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1 Introduction

This paper aims to study a general implementation problem of reduced-form al-

location rules for assigning multiple indivisible objects to many agents. The problem

can accommodate a variety of distributional constraints across objects and agents

in the environments of incomplete information. We will identify a very general con-

dition called total unimodularity for implementation and establish several general

characterization results.

The reduced-form approach goes back to Myerson (1981) on auction design. In

his paper, the seller’s problem is expressed as a revenue maximization over the

set of feasible and incentive compatible allocation rules and transfers. A buyer’s

incentive constraint is then used to express his transfers in terms of interim allocation

probabilities, which reduce the problem to an optimization over interim allocation

probabilities only, i.e., the reduced-form. To apply this approach, one should be

able to describe the set of feasible interim allocation rules (or reduced forms). In

single-unit auctions, Maskin and Riley (1984) and Matthews (1984) first study the

implementability condition, and Border (1991) derives a characterization, nowadays

known as Border’s theorem.

For a multi-unit auction model with capacity constraints, Che et al. (2013) de-

velop a network flow method to characterize the implementability condition. In

their method, the implementation problem is first transformed into a feasible net-

work flow problem and then existence results from graph theory are invoked to

obtain their characterization results. Goeree and Kushnir (2016) examine reduced-

form implementation for environments with interdependent valuations. Alternative

characterizations have also been found. Manelli and Vincent (2010) and Gershkov

et al. (2013) observe an important equivalence of Bayesian and dominant strategy

implementation. Hart and Reny (2017) obtain a related characterization. Alaei

et al. (2019) propose a polymatroidal decomposition method and obtain their char-

acterization results. Meanwhile, Gopalan et al. (2015), Cai et al. (2012), and Alaei

et al. (2019) examine the computational complexity of the reduced-form approach.

A common feature of these models is that there are no side constraints across dif-

ferent items.

In this paper we investigate the reduced-form allocations of multiple indivisible

items to many agents with a variety of distributional constraints, going beyond
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those traditional ones mentioned above. We briefly discuss several important cases

of distributional constraints that our model intend to cover. In many practical

situations, markets are regulated by distributional policies or constraints such that

allocations across different objects are not independent. A typical example is the

“regional cap” in Japanese residency matching program (Kamada and Kojima, 2015)

that matches hospitals (agents) with doctors (objects). To regulate the geographical

distribution of doctors, the total number of the doctors matched within a region

is subject to a “regional cap”. Another important example is college admission.

Higher education institutions usually set lower quotas for each of their particular

areas of study. If the number of assigned students is less than this quota for a

particular area, then the project has to be cancelled for that year (Biró et al.,

2010, Ehlers et al., 2014, Fragiadakis and Troyan, 2016). Course allocation is yet

another example (Budish and Cantillon, 2014, Budish et al., 2013, Sönmez and

Ünver, 2010). In a university department, students seek to take multiple courses

as part of their programs. Each student can take at most one seat in each course.

For each course, there are ceiling and floor constraints on the number of seats. In

addition, an aggregate capacity constraint may restrict the total number of seats

for the courses within the department. In China, every region requires a certain

minimum number of doctors as a floor constraint in its area hospitals and hospitals

also face hierarchical constraints of recruiting doctors (Cheng and Yang, 2017).

The presence of these distributional constraints poses a challenge for reduced-form

allocation implementation: The problem cannot be treated as separate single-object

problems and the reduced form for every agent is multidimensional.

To be precise, the problem under consideration concerns the allocation of a finite

set of heterogeneous indivisible objects to a finite set of agents subject to distribu-

tional constraints. Objects can be private goods which will be consumed privately

and independently by agents. Objects can be public or club goods like courses shared

by students. Every agent may demand several objects and is associated with a finite

set of types representing her private information about her preferences. There will be

distributional constraints across different combinations of agents and objects. Con-

straints include floor and ceiling constraints across both agents and objects. We use

a lift-and-project approach to obtain characterization results of implementability.

This approach was first introduced in polyhedral combinatorics (Balas, 2001, Balas
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and Pulleyblank, 1983) and later used by Vohra (2013) to study linear characteriza-

tions for combinatorial objects, including reduced-form auctions. Briefly speaking,

in this approach, by lifting, the combinatorial object of interest (i.e., reduced forms)

is first formulated by a linear system in some higher-dimensional space. Then by

constructing a projection cone and finding its finite generators, it gives arise to the

linear system of interest. We find this approach surprisingly powerful.

To obtain a complete description of the generators, we investigate geometric and

combinatorial properties of the projection cone. We discover a general sufficient con-

dition on the projection cone such that an enumeration of the generators is possible.

The general condition underlying our characterization is called total unimodular-

ity, which is probably the most general one we could possibly have. It concerns

so-called totally unimodular matrices, a class of well-behaved and well-studied ma-

trices with simple entries of −1, 0, or 1 in discrete optimization (Schrijver, 1986). It

is also well-known that there exists a polynomial time recognition algorithm for to-

tally unimodular matrices; see Seymour (1980, 1981) and Schrijver (1986). In other

words, it is very easy to verify the general condition. We show that if the projection

cone preserves total unimodularity, then the generators of the projection cone can

be enumerated. We then identify three large classes of constraint structures where

the projection cone preserves total unimodularity: Hierarchies, bihierarchies with

canonical constraints, and consecutiveness. Hierarchical structures are common in

organizations (firm, hospital, or university) and various markets, and have been well-

studied in the literature; see e.g., Williamson (1975) and Demange (2004). They are

called laminars in mathematics (Fujishige, 2005). Bihierarchies are the union of two

disjoint hierarchies as a generalization of hierarchies and are recently investigated

by Budish et al. (2013). Consecutiveness basically means that either agents or ob-

jects have a natural fixed order, any adjacent family of agents can create synergy

and cooperate, or any adjacent family of goods can exhibit complementarity. This

property has been studied for combinatorial auctions for the sale of bands of radio

spectrum (Rothkopf et al., 1998) and for consecutive games (Greenberg and Weber,

1986).

We concentrate on the universal implementation where the result does not de-

pend on the specification of quotas. In practice, the designer may have no in-

formation on capacity and a universal implementation is therefore very desirable
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(Budish et al., 2013, Che et al., 2013). Our characterization results are algebraic

and very general, covering a variety of distributional constraints such as floor con-

straints, ceiling constraints, and mixed floor and ceiling constraints. Our first major

result (Theorem 1) establishes a general characterization on implementation, show-

ing that total unimodularity is a sufficient condition. Our second and third major

results (Theorems 2 and 3) prove that hierarchies, bihierarchies with canonical con-

straints, and consecutiveness each suffice to guarantee total unimodularity. Our

fourth and fifth results (Theorems 4 and 5) examine two important special cases:

floor constraints and ceiling constraints. We also discuss the relationship between

our results and those of Border (1991), Che et al. (2013), Budish et al. (2013), Alaei

et al. (2019), and others. Furthermore, we apply our current approach to the com-

promise model of Börgers and Postl (2009) and the bilateral trade model of Myerson

and Satterthwaite (1983).

The rest of this paper is organized as follows. Section 2 presents a general model

on reduced-form implementation. Section 3 introduces our main characterization

theorems on implementation. Section 4 discusses the lift-and-project approach and

several lemmas which play a key role in proving the characterization theorems.

Section 5 studies some special class of problems including a bilateral trade model

and a compromise model. Section 7 concludes.

2 The Model

We study a model in which a finite set A of m heterogeneous indivisible objects

(e.g. workers, doctors, goods, and courses) is allocated to a finite set N of n different

agents (e.g. firms, hospitals, and students) under a variety of constraints. The

two numbers n and m may be equal or different. Note that the set A can also

accommodate multiple identical objects which will be labelled differently. A pure

outcome x = (x(i, j)) is described as an n×m matrix indexed by all agents i and

objects j, where each entry x(i, j) ∈ {0, 1} is the quantity of object j that agent i

receives. Note that it is possible for each agent to receive several objects and also

for one object like course to be shared by several agents. Generally speaking, in

the allocation of private goods, no object will be assigned to more than one agent,

while in the case of shared or public goods, every object can be jointly consumed

by multiple agents.
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A set G ⊆ N × A of agent-object pairs is called a constraint set. Every

pair (i, j) ∈ N × A is called a singleton. For a constraint set G, we define

x(G) =
∑

(i,j)∈G x(i, j). Each constraint set G is associated with two integer num-

bers b(G), c(G) ∈ Z+ with b(G) ≤ c(G) as its floor and ceiling quotas, respectively.

A collection of constraint sets G ⊆ 2N×A is called a constraint structure. Ev-

ery constraint structure G is associated with a quotas system (b, c), where we have

(b(G), c(G)) for every G ∈ G.

Given a constraint structure G and its quotas system (b, c), we say a pure outcome

x is feasible if

b(G) ≤ x(G) ≤ c(G) for all G ∈ G. (1)

Clearly, for every feasible pure outcome x, we have 0 ≤ x(i, j) ≤ 1 for all (i, j) ∈
N × A and so G contains all singletons.

The constraint structure G with its quotas system (b, c) covers a variety of al-

location problems. We briefly discuss two major allocation problems and their

implications on their quotas system. For any j ∈ A and any G ∈ G, let G(j) =

{(i, j) | (i, j) ∈ G}. In any allocation problem of private goods, usually no item

j ∈ A will be assigned to more than one agent. This means that if x is a feasible

pure outcome, for every G ∈ G and every G(j) ∈ G, we must have 0 ≤ b(G(j)) ≤
x(G(j)) ≤ c(G(j)) = 1. However, for any allocation problem of shared goods like

courses or public goods, every object j ∈ A is typically shared by multiple agents.

