
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion Papers in Economics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Economics and Related Studies 
University of York 

Heslington 
York, YO10 5DD 

 
No. 21/03 

 
 

Testing for equal predictive accuracy with strong 
dependence 

 
Laura Coroneo and Fabrizio Iacone 



 



Testing for equal predictive accuracy with strong dependence

Laura Coroneo1 and Fabrizio Iacone∗2,1

1University of York
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Abstract

We revisit the Diebold and Mariano (1995) test, investigating the consequences of having autocorrelation

in the loss differential. This situation can arise not only when a forecast is sub-optimal under MSE loss,

but also when it is optimal under an alternative loss, or it is evaluated on a short sample, or when a

forecast with weakly dependent forecast errors is compared to a naive benchmark. We show that the

power of the Diebold and Mariano (1995) test decreases as the dependence increases, making it more

difficult to obtain statistically significant evidence of superior predictive ability against less accurate

benchmarks. Moreover, we find that after a certain threshold the test has no power and the correct

null hypothesis is spuriously rejected. Taken together, these results caution to seriously consider the

dependence properties of the selected forecast and of the loss differential before the application of the

Diebold and Mariano (1995) test, especially when naive benchmarks are considered.
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1 Introduction

Accurate forecasts are extremely important for forward-looking decision making. Weather forecasts often

have a dedicated section even on the daily news, and recently predictions of the diffusion of the COVID-19

pandemic have had a critical impact on the life of most people. In economics, decisions over individual

savings, firm-level investments, government fiscal policies and central bank monetary policies rely on forecasts

of, among others, future economic activity and price levels.

To discriminate between good and bad forecasts, Diebold and Mariano (1995) [DM hereafter] suggested

comparing alternative forecasts using a test for equal predictive ability. The DM test is based on a loss

function associated with the forecast errors of each forecast, and allows to test the null hypothesis of zero

expected loss differential between two competing forecasts. This approach takes forecast errors as model-free,

and the test is valid also when the forecasts are produced from unknown models, as for example from

forecast survey data. In addition, if the objective is to compare forecasting methods as opposed to forecasting

models, then Giacomini and White (2006) showed that in an environment with asymptotically non-vanishing

estimation uncertainty the DM test can still be applied.

The DM test allows us to test for equal predictive accuracy using any loss function, and the test statistic

is valid for contemporaneously correlated, serially correlated, and non-normal forecast errors. The test relies

on the assumption that the loss differential is weakly dependent. The rationale for this assumption is that

under mean squared error (MSE) loss optimal q-step ahead forecasts should generate at most MA(q − 1)

errors, so if the considered forecast approximates the optimal forecast, then its forecast errors should not

be too correlated over time, although dependence beyond the MA(q − 1) boundary may take place. In

practice, forecasts with errors that are fairly correlated can occur not only when the considered forecast

fails to approximate the optimal forecast under MSE loss, but also when the forecast is optimal under an

alternative loss function. Patton and Timmermann (2007) show that an optimal forecast under asymmetric

loss can have forecast errors that are serially correlated of arbitrarily high order. Another situation in which

we can have dependency in the loss differential is when a long-run forecast is evaluated on a relatively short

sample.

Still, we can encounter situations in which the loss differential is highly autocorrelated even in the presence

of a prediction with weakly dependent forecast errors and in samples of moderate size. This can happen when

the DM test is used to compare the predictive ability of a selected forecast against a naive benchmark. This is

a common practice, as naive benchmarks are cost-effective and readily available at any time, so they provide

a reference standard for comparisons. Using simple benchmarks allows us to understand the added value of a

specific forecasting technique, as it is desirable that predictions from sophisticated forecasting methods (for
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example complex models or expensive surveys) are more accurate than naive benchmarks. However, naive

forecasts may in some cases generate relevant autocorrelation in the loss differential.

In this paper, we study the performance of the DM test when the assumption of weak autocorrelation

does not hold. We characterise strong dependence as local to unity as in Phillips (1987) and Phillips and

Magdalinos (2007b). This definition is at odds with the more popular characterisation in the literature that

treats strong autocorrelation and long memory as synonyms. Local to unity, however, seems well suited

to derive reliable guidance when the sample is not very large, as it is the case in many applications. With

this definition the strength of the dependence is determined also by the sample size: a stationary AR(1)

process with root close to unity may be treated as weakly dependent in a very large sample, but standard

asymptotics may be a poor guidance for cases with smaller samples and local to unity asymptotics may be

more informative. We show that the power of the DM test decreases as the dependence increases, making it

more difficult to obtain statistically significant evidence of superior predictive ability against less accurate

benchmarks. We also find that after a certain threshold the test has no power and the correct null hypothesis

is spuriously rejected. These results caution us to seriously consider the dependence properties not only of

the selected forecast but also of the loss differential before the application of the DM test, especially when

naive benchmarks are considered.

In the literature, there has been some attention to the issue of forecast evaluation in presence of persistence.

Corradi, Swanson and Olivetti (2001) examines the DM statistic in the presence of cointegration, whereas

Rossi (2005) examines the effect of high persistence on the loss differential. McCracken (2020) provides an

example to show that using a fixed and finite estimation window can result in loss differentials that depend

on the first observations, so that the time series of the loss differential in the DM test is not ergodic for the

mean. These works considered a framework with parameter estimation error; our study is rather closer to

Kruse, Leschinski and Will (2019), who take forecast errors as primitives and derive the properties of the DM

test in the presence of long memory using standard asymptotics, and memory and autocorrelation consistent

standardisation. Kruse et al. (2019) had a sample of 4883 observations, so long memory seems a reasonable

modelling strategy in their case.

To illustrate the problems associated with the DM test when there is dependence in the loss differential,

we consider the case in which an AR(1) forecast for inflation in the Euro Area is compared to two naive

benchmarks: a constant 2% prediction (that represents the inflation target in the Euro Area) and a moving

average prediction. These benchmark predictions have highly dependent forecast errors. As a consequence,

the loss differential is dependent, and the DM test fails to reject the null of equal predictive accuracy, even if

the benchmarks are less accurate than the AR(1) forecast for short forecasting horizons.

The paper is organised as follows. We formally introduce the DM test in Section 2, and derive the
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limit properties of the DM statistics in presence of dependence in Section 3. We investigate the practical

implication of our theoretical findings in a Monte Carlo exercise (Section 4) and in the empirical application

(Section 5). Details on the assumptions of the DGP and formal derivations are in the Appendix.

2 DM test

The DM test was introduced to compare two forecasts of a time series, according to a user chosen loss metric.

For t = {1, . . . , T}, denoting the forecast errors as e1,t and e2,t, respectively, and the loss function L(.),

Diebold and Mariano (1995) consider the loss differential

dt = L(e1,t)− L(e2,t) (1)

and test the null hypothesis of equal predictive ability H0 : E(dt) = 0 against the alternative H1 : E(dt) 6= 0.

The key assumptions by Diebold and Mariano (1995) and Diebold (2015) are that dt is stationary and

weakly dependent, and that the average loss, d = 1
T

∑T
t=1 dt, follows a Central Limit Theorem. In particular,

denoting µ = E(dt), it is assumed that
√
T (d− µ) →d N(0, σ2) as T → ∞, where 0 < σ2 < ∞ is the long

run variance of dt.

