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Abstract

We assess the effect of the COVID-19 pandemic on global fossil fuel consumption and CO2 emis-
sions over the two-year horizon 2020Q1-2021Q4. We apply a global vector autoregressive (GVAR)
model, which captures complex spatial-temporal interdependencies across countries associated with
the international propagation of economic impact due to the virus spread. The model makes use of
a unique quarterly data set of coal, natural gas, and oil consumption, output, exchange rates and
equity prices, including global fossil fuel prices for 32 major CO2 emitting countries in 1984-2019.
We produce forecasts of coal, natural gas and oil consumption, conditional on GDP growth scenar-
ios based on alternative IMF World Economic Outlook forecasts that were made before and after
the outbreak. We also simulate the effect of a relative price change in fossil fuels, due to global scale
carbon pricing, on consumption and output. Our results predict fossil fuel consumption and CO2

emissions to return to their pre-crisis levels, and even exceed them, within the two-year horizon
despite the large reductions in the first quarter following the outbreak. Our forecasts anticipate
more robust growth for emerging than for advanced economies. The model predicts recovery to the
pre-crisis levels even if another wave of pandemic occurs within a year. Our counterfactual carbon
pricing scenario indicates that an increase in coal prices is expected to have a smaller impact on
GDP than on fossil fuel consumption. Thus, the COVID-19 pandemic would not provide countries
with a strong reason to delay climate change mitigation efforts.
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1 Introduction

Since the first case of pneumonia with unknown cause in Wuhan, China, in December 2019, the
spread of the novel coronavirus (COVID-19) has been causing a worldwide public health emergency.
Governments enforced social isolation and lockdown to slow down the virus spread, leading to a
virtual halt of major economic activities. The World Economic Outlook, published in April 2020 by
the International Monetary Fund (IMF, 2020b), predicts that the global economy will shrink by 3
per cent in 2020. This forecast was further revised downwards to a 4.9 per cent decline in June 2020
(IMF, 2020c), then slightly upwards to a 4.4 per cent fall in October (IMF, 2020d). This means that
the shock to the global economy from COVID-19 could be more severe than the 2008 global financial
crisis and even the Great Depression.

According to latest research, the sharp drop in economic activity due to the enforced confinement
has dramatically reduced energy use, and hence carbon dioxide (CO2) emissions. Le Quéré et al. (2020)
estimated daily changes in global CO2 emissions taking account of the levels of the confinement policy.
Based on the emissions data for six economic sectors across 69 countries, their results indicated a 17%
decline in daily global CO2 emissions by early April 2020 relative to the mean level in 2019. Liu et al.
(2020) report a decrease of 7.8% in global CO2 emissions due to fossil fuel use during the first quarter
of 2020 relative to the first quarter of 2019.

Despite such evidence of the instantaneous impacts, longer-term effects on energy consumption
and CO2 emissions have not been well understood. Studying such effects is important because related
evidence will provide policy makers with essential information to prepare post-COVID-19 economic
recovery packages given the emission targets as many countries agreed at the 2015 United Nations Cli-
mate Change Conference (COP21 in Paris). Some energy experts express concerns that the slowdown
in CO2 emissions may be temporary. IEA (2019) states that “the unprecedented decline in emissions
in 2020 may only be temporary without structural changes. Recoveries from past crises have caused
immediate rebounds in CO2 emissions, including the highest year-on-year increase on record in 2010.”
The United States Energy Information Administration forecasts that energy-related CO2 emissions
will increase by 6% in 2021 from the 2020 level as the economy recovers and energy use increases.

Here we assess the impact of the global economic shock from COVID-19 on fossil fuel consumption
and CO2 emissions over the two-year horizon 2020Q1-2021Q4. For this purpose, we employ the global
vector autoregressive (GVAR) model (Pesaran et al., 2004; Dees et al., 2007). As a large-scale multi-
country, spatial-temporal model, GVAR controls for unobserved global or foreign shocks that affect
each country. This approach is critical for assessing the impact of COVID-19 because of the global scale
of its spread and the associated economic effects. The spread of the virus that first hit China induced
significant economic disruptions in Asia, Europe, North America and beyond. While the spread of
the virus itself reduced domestic economic activities in each country, it also disrupted the global
supply chain (Ivanov, 2020), which in turn amplified the negative economic effects across countries.
The GVAR model takes into account such cross-country dependencies and dynamic macroeconomic
effects. For reliable estimation of such a large dimensional model, we apply the GVAR model to a
sufficient number of time-series observations across countries that cover a major part of the world
economy.