In this case, for every G ∈ G and every G(j) ∈ G, the quota c(G(j)) can be greater

than 1.

Two-sided assignment problems often have quotas for every object and quotas

for every agent. This corresponds to the classical model of assignment markets;

see Crawford and Knoer (1981), Demange and Sotomayor (1986), Koopmans and

Beckmann (1957), Shapley and Shubik (1971). Following Budish et al. (2013), we

call this kind of constraint structure G a canonical two-sided constraint struc-

ture, if G contains all sets {i} × A for each i ∈ N (i.e., all rows) and all sets

N × {j} for every j ∈ A (i.e., all columns). This is a special and important class

of constraint structures obviously covered by the general framework of constraint

structures described above.

Let X denote the set of feasible pure outcomes. A random outcome is a matrix

x = (x(i, j)) indexed by agents and objects where x(i, j) ∈ [0, 1] is a fractional
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allocation of object j ∈ A assigned to agent i ∈ N . A random outcome x is

feasible if it can be described as a lottery over the set of feasible pure outcomes,

that is, if there exist nonnegative numbers λk summing up to one and feasible pure

outcomes xk ∈ X such that

x =
∑
xk∈X

λkx
k. (2)

Let ∆(X) denote the set of all feasible random outcomes.

Every agent i ∈ N is associated with a finite set Ti of possible types, which

represents agent i’s private information about her preference. A type ti ∈ Ti may

represent agent i’s preference ordering %i over the set A of objects, or it may de-

termine her cardinal utility function, i.e., a payoff vector vi ∈ RA that assigns a

valuation vi(j) for object j. Hence our model allows for domains that cover ordinal

and cardinal preferences. Let T = ×i∈NTi denote the entire type set, i.e., the prod-

uct of the type set Ti over all agents i ∈ N , and T−i = ×j 6=iTj. For every i ∈ N ,

let λi : Ti → ∆(T−i) be a belief function, i.e., λi(t−i|ti) is the probability that agent

i assigns to other agents’ type t−i ∈ T−i when i’s type is ti. We assume that there

exists a common prior probability λ ∈ ∆(T ) such that the beliefs of the agents are

the posteriors, and λ(t) > 0 for all t ∈ T . Let λi denote i’s marginal probability of

λ.

We now introduce three large classes of constraint structures on which several

characterization results will be built. The first one is the class of hierarchies, which

has been used by Williamson (1975) and Demange (2004) in different contexts, also

called laminars in mathematics (Fujishige, 2005).

Definition 1. A constraint structure G is a hierarchy (or a laminar) if for all

G,G′ ∈ G,

G ⊂ G′, or G′ ⊂ G, or G′ ∩G = ∅. (3)

Our second one concerns a richer and more general class of constraint structures

due to Budish et al. (2013), called bihierarchies.

Definition 2. A constraint structure G is a bihierarchy if it is the union of two

disjoint hierarchies G1 and G2, i.e., G = G1 ∪ G2 and G1 ∩ G2 = ∅.

For bihierarchical constraint structures, Budish et al. (2013) obtain a generaliza-

tion of Birkhoff-von Neumann theorem which is used to characterize their feasible
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random outcomes; see their Theorem 1.1 For our current model, we will use bihier-

archies as an example of our general conditions to obtain implementation results.

The third one concerns another different class of constraint structures, called

consecutiveness. Roughly speaking, it means that either agents or objects have a

natural fixed order, any adjacent family of agents can create synergy and cooperate,

or any adjacent family of goods can exhibit complementarity. This has been exam-

ined for combinatorial auctions for the sale of bands of radio spectrum (Rothkopf

et al., 1998) and for consecutive games (Greenberg and Weber, 1986). Agents could

be service providers and located in different places and labelled according to some

rules.

Definition 3. A constraint structure G with the set N = {i1, ..., in} of agents and the

set A of objects has the consecutive property, if for every h ∈ A, there is some

integer 1 ≤ jh ≤ n− 1 such that G contains the elements {ik, ik+1, ..., ik+jh−1}× {h}
for all 1 ≤ k ≤ n− jh + 1.

In the definition the agents in {ik, ik+1, ..., ik+jh−1} are called jh-consecutive

agents. Note that the consecutive structures are bihierarchical for j = 2 but are no

longer the case for j ≥ 3. In our current setting, consecutiveness means that only

adjacent agents will be able to use each of the objects and every family of adjacent

agents can vary from one good to another.

Below we give three examples of different constraint structures. The first two

concern hierarchies and bihierarchies and the last one concerns consecutiveness.

Example 1. Suppose that there are three students N = {i1, i2, i3} and three

fields of study A = {j1, j2, j3} that the students can enroll. Suppose fields j1 and j2

are economics while j3 is biology. Both i1 and i2 major in economics while i3 has a

different major. Suppose there are no ceiling and floor constraints on the number of

seats for each field separately, but there are aggregate ceiling constraints that there

is at most one seat in the first two fields for economics students, and at most five

seats in all the fields for all the students. The family of constraint sets is given by

1Note that the model and objective of Budish et al. (2013) are considerably different from ours.
They develop ex ante efficient and fair random allocation mechanisms for environments with various
constraints. We deal with a general model with incomplete information and various constraints and
investigate interim incentive-compatible allocation mechanisms. In our model every agent i ∈ N
has a finite set Ti of types, while in Budish et al. (2013) incomplete information is not discussed
and in their model the set Ti of every agent i could be understood to contain only one element.
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(i, j) for every i ∈ N and every j ∈ A, {i1, i2} × {j1, j2}, and N × A, which is a

hierarchy but does not have a canonical constraint structure. Each student has a set

of types that represent its preference over the fields. For instance, let Ti = {%i,%′i}
for some student i, where

%i: j1 %i j2 %i j3, and %
′
i: j2 %

′
i j3 %

′
i j1.

Let x and x′ be two random outcomes with x(i) = (1
2
, 1

3
, 1

4
) and x′(i) = (1

4
, 1

2
, 1

3
).

Then x(i) (first order) stochastically dominates x′(i) at %i in the sense of Bogomol-

naia and Moulin (2001). The following system of linear inequalities describes all

possible outcomes:

0 ≤
∑

(i,j)∈{i1,i2}×{j1,j2} x(i, j) ≤ 1

0 ≤
∑

(i,j)∈N×A x(i, j) ≤ 5

0 ≤ x(i, j) ≤ 1 for every (i, j) ∈ N × A

Example 2. Suppose that there are three students N = {i1, i2, i3}, one compul-

sory courses c1, and three optional courses O = {o1, o2, o3}. Every optional course

o ∈ O faces a floor constraint which requires the course being selected by at least

one student for it to open; and every student i is required to take at least one of

the optional courses. The family of constraint sets is given by (i, o) for every i ∈ N
and o ∈ O ∪ {c1}, {i} × O for every i ∈ N , and N × {o} for every o ∈ O ∪ {c1},
which is a bihierarchy, having a canonical two-sided constraint structure. We may

assume each student i has a set Ti of types that represent her payoff vectors over

optional courses, i.e., ti = (1, 4, 2). Then with additive valuations, agent i prefers

random outcome x to x′ at ti if and only if x(i) · ti ≥ x′(i) · ti. The following system

of linear inequalities describes all possible outcomes:

1 ≤
∑

i∈N x(i, j) ≤ ∞ for every j ∈ O
1 ≤

∑
j∈O x(i, j) ≤ ∞ for every i ∈ N

3 ≤
∑

i∈N x(i, c1) ≤ 3

0 ≤ x(i, j) ≤ 1 for every (i, j) ∈ N × (O ∪ {c1})

Example 3. Suppose that some wireless licenses are allocated to five service

providers N = {i1, i2, i3, i4, i5}. There are two types of licenses A = {j1, j2}, each
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with multiple units. For each type j of the licenses, each group of neighbors ik, ik+1

and ik+2 are constrained by a ceiling constraint Lk,j and a floor constraint Bk,j.

The family of constraint sets is given by (i, j) and {i1, i2, i3} × {j}, {i2, i3, i4} ×
{j}, {i3, i4, i5} × {j} for all j ∈ A. The following system of linear inequalities

describes all possible outcomes:

Bk,j ≤ x(ik, j) + x(ik+1, j) + x(ik+2, j) ≤ Lk,j for every 1 ≤ k ≤ n− 1, j ∈ A
0 ≤ x(i, j) ≤ 1 for every (i, j) ∈ N × A

2.1 Reduced-form implementation

Given any welfare objective at the ex ante or interim stage, we are interested in

Bayesian incentive compatible mechanisms that may allow random outcomes. Using

the reduced-form approach, we first optimize over the set of incentive compatible

interim allocation rules and find an optimal solution. We then ask whether this

interim optimal solution can be implemented by an ex post feasible allocation rule

or not. The reduced-form implementation problem is to characterize implementable

allocation rules based on interim incentive compatibility.

A feasible ex post allocation rule p : T → [0, 1]N×A assigns a feasible random

outcome p(·, t) for each type profile t ∈ T , where p(i, j, t) is a fractional quantity of

object j ∈ A assigned to agent i ∈ N . In particular, a mechanism is deterministic

if it assigns a pure outcome for each type profile. A feasible ex post allocation rule

p induces an interim allocation rule Q = (Qi)i∈N , where Qi : Ti → RA is agent i’s

interim expected random allocation. For each i ∈ N , ti ∈ Ti, and j ∈ A,

Qi(ti, j) :=
∑

t−i∈T−i

p(i, j, t)λi(t−i|ti). (4)

Example 4. (Example 1 continued) Suppose for the same agent i, the interim

allocation rule is given by Qi(%i) = (1
2
, 1

3
, 1

4
) and Qi(%′i) = (1

4
, 1

2
, 1

3
). Then Qi(%i)

stochastically dominates Qi(%′i) at %i, and the dominance is reversed at %′i. Hence

Qi is incentive compatible for agent i.

