
ano (1995) test for equal predictive ability
using fixed-b asymptotics as in Coroneo
and Iacone (2020). A positive value for
the test statistic means that the national
model is more accurate. The forecast hori-
zons h are 1, 2, 3 and 4 weeks ahead. ∗∗

and ∗ indicate respectively, two-sided sig-
nificance at the 5% and 10% level using
fixed-b asymptotics.

from the indirect approach are significantly more accurate. For the number of infections, the

test statistic is still negative for all forecasting horizons, but not significant.

Overall, these results suggest a superior predictive ability for the indirect approach, primarily

due to the heterogeneity of the dynamics across the Italian regions that were amplified by

the regional specific interventions and the restrictions to the movement of people between

regions.

8 Conclusion

We use a SIRD model to predict the the spread of the second wave of the COVID-19 epidemic

in all the 21 Italian regions at 1 to 4 weeks ahead during the second wave of the epidemic.

Out of sample forecasting results indicate that the indirect approach of generating a forecast

by aggregating regional forecasts into a national one delivers more accurate predictions for

the national spread of the epidemic than directly forecasting the national series.

These results suggest that national health authorities should take into account the level of
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heterogeneity across regions when predicting the spread of a national epidemic. This because

the standard approach of predicting the national spread of an epidemic from a national model

might not produce the most accurate predictions in the presence of important heterogeneity

across regions. A better approach in this case is to fit a model for each region and then

obtain the national prediction by aggregating the regional ones.
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