Thus, inference on E(dt) can be based on the normalised limit

√
T

(d− µ)

σ
→d N(0, 1). (2)

Denoting σ̂2 an estimate of σ2, σ̂ =
√
σ̂2, then the classical DM test uses the statistic

DM =
√
T
d

σ̂

where the null hypothesis of equal predictive ability is rejected at 5% significance level against a two-sided

alternative if the realization of |DM | is above the 1.96 threshold.

The original DM test exploits the consistency of σ̂2 to justify the standard normal as the limit distribution

under the null. This may generate rather poor size performance in finite sample, see DM and also Clark

(1999). Coroneo and Iacone (2020) use fixed smoothing asymptotics instead, see for example Kiefer and

Vogelsang (2005), Sun (2014c), Sun (2014b), Lazarus, Lewis, Stock and Watson (2018). With this approach,

the limit for σ̂2 is derived under alternative asymptotics: the DM statistic does not have limit standard

normal distribution, but the alternative limit provides a better approximation of the distribution of the DM

statistic in finite samples.
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As the alternative distribution depends on the way σ2 is estimated, we focus on the Weighted Periodogram

estimate using the Daniell kernel. Denoting w(λ) = 1√
2πT

∑T
t=1 dte

iλt the Fourier transform of dt at frequency

λ, and I(λ) = |w(λ)|2 as the periodogram, then we consider in particular the estimate

σ̂2 =
2π

m

m∑
j=1

I(λj) (3)

where λj = 2πj
T are the Fourier frequencies and m is a user-chosen bandwidth parameter: this is treated as

m → ∞ as T → ∞ (and such that m/T → 0) for standard asymptotics but as fixed for fixed smoothing

asymptotics. Under this alternative asymptotics, for σ̂2 defined as the Weighted periodogram estimate with

Daniell kernel as in (3), it holds that, under H0, as T →∞,

DM →d t2m, (4)

see Coroneo and Iacone (2020) for more details.

3 The DM statistic with dependence

The key assumption in the construction of the DM test is the conjecture that dt is weakly dependent. This

assumption seems reasonable in the context of forecasts as it is well known that, under MSE loss, optimal

q−step ahead forecasts should be at most MA(q − 1). For this very reason Diebold and Mariano (1995)

considered estimating σ2 using only the first q − 1 autocovariances of dt, and verified that this assumption

was met in the data in the empirical application that they presented.

However, it is common practice to apply the DM test to test for equal predictive accuracy of a selected

forecast against a naive benchmark, resulting in dependent forecast errors and loss differential, possibly even

strongly autocorrelated. Strong autocorrelation in the loss differential might also arise even in presence of

forecasts that are optimal under alternative loss functions, or when the forecast evaluation sample T is short.

Denoting yt = dt − µ, so that

dt = µ+ yt, (5)

we assume that

yt = ρT yt−1 + ut (6)

where ut is a zero mean, weakly dependent process with long run variance ω. We consider two different

models for ρT : in subsection 3.1 we discuss the local-to-unity AR(1) approximation as in Phillips (1987)
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(alongside with the standard unit root model); in subsection 3.2 we consider the moderate deviations from a

unit root as in Phillips and Magdalinos (2007b). These models are a convenient representation of dependence

for yt when the dimension in T is relatively short, as it is indeed the case in many empirical studies. In both

cases, we refer to the Appendix for a detailed presentation and discussion of the assumptions, and for the

derivation of the results.

3.1 Local to unity autocorrelation

In this case we assume for ρt in (6)

ρT = ec/T with c ≤ 0. (7)

When c is in the neighbourhood of 0, ρT is approximated as 1 + c/T , i.e. ρT ∼ 1 + c/T as c→ 0. When c = 0

then the process yt has a unit root, and it is initialised setting the initial condition y0 = Op(1).

Define

Jc(r) =

∫ r

0

e(r−s)cdW (s)

where W (r) is a standard Brownian motion. The process Jc(r) is a Ornstein-Uhlenbeck process: for given r

it is normally distributed (when c = 0 the Ornstein-Uhlenbeck process is the standard Brownian motion).

We refer to Phillips (1987) for a detailed discussion, but we state some important results from Lemma 1 of

Phillips (1987):

T−1/2ybrTc ⇒ ωJc(r) (8)

T−1/2y ⇒ ω

∫ 1

0

Jc(r)dr (9)

T−2
T∑
t=1

y2t ⇒ ω2

∫ 1

0

Jc(r)
2dr (10)

where Jc(r) = W (r) when c = 0. The result for y in particular means that the sample average is not consistent

in the neighbourhood of a unit root. Denoting

Jc =

∫ 1

0

Jc(r)dr,

from these results it is also possible to establish that, under H0, for m→∞, m/T → 0 as T →∞

1√
m
DM ⇒ Jc√

1
2

∫ 1

0
(Jc(r)− Jc)2dr

, (11)
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we refer to the Appendix for a more detailed derivation of this and other results. In view of (11), as m→∞

the DM test statistic diverges even when the null hypothesis is correct, thus giving spurious evidence of

superior predictive ability. As we interpret the local to unit root as an approximation of an AR(1) in finite

sample, this result suggests that the DM test diverges in presence of a root that is stationary but close to 1.

Notice that this result is not affected by whether the standard normal or the t2m is used to draw the critical

values.

Next, we present the limit of the DM statistic using fixed smoothing asymptotic. For the generic function

of r ∈ (0, 1) a(r), denote A(r) =
∫ r
0
a(s)ds, Â(r) = A(r)− r A(1) and

QA(j) = (2πj)2

{(∫ 1

0

sin(2πjr)Â(r)dr

)2

+

(∫ 1

0

cos(2πjr)Â(r)dr

)2
}

then under c ≤ 0, for m fixed as T →∞,

DM ⇒ Jc√
1
m

∑m
j=1QJc(j)

. (12)

When c = 0, so that the process yt is characterised by a unit root, then the limit distribution in (11) is

W√
1
2

∫ 1
0
(W (r)−W )2dr

, where we used W =
∫ 1

0
W (r)dr; also, in this case Â(r) is

∫ r
0
W (s)ds− r

∫ 1

0
W (s)ds and

the limit is distribution in (12) is W√
1
m

∑m
j=1QW (j)

.

Notice that the limit (12) holds regardless of whether µ = 0 or µ 6= 0. This means that the DM test is not

consistent under this alternative asymptotic.

The limit in (12) exibits the self-normalization property as in Shao (2015). It is interesting to compare

the limits in (11) and in (12) with results in the literature. It is well known that the standardised mean is

diverging in presence of strongly autocorrelated series when m→∞ is assumed, but not when m is assumed

fixed, see for example McElroy and Politis (2012) and Hualde and Iacone (2017). In the context of local to

unity process, this result was established, for example, in Sun (2014a). The advantages of series variance

estimators of the long run variance in presence of autocorrelation is also discussed in Müller (2007). Our

interest in (11) and (12) is, however, slightly different, as we do not see these as alternative limits under

different asymptotics, but rather as guidance that show properties of the DM test for relatively small and

large m.

Remark 1. Results in (11) and in (12) indicate that:

a. With relatively large values for m, the DM statistics diverges even under H0 (spurious significance).

b. With small values for m, the DM statistics does not diverge even under H1, so the test is not consistent.
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However, as the distribution in (12) has much thicker tails than a t2m distribution, then it is still

possible (and indeed it may be frequent) to have many spurious rejections of the null hypothesis.