An interim allocation rule Q is implementable if there exists a feasible ex

post allocation rule p such that (p,Q) satisfies (4). We then say Q is the reduced

form of p and p implements Q. Let Q denote the set of all implementable interim
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allocation rules. Let (N,A, T, λ,G, b, c) represent our implementation problem.

We call (N,A, T,G) the implementation structure. Define d := |N ||A||T | and

l :=
∑

i∈N |Ti||A| and r := |G||T |. Note that the set of feasible ex post allocation

rules is defined by a set of linear inequalities and the reduced form operation is a

linear map. Hence for the given set Q the implementable interim rules can be also

defined by a set of linear inequalities:

Q = {Q ∈ Rl |MQ ≤ u} (5)

for some matrix M and vector u. The goal of our implementation problem is to find

a linear system of (M,u) that describes the set Q. The system (M,u) is called a

linear characterization on the set of implementable interim allocation rules.

3 Main Results

In this section, we establish our main characterization theorems for the imple-

mentation problem. To obtain these results, we use a lift-and-project approach.

This approach starts with a linear system in terms of both ex post and interim allo-

cation rules. By projecting away the variables of ex post allocation rules, we obtain

a linear system of interim allocation rules. The procedure then reduces the imple-

mentation problem to a problem of enumerating the generators of the projection

cone. Since the analysis is involved, we first state our characterization theorems in

this section and then discuss the lift-and-project approach in the next section. Most

of the proofs will be deferred to the Appendix.

For the convenience of the reader we first review several basic mathematical

concepts concerning cones, generators, and extreme rays that will be often used in

our analysis. Let x1, ..., xk ∈ Rq be given vectors. A linear combination α1x1 + ...+

αkxk is conic if α1, ..., αk ≥ 0. The cone generated by a finite set X ⊂ Rq is the set

of all conic combinations of the elements from X, denoted by cone(X), and we call

the vectors in X the generators. A cone P is polyhedral if P = {x ∈ Rq |Mx ≤ 0}
for some matrix M . We say P is pointed if Mx = 0 implies x = 0. Otherwise, we

say P is non-pointed. A nonzero element x of a pointed cone P is called an extreme

ray if there are q − 1 linearly independent constraints binding at x. For detail we

refer to Schrijver (1986).
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We first consider the implementation problem (N,A, T, λ,G, b, c) with general

constraint structures. To proceed, we introduce the following two {0, 1} matrices B

and C which will be central for our analysis.

• For every p ∈ Rd, Q ∈ Rl and b, c ∈ Rr, we define the corresponding probability

weighted variables x, y, bλ, and cλ by multiplying each p(i, j, t), b(G), c(G) by

λ(t), and each Qi(ti, j) by λi(ti).

• Matrix C: An incidence matrix where each row is indexed by (G, t), each

column is indexed by (i, j, t), and the entry in row (G, t) and column (i, j, t′)

is 1 if (i, j) ∈ G and t = t′, and 0 otherwise.

• Matrix B: An incidence matrix where each row is indexed by (i, ti, j), each

column is indexed by (i, j, t), and the entry in row (i, ti, j) and column (i′, j′, t′)

is 1 if i = i′, j = j′, and ti = t′i, and 0 otherwise.

We use Example 2 to illustrate how the matrices B and C are constructed. For

any positive integer k, let Ik denote the identity matrix of order k. For the purpose

of illustration, we assume that there are two students, two optional courses, and

every student has two types.

Example 5. (Example 2 continued) The constraint matrices B and C are given

by B =

[
B1

B2

]
, C =


Cd,1 Cd,2

Cs,1

Cs,2

I16

 , where B1 = B2 = [bk,l]4×8 with bk,l = 1 if

k = (i, ti, j) and l = (i, j, t), and bk,l = 0 otherwise, and Cd,1 = Cd,2 = I8, Cs,1 =

Cs,2 =
[
I4 I4

]
. Here each Bk denotes the constraint matrix of the reduction form

equalities for each course Ok, and Cd and Cs denote the constraint matrices of the

canonical row and column constraints, and I16 denotes the constraint matrix for

singletons.

The implementation system associated with the matrices B and C arising from

the implementation problem described above is given by

F = {(x, y) ∈ Rd+l | bλ ≤ Cx ≤ cλ, y = Bx}. (6)
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We define the projection cone by

W = {(f, g, h) ∈ Rl × R2r | −B>f + C>g − C>h = 0, g ≥ 0, h ≥ 0}. (7)

The constraint matrix of the projection cone W is given by

M(W ) =

[
−B> C>

O I

]
. (8)

Remark 1. The projection cone W depends on the implementation structure

(N,A, T,G) but not on the quotas and the beliefs. It implies that the same set of

generators would arise if two problems differ only in the quotas and beliefs. Hence

the conic approach is, by construction, a universal implementation in the sense

of Che et al. (2013) and Budish et al. (2013).

The first main result (i.e., Theorem 1) of the paper will provide a sufficient

condition on W such that a complete description of the generators Ŵ can be found.

The characterization depends on a class of integral matrices called totally unimodular

matrices. This is a class of well-known and well-studied matrices (Schrijver, 1986).

Formally, a matrix M is totally unimodular (TUM), if every nonsingular square

submatrix has determinant equal to either −1 or +1. It is well known that there

exists a polynomial time recognition algorithm for totally unimodular matrices; see

Seymour (1980, 1981) and Schrijver (1986). In other words, one can easily verify

whether a matrix is TUM or not.

Definition 4. Let (N,A, T,G) be an implementation structure. We say the pro-

jection cone W preserves total unimodularity, if the constraint matrix M(W )

given by (8) is totally unimodular.

Theorem 1 describes a key characterization of the implementability condition. It

shows that if the projection cone preserves total unimodularity, then every generator

(up to positive scaling) is a {0,±1} vector. That is,

(f, g, h) ∈ Ŵ =⇒ (f, g, h) ∈ {0,±1}l × {0,+1}2r.

Hence every f corresponds to a sign function of some sets S+
i , S

−
i ⊆ Ti×A for each

i ∈ N . In this way we obtain a complete description of the set of implementable
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reduced forms.

Define an effective bound for any two sets G,H ⊆ N × A with G ∩H = ∅ by

β(G,H) = max{x(G)− x(H) | x ∈ ∆(X)}. (9)

Effective bounds are introduced in Che et al. (2013) and here we extend this

idea from their model with multiple units of a single good to the current one with

multiple units and multiple goods. A supporting hyperplane argument implies that

P (β) = {x | x(G)−x(H) ≤ β(G,H) for all disjoint sets G,H ⊆ N×A} completely

describes the original feasible set of random outcomes.

Let Ω = ∪i∈N(Ti × A). For any Si ⊆ Ti × A, i ∈ N , let S = ∪i∈NSi. Then

S ⊆ Ω. For any t ∈ T and S ⊆ Ω, we define their intersection by

I(t, S) = {(i, j) ∈ N × A | (ti, j) ∈ Si}.

We are ready to present the first major characterization result.

Theorem 1. (General Characterization Theorem) Let (N,A, T, λ,G, b, c) be an im-

plementation problem. Suppose the projection cone preserves total unimodularity.

Then Q ∈ Rl is implementable if and only if for all S+
i , S

−
i ⊆ Ti ×A, S+

i ∩ S−i = ∅,
for each i ∈ N ,∑

i∈N

[
∑

(ti,j)∈S+
i

Qi(ti, j)λi(ti)−
∑

(ti,j)∈S−i

Qi(ti, j)λi(ti)]

≤
∑
t∈T

λ(t)β(I(t, S+), I(t, S−)). (10)

Condition (10) provides a compact description for an implementable reduced

form with both the ceiling and floor constraints, as the left hand side may contain

both positive and negative entries and the bound β is implicitly determined by the

ceiling and floor in condition (9). In general, condition (10) is not separable in S+

and S−, since a priori both S+ and S− can take non-empty collections of sets. For

some cases, Theorem 1 can be further reduced to separate expressions for ceiling

constraints and floor constraints by setting S− = ∅ or S+ = ∅ (Theorems 4 and 5).

We use the following example to illustrate how to obtain condition (10).

14



Example 6. (Example 2 continued) Suppose that there are two students N =

{i1, i2}, one compulsory course c1 and three optional courses O = {o1, o2, o3}, and

T1 = {t11, t21} and T2 = {t12, t22}. Every student is required to take c1, and at least

one and at most two of optional courses. Each optional course is required to enroll

at least one and at most two of students. Notice that the compulsory course can

be treated separately and we restrict our attention to optional courses. Pick S+
1 =

{(t21, o2)}, S+
2 = {(t12, o1), (t12, o2), (t12, o3)}, S−1 = {(t11, o1), (t11, o2), (t11, o3)}, S−2 =

{(t22, o2)}. We calculate β in Table 1. In particular, for (t11, t
1
2) consider the following

Table 1: Parameters in Example 6.

t I(t, S+) I(t, S−) β
(t11, t

1
2) {(i2, o1), (i2, o2), (i2, o3)} {(i1, o1), (i1, o2), (i1, o3)} c({i2} ×O)− b({i1} ×O)

(t11, t
2
2) {∅} {(i1, o1), (i1, o2), (i1, o3), (i2, o2)} −b({i1} ×O)

(t21, t
1
2) {(i1, o2), (i2, o1), (i2, o2), (i2, o3)} {∅} c({i1} × {o2}) + c({i2} ×O)

(t21, t
2
2) {(i1, o2)} {(i2, o2)} c({i1} × {o2})

problem

max x(i2, o1) + x(i2, o2) + x(i2, o3)− x(i1, o1)− x(i1, o2)− x(i1, o3)

s.t. 1 ≤ x(i, O) ≤ 2, i ∈ N,

1 ≤ x(N, o) ≤ 2, o ∈ O, 0 ≤ x ≤ 1.