A related strand of literature investigates the relationship between energy consumption and growth;
see Kahouli (2019) for an extensive survey. Many of these studies employ a single country analysis,
adopting VAR models and vector error correction (VEC) models (e.g., Bloch et al., 2012; Akpan and
Akpan, 2012; Bozkurt and Akan, 2014), due to the relatively small number of observations (annual
data since 1960). Recently, studies using panel data analysis have emerged in the literature. Omri and
Kahouli (2014) and Saidi and Hammami (2015), among others, use cross-country panel data with a
relatively large number of countries (around 60) for 22-23 years of observations. They estimate short
dynamic panel data models with generalised method of moments (GMM). Coers and Sanders (2013)
and Antonakakis et al. (2017) employ panel VAR models whilst Shahbaz et al. (2013) employ the
autoregressive distributed lag (ARDL) bounds testing approach using longer panel data with around
40 observations. These panel data studies permit country heterogeneity only in a limited way without
controlling for global common shocks or spatial dependence despite both of these featuring prominently
in the recent panel data econometrics literature. Notably, our econometric approach can address all
of these issues. Thus it is suitable for studying the intermediate-term economic impact of COVID-19,
which must take into account the different transmission channels of the economic effects of the virus
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across countries, over time.
Our analysis applies a unique quarterly data set of coal, natural gas and oil consumption, output,

exchange rates, equity prices and global fossil fuel prices for 32 countries spanning the period 1984Q1-
2019Q4. To the best of our knowledge, no such compiled quarterly disaggregated consumption data set
is publicly available for the period of our interest.1 According to the BP data for the year 2018, 81%
of global CO2 emissions due to fossil fuel combustion was released by the 32 countries in our sample.
To predict CO2 emissions, it is important to decompose the fossil fuel sources into coal, natural gas
and oil because of the different CO2 intensity among fuel sources. Furthermore, among the fossil fuels,
the share of coal consumption within emerging economies is much higher than in advanced economies.
Our forecasts indicate how CO2 emissions evolve in the emerging and advanced economies as the fuel
mix changes across countries within these groups.

In order to assess the impact of the global economic shock from the COVID-19 spread, we produce
conditional forecasts of coal, natural gas and oil consumption, for the advanced and the emerging
economies, separately, conditional on GDP forecast trajectories (scenarios) over eight quarters. These
trajectories are based on the IMF forecasts for 2020Q1-2021Q4 published in IMF (2020b), the World
Economic Outlook, April 2020. IMF (2020b) publishes the quarterly forecast figures, while the IMF
update (2020c) does not. We compare the results of three scenarios to identify the effects of: (0)
no outbreak; (1) one virus spread in 2020Q1-Q2; (2) two waves of virus spread in 2020Q1-Q2 and
2021Q1-Q2. We assess the effects on the above two country groups individually, as well as on the
world as a whole.

Our second main objective is to investigate the effect of changes in the relative fossil fuel prices on
output and consumption. Policy to mitigate climate change, such as carbon pricing, will increase the
relative (end-user) price of coal because coal is more carbon intensive than natural gas. The effect of
such relative price changes on output is critical when assessing the trade-off between the reduction of
emissions and the negative effect on the economy, which can be an important issue during the time of
depression.

The above counterfactuals will allow us to assess the following for each country group (advanced
and emerging): (i) relative emission resilience to the negative economic shock; (ii) relative sensitivity of
emissions to carbon pricing; and (iii) relative robustness of output to carbon pricing. The finding could
be useful for the countries to pursue emissions targets beyond their intended nationally determined
contributions under the Paris Agreement.