3.2 Moderate deviations from unit root

As c in (7) varies between −∞ and 0, it is possible to use the theory from subsection 3.1 for any AR(1) model

with positive autocorrelation. However, the limits (11) - (12) may not provide a valuable guideline when ρT

is not in fact in the very close neighbourhood of unity. For this class of models, Phillips and Magdalinos

(2007b) generalise ρT to moderate deviations from the unit root. We simplify the model slightly, and consider

ρT = 1 + c/Tα for α ∈ (0, 1), and c < 0. (13)

Moderate deviations from the unit root following (13) are also discussed in Phillips and Magdalinos (2007a).

Giraitis and Phillips (2012) provide a generalisation of some results under a weaker condition, similar to

(1− ρT )T →∞. Under assumption (13), d is a consistent estimate of µ only when α ∈ (0, 1/2), but the CLT

in (2) still holds for any α ∈ (0, 1), see Theorem 2.1 and the discussion on page 168 of Giraitis and Phillips

(2012). Recalling that, for any T , σ2 = (1− ρT )−2ω2 and noticing that this is proportional to T 2α in large

sample, the rate of convergence of the CLT is reduced to
√
T 1−2α (the theory does not cover the α = 1 case

but notice that
√
T 1−2α → T−1/2 as α → 1 and this is the rate in (8), suggesting a proximity of the two

representations; the extension of (8) under (13) is explored more in Phillips and Magdalinos (2007a)).

We can establish that, for m→∞, m/T → 0 as T →∞,

√
T
d− µ
σ̂
→d N(0, 1), for mTα−1 → 0 (14)

(mTα−1)−1/21/2(−c)1/2
{√

T
d− µ
σ̂

}
→d N(0, 1), for mTα−1 →∞ (15)

for any α ∈ (0, 1) where as usual σ̂2 is the Daniell estimate of σ2 as in (3).

Remark 2. Results in (14) and in (15) indicate that:

a. Rewriting DM =
√
T d−µ

σ̂ +
√
T µ
σ̂ for m as in (14), the power depends on the drift

√
T µ
σ̂ = O(T 1/2−α).

Therefore, the DM test still has power in cases of moderate deviations from the unit root, when α < 1/2.

However, from this representation it is immediate to see that as the drift is of order T 1/2−α, the

power decreases as α→ 1/2. This result has an important practical implication, as it means that it is

progressively more difficult to detect forecast inaccuracy as the dependence increases, even well within

the weak dependence region.
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b. The test is not consistent for α ∈ (1/2, 1).

c. When mTα−1 → ∞, the DM statistics diverges even under H0, thus resulting again in spurious

significance: condition mTα−1 → 0 in (14) is not binding when α = 0 but it is very strong as α→ 1.

Thus, results in (14) and (15) are intermediate between the weakly dependent |ρT | = |ρ| < 1 case and

the unit root case. Taken together, they suggest that for large values of m the DM test will give spurious

significance in finite sample as ρ is close to 1, and this problem is more relevant the closer ρ is to unity,

relative to the sample size, and the larger the bandwidth m is.

4 Monte Carlo results

In this section, we investigate the properties of the DM statistic in the neighbourhood of unity in a Monte

Carlo exercise. In the first part of the Monte Carlo exercise we simulate the dt statistics and verify the

predictions that we formulated in Remarks 1 and 2. We derived the results in Section 3 under assumptions

that have been formulated for dt, in the spirit of Diebold and Mariano (1995) and Diebold (2015). This is

very convenient in our situation, as it gave us the possibility to characterise results in (11), (12), (14), and in

(15), with a smooth increase of dependence. Giacomini and Rossi (2010), on the other hand, derived the

properties of the DM test from assumptions on a specific forecasting model. This seems rather difficult under

assumptions on dependence as in (7) or (13), although it is possible to derive for example the properties

of e21t using (8) and the continuous mapping theorem when e1t is a local to unity process, see for example

Rossi (2005). Proceeding as in Clark (1999), in the second part of the Monte Carlo exercise, we explore the

properties of the DM test imposing autocorrelation in e1t, e2t in (1), and we verify that the conclusions that

we drew in Remarks 1 and 2 are still a valid guidance.

In both parts, we consider two sample sizes, T = 50 and T = 100, and a range of bandwidths spanning

m = 1 to m =
⌊
T 2/3

⌋
. For each experiment we run 10, 000 repetitions, and we compute the empirical

frequencies of rejections of the two sided version of the test, i.e. we compare the |DM | statistic against the

appropriate 5% critical value from the t2m distribution. We always use the t2m statistic as this has better

size properties, as for example discussed in Lazarus et al. (2018) or in Coroneo and Iacone (2020).

In the first experiment, we simulate

dt = µ+ yt, yt = ρyt−1 + εt (16)

where εt is NIID(0, 1), for a range of values of ρ from 0 to 1. For ρ = 1, to facilitate comparison, we initialise

the process setting the same initial condition that we use for ρ = 0.99. We consider two values of µ, µ = 0 to
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Table 1: Empirical null rejection frequencies

µ = 0, T = 50

m
ρ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99 1

1 0.046 0.048 0.056 0.060 0.068 0.086 0.150 0.255 0.427 0.498⌊
T 1/4

⌋
0.051 0.055 0.076 0.091 0.119 0.178 0.314 0.467 0.647 0.708⌊

T 1/3
⌋

0.049 0.061 0.104 0.131 0.175 0.254 0.419 0.566 0.727 0.776⌊
T 1/2

⌋
0.048 0.096 0.213 0.265 0.339 0.441 0.599 0.720 0.827 0.861⌊

T 2/3
⌋

0.049 0.157 0.336 0.398 0.471 0.569 0.695 0.795 0.874 0.897

µ = 1, T = 50

m
ρ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99 1

1 0.914 0.497 0.214 0.175 0.148 0.137 0.175 0.262 0.429 0.497⌊
T 1/4

⌋
0.999 0.785 0.386 0.323 0.279 0.270 0.357 0.486 0.651 0.712⌊

T 1/3
⌋

1.000 0.874 0.504 0.436 0.385 0.376 0.463 0.583 0.731 0.777⌊
T 1/2

⌋
1.000 0.957 0.706 0.635 0.581 0.570 0.639 0.730 0.830 0.864⌊

T 2/3
⌋

1.000 0.982 0.808 0.746 0.695 0.680 0.730 0.804 0.876 0.899

µ = 0, T = 100

m
ρ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99 1

1 0.052 0.052 0.054 0.055 0.057 0.062 0.089 0.148 0.295 0.403⌊
T 1/4

⌋
0.052 0.055 0.067 0.077 0.096 0.139 0.264 0.422 0.620 0.729⌊

T 1/3
⌋

0.051 0.057 0.079 0.095 0.122 0.182 0.330 0.494 0.673 0.768⌊
T 1/2

⌋
0.051 0.079 0.166 0.205 0.266 0.365 0.526 0.666 0.794 0.856⌊

T 2/3
⌋

0.052 0.138 0.293 0.349 0.416 0.515 0.657 0.765 0.860 0.901

µ = 1, T = 100

m
ρ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99 1

1 0.991 0.726 0.319 0.241 0.172 0.124 0.116 0.165 0.300 0.405⌊
T 1/4

⌋
1.000 0.986 0.627 0.495 0.375 0.302 0.325 0.442 0.623 0.724⌊

T 1/3
⌋

1.000 0.993 0.694 0.565 0.445 0.367 0.389 0.510 0.678 0.769⌊
T 1/2

⌋
1.000 0.998 0.854 0.763 0.659 0.571 0.588 0.682 0.798 0.858⌊

T 2/3
⌋

1.000 1.000 0.926 0.860 0.780 0.707 0.710 0.779 0.859 0.904
Note: this table reports empirical null rejection frequencies for the DM test with fixed-m
asymptotics. The data generating process is in (16). The sample size is 50 (two top
panels) and 100 (two bottom panels). The bandwidth values m of

⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and

⌊
T 2/3

⌋
are 2, 3, 7 and 13 when T = 50, and 3, 4, 10 and 21 for T = 100. µ = 0 refers

to the empirical size (first and third panels), and µ = 1 refers to the empirical power
(second and last panels).

observe the effects on the empirical size, and µ = 1 to observe the effects on power.