An optimal solution is given by x∗(i1, o1) = x∗(i2, o1) = x∗(i2, o3) = 1, and x∗(i, j) =

0 otherwise. Note that at x∗ the floor constraint for i1 and the ceiling constraint for

i2, and the floor constraints for all optional courses are all binding. Similarly, we

calculate β for the other type profiles. The corresponding implementability condition

is given by

Q2
1,2 +Q1

2,1 +Q2
2,1 +Q3

2,1−Q1
1,1 −Q2

1,1 −Q3
1,1 −Q2

2,2 ≤ λ11 − λ12 + 3λ21 + λ22,

where Qj
i,k := Qi(t

k
i , oj)λi(t

k
i ) and λkl := λ(tk1, t

l
2).

Now we will introduce our second and third major results (i.e., Theorem 2 and

3 below), which identify three classes of constraint structures G under which the

projection cone of the implementation problem preserves total unimodularity. If G
is a hierarchy, then the implementation structure consists of two hierarchies and
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by a well-known theorem of Edmonds (1970), the projection cone can be shown to

preserve total unimodularity. However, when G is a bihierarchy, the implementation

structure has three hierarchies to which the Edmonds theorem cannot be applied.

Fortunately, we can still show that the projection cone preserves total unimodularity

in this case if two additional conditions are imposed: (1) G contains also both {i}×A
for every i ∈ N and N × {j} for every j ∈ A; and (2) the set Ti for every i ∈ N
contains at most two elements, which is called binary.

Theorem 2. Let (N,A,G, T ) be an implementation structure. The projection cone

preserves total unimodularity, if one of the following conditions holds:

(1) G is a hierarchy.

(2) G is a bihierarchy and contains also {i} × A for every i ∈ N and N × {j}
for every j ∈ A, and the set Ti for every i ∈ N has at most two elements.

Proof. (1) follows immediately from a well-known theorem of Edmonds (1970). We

now prove (2). Without loss of any generality, we consider a case where each agent

has exactly two types. Let Ci be the submatrix of C for the constraint sets in Gi,
i = 1, 2. Let B denote the constraint matrix of the reduced-form implementation

equalities. Since total unimodularity is preserved by deleting unitary column and

by transpose, we only need to show that the following matrix

M∗ =

C1

C2

B

 (11)

is totally unimodular. We first prove the result for the problem with the standard

constraints, i.e., G consists exactly of {i}×A for every i ∈ N and N ×{j} for every

j ∈ A and every singleton (i, j) ∈ N ×A, and the set Ti for every i ∈ N has exactly

two elements. Then we will show that all other cases can be reduced to the cases

with the standard constraints.

(a) Standard constraints. In this case, each column of M∗ contains exactly three

1s (by leaving the rows of singletons out). Note that if a matrix with at most three

nonzero entries in each column, then A is TUM if and only if each submatrix of A

with at most two nonzero entries in each column is TUM (Schrijver, 1986, Truemper,

1985). To show that M∗ is TUM, we only need to show that each submatrix M of
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M∗ with at most two nonzero entries in each column is TUM. By a characterization

theorem of Camion (Schrijver, 1986), it is sufficient to show that M is balanced,

i.e., in every square submatrix M ′ with exactly two nonzero entries per row and per

column, the sum of the entries is a multiple of four.

Note each column and each row in M ′ contains two 1s. Connecting the two

nonzero entries in each row and column implies that M ′ can be decomposed into

n disjoint cycles, where each cycle contains a submatrix of M ′ with exactly two 1s

entries per row and per column. We show that each cycle P is even, i.e., the sum

of entries in P is a multiple of four.

First note that for any pair of two 1s in each row of P , there are two types of

possible changes of column indexes: (i) from (i, j, t) to (i, j′, t) in row (i, t) of C1, and

from (i, j, t) to (i′, j, t) in row (j, t) of C2, and (ii) from (i, j, ti, t−i) to (i, j, ti, t
′
−i) in

row (i, j, ti) of B. That is, P induces index changes P1 on N ×A and P2 on T . The

number of index changes (or rows) in P1 (i.e., (i, j)→ (i′, j)→ (i′, j′)→ ...→ (i, j))

is even as there are two hierarchies. The number of index changes in P2 (i.e.,

t−i → t′−i → ...→ t−i) is also even since each player has two types. So the number

of rows in P is even. This implies that P is an even cycle.

Combining the two cases, we conclude that each cycle P contains an even number

of rows. This completes the proof that M ′ is balanced, and M (and M∗) is TUM.

(b) General constraints. Pick any square submatrix M of M∗. It is sufficient to

prove that det(M) ∈ {0,±1}. We claim that after some elementary row operations

M can be converted into a matrix M̃ where for each column, there is at most one 1

for each hierarchy. Specifically, for any two rows of Cl (l = 1, 2), (k, t) and (k′, t), let

Gk and Gk′ be the corresponding sets in Gl. Suppose Gk ⊂ Gk′ . Negate row (k, t)

and add it to row (k′, t). The elementary row operation changes only the sign of the

determinant of M and hence |det(M)| = |det(M̃)|. It is sufficient to show that M̃

is TUM. Since M̃ now contains at most three 1s in each column, we only need to

show that each submatrix of M̃ with at most two nonzero entries in each column is

TUM. Following the proof of part (a), we obtain this result. �

We next show that constraint structures with the consecutive property can also

ensure the projection cone preserves total unimodularity. Its proof is deferred to

the Appendix.
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Theorem 3. Let (N,A,G, T ) be an implementation structure. The projection cone

preserves total unimodularity, if G has the consecutive property and T is binary.

We now simplify the condition in Theorem 1 to more specific ones. First note that

when there are only floor or ceiling constraints, W is pointed: (f, g, h)M(W ) = 0

implies (f, g, h) = 0. Hence W is generated by the set of extreme rays. We derive

an explicit characterization of the set Ŵ of {0,±1} extreme rays. In particular, for

each of the following cases, we obtain a characterization of Ŵ : (1) There are only

floor constraints, i.e., c = +∞ (Theorem 4); (2) There are only ceiling constraints,

i.e., c < +∞ and b = 0 (Theorem 5).

To state the characterization results, we introduce some additional definitions.

For every G ⊆ N × A, define an effective lower bound b̄(G) := −β(∅, G) and an

effective upper bound c̄(G) := β(G, ∅). We also define Γ(S) = {t ∈ T | (ti, j) ∈
Si, for some i ∈ N}. We first present a characterization result concerning floor

constraints.

Theorem 4. (Floor constraints) Suppose the projection cone preserves total uni-

modularity. Then Q is implementable if and only if for all i and (ti, j) ∈ Ti × A,

Qi(ti, j) ≥ 0, and for all Si ⊆ Ti × A, i ∈ N ,∑
i∈N

∑
(ti,j)∈Si

Qi(ti, j)λi(ti) ≥
∑
t∈Γ(S)

λ(t)b̄(I(t, S)). (12)

The next result gives a characterization for the case with ceiling constraints.

Theorem 5. (Ceiling constraints) Suppose the projection cone preserves total uni-

modularity. Then Q is implementable if and only if for all i and (ti, j) ∈ Ti × A,

Qi(ti, j) ≥ 0, and for all Si ⊆ Ti × A, i ∈ N ,∑
i∈N

∑
(ti,j)∈Si

Qi(ti, j)λi(ti) ≤
∑
t∈Γ(S)

λ(t)c̄(I(t, S)). (13)

Several remarks are in order. First, when G is a hierarchy, condition (13) reduces

to the implementability condition obtained by Che et al. (2013) who study the case

of multiple units of one good. The condition further reduces to the classical con-

dition of Border (1991) for a single object, i.e., G = {N} and c(N) = 1. Second,

although the implementability conditions of Theorems 4 and 5 appear to be similar,
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the projection cones of the two problems and their extreme rays have very differ-

ent structures (See Lemmas 5 and 6). Hence the two problems have to be treated

separately and also they concern quite different constraints. Third, the conditions

in Theorems 4 and 5 characterize the implementability for a general class of imple-

mentation structures. As we have shown in Theorems 2 and 3, our results allow for

hierarchies, bihierarchies, and consecutiveness. For constraint structures with these

properties, the implementation structures do not correspond to the intersection of

two polymatroids and hence not fit the polymatroidal flow approach used by Che

et al. (2013).

4 The Lift-and-Project Approach

In this section we present the mathematical method, i.e., the lift-and-project

approach, to establish our characterization results introduced in the previous section.

This is a powerful method in polyhedral combinatorics (Balas and Pulleyblank,

1983) and has been recently explored by Vohra (2013) in economics. The basic

idea of the method goes as follows: The first step is to use a linear system in some

higher-dimensional space, or lifting. The second step is to obtain a linear system

by properly projecting away previously added variables. We have tried to keep the

presentation as simple as possible while maintaining rigor.

First we describe a general lift-and-project method. Suppose we are given a

polyhedron

Z = {(x, y) ∈ Rp × Rq | A1x+B1y = b1, A2x+B2y ≤ b2}, (14)

where A1, B1, A2, B2 are matrices, b1, b2 are vectors. Let Y denote the projection

of Z onto the subspace of y variables, that is,

Y = {y ∈ Rq | there exists x ∈ Rp such that (x, y) ∈ Z}. (15)

We wish to obtain a linear system whose solution set is Y .