We find that fossil fuel consumption and CO2 emissions are expected to return to their pre-crisis
levels, and even exceed them, within the two-year horizon despite large reductions in the first quarter
following the outbreak. Our forecasts anticipate more robust recovery and growth for the emerging
economies than for the advanced. Recovery to pre-crisis levels is expected even if another wave of
pandemic takes place within a year. We argue that this result may be due to (i) the IMF forecasts
predicting GDP recovery for the advanced economies in the two-year period, with faster recovery for
the emerging economies, and (ii) limited responsiveness of fossil fuel consumption to income changes,
as indicated in existing empirical studies.

The fuel prices demonstrate a sharp decline over the first quarters before exhibiting recovery.
Importantly, different fuels have different trajectories of price recovery. The coal and oil prices first
increase then drop sharply before recovering in the second year. The fuel prices are expected to
return to their pre-crisis level within the two-year period, but the price recovery may be slower if a
second pandemic wave occurs within a year. Turning to the effect of carbon pricing, our counterfactual
analysis suggests that (i) a permanent rise in the price of coal relative to natural gas and oil will reduce
fossil fuel consumption in advanced and emerging economies by a similar magnitude; (ii) the negative
effects on GDP are smaller than those on coal consumption; and (iii) the magnitude of the negative
GDP effect on the emerging economies is only around half of what the advanced economies experience.
These results suggest that, while emerging economies appear to be more resilient to carbon pricing
policy, such policy is as effective in reducing emissions for these economies as it is for the advanced
ones.

Our research is not the first to employ the GVAR model in the area of energy economics. Cashin
et al. (2014) apply a GVAR model for 38 countries/regions over the period 1979Q2–2011Q2 to show
that the economic consequences of a supply-driven oil-price shock are very different from those of an

1Annual data provided by British Petroleum (BP) and the World Bank are typically used in the literature to date.
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oil-demand shock driven by global economic activity. Mohaddes and Pesaran (2016) develop a GVAR-
oil model that integrates a model for the global oil market within that of the global economy to identify
country-specific oil-supply shocks. Mohaddes and Pesaran (2017), using a global VAR model for 27
countries/regions over the period 1979Q2 and 2013Q1, find that a fall in oil prices lowers interest rates
and inflation in most countries and increases global real equity prices. Mohaddes and Raissi (2019) use
a similar GVAR model to Cashin et al. (2014) to investigate the global macroeconomic consequences
of falling oil prices due to the oil revolution in the USA.

A few studies apply the GVAR model to investigate how fossil fuel use is related to CO2 emissions
in China. Zhou et al. (2019) apply a GVAR model to sector-level data of six industries in China to
study cross-sectoral linkages of carbon emission efficiency in China’s construction industry including
industry coal consumption and total-factor carbon emission efficiency. Cui and Zhu (2016) investigate
how dual constraints of energy consumption and carbon emission affect China’s economic growth
by applying a GVAR model that takes into account fuel switch between non-renewable renewable
energy sources. Zhang et al. (2018) apply the GVAR model to quarterly data in 1979-2008 for 33
countries in a way closer to ours. They study the effects of growth in China’s building industry on
energy consumption and carbon emissions in 33 countries. They find that the responses of energy
consumption in most countries are positive though they are negative in Japan and the Euro area,
indicating heterogeneous effects of growth in a country’s sector on its trading partners’ emissions.
Our model incorporates energy consumption by fuel type, demonstrating different changes in the
energy mix in different country groups. Our approach also addresses the impacts of relative price
changes among fossil fuels due to carbon pricing.

In what follows, Section 2 describes the data. Section 3 discusses the econometric model and
estimation method. Section 4 explains the implementation of the conditional forecasting, conditional
on the GDP scenarios after the COVID-19 spread. Section 5 discusses the experiment associated with
a higher relative coal price, followed by a conclusion in Section 6. The details of the data sources, the
GVAR model, and additional empirical results can be found in Appendices A-C.

2 Data

We employ a unique quarterly data set of coal, natural gas and oil consumption, output, exchange
rates, equity prices, and global fossil fuel prices for 32 countries spanning the period 1984Q1-2019Q4
(1). According to the BP data for the year 2018, China, India and the US emitted 28.7%, 15.7% and
7.6% of CO2, totaling 51.9% of the 81% of world CO2 emissions released by the 32 countries in our
sample.