Results in Table 1 confirm the findings in Section 3. In particular:

a. The empirical size is correct for ρ = 0, but it deteriorates as we move closer to ρ = 1 and as m is larger.

b. The empirical power drops as we move closer to ρ = 1 and as m is larger, in the sense that the presence
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Table 2: Empirical null rejection frequencies

µ = 0, T = 50

m
φ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.046 0.044 0.063 0.069 0.081 0.112 0.185 0.275 0.424⌊
T 1/4

⌋
0.047 0.047 0.070 0.087 0.117 0.168 0.276 0.417 0.597⌊

T 1/3
⌋

0.045 0.048 0.081 0.102 0.137 0.196 0.335 0.495 0.669⌊
T 1/2

⌋
0.046 0.051 0.110 0.145 0.199 0.293 0.478 0.644 0.780⌊

T 2/3
⌋

0.047 0.064 0.150 0.200 0.275 0.392 0.579 0.724 0.835

µ = 1, T = 50

m
φ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.295 0.228 0.160 0.151 0.150 0.164 0.210 0.291 0.428⌊
T 1/4

⌋
0.478 0.366 0.250 0.237 0.233 0.244 0.313 0.434 0.604⌊

T 1/3
⌋

0.566 0.424 0.294 0.276 0.266 0.285 0.372 0.513 0.671⌊
T 1/2

⌋
0.670 0.503 0.361 0.345 0.347 0.283 0.512 0.656 0.783⌊

T 2/3
⌋

0.704 0.545 0.408 0.402 0.419 0.475 0.607 0.732 0.839

µ = 0, T = 100

m
φ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.050 0.054 0.057 0.066 0.075 0.093 0.144 0.213 0.322⌊
T 1/4

⌋
0.050 0.048 0.075 0.088 0.113 0.153 0.242 0.360 0.555⌊

T 1/3
⌋

0.051 0.050 0.079 0.094 0.120 0.167 0.274 0.407 0.608⌊
T 1/2

⌋
0.049 0.055 0.095 0.120 0.166 0.241 0.405 0.575 0.740⌊

T 2/3
⌋

0.048 0.063 0.140 0.180 0.248 0.357 0.539 0.689 0.815

µ = 1, T = 100

m
φ

0 0.5 0.75 0.8 0.85 0.9 0.95 0.975 0.99

1 0.481 0.356 0.201 0.172 0.157 0.151 0.176 0.225 0.326⌊
T 1/4

⌋
0.856 0.650 0.354 0.303 0.260 0.245 0.286 0.377 0.560⌊

T 1/3
⌋

0.892 0.686 0.379 0.324 0.280 0.266 0.315 0.423 0.613⌊
T 1/2

⌋
0.939 0.751 0.444 0.390 0.353 0.351 0.445 0.589 0.743⌊

T 2/3
⌋

0.949 0.789 0.509 0.459 0.433 0.454 0.573 0.695 0.818

Note: this table reports empirical null rejection frequencies for the DM test with
fixed-m asymptotics. The data generating process is in equations (17)–(19).
The sample size is 50. The bandwidth values m of

⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and⌊

T 2/3
⌋

are 2, 3, 7 and 13. µ = 0 refers to the empirical size, and µ = 1 refers to
the empirical power.

of µ = 1 does not affect much the number of rejections of the null hypothesis, in those cases.
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In the second part of the Monte Carlo exercise, we simulate

e1t = ε1t + k(φ, µ), k2(φ, µ) =
φ2

1− φ2
+ µ, ε1t ∼ N(0, 1) (17)

e2t = φe2,t−1 + ε2t, ε2t ∼ N(0, 1) (18)

dt = e21t − e22t (19)

As E(dt) = µ, we set µ = 0 to study the empirical size and µ = 1 to study the empirical power. Notice that

the variance of dt depends on µ, but the covariances of dt and ds (s 6= t) do not. Results in Table 2 support

the key conclusions that we derived in Section 3. In particular, in the size exercise, the distortion increases

with φ and with the bandwidth m, and in the power exercise the power drops as φ increases from 0 to 0.85.

Although it is not possible to directly compare the outcomes for µ = 0 and µ = 1, because the long run

variance is slightly different, it seems fair to conclude that any apparent increase in power for larger values of

φ is in fact due to the size distortion.

5 Empirical application

To illustrate the problems associated with the DM test when there is dependence in the loss differential, in

this section we present the case in which a forecast for inflation with weakly dependent forecast errors is

compared to two naive benchmarks. In particular, we consider quarterly predictions for the inflation rate in

the Euro Area from a standard AR(1) model: for applications in the Euro Area that consider this model see

Forni, Hallin, Lippi and Reichlin (2003) and Marcellino, Stock and Watson (2003). As for the benchmarks,

we consider a constant 2% prediction (that represents the inflation target in the Euro Area) and a moving

average prediction.

We use data on the Harmonized Index of Consumer Prices from the FRED database, and we compute

quarterly year on year inflation rate from 2000.Q1 to 2020.Q4. All coefficients are estimated using a rolling

window of 10 years. We compute predictions for horizons from 1 quarter to 8 quarters-ahead, and we evaluate

them on the period from 2010.Q1 to 2020.Q4 (44 observations) using a quadratic loss function.

In Table 3, we report summary statistics for the forecast errors (defined as the realised value minus the

prediction) for the AR(1) and the two benchmark predictions. The forecast errors are all negative on average,

implying that in this period the inflation in the Euro Area has been lower than predicted by the AR(1) and

the benchmarks. This result is not generated by a few large negative errors, as also the median forecast errors

are negative for all the forecasts and the forecasting horizons.

The average and median forecast errors for the AR(1) increase (in absolute value) with the forecast horizon,

12



Table 3: Summary statistics of forecast errors

AR(1) forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4

1 -0.059 -0.077 0.367 0.284 0.264 0.182 0.179
2 -0.100 -0.092 0.590 0.690 0.384 0.350 0.313
3 -0.148 -0.135 0.724 0.817 0.627 0.433 0.397
4 -0.204 -0.134 0.827 0.860 0.697 0.569 0.424
5 -0.252 -0.314 0.904 0.882 0.733 0.603 0.456
6 -0.317 -0.182 0.983 0.898 0.760 0.577 0.390
7 -0.378 -0.288 1.046 0.907 0.738 0.551 0.354
8 -0.419 -0.420 1.078 0.881 0.717 0.535 0.366

MA forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4

1 -0.505 -0.411 0.855 0.912 0.787 0.639 0.491
2 -0.525 -0.428 0.871 0.914 0.789 0.641 0.493
3 -0.546 -0.413 0.882 0.916 0.792 0.644 0.497
4 -0.566 -0.409 0.890 0.917 0.794 0.648 0.503
5 -0.585 -0.427 0.895 0.917 0.795 0.653 0.509
6 -0.605 -0.438 0.896 0.919 0.799 0.658 0.517
7 -0.624 -0.454 0.895 0.919 0.802 0.665 0.526
8 -0.642 -0.475 0.893 0.920 0.806 0.673 0.536

2% forecast

Horizon Mean Median Std AC1 AC2 AC3 AC4

1-8 -0.765 -0.673 0.923 0.926 0.821 0.695 0.569

Note: this table reports summary statistics for forecast errors from
AR(1) predictions (top panel), moving average predictions (middle
panel) and constant 2% predictions. Forecast errors are defined as
the realised value minus the prediction.

but they remain lower than the ones of the two benchmarks for all the forecasting horizons. The standard

deviations of the AR(1) forecast errors also increase with the forecasting horizon, and they are smaller than

the ones of the two benchmarks for forecasting horizons up to 4 quarters. Another difference between the

AR(1) predictions and the two benchmarks comes from the sample autocorrelations of the forecast errors.