We define the projection cone

P = {(f, g) ∈ Rr × Rs | f>A1 + g>A2 = 0, g ≥ 0}. (16)
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Let P̂ be any finite set of generators of P . The following lemma shows that finding

the linear inequalities that define Y reduces to finding finite generators of P .

Lemma 1. The projection of the polyhedron Z given by (14) onto y is given by

Y = {y ∈ Rq | (f>B1 + g>B2)y ≤ f>b1 + g>b2 for all (f, g) ∈ P̂}.

Characterizing the generators of P appears to be difficult in general. The fol-

lowing lemma provides a sufficient condition on P such that a complete description

of the generators can be found. The lemma is developed from and slightly more

general than a result in Hoffman (1976), where the result there is proved for pointed

cones. We show that the same result holds also for non-pointed cones.

Lemma 2. If the constraint matrix of the projection cone P given by (16) is totally

unimodular, then P is generated by a set P̂ of {0,±1} generators.

Remark 1. If P is pointed, the set of extreme rays provides a unique (up to

positive scaling) minimal set of generators. While Lemma 1 shows that the extreme

rays of P provide a complete description of Y , some extreme ray may be redundant.

Remark 2. Lemma 2 is useful on its own since it identifies finitely many linear

inequalities. In particular, it implies that we can pick P̂ to be all {0,±1} vectors in

P , i.e., P ∩ {0,±1}r+s.
To prove Theorem 1, the first step is to apply the lift-and-project method to our

implementation problem. Note that if the projection cone is totally unimodular, the

implementation system can be described by the linear constraints F in (6). Then

Lemma 1 applies to the implementation system F . Since the projection cone W

in (7) is totally unimodular, applying Lemma 2 to W we obtain Lemma 3 below,

which gives a characterization for implementation.

Lemma 3. Let (N,A, T, λ,G, b, c) be an implementation problem. Suppose the pro-

jection cone preserves total unimodularity. Then y ∈ Rl is implementable if and

only if

f>y ≤ g>cλ − h>bλ for all (f, g, h) ∈ Ŵ , (17)

where the set Ŵ consists of generators of W given by (7) with entries −1, 0, and

+1.
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The following lemma shows how the bound in the right hand side of condition

(17) reduces to the effective bound β defined in (9), which is determined by the

dual of a linear programming problem. This allows us to obtain explicit bounds in

Theorem 1. Using these lemmas together will establish Theorem 1 whose proof is

deferred to the Appendix.

Lemma 4. For any pair of disjoint sets G,H ⊆ N ×A, the effective bound β(G,H)

defined in (9) is equal to the minimum value of a linear programming problem. That

is,

β(G,H) = min
g,h

∑
U∈G

c(U)g(U)− b(U)h(U)

s.t.
∑
U∈G

g(U)χU −
∑
U∈G

h(U)χU = signG,H , (18)

g, h ≥ 0, (19)

where χU(i, j) = 1 if (i, j) ∈ U and 0 otherwise; signG,H(i, j) = 1 if (i, j) ∈ G, −1

if (i, j) ∈ H, and 0 otherwise.

Theorems 4 and 5 will be shown in the Appendix by using a series of lemmas

below. We first analyze the problem with floor constraints. By setting g = 0 in

Lemma 3, the projection cone is given by

W = {(f, h) ∈ Rl+r | f>B + h>C = 0, h ≥ 0}. (20)

Observe that W is a pointed cone. The next lemma provides a characterization

of the set Ŵ of {0,±1} extreme rays of W . For any U ⊆ N × A, a cover P of U

is defined by a collection of constraint sets in G such that U ⊆ ∪G∈PG. We say a

cover P is minimal, if there exists no other cover P ′ such that P ′ ⊂ P .

Lemma 5. (Floor constraints) (f, h) is a {0,±1} extreme ray of the set W given

by (20) if and only if (−f, h) is the incidence vector of some (S, (Pt)t∈T ), where
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S ⊆ Ω and each Pt is a minimal cover of I(t, S) with ∪G∈PtG = I(t, S). That is,

f(i, ti, j) =

{
−1, if (ti, j) ∈ Si,
0, otherwise,

and

h(G, t) =

{
+1, if t ∈ Γ(S) and G ∈ Pt,
0, otherwise.

We now turn to the problem with only ceiling constraints. By Lemma 3, the

value of h does not affect the implementability inequality. By eliminating h ≥ 0 in

W , the projection cone can be written as

W = {(f, g) ∈ Rl+r | −f>B + g>C ≥ 0, g ≥ 0}. (21)

Note that W is pointed and we obtain the following characterization of the set Ŵ

of {0,±1} extreme rays.

Lemma 6. (Ceiling constraints) (f, g) is a {0,±1} extreme ray of the set W given

by (21) if and only if either of the following conditions holds:

(1) f(i, ti, j) = −1 for exactly one (i, ti, j) and 0 otherwise, and g = 0.

(2) (f, g) is the incidence vector of some (S, (Pt)t∈T ), where S ⊆ Ω and each Pt
is a minimal cover of I(t, S), that is,

f(i, ti, j) =

{
+1, if (ti, j) ∈ Si,
0, otherwise,

and

g(G, t) =

{
+1, if t ∈ Γ(S) and G ∈ Pt,
0, otherwise.

In each of Lemmas 5 and 6, it follows that the set of extreme rays Ŵ is char-

acterized by the incidence vectors of the form (S, (Pt)t∈T ). On the other hand,

some extreme rays are redundant in describing the implementability condition. In

the Appendix, we complete the proof of Theorems 4 and 5 by removing redundant

extreme rays.
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5 Case studies

In this section we discuss several interesting cases where our approach and results

can be applied. We will briefly examine each case.

5.1 Hierarchical structures

In this subsection, we investigate the structures of feasible reduced forms and

obtain characterizations that are useful for optimization and implementation. Vohra

(2011) shows that the set of feasible reduced form auctions is a polymatroid, which

implies that feasible reduced forms that optimize over a given linear objective can

be found by the greedy algorithm. Alaei et al. (2019) develop a polymatroidal de-

composition property to show that the set of feasible reduced forms is a polymatroid

associated with an expected rank function.2 We intend to investigate the polyhedral

aspect of the implementability condition in our environment. For illustration, we

restrict attention to hierarchies with ceiling constraints only.

Let Ω be the ground set. For every S ⊆ Ω and t ∈ T , define f t(S) = c̄(I(t, S)).

For each S ⊆ Ω, define

f(S) =
∑
t∈T

λ(t)f t(S).

We call f t an ex post rank function and f the expected rank function. By the

change of variables, we denote y(ti, j) = Qi(ti, j)λi(ti). By Theorem 5, the set of

implementable reduced forms in (13) can be written as

Q = {y ∈ RΩ
+ |
∑
e∈S

y(e) ≤ f(S), for all S ⊆ Ω}. (22)

Proposition 1. If G is a hierarchy, the set Q given by (22) is a polymatroid.

We now characterize the extreme points of the feasible reduced forms. For sym-

metric reduced-form auctions, Border (1991) constructs a class of hierarchical al-

location rules that implement the extreme points of feasible reduced forms. Alaei

et al. (2019) introduce a class of ordered subset allocation rules for implementation

in auction problems with matroid constraints. One common feature of hierarchical

2They also provided computationally tractable methods for optimization and implementation
of interim allocation rules.
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and ordered subset allocations is that both use some priorities to rank agents by

their types. We generalize the ordered subset allocations of Alaei et al. (2019) to

our environment.

Definition 5. A subset Π ⊆ Ω is an ordered set if Π is given by an ordering on

elements ((t1, j1), (t2, j2), ..., (tl, jl)), where (tk, jk) denotes the k-th element in Π.

Note that priorities depend not only on types but also on objects, i.e., while type

ti of agent i may have a higher priority for object j than the other agents’ types in

the list, it may have a lower priority for some other object j′.

Definition 6. (Ordered subset mechanisms) A feasible mechanism p is an ordered

subset mechanism for an ordered subset Π of Ω, if the mechanism orders the agents

on the basis of their type-object pairs according to Π and allocates the objects se-

quentially, given the feasibility constraints defined by f t. That is,

p(i, j, t) =

{
1, if (ti, j) ∈ Sk \ Sk−1 and f t(Sk) ≥ f t(Sk−1) + 1,

0, otherwise.

where Sk = {(t1, j1), ..., (tk, jk)} denotes the first k ≤ |Π| elements of Π.

For the ordered subset mechanism we have the following characterization result.

Proposition 2. Every extreme point of the set Q given by (22) is implementable

by an ordered subset mechanism.

We will use Example 1 to illustrate an ordered subset mechanism.

Example 7. (Example 1 continued) Recall that there are three fields of study

{j1, j2, j3} and three students N = {i1, i2, i3}. The distributional constraints require

that for {j1, j2}, at most one seat be allocated to the students {i1, i2}, and for all

the fields, at most five seats be allocated to all the students. The constraint sets are

given in Example 1. Let G0 = {i1, i2} × {j1, j2}. The effective capacity is given by

c̄(G) = 1 if G is a singleton or G ⊆ G0, by c̄(G) = 4 if |G| ≤ 4 and G ∩G0 = ∅, by

c̄(G) = |G|+ 1 if |G| ≤ 4 and G ∩G0 6= ∅, and by c̄(G) = 5 otherwise. Let

Π = ((t11, j1), (t12, j2), (t13, j2), (t23, j1), (t11, j3))

be an ordered subset.
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For this example, with respect to the ordered subset mechanism, at type profile

t = (t11, t
1
2, t

1
3), we have I(t,Π) = {(i1, j1), (i2, j2), (i3, j2), (i1, j3)} and p(i, j, t) is

given as follows: At round 1, student i1 takes j1; At round 2, student i2 cannot take

j2 as {(i1, j1), (i2, j2)} is infeasible; At round 3, student i3 takes j2; and at round 4,

student i1 cannot take j3 as {(i1, j1), (i3, j2), (i1, j3)} is not feasible.