Following IMF, we partition the countries into two groups, the ‘advanced economies’ and the
‘emerging market and developing economies,’ as shown in Table 1. To be concise, we refer to the latter
group simply as ‘emerging economies’. Within the advanced economies, we also consider the subset
EU+, which consists of ten European Union (EU) member countries plus Norway and Switzerland.
We add these two countries due to their historically close relationship with the EU. This group has
been severely hit by the pandemic and is subject to the most stringent carbon pricing policy.

We analyse spatial-temporal interactions among nine variables. Let coalit, gasit and oilit represent
the logarithms of per capita consumption of coal, natural gas and crude oil (in Mtoe) for country
i in quarter t. The logarithm of the associated global prices, pcoalt, pgast and poilt, are based on
the Australian coal price (US dollars per mt), European Natural Gas price (US dollars per mmbtu)
and Brent crude oil (US dollars per bbl), respectively. The remaining three domestic variables are
gdpit, epit and eqit, which are the logarithms of the (real) gross domestic product, the real exchange
rate in terms of US dollars for country i in quarter t and the real equity price, respectively.2 Details
of the construction and sources of the data are available in Appendix A.1. The consumption data
were first tested for seasonality. We adjusted those series that exhibited significant seasonal effects for
temperature and/or season. In some cases where temperature adjustment induced spurious volatility,
only seasonal adjustment was performed. Temperature adjustment is based on the heating and cooling
degree days as well as their 30-year average between 1981 and 2010 (the ‘climate normals,’ see Elkhafif

2Studies find linkages between the degree of financial development and energy consumption (Sadorsky, 2010; Shahbaz
et al., 2013). We include real equity prices as a regressor by following the practice of Mohaddes and Pesaran (2016,
2017), who find equity prices to be closely related with fossil fuel prices.
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Table 1: 32 countries and associated groups within the sample

Advanced Economies Emerging Economies
EU+

Austria Australia Argentina
Belgium Canada Brazil
France Japan China
Finland Korea Chile
Germany New Zealand India
Italy Singapore Indonesia
Netherlands United States Malaysia
Norway Mexico
Spain Philippines
Sweden South Africa
Switzerland Saudi Arabia
United Kingdom Thailand

Turkey

1996 and Won et al. 2016 for recent applications). Appendix A.2 explains the procedures for performing
temperature and seasonal adjustment as well as for assessing seasonal effects. Energy prices as well
as the remaining variables (in the case of eq and ep the underlying Consumer Price Indices) were
seasonally adjusted where required.

3 Modelling Framework

We employ the global vector autoregressive (GVAR) modelling framework of Pesaran et al. (2004),
which is further developed in Dees et al. (2007). The GVAR model is a multi-country model that links
country-specific models in a coherent manner using time series and panel techniques. To explain how
the model works, we define the ki×1 vector of energy consumption and economic variables of country
i in quarter t by xit = (coalit, gasit, oilit; gdpit, epit, eqit)

′, as well as the md× 1 vector of energy prices
by dt = (pcoalt, pgast, poilt)

′. Stacking xit for i = 0, 1, ..., N for our 32 countries yields the k × 1
global variable vector, xt = (x′0t,x

′
1t, ...,x

′
Nt)
′ with k =

∑N
j=0ki, and country 0 taken as the numeraire

country (the United States). The pth-order GVAR model of our 181 × 1 global variable vector3 and
energy prices at t, yt = (x′t,d

′
t)
′, is given by

yt = c0 + c1t+ C1yt−1 + ...+ Cpyt−p + εt, t = 1, ..., T , (1)

where contemporaneous correlations in the error term are permitted. The GVAR model of equation
(1) is a large model that, despite its simple overall structure, allows for a rich set of dynamics including
a high degree of interdependencies. It is not directly estimable due to the curse of dimensionality and
possible existence of cointegrated variables. To avoid these problems, estimation and specification of
the GVAR model involves two-steps. In the first step, a vector error correction model for the domestic
variables, xit, is estimated for each i, augmented with the global variables, dt, and the foreign variables
of country i, x∗it, which are specified below. Based on these parameter estimates as well as those of
an estimated model for dt, in the second step the estimated version of equation (1) is obtained. The
two-step estimation approach is explained in detail below. Appendix B.1 provides further details on
the variables included in the GVAR model.