The AR(1) predictions have forecast errors that are only mildly correlated for short forecasting horizons; as

we increase the forecasting horizon the autocorrelations increase, but they still decay quite quickly. On the

other hand, the two benchmarks display large and persistent autocorrelations in their forecast errors at all

forecasting horizons. This indicates that while the AR(1) predictions approximate optimal forecasts under

MSE loss, clearly the two benchmarks fail to do so as their forecast errors are serially correlated, and thus

predictable. Overall, looking at these summary statistics, we can see how AR(1) predictions for horizons up

to 4 quarters ahead are more accurate, with lowers absolute means, medians, and standard deviations, and

13



Table 4: Summary statistics loss differential

Benchmark: MA

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 0.835 0.261 1.152 0.852 0.652 0.499 0.385 -1.015
2 0.667 0.067 1.181 0.826 0.647 0.504 0.382 -1.480
3 0.525 -0.001 1.127 0.848 0.675 0.501 0.348 -1.490
4 0.384 -0.003 1.093 0.837 0.675 0.479 0.283 -1.819∗

5 0.263 -0.020 1.046 0.843 0.644 0.440 0.233 -1.802∗

6 0.105 -0.068 1.015 0.770 0.583 0.400 0.283 -2.616∗∗

7 -0.041 -0.074 0.954 0.797 0.511 0.370 0.299 -3.258∗∗

8 -0.121 -0.076 0.865 0.651 0.386 0.230 0.195 -3.032∗∗

Benchmark: 2%

Horizon Mean Median Std AC1 AC2 AC3 AC4 ADF

1 1.283 0.449 1.573 0.862 0.635 0.437 0.320 -0.084
2 1.068 0.433 1.530 0.834 0.626 0.443 0.305 -0.529
3 0.885 0.335 1.389 0.851 0.643 0.440 0.269 -0.531
4 0.708 0.305 1.306 0.834 0.640 0.410 0.225 -1.263
5 0.556 0.121 1.255 0.846 0.634 0.414 0.191 -0.939
6 0.373 0.039 1.208 0.794 0.602 0.416 0.265 -1.943∗

7 0.206 0.026 1.192 0.819 0.561 0.395 0.275 -2.295∗∗

8 0.106 0.009 1.161 0.736 0.474 0.285 0.185 -2.046∗∗

Note: this table reports summary statistics for the AR(1) loss differential with
respect to moving average predictions (top panel) and constant 2% predictions
(bottom panel). The loss function is quadratic and the loss differential is
computed as the loss of the benchmark minus the loss of the AR(1). ADF refers
to the augmented Dickey–Fuller test and ∗ and ∗∗ denote significance at 10%
and 5% level.

less persistent forecast errors than the two benchmarks.

Summary statistics of the loss differentials reported in Table 4 show that at short horizons loss differential

are positive, indicating that AR(1) predictions may be more accurate than the benchmarks. As the forecasting

horizon increases, the average loss differential decreases, and for the MA benchmark it becomes negative,

indicating that at 7 and 8 quarters ahead MA predictions might be more accurate than AR(1) predictions.

The table also shows that the loss differentials display strong autocorrelations, even at short forecasting

horizons. This indicates that the properties of the loss differentials are heavily affected by the benchmark

considered, and even with a forecast with weakly dependent forecast errors it is possible to have strong

autocorrelation of the loss differential. In the last column of the table, we report the augmented Dickey–Fuller

test statistic, which clearly indicates that at short forecasting horizons the null of unit root of the loss

differential cannot be rejected. With these levels of dependence, the DM test statistic is going to be subject

to the drawbacks described in Section 3.

Table 5 reports the outcome of the DM tests for the null of equal predictive ability of AR(1) predictions
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Table 5: Forecast evaluation

Benchmark: MA

m
Horizon

1 2 3 4 5 6 7 8

1 1.881 1.389 1.123 0.859 0.628 0.249 -0.105 -0.403⌊
T 1/4

⌋
1.736 1.397 1.141 0.896 0.671 0.300 -0.135 -0.500⌊

T 1/3
⌋

2.091∗ 1.641 1.300 0.981 0.711 0.297 -0.127 -0.437⌊
T 1/2

⌋
2.752∗∗ 2.210∗∗ 1.744 1.300 0.929 0.395 -0.171 -0.595⌊

T 2/3
⌋

3.665∗∗ 2.941∗∗ 2.360∗∗ 1.783∗ 1.269 0.530 -0.220 -0.725

Benchmark: 2%

m
Horizon

1 2 3 4 5 6 7 8

1 3.524∗ 2.829 2.527 2.191 1.841 1.228 0.762 0.508⌊
T 1/4

⌋
2.138∗ 1.913 1.709 1.518 1.335 1.083 0.750 0.452⌊

T 1/3
⌋

2.564∗∗ 2.238∗ 1.925 1.592 1.294 0.916 0.546 0.303⌊
T 1/2

⌋
3.240∗∗ 2.886∗∗ 2.496∗∗ 2.063∗ 1.687 1.232 0.743 0.407⌊

T 2/3
⌋

4.150∗∗ 3.668∗∗ 3.256∗∗ 2.748∗∗ 2.271∗∗ 1.608 0.890 0.469

Note: this table reports the DM test statistic for the null of equal predictive ability the AR(1)
predictions with respect to a moving average (top panel) and a constant 2% (bottom panel)
benchmarks. A positive value of the test statistics denotes a larger loss for the benchmark.
Long-run variances are computed using (3). The sample size is 44 and bandwidth values
m of

⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,
⌊
T 1/2

⌋
and

⌊
T 2/3

⌋
are respectively 2, 3, 6 and 12. Critical value are

obtained from (4). ∗ and ∗∗ denote significance at 10% and 5% level.

with respect to a moving average and a constant 2% benchmarks. We consider tests in which the DM statistics

are computed estimating the long-run variances as in (3) using the bandwidth values m of 1,
⌊
T 1/4

⌋
,
⌊
T 1/3

⌋
,⌊

T 1/2
⌋

and
⌊
T 2/3

⌋
, that for a sample of 44 observations are respectively 2, 3, 6 and 12. In all cases we used

critical values from the corresponding t2m distribution. Results in Table 5 are in line with our theory. In

particular, we can see that for small m the DM test does not reject the null of equal predictive accuracy of

AR(1) and MA predictions for any forecasting horizon; when we use a constant 2% benchmark, we reject the

null of equal predictive accuracy only for the 1 quarter-ahead forecasting horizon at 10% level. These results

are in contrast with the evidence reported in Table 3, and may be due to the fact that, as we saw in Table 4,

the loss differential is highly autocorrelated at these forecasting horizons, which implies that the test has no

power for small values of m. As we increase m, we see that we reject the null more often, possibly due to

spurious significance in some cases.