5.2 Bilateral Trade

We show how the conic method can be applied to the classic bilateral trade

problem of Myerson and Satterthwaite (1983). Observe that the bilateral trade

problem corresponds to the case of our current model where there are two players

and one unit of a single good, and where the ceiling and the floor are equal. In

particular, we set N = {1, 2}, |A| = 1, G = {N}, b(N) = c(N) = 1, and b({i}) = 0.

Note that the equality constraint implies that g is free in the set W given by (7).

By eliminating h ≥ 0, the projection cone reduces to

W = {(f, g) ∈ Rl+r | −f>B + g>C ≥ 0}.

We characterize the generators of the projection cone for this bilateral trade

problem. In contrast to the auction problem whose projection cone is pointed, we

show that the projection cone of a bilateral trade is non-pointed.

Lemma 7. For bilateral trade, we have: (1) W is non-pointed. (2) M(W ) is TUM.

The next result gives a detailed characterization of the projection cone concerning

bilateral trade.

Lemma 8. For bilateral trade, if (f, g) is a {0,±1} generator of W , then one of

the following conditions holds:

(1) (f, g) = (1, ..., 1) or (f, g) = (−1, ...,−1).

(2) f(i, ti, j) = −1 for a unique (i, ti, j) and 0 otherwise, and g = 0.

(3) (f, g) is the incidence vector of some (E,Γ(E)), where Ei ⊆ Ti for all i ∈ N .
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That is,

f(i, ti) =

{
+1, if ti ∈ Ei,
0, otherwise,

and

g(t) =

{
+1, if t ∈ Γ(E),

0, otherwise.

The generators in condition (1) of this lemma correspond to a basis of the lin-

earity space of the projection cone defined by {x ∈ W : Mx = 0}. These generators

correspond to the equality constraint in the implementability condition:∑
i=1,2

∑
ti∈Ti

Qi
i(ti)λi(ti) =

∑
t∈T

λ(t). (23)

Note that if the projection cone is non-pointed, the linear description is not

unique and (23) can be used to generate different descriptions. For bilateral trade,

as both the seller and the buyer are interested in the interim expected probability

of trade (i.e., Q1
i (ti)), we can obtain the following characterization result.

Proposition 3. For bilateral trade, Q ∈ Rl
+ given by (23) is implementable if and

only if ∑
t1∈T1

Q1
1(t1)λ1(t1)−

∑
t2∈T2

Q1
2(t2)λ2(t2) = 0, (24)

and for all E with Ei ⊆ Ti for all i = 1, 2,∑
t1∈E1

Q1
1(t1)λ1(t1)−

∑
t2∈E2

Q1
2(t2)λ2(t2) ≤ λ(E1 × Ec

2). (25)

That is, at the ex ante stage, the two players must have the same expectations on

the probability of trade, and the difference in the seller’s and the buyer’s interim

probabilities of trade for any set of types E1 × E2 cannot be too distinct.

We provide some interpretation of the implementability conditions, by comparing

an auction with a bilateral trade. In Border’s theorem, only coefficients “+1” appear

in the linear inequalities. In contrast, the implementability condition for bilateral

trade here contains coefficients not only “+1” but also “−1” in the linear inequalities.

26



The interpretation for this result is intuitive: In Myerson (1981), the “+1” coefficient

means that if for buyer 1 the expected probability of winning becomes higher, then

for buyer 2 the expected probability of winning must be lower as the buyers are

competing for the probabilities of winning. In Myerson and Satterthwaite (1983),

however, the “+1” coefficient refers to that for each player her expected probability

of trade for some types is obtained by summing up her interim probabilities of trade

for these types, the “−1” coefficient means that the difference between the seller’s

ex ante expected probability of trade and the buyer’s cannot be too large. This is

because trade is a public alternative: increasing the probability that trade occurs

would increase both players’ expected probabilities of trade.

5.3 Compromise

We discuss how to apply our approach to the compromise problem studied by

Börgers and Postl (2009). In their model there are two players (i.e., N = {1, 2})
and three alternatives (i.e., A = {a0, a1, a2}). The players have opposite preferences:

a1 �1 a0 �1 a2 and a2 �2 a0 �2 a1. That is, the best alternative to one player is the

worst alternative to the other player. We normalize ui(a0) = 0 for i = 1, 2. Each

player i has private information about her payoffs on a1 and a2, given by a type

ti ∈ Ti.3

While the number of types in Börgers and Postl (2009) can be any positive

integer, for illustrative purpose we focus on the case of two types, i.e., |T1| = |T2| = 2.

In this problem a feasible allocation rule q : T → ∆(A) assigns each type profile

a lottery over alternatives. Hence for each player with type ti, the reduced form

allocation probability is multidimensional: Qi(ti) = (Qi(ti, a1), Qi(ti, a2)).

To apply the conic method in this setting, let B be an incidence matrix where

each row is indexed by (i, a, ti), each column is indexed by (a, t), and the entry in

row (i, a, ti) and column (a′, t′) is 1 if a = a′ and ti = t′i and 0 otherwise. Let C

be an incidence matrix where each row is indexed by t, each column is indexed by

(a, t), and the entry in row t and column (a′, t′) is 1 if t = t′ and 0 otherwise. The

3Note that Börgers and Postl (2009) normalize ui(ai) = 1 and ui(aj) = 0 and assume each
player has private information about her payoff on the compromise alternative k0, i.e., ui(a0) = ti.
The reduced-form implementation problem is the same irrespective of the normalizations.
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projection cone is given by

W = {(f, g) | −f>B + g>C ≥ 0}.

We will prove that when each player has two types, the projection cone is non-

pointed and the constraint matrix of the projection cone is totally unimodular.

Lemma 9. For compromise with binary type sets, we have: (1) W is non-pointed.

(2) M(W ) is TUM.

It is worth noting that while M(W ) does not form two laminars (it contains

three laminars), which differs from the bilateral trade problem, the constraint matrix

remains totally unimodular.

The above result implies that the projection cone is generated by {0,±1} vectors.

To present the implementability condition, let T1 = {i1, i2}, T2 = {j1, j2}, and K =

{a1, a2}. Denote Qa
il = Qi(l, a)λi(l). It can be verified that the implementability

inequalities are given by

1

2

∑
a∈K

(Qa
1i −Qa

1i′ +Qa
2j1

+Qa
2j2

) ≤ λij1 + λij2 , ∀i ∈ T1, (26)

1

2

∑
a∈K

(Qa
1i1

+Qa
1i2

+Qa
2j′ −Qa

2j) ≤ λi1j + λi2j, ∀j ∈ T2, (27)

1

2

∑
a∈K

(Qa
1i −Qa

1i′ +Qa
2j′ −Qa

2j) ≤ λij, ∀(i, j) ∈ T, (28)

1

2
(Qa

1i −Qa
1i′ +Qa

2j′ −Qa
2j) ≤ λij, ∀(a, i, j) ∈ K × T. (29)

6 Concluding Remarks

Many practical problems and markets face various complex distributional con-

straints going beyond the traditional ceiling or capacity constraints. In this paper,

we have studied the implementation problem of reduced-form allocation of multiple

indivisible objects to many agents with distributional constraints. In our model,

objects can be private goods or public/club goods, every agent may demand several

objects and has private information over her preferences. Her private information

is described by a finite set of types. Distributional constraints are described by a

variety of families of pairs of agent and object.
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Using a lift-and-project method, we have been able to obtain a conic approach

for studying the implementability condition. We have shown how this conic ap-

proach can be applied to many important problems including matching, auctions,

bilateral trade, compromise with distributional constraints. We have demonstrated

how the approach allows for a unified treatment of different classes of problems. We

have succeeded in identifying a fundamental and very general condition called total

unimodularity and establishing a general characterization result on implementation

under this condition. Total unimodularity reflects the essential property of the class

of well-studied totally unimodular matrices. Analyzing these matrices offers also

interesting criteria that can be explored to classify different classes of economic

problems. For each problem, the main task is to check whether its projection cone

preserves total unimodularity or not. In fact, we have proved that three large classes

of constraint structures: hierarchies, bihierarchies with canonical constraints, and

consecutiveness each can ensure total unimodularity.

We hope this study has shed new light on implementation of reduced-form al-

location and will provide a useful and necessary basis for further study on many

complex real life resource allocation problems.