3See Table B.1(ii) in Appendix B.1.
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3.1 The country-specific VARX* models

Consider the following VARX*(pi, qi) structure for the ith country-specific model

xit = ai0 + ai1t+ Φi1xi,t−1 + ...+ Φipixi,t−pi + Λi0x
∗
it + Λi1x

∗
i,t−1 + ...+ Λiqix

∗
i,t−qi , (2)

+ Ψi0dt + Ψi1dt−1 + ...+ Ψiqidt−qi + uit,

for i = 0, 1, ..., N where xit and dt are the ki × 1 vector of domestic variables and the md × 1 vector
of common global variables, respectively, given above, and x∗it is a k∗i × 1 vector of foreign variables.
The foreign variables are constructed as weighted averages across all domestic variables in the model
such that x∗it =

∑N
j=0wijxjt, where wii = 0 and

∑N
j=0wij = 1, and can be considered as proxies

for unobserved common factors. These variables are expected to ‘soak up’ most of the cross-section
correlation leaving only a modest degree in the estimated residuals. The weights, wij , are computed
here based on the trade relationship (average of imports and exports) of the individual countries with
their corresponding trading partners.4 The common global variables in each country model are treated
similar to the foreign ‘star’ variables, which includes sharing the same lag order, qi.

As discussed in Pesaran et al. (2004), GVAR modeling allows for interactions among different
countries through three separate but interrelated channels:

1. Contemporaneous dependence of xit on x∗it and on its lagged values, where as mentioned earlier
the star variables can be considered as proxies for common unobserved factors such as, for
example, the diffusion of technological progress or global upheaval in the case of COVID-19.

2. Dependence of the country-specific variables xit on common global variables dt and on its lagged
values, which are the global fuel prices in our context.

3. Nonzero contemporaneous dependence of shocks in country i on the shocks in country j, mea-
sured via the cross-country covariances, Σij = cov(uit,ujt) for i 6= j. Such ‘residual’ inter-
dependencies (after global unobserved factors have been taken into account) could be due, for
example, to policy and trade spillover effects.

In the presence of possible I(1) variables and cointegration the corresponding vector error cor-
rection form of equation (2), the VECMX*, assuming for expositional purposes that pi = qi, can be
written as

∆xit = ci0 −αiβ′i[z̃i,t−1 − γi(t− 1)] + Λi0∆x∗it + Ψi0∆dt +
∑pi−1

j=1
Γz,ij∆z̃i,t−j + uit, (3)

where zit = (x′it,x
∗′
it)
′, z̃i,t−1 = (z′i,t−1,d

′
t−1)

′,αi is a ki×ri matrix of rank ri and βi is a (ki+k
∗
i +md)×ri

matrix of rank ri. By partitioning βi as βi = (β′ix,β
′
ix∗,β

′
id)
′ conformable to z̃it = (x′it,x

∗′
it ,d

′
t)
′, the

ri error correction terms defined by the above equation can be written as

β′i (z̃it−γit) = β′ixxit + β′ix∗x
∗
it + β′iddt −

(
β′iγi

)
t,

which allows for the possibility of cointegration both within xit and between xit, x∗it and dt, and
consequently across xit and xjt for i 6= j.

For the estimation of each country model (3), the foreign and common global variables are treated
as weakly exogenous with respect to the long run parameters αi and βi of the model, an assumption
testable by the data. This assumption implies that there are no feedback effects from the domestic
variables to these variables in the long-run without precluding short-term interactions between the
two. The rank of the cointegrating space for each model is computed using Johansen’s (1991) trace
statistic as set out in Pesaran et al. (2000) for models with weakly exogenous I(1) regressors. This
way, the number of cointegrating relations of each country, ri, the speed of adjustment coefficients,
αi, and the cointegrating vectors βi for each country model are obtained. Conditional on a given
estimate of βi, the remaining parameters in equation (3) are consistently estimated by ordinary least
squares (OLS). From the estimated VECMX* models we can then recover the estimated version of
equation (2).