These results highlight how applying the DM test when the loss differential is not weakly dependent may

generate undesirable results. For example, if we choose the bandwidth recommended in Coroneo and Iacone

(2020), which is bT 1/3c, at 5% level we are not able to reject the null of equal predictive ability of AR(1) and

MA predictions for any forecasting horizons, despite the summary statistics in Table 3 clearly indicate that
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AR(1) predictions are more accurate at short forecasting horizons.

6 Conclusion

In this paper, we have verified that the DM test may be seriously misleading in presence of strong correlation

in the loss differential. Diebold (2015) mentions that “[o]f course forecasters may not achieve optimality,

resulting in serially correlated, and indeed forecastable, forecast errors. But I(1) nonstationarity of forecast

errors takes serial correlation to the extreme”. This is certainly true. However, the DM test is often used

against naive benchmarks, for which an I(1) forecast error may not be impossible (or, as we showed, an error

with root close enough to 1, given the sample size). While this may be seen as an “abuse” of the DM test, it

seems desirable that a test is robust to such abuse. Our results warn that this is not the case.

For comparing forecasts, the DM test is “the only game in town”, as noted in Diebold (2015). However,

one should also be aware that the game has its rules. In the empirical application, we used the DM test to

compare AR(1) inflation forecasts to two naive benchmarks. Results indicate that using a quadratic loss the

test fails exactly because the benchmark forecasts are not optimal under MSE loss, which is not a nice feature.

This does not mean that one should not use the DM test. Rather, our work suggests that one should take

the recommendation in Diebold (2015) to use diagnostic procedures to assess the validity of the assumption

of weak dependence of the loss differential very seriously.
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Appendix

We provide here a more detailed derivation of some of the results that we claimed in the paper, with

accompanying regularity conditions when needed. When we establish bounds we occasionally use C <∞ as

a finite bound, not necessarily the same one in every case.

Assumption A1. Let εt be independent and identically distributed (iid) random variables, with E(εt) = 0,

E(ε2t ) = σ2. Then, assume that ut =
∑∞
j=0 ψjεt−j is such that

 ∞∑
j=0

ψj

2

> 0,

∞∑
j=0

j1/2|ψj | <∞.

Denoting g(λ) as the spectral density of ut, Assumption A1 implies that g(0) > 0 and that g(λ) < ∞

uniformly in λ. Assumption A1 is sufficient to establish the functional central limit theorem (FCLT) for

a stationary, weakly dependent linear process as in Phillips and Solo (1992). This in turn is sufficient to

establish the limit in (8), as in Phillips (1987), and then (9) and (10) by the continuous mapping theorem.

Assumption A2. Assume that
∞∑
s=j

|ψs| < Cj−1−a for j ≥ 1

for a > 2.

Notice that the condition in Assumption A2 implies the condition in A1. By summation by parts, for any

n,

n∑
j=0

j1/2|ψj | =
n∑
j=1

j1/2|ψj | = 1

n∑
j=1

|ψj | − (

n−1∑
j=1

((j + 1)1/2 − j1/2)

n∑
s=j+1

|ψs|

n∑
j=0

j1/2|ψj | ≤
n∑
j=1

|ψj |+ C

n−1∑
j=1

j−1/2
n∑

s=j+1

|ψs| ≤
∞∑
j=1

|ψj |+ C

∞∑
j=1

j−1/2
∞∑

s=j+1

|ψs|

so
∞∑
j=1

j1/2|ψj | ≤
∞∑
j=1

|ψj |+ C

∞∑
j=1

j−1/2
∞∑

s=j+1

|ψs| ≤ C + C

∞∑
j=1

j−1/2j−1−α < C

To see that the reverse is not true, which means that Assumption A2 really strengthens A1, notice that

ψj = (j + 1)−3/2−η for η > 0 and suitably small meets Assumption A1 but not A2.

Moreover, denoting γu(k) = Cov(ut, ut+j) Assumption A2 also implies that
∑∞
k=0 k|γu(k)| < ∞. To

verify this, first notice that
∑∞
k=0 k|γu(k)| =

∑∞
k=0

∑∞
j=0 k|ψjψj+k|. Another application of summation by
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parts gives

n∑
k=1

k|ψj+k| = 1×
n∑
k=1

|ψj+k| − {
n−1∑
k=1

((k + 1)− k)

n∑
s=k+1

|ψj+s|} =

n∑
k=1

|ψj+k| −
n−1∑
k=1

n∑
s=k+1

|ψj+s|

∞∑
k=1

k|ψj+k| ≤
∞∑
k=1

|ψj+k|+
∞∑
k=1

∞∑
s=k+1

|ψj+k| ≤ Cj−1−a +

∞∑
k=1

(k + j)−1−a ≤ Cj−1−a + Cj−a

then
∞∑
k=0

∞∑
j=0

k|ψjψj+k| ≤ C
∞∑
j=0

(j−1−a + j−a) < C

Denoting g(λ) the spectral density of ut,
∑∞
k=0 k|γu(k)| <∞ is sufficient to establish that g(λ) is differentiable

in the neighbourhood of λ = 0 and, for g(λ)′ = ∂g(λ)
∂λ then g(λ)′ = O(λ−1) as λ→ 0.

A Results for Subsection 3.1

All the results in this subsection are for dt generated as in (5)-(7), with c ≤ 0, under Assumption A1. Recall

that I (λj) is the periodogram if dt.

Lemma 1.

I (λj) = O
(
j−2T 2

)
Proof. We first present the proof for c < 0.

Denoting f (λ) as the spectral density of dt, g (λ) as the density of ut, for

f?(λ) =
∣∣1− ρ e−iλ∣∣−2 =

1

υ2 + 2ρ(1− cos(λ))
,

so that f(λ) = f?(λ)g(λ), we use for f?(λ) the same bound as in Giraitis and Phillips (2012): for |ρ| < 1,

λ ≤ π

f?(λ) ≤ 1

υ2 + ρλ2/3
(20)

where υ = 1− ρ and notice that we dropped the reference to T in ρT to simplify the notation and to align it

to Giraitis and Phillips (2012).

We follow closely the proof in Robinson (1995b), but our proof is easier as we only need to establish an

upper bound. Then

E (I (λj)) =

∫ π

−π
f(λ)K(λ− λj)dλ

where K(λ) is proportional to the Fejér’s kernel, K(λ) = (2πT )−1
∣∣∣∑∑T

t,s=1 e
i(t−s)λ

∣∣∣2.
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Proceeding as in Robinson (1995b) we then partition the integral as

∫ π

−π
=

∫ −λj/2
−π

+

∫ λj/2

−λj/2
+

∫ 2λj

λj/2

+

∫ π

2λj

and discuss them separately.