Appendix

Proof of Theorem 1. We prove this result with the following steps. First note that

if the implementation structure is TUM, then the constraint matrix of G is TUM,

as every submatrix of a TUM matrix is TUM. Hence, the set of feasible ex post

random allocations has a linear characterization defined by condition (1), and the

linear constraints F describe the implementation system. Next, since the projection

cone is TUM, we apply Lemma 2 to F and know that the generators of the projection

cone are {0,±1} vectors. By Lemma 3, pick any non-zero f ∈ {0,±1}l such that

(f, g, h) ∈ W for some g, h ≥ 0. f corresponds to the incidence vector of some

(S+
i , S

−
i )i∈N . Denote W (f) = {(g, h) : (f, g, h) ∈ W}. Consider the problem of

minimizing g>cλ − h>bλ subject to (g, h) ∈ W (f). Note that the problem reduces

to the following pointwise optimization, i.e., for every t ∈ T ,

min g>t c− h>t b, s.t. (gt, ht) ∈ Wt(f), (30)
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where gt, ht,Wt(f) are the projections of g, h,W (f) onto t. That is, Wt(f) is given

by ∑
G∈G

gt(G)χG −
∑
G∈G

ht(G)χG = signI(t,S
+),I(t,S−),

gt(G), ht(G) ≥ 0,

where signI(t,S
+),I(t,S−)(i, j) = 1 if (i, j) ∈ I(t, S+), −1 if (i, j) ∈ I(t, S−) and 0

otherwise. By Lemma 4, we have the value of the minimization problem is equal to

β(I(t, S+), I(t, S−)). �

Proof of Theorem 3. It suffices to prove the case of |A| = 1, as if A contains more

goods, consecutiveness implies that each of the goods can be treated separately. Pick

any square submatrix M of M(W ) = [ CB ]. It is sufficient to prove that det(M) ∈
{0,±1}. We show that after some elementary row operations M can be converted

into a matrix M̃ where for each column, there is at most one 1 and at most one

−1 for each column in C (leaving singletons out). Consider any two rows of C,

(k, t) and (k′, t) with constraint set Gk immediately followed by Gk′ in M . Suppose

Gk ∩ Gk′ 6= ∅. Negate row (k′, t) and add it to row (k, t). These elementary row

operations change only the sign of the determinant of M and hence |det(M)| =

|det(M̃)|. Moreover, M̃ now contains at most one 1 and at most one −1 for each

column in C, it contains at most three nonzeros in each column. It is sufficient to

show that M̃ is TUM.

We show that for each submatrix M ′ of M̃ with exactly two nonzeros per row

and per column, each cycle P in M ′ is even. Note that for the two nonzeros in each

row of P , there are two types of possible changes of column indexes: (i) from (i, t)

to (i′, t) in row (G, t) of C, and (ii) from (i, ti, t−i) to (i, ti, t
′
−i) in row (i, ti) of B.

P induces index changes P1 on N and P2 on T . First note that the sum of entries

in rows P2 (of P ) is a multiple of four since type sets are binary. Also note that

for rows P1, the submatrix for each t ∈ T is either (a) [ 1 0 −1
0 1 1 ] or (b) [ 1 1 ] by the

consecutive property and the elementary row operations. This implies that the sum

of entries in rows P1 is also a multiple of four, since each column with one −1 and

one 1 has a sum equal to 0 while each column with one 1 corresponds to exactly one

1 in P2. The sums of entries in P1 and P2 are equal. Hence P is an even cycle. �

Proof of Lemma 1. We first deal with the ‘only if’ part. Suppose y is implementable
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by some x. Pick any (f, g) ∈ P and f>A1 + g>A2 = 0, g ≥ 0. Then (f>B1 +

g>B2)y ≤ −(f>A1 + g>A2)x+ f>b1 + g>b2 = f>b1 + g>b2. Hence y ∈ Y .

Now we turn to the ‘if’ part. Suppose y is not implementable. There exists no

x such that A1x = b1 − B1y and A2x ≤ b2 − B2y. By Farkas’ Lemma (Schrijver,

1986, p.89), there exists (f, g) such that f>A1 + g>A2 = 0, g ≥ 0, and f>(b1 −
B1y) + g>(b2 −B2y) < 0. But then (f, g) ∈ P . There must be (f̂ , ĝ) ∈ P̂ such that

(f̂>B1 + ĝ>B2)y > f̂>b1 + ĝ>b2, and hence y /∈ Y . �

Lemma 2 is immediately obtained by using the following mathematical result,

which gives a nice and clear characterization of general cones defined by a totally

unimodular matrix (TUM) and will be derived from a well-known lemma of Hoffman

(1976).

We first introduce some notations. Let I be the index set of the inequalities in

the cone P . Let J = I=(x) denote the index set in I for which the corresponding

inequalities hold as equations (or active constraints) at x ∈ P . Let MJ be the

corresponding submatrix for J , and let rkMJ denote the rank of MJ . Note that

x ∈ P is an extreme ray if and only if I=(x) is maximal, i.e., there exists no x′ ∈ P
such that J ′ = I=(x′) and J ⊂ J ′ ⊂ I. If x is an extreme ray, then so is λx for all

λ ≥ 0. Observe that for a pointed cone, the set of extreme rays provides a unique

(up to positive scaling) minimal set of generators.

Lemma 10. Let P = {x ∈ Rp |Mx ≤ 0} be a polyhedral cone and let M be TUM.

(1) If P is pointed, then P is generated by {0,±1} extreme rays.

(2) If P is non-pointed, then P is generated by {0,±1} vectors.

Proof of Lemma 10. (1) Let P be pointed. Assume that z ∈ P is an extreme ray

and J = I=(z). Since rkMJ = q − 1, there is a submatrix M ′ with q − 1 linearly

independent rows in MJ . Since M is TUM, M ′ is also TUM. We need to show that

if M ′ with columns M ′
1, ...,M

′
q has rank q−1, then M ′z = 0 implies that all nonzero

coordinates of z are either α or −α, for some α > 0. The proof is essentially the

same as Lemma 3.1 of Hoffman (1976). Note that for any zj 6= 0,

M ′
j =

q∑
i=1,i 6=j

zi
zj
M ′

i , (31)

and M ′
i , i 6= j are linearly independent. The linear system has a unique solution
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( zi
zj

), i 6= j. Since M ′ is TUM, each zi
zj

is integer. As this argument applies to every

nonzero entry in z, for any nonzero zj, zj′ and j 6= j′,
zj′

zj
and

zj
zj′

are integers and

hence |zj| = |zj′ | = α for some α > 0. Therefore every extreme ray of P contains a

{0,±1} vector.

(2) Let P be non-pointed. We write P as a union of finitely many pointed cones.

Notice that the Euclidean space Rq is a union of l := 2q closed orthants i = 1, ..., l.

Let Pi be the intersection of P and orthant i (with some Pi possibly empty). Then

P = ∪li=1Pi. We claim that each Pi and hence P is generated by {0,±1} vectors.

By the first part of the lemma, we only need to show that for each i, Pi is a pointed

cone and its constraint matrix Mi is TUM. Notice that by construction, each Pi is

a pointed cone. Since M is TUM and Mi is obtained from M by adding rows with

at most one non-zero entries (1 or −1), Mi is also TUM. �

Proof of Lemma 3. Applying Lemmas 1 and 2 to F and W yields immediately the

result. �

Proof of Lemma 4. β(G,H) is defined by the following problem

β(G,H) = max{w>x | b ≤ x ≤ c}, (32)

where w = signG,H . The dual problem of the problem above is given by

min g>c− h>b s.t. (18) and (19). (33)

By strong duality, the existence of an optimal solution for the primal problem

implies that the dual problem also has an optimal solution and the optima are

equal. �

We need to introduce the following result for the proof of Theorem 3.

Lemma 11. Suppose there are floor constraints only. For each U ⊆ N × A,

b̄(U) = max{
∑
G∈P

b(G) | P ⊆ G is a minimal cover of U with ∪G∈P G = U}. (34)

Proof. For any U ⊆ N × A, b̄(U) is defined as the value of the following problem

min{x(U) | x(G) ≥ b(G), ∀G ∈ G}. (35)
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The dual problem of the problem above is given by

max{
∑
G∈G

b(G)h(G) | h ≥ 0,
∑
G∈G

h(G)χG = χU}. (36)

By strong duality, the primal has a solution implies the dual problem also has a

solution and the optima are equal. Without loss, let 0 ≤ h ≤ 1 be an optimal

solution. Since the constraint matrix is totally unimodular, h can take 0-1 values.

Hence h is the incidence vector of P ⊆ G. Moreover, P is a minimal cover of U with

∪G∈PG = U . �

Proof of Lemma 5. We deal with the ‘only if’ part. Suppose z = (f, h) is a {0,±1}
extreme ray. h ≥ 0 implies f ≤ 0. Then −f is the incidence vector of some S. That

is, for each t ∈ T , f(i, ti, j) = −1 for all (i, j) ∈ I(t, S) and f(i, ti, j) = 0 otherwise.

Denote ht = h(G, t)G∈G. Then z ∈ W implies∑
G∈G

ht(G)χG = χI(t,S), (37)

ht(G) ≥ 0. (38)

Case 1: t /∈ Γ(S). If the set of active constraints is maximal, ht = 0.

Case 2: t ∈ Γ(S). Since each ht(G) ∈ {0, 1}, ht is the incidence vector of some

Pt ⊆ G: ht(G) = 1 for each G ∈ Pt and ht(G) = 0 otherwise. (42) implies that each

(i, j) in I(t, S) is contained in at least one G ∈ Pt. Hence Pt is a cover. Moreover,

each (i, j) in I(t, S) is contained in exactly one G ∈ Pt. Then Pt is minimal.

We turn to the ‘if’ part. Suppose z is not a {0,±1} extreme ray, i.e., the set of

active constraints in (37)-(38) is not maximal at z. But then there exists z′ such

that more constraints in (38) are active. Since P ′t ⊂ Pt is a cover of I(t, S), we have

Pt is not a minimal cover. �

Proof of Theorem 4. By Lemmas 5 and 11, for the extreme rays with given S, it

implies that the extreme rays that does not yield the bounds b̄(I(t, S)) for all t ∈ T
are redundant and we are done. �

The following result is used for the proof of Lemma 6 and Theorem 5.
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Lemma 12. Suppose there are ceiling constraints. For each U ⊆ N × A,

c̄(U) = min{
∑
G∈P

c(G) | P ⊆ G is a minimal cover of U}. (39)

Proof. For any U ⊆ N × A, c̄(U) is defined as the value of the following problem

max{x(U) | x ≥ 0, x(G) ≤ c(G),∀G ∈ G}. (40)

The dual problem of the problem above is given by

min{
∑
G∈G

c(G)g(G) | g ≥ 0,
∑
G∈G

g(G)χG ≥ χU}. (41)

A similar argument as Lemma 11 implies that g is the incidence vector of a minimal

cover P of U . �

Proof of Lemma 6. We first deal with the ‘only if’ part. The ‘if’ part can be shown

analogously as Lemma 5. Suppose z = (f, g) is a {0,±1} extreme ray. There are

two cases:

(1) f has at least one entry (i, ti, j) with value −1. We show that all other

coordinates of z must be 0. Note that g ≥ 0 implies f(i, ti, j)+
∑

G:(i,j)∈G g(G, t) > 0.

Then in M∗ := M(W ), each of columns (i, j, t) is not in J = I=(z). Let z̃ = (f̃ , g)

with f̃(i, ti, j) = 0 and f̃ = f otherwise. Then z̃M∗
J = 0, i.e., for columns J the

constraints remains active, but for columns (i, j, t) more constraints may become

active. Hence J ⊆ J̃ = I=(z̃). Since J is maximal, either J̃ = J or J̃ = I. In

the first case, z̃ = αz for some α > 0, yielding a contradiction. Hence, J̃ = I and

z̃M∗ = 0. Since W is pointed, z̃ = 0 and z = (0, ..., 0,−1, 0, ..., 0).

(2) f ≥ 0. Then f is the incidence vector of some S: f(i, ti, j) = 1 for all

(ti, j) ∈ Si and f(i, ti, j) = 0 otherwise. That is, for each t ∈ T , f(i, ti, j) = 1 for

all (i, j) ∈ I(t, S) and f(i, ti, j) = 0 otherwise. We show that g must be the form in

the Lemma. Fix t ∈ T and denote gt = g(G, t)G∈G. Then (f, g) ∈ W implies∑
G∈G

gt(G)χG ≥ χI(t,S), (42)

gt(G) ≥ 0. (43)
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Case 1: t /∈ Γ(S). If the set of active constraints is maximal, gt = 0.

Case 2: t ∈ Γ(S). Since each gt(G) ∈ {0, 1}, gt is the incidence vector of some

Pt ⊆ G: gt(G) = 1 for each G ∈ Pt and gt(G) = 0 otherwise. (42) implies that each

(i, j) in I(t, S) is contained in at least one G ∈ Pt. Hence Pt is a cover. We then

show that Pt is minimal. Suppose not and there exists a cover P ′ such that P ′ ⊂ Pt.
Then Pt \ P ′ 6= ∅. Then for P ′, (42)-(43) continues to hold, but more constraints

are active: one more constraint in (43) is active, and since the left-hand side of each

constraint in (42) is weakly reduced, more constraints in (42) may become active.

But then the set of active constraints at z cannot be maximal and z is not extreme.

Hence Pt is minimal. �

Proof of Theorem 5. By Lemmas 6 and 12, for the extreme rays with given S, it

implies that the extreme rays that does not yield the bounds c̄(I(t, S)) for all t ∈ T
are redundant and we are done. �

Before the proof of Proposition 1, we introduce the following definition. Let E

be a finite set. A function f : 2E → R is called submodular, if f(U) + f(V ) ≥
f(U ∩ V ) + f(U ∪ V ) for all U, V ⊆ E; see Fujishige (2005). A function f : 2E → R
is nondecreasing, if for all U, V ⊆ E, U ⊆ V implies f(U) ≤ f(V ).

Proof of Proposition 1. We show that f is a nondecreasing submodular function

on Ω with f(∅) = 0. We first show that c̄ is nondecreasing, submodular, and

c̄(∅) = 0. Since G is a laminar, by Lemma 1 in Che et al. (2013), we have that c̄ is

nondecreasing, submodular, and c̄(∅) = 0.

Because the operation I(t, S) is in essence the intersection of S and t, for all

S, S ′ ⊆ Ω, we have I(t, S∩S ′) = I(t, S)∩ I(t, S ′) and I(t, S∪S ′) = I(t, S)∪ I(t, S ′).

Hence the submodularity of c̄ implies that f t is submodular. Since f is a convex

combination of nondecreasing submodular functions (i.e., taking expectation of f t),

f is nondecreasing, submodular, and f(∅) = 0. �

Proof of Proposition 2. For any ex post allocation rule p, we can define an equivalent

allocation rule x : T × Ω→ {0, 1} by

xt(t′i, j) =

{
p(i, j, t), if t′i = ti,

0, otherwise.
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The ex post feasibility constraints for p can be written as

xt(S) ≤ f t(S), for all t ∈ T, all S ⊆ Ω. (44)

By Proposition 1, Q is a polymatroid. Let y be an extreme point of Q. By

Proposition 6 in Alaei et al. (2019), there exists an ordered subset Π ⊆ Ω such that

y(e) =

{
f(Sk)− f(Sk−1), if e ∈ Sk \ Sk−1,

0, otherwise,

where Sk is the first k elements of Π. It implies that the interim feasibility condition

(22) must be tight for every Sk, which implies that for any ex post allocation rule

x that implements y, the ex post feasibility condition (44) must also be tight for

every Sk and every t ∈ T . Define the following ordered subset mechanism

xt(t′i, j) =

{
1, if t′i = ti, (t

′
i, j) ∈ Sk \ Sk−1, and f t(Sk) ≥ f t(Sk−1) + 1,

0, otherwise.

By construction, x yields the outcome such that the ex post feasibility is tight for

every t and Sk, and x implements y. �

Proof of Lemma 7. (1) (f, g)M(W ) = 0 implies f(i, ti) = g(t) = f(j, tj) = g(t′i, tj) =

f(i, t′i) for all ti, tj, t
′
i. Hence (f, g) = (1, ...., 1) is in the linearity space of W and W

is non-pointed. (2) is immediate. �

Proof of Lemma 8. Let (f, g) be a {0,±1} generator. Since (f, g) ∈ W , for each

t ∈ T , we have

− f(i, ti) + g(t) ≥ 0. (45)

When all of the constraints are active, the generators in the linearity space of W

is given by (1, ..., 1) and (−1, ...,−1). We then identify the generators not in the

linearity space. We distinguish the following two cases.

(a) f(i, ti) ∈ {0,−1} for all (i, ti). Since (f, g) attains a maximal set of active

constraints, then f(i, ti) = −1 for a unique (i, ti) and 0 otherwise, and g = 0.

(b) f(i, ti) = 1 for at least one (i, ti). By (45), for any t ∈ T , if f(i, ti) = 1 for

at least one i, then g(t) = 1. If f(i, ti) = 0 for exactly one i, and f(k, tk) ≤ 0, then

g(t) = 0. If f(i, ti) = −1 for i = 1, 2, then g(t) = −1. Define (f̃ , g̃) by replacing
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each f(i, ti) = −1 by 0 and g(t) = −1 by 0. There are more active constraints at

(f̃ , g̃) than at (f, g). Hence if (f, g) has a maximal set of active constraints, f ≥ 0

and (f, g) is the incidence vector of (E,Γ(E)). �

We introduce the following theorem for the proof of Lemma 9.

Lemma 13. (Ghouila-Houri, 1962; Schrijver, 1986) Let M be an p× q matrix. M

is totally unimodular if and only if for every subset of columns Ω ⊆ {1, ..., q}, there

exists a partition Ω1, Ω2 of Ω such that∣∣∣∣∣∑
j∈Ω1

mij −
∑
j∈Ω2

mij

∣∣∣∣∣ ≤ 1 for i = 1, ..., p. (46)

Proof of Lemma 9. A similar argument as Lemma 8 implies that W is non-pointed.

We show that the constraint submatrix M = [ BC ] is totally unimodular. Note that

M is given by

M =



1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1



.

Partition all columns of M into

Ω1 = {(a1, t11), (a1, t22), (a2, t12), (a2, t21)} and

Ω2 = {(a1, t12), (a1, t21), (a2, t11), (a2, t22)},

where tkl denotes the type profile (t1k, t2l). For any subset of the columns Ω, let

Ω′1 = Ω
⋂

Ω1 and Ω′2 = Ω
⋂

Ω2.

It can be seen that the two 1s in each row either belongs to different sets Ω′1

and Ω′2, or at least one of the two 1s belongs to neither of Ω′1 and Ω′2. By the

Ghouila-Houri theorem, M is TUM. �
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Sönmez, T. and Ünver, U. (2010). Course bidding at business school. International

Economic Review, 51(1):99–123.

Truemper (1985). A decomposition theory for matroids. i. general results. Journal

of Combinatorial Theory, Series B, 39(1):43–75.

Vohra, R. (2011). Mechanism Design: A Linear Programming Approach (Econo-

metric Society Monographs). Cambridge University Press.

Vohra, R. (2013). Lecture notes in submodularity and discrete convexity. University

of Pennsylvania.

Williamson, O. E. (1975). Markets and Hierarchies: Analysis and Antitrust Impli-

cations. The Free Press.

41


	2105c
	Lang-Yang Aug 21
	Introduction
	The Model
	Reduced-form implementation

	Main Results
	The Lift-and-Project Approach
	Case studies
	Hierarchical structures
	Bilateral Trade
	Compromise

	Concluding Remarks
	Appendices