∫ −λj/2
−π

f(λ)K(λ− λj)dλ ≤ C {supλ∈[λj/2,π]f
?(λ)}

∫ π

λj/2

K(λ+ λj)dλ ≤ C λ−2j j−1 = O(j−3T 2)

where we used the bounds g(λ) ≤ C, supλ∈[λj/2,π]f
?(λ) ≤ Cλ−2j from (20) and

∫ π
λj/2

K(λ+ λj)dλ = O(j−1)

as in Robinson (1995b), page 1061 in the text above (4.6); the bound
∫ π
2λj

= O(j−3T 2) can be established in

the same way. Next,

∫ λj/2

−λj/2
f(λ)K(λ− λj)dλ ≤

∫ λj/2

−λj/2
f(λ)dλ {supλ∈[−λj/2,λj/2]K(λ− λj)} = O(T × T−1λ−2j ) = O(T 2j−2)

where we bounded {supλ∈[−λj/2,λj/2]K(λ− λj)} = O(T−1λ−2j ) as in Robinson (1995b) and
∫ λj/2
−λj/2 f(λ)dλ ≤

V ar(yt) = O(T ). Finally,

∫ 2λj

λj/2

f(λ)K(λ− λj)dλ ≤ C{ sup
λ∈[λj/2,2λj ]

f?(λ)}
∫ 2λj

λj/2

K(λ− λj)dλ = O(λ−2j )

where we bounded
∫ 2λj
λj/2

K(λ− λj)dλ = O(1). This completes the proof for c < 0.

When c = 0 we rewrite, as in Lemma A.1 of Phillips and Shimotsu (2004) for the unit root case,

(1− eiλ)w(λ) = wu(λ)− eiλ√
2πT

(eiTλyT − y0)

where wu(λ) is the Fourier transform of ut. Thus, bounding E|wu(λ)| = O((|wu(λ)|2)1/2) = O(1), E|yT | =

O((y2T )1/2) = O(T 1/2), |(1− eiλ)|−2 < Cλ−2, the result follows immediately.

Lemma 2.

1

T 2
2π

m∑
j=1

I(λj)⇒ ω2 1

2

∫ 1

0

(Jc(r)− Jc)2dr as m→∞, m/T → 0

Proof. We rewrite

1

T 2
2π

m∑
j=1

I(λj) =
1

T 2
2π

T∑
j=1

I(λj)−
1

T 2
2π

T∑
j=m+1

I(λj)
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and notice that

1

T 2
2π

T∑
j=1

I(λj) =
1

T 2

1

2

T∑
j=m+1

(yt − y)2 ⇒ ω2 1

2

∫ 1

0

(Jc(r)− Jc)2dr

using (9) and (10), while

1

T 2
2π

T∑
j=m+1

I(λj) = Op(T
−2m−1T 2) = Op(m

−1) = op(1)

using Lemma 1 (notice that that result is not restricted to a band of frequencies degenerating to 0).

The result when c = 0 can be deduced from Marinucci and Robinson (2001): their moments condition

is stronger and their proof is more complex than the argument given here because they established more

results.

Theorem 1. For dt generated as in (5)-(7), with µ = E(dt) = 0 and under Assumption A1,

1√
m
DM ⇒

∫ 1

0
Jc(r)dr√

1
2

∫ 1

0
(Jc(r)− Jc)2dr

as m→∞, m/T → 0 (21)

Proof. This follows from the convergence in (8), Lemma 2 and the continuous mapping theorem.

Theorem 2. For dt generated as in (5)-(7), with µ = E(dt) and under Assumption A1, for m fixed as

T →∞ then (12) holds.

Proof. We discuss the case c = 0 as this is easier to follow and the notation is lighter, the generic c < 0

proceeding in the same way but with different notation. Then,

DM =
√
T

y + µ√
1
m2π

∑m
j=1 I(λj)

=

√
T
T (y + µ)√

1
T 2

1
m2π

∑m
j=1 I(λj)

where in particular notice that
√
T
T µ → 0 so

√
T
T (y + µ) ⇒ ω

∫ 1

0
W (r)dr by a standard FCLT even when

µ 6= 0 and 1
T 2

1
m2π

∑m
j=1 I(λj)⇒ ω2 1

m2π
∑m
j=1QW (j) using the same argument as in Lemma 1 of Hualde

and Iacone (2017).

B Results for Subsection 3.2

All the results in this subsection are for dt generated as in (5), (6), (13), with c < 0, under Assumption A2.
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Lemma 3. As T →∞

1

T 1+α

T∑
t=1

(dt − d)2 =
1

T 1+α

T∑
t=1

(dt − µ)2 + op(1)→p
ω2

−2c
(22)

Proof. The limit

1

T 1+α

T∑
t=1

(dt − µ)2 →p
ω2

−2c

is already in Phillips and Magdalinos (2007a); it can also be derived from (2.13) and (2.16) of Giraitis and

Phillips (2012), setting υ = 1− ρT = cT−α and taking the limit for T →∞.

Next, rewriting
∑T
t=1 (dt − d)2 =

∑T
t=1 (dt − µ)2 − T (d− µ)2, from the CLT on Theorem 2.1 of Giraitis and

Phillips (2012), (d− µ)2 = Op
(
T 2α−1), so

1

T 1+α

T∑
t=1

(dt − d)2 − 1

T 1+α

T∑
t=1

(dt − µ)2 = Op(T
−1−α T T 2α−1) = Op(T

α−1).

The lemma is established as we combine these results.

Lemma 4.

I (λj) = O
(
j−2T 2

)
Proof. The proof follows as in Lemma 1, but using the bound

∫ π
−π f(λ)dλ = O(Tα).

Lemma 5. For frequencies λj such that j < m, m/T → 0, mTα−1 → 0 as T →∞,

f(λj)
−1I (λj) = 1 +O(j−1ln(j + 1))

Proof. We consider

f(λj)
−1E (I (λj))− 1 = f(λj)

−1
∫ π

−π
(f(λ)− f(λj))K(λ− λj)dλ

and again we evaluate this integral over subsets of (−π, π) as in Lemma 1. Then,

f(λj)
−1
∫ −λj/2
−π

(f(λ)− f(λj))K(λ− λj)dλ ≤ C f?(λj)
−1{supλ∈[λj/2,π]f

?(λ)}
∫ π

λj/2

K(λ+ λj)dλ (23)

where again we used {supλ∈[λj/2,π]f(λ)} ≤ {supλ∈[λj/2,π]g(λ)}{supλ∈[λj/2,π]f?(λ)} and g(λ) < C uniformly

in λ and g(λj)
−1 < C. Recalling that f?(λj)

−1 = υ2 + 2ρ(1− cos(λj)), we bound f?(λj)
−1 ≤ υ2 +
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C(sin(λj/2))2 ≤ υ2 + C(λj/2)2 ≤ υ2 + Cλ2j where we used sin(λj/2) ∼ λj/2 as j/T → 0. Then,

f?(λj)
−1{supλ∈[λj/2,π]f

?(λ)} ≤ (υ2 + Cλ2j ){supλ∈[λj/2,π]f
?(λ)}

≤ υ2{supλ∈[λj/2,π]f
?(λ)}+ Cλ2j{supλ∈[λj/2,π]f

?(λ)} ≤ υ2υ−2 + Cλ2jλ
−2
j ≤ C

using (20). Thus, recalling
∫ π
λj/2

K(λ + λj)dλ = O(j−1), then (23) = O(j−1). The bound f(λj)
−1 ∫ π

2λj
=

O(j−1) can be established in the same way.

Next,

f(λj)
−1
∫ λj/2

−λj/2
(f(λ)− f(λj))K(λ−λj)dλ ≤ C f?(λj)

−1{supλ∈[−λj/2,λj/2]K(λ−λj)}
∫ λj/2

−λj/2
(f(λ)− f(λj)) dλ

(24)

where again we bound supλ∈[−λj/2,λj/2]K(λ− λj)} = O(T−1λ−2j ); moreover,

∫ λj/2

−λj/2
(f(λ)− f(λj)) dλ =

∫ λj/2

−λj/2
(f(λ)− f(0) + f(0)− f(λj)) dλ ≤ 2

∫ λj/2

0

|f(λ)− f(0)| dλ+|f(0)− f(λj)|λj

From Giraitis and Phillips (2012), page 175,

|f(λ)− f(0)| ≤ λ2f?(λ)υ−2 + λ2υ−2

so

2

∫ λj/2

0

|f(λ)− f(0)| dλ+ |f(0)− f(λj)|λj ≤ Cλjυ−2

and (24) is bounded by

CT−1λ−2j (υ2 + λ2j )λjυ
−2 ≤ C(T−1λ−1j + T−1λjυ

−2) = O(j−1 + j−1(jTα−1)2)

where the last bound is o(j−1) because j ≤ m and mTα−1 → 0.

For the next integral we introduce f?(λ)′ = ∂f?(λ)
∂λ , where f?(λ)′ = −(f?(λ))22ρ sin(λ) and rewrite

f(λ)− f(λj) = f?(λ)g(λ) + f?(λj)g(λ)− f?(λj)g(λ)− f?(λj)g(λ1)

22



then

f(λj)
−1
∫ 2λj

λj/2

(f(λ)− f(λj))K(λ− λj)dλ

≤ Cf?(λj)−1{ sup
λ∈[λj/2,2λj ]

|f?(λ)′|}
∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ (25)

+ Cf?(λj)
−1f?(λj){ sup

λ∈[λj/2,2λj ]
|g(λ)′|}

∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ (26)

where notice that

{ sup
λ∈[λj/2,2λj ]

|f?(λ)′|} ≤ Cf?(λj)2λj ,

{ sup
λ∈[λj/2,2λj ]

|g(λ)′|} ≤ Cλ−1j

The bound in (25) is

Cf?(λj)λj

∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ ≤ Cλ−1j
∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ

= O
(
(j/T )−1T−1 ln(j + 1)

)
= O(j−1 ln(j + 1))

where we used ∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ = O
(
T−1 ln(j + 1)

)
as in Robinson (1995b); proceeding in the same way, the bound in (26) is

Cλ−1j

∫ 2λj

λj/2

|λ− λj | K(λ− λj)dλ = O(j−1 ln(j + 1)).

Lemma 6. For frequencies λj such that j < m, m/T → 0, mTα−1 → 0 as T →∞,

1

m

m∑
j=1

(f (λj)
−1
I (λj)− 1) = op(1)

Proof. The proof follows as on pages 1636-1638 of Robinson (1995a) using the bound from Lemma 5. The

other bounds in (3.17) of Robinson (1995a) can be computed adapting arguments in Theorem 2 of Robinson

(1995b) as we did for Lemma 5.
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Theorem 3. For m→∞, m/T → 0 as T →∞,

√
T
d− µ
σ̂
→d N(0, 1) mTα−1 → 0

(mTα−1)−1/21/2(−c)1/2
{√

T
d− µ
σ̂

}
→d N(0, 1) mTα−1 →∞

for any α ∈ (0, 1) where as usual σ̂2 is the Daniell estimate of σ2 as in (3) .

Proof. We rewrite
√
T d−µ

σ̂ as

√
T
d− µ
σ̂

=

√
(2πf(0))−1

√
T (d− µ)√

(2πf(0))−1
√

2π
m

∑m
j=1 I(λj)

and recall 2πf(0) = υ2ω2 = (−c)−2T 2αω2.

From Theorem 2.1 of Giraitis and Phillips (2012),
√

(2πf(0))−1
√
T (d− µ)→d N(0, 1) .

As for the denominator, we discuss the cases mTα−1 → 0 and mTα−1 →∞ separately.

We begin with mTα−1 → 0.

We rewrite the argument of the square root of the denominator as

f(0)−1
1

m

m∑
j=1

I(λj) = f(0)−1
1

m

m∑
j=1

f(λj)
−1I(λj)f(λj) = f(0)−1

1

m

m∑
j=1

(f(λj)
−1I(λj)− 1 + 1)f(λj)

= f(0)−1
1

m

m∑
j=1

(f(λj)
−1I(λj)− 1)f(λj) + f(0)−1

1

m

m∑
j=1

f(λj)

and

|f(0)−1
1

m

m∑
j=1

(f(λj)
−1I(λj)− 1)f(λj)|

≤ f(0)−1
1

m

m−1∑
j=1

|f(λj)− f(λj+1)||
j∑

k=1

(f(λk)−1I(λk)− 1)|+ f(0)−1f(λm)
1

m
|
m∑
j=1

(f(λj)
−1I(λj)− 1)| (27)

The first term of (27) has the same order as

f(0)−1
1

m

m−1∑
j=1

|f?(λj)′|
1

T
|
j∑

k=1

(f(λk)−1I(λk)− 1)|+ f(0)−1
1

m

m−1∑
j=1

f?(λj)|g(λj)
′| 1
T
|
j∑

k=1

(f(λk)−1I(λk)− 1)|

(28)
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using the differentiability of g(λ), and the first element in (28) has order

f(0)−1
1

m

m−1∑
j=1

|(f?(λj))′|
1

T
j j−1|

j∑
k=1

(f(λk)−1I(λk)− 1)|

≤ Cf?(0)−1
1

m

m−1∑
j=1

f?(0)λ−2j λj
1

T
j j−1|

j∑
k=1

(f(λk)−1I(λk)− 1)| = op(
1

m

m−1∑
j=1

λ−1j
1

T
j) = op(1)

where we used the bound |f ′?(λj)′| ≤ Cf?(λj)2λj ≤ Cf?(0)λ−2j λj and Lemma 6; the second element in (28)

has order

f(0)−1
1

m

m−1∑
j=1

f?(λj)|g(λj)
′| j j−1 1

T
|
j∑

k=1

(f(λk)−1I(λk)− 1)|

≤ C 1

m

m−1∑
j=1

λ−1j
1

T
j j−1|

j∑
k=1

(f(λk)−1I(λk)− 1)| = op(
1

m

m−1∑
j=1

λ−1j
1

T
j) = op(1).

The last term in (27) is also op(1).

To complete the discussion of the denominator whenm Tα−1 → 0, we need to consider the term f(0)−1 1
m

∑m
j=1 f(λj).

This is

f(0)−1
1

m

m∑
j=1

f(λj) = f(0)−1
1

m

m∑
j=1

(f(λj)− f(0)) + 1

and

f(0)−1
1

m

m∑
j=1

|f(λj)−f(0)| ≤ Cf(0)−1
1

m

m∑
j=1

|λ2jf?(λj)υ−2|+Cf(0)−1
1

m

m∑
j=1

|λ2jυ−2| = O(T 2α−2m2) = o(1),

Combining these results,

f(0)−1
1

m

m∑
j=1

I(λj)→p 1,

completing the discussion for the case Tα−1 m→ 0.

For the Tα−1 m → ∞, again we only need to consider the denominator. The argument of the square

root in this case, is

{(−c)2T−2αω2}−1 2π

m

m∑
j=1

I(λj)

and notice that

2π

T Tα

m∑
j=1

I(λj) =
1

2

1

T 1+α

T∑
t=1

(dt − d)2 − 2π

T Tα

T/2∑
j=m+1

I(λj)
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From Lemma 4,

2π

T Tα

T/2∑
j=m+1

I(λj) = Op

 1

T Tα

T/2∑
j=m+1

λ−2j

 = Op
(
T 1−αm−1

)
= op(1) (29)

The application of Lemma 3 for 1
T 1+α

∑T
t=1 (dt − d)2 completes the proof.
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