4In principle, any type of weights could be used including different weights for different variables, as well as weights
that change over time, as long as they satisfy the ‘smallness’ condition given in Pesaran et al. (2004).
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Unit root tests applied to our variables suggested that on the whole these are I(1). The lag orders
of the individual country VARX* models were selected using the Akaike information criterion (AIC)
setting a maximum for pi and qi of 3 and 2, respectively. The choice of these maximum values was
based on the available number of observations and the desire to reduce serial correlation. The testable
assumption of weak exogeneity of the foreign and global variables was supported by the data. Weak
exogeneity test results for all countries, along with the individual country lag orders, number of cointe-
grating relations and other related output can be found in Section S.2 of the supplementary material.
The construction of the weight matrix is based on a three year average of the trade relationships
between the countries over the years 2014-2016.

3.2 Modelling the global prices

While estimation of the individual country VECMX* models in the presence of the weakly exogenous
regressors does not require separately specifying a model for the global prices, for the purpose of
forecasting in what follows this is required.

The modelling procedure for the global prices proceeds in two steps. Since the global prices, dt,
were found to be I(1) in order to allow for the possibility of cointegration, in the first step the following
error correction model that includes a restricted intercept is estimated

∆dt = −αdβ′d[dt−1 − µ] +
∑pd−1

j=1 Γd,j∆dt−j + ηt, (4)

where αd and βd are md× rd vectors, and rd denotes the number of cointegrating relations. Using
the trace statistic of the Johansen cointegration approach one cointegrating relationship was found
among the global prices, with pd = 3 selected based on the AIC and no remaining serial correlation.

The cointegrating vector, βd, was estimated subject to one overidentifying restriction which was

supported by the data. Let ÊCd,t−1 = β̂
′
d[dt−1 − µ̂] be the estimated error correction term which is

given by
ÊCd,t−1 = 0.320coalt−1 + 1.000gast−1 − 1.000oilt−1 − 1.552. (5)

In the second step the error correction specification in equation (4) is augmented with additional
feedback effects computed as a weighted average of the domestic variable vector, xit. Specifically,

∆dt = c + δÊCd,t−1 +
∑p̃−1

j=1Θd,j∆dt−j +
∑q̃−1

j=1Θx,j∆x̃t−j + ηt. (6)

where ÊCd,t−1 is taken as given (estimated in the first step), x̃t =
∑N

i=0w̃ixit is a k × 1 vector of

feedback effects, with the weights w̃i such that
∑N

i=0w̃i = 1, which are computed based on PPP-GDP
figures averaged over the years 2014-2016.

We further allow for separate lag orders, namely p̃` and q̃` with ` = 1, 2, 3, to be selected by the
AIC for each of the individual price equations using a maximum lag order of 3 for both. Having
estimated equation (6) the VAR form for dt is given by

dt = µ0 + µ1t+ Φd,1dt−1 + ...+ Φd,p̃dt−p̃ + Λx,1x̃t−1 + ...+ Λx,q̃x̃t−q̃ + ηt. (7)

Combining the estimated versions of models (2) and (7), we obtain the estimated GVAR model
of equation (1) in terms of yt. Appendix B.2 details how to solve for the GVAR model based on
equations (2) and (7).

4 Conditional forecasts of fossil fuel consumption and carbon emis-
sions

In what follows, we produce forecasts for coal, natural gas and oil consumption conditional on three
different eight-quarter horizon GDP growth rate paths (scenarios) for the advanced and emerging
economies. These trajectories are based on the forecasts published in the IMF World Economic
Outlook. We consider three GDP scenarios (Figure 1). Scenario 0 is the GDP forecast published
by the IMF in January 2020, IMF (2020a), i.e., without the effect of the economic shock from the
COVID-19 pandemic. Period zero corresponds to 2019Q4 and the value is normalised to 100. Scenario
1 is identical to the updated IMF forecast in April 2020 (IMF, 2020b, Figure 1.6, p.9), which clearly

6



shows the effect of the economic shock from COVID-19’s hit to Asia during January-February 2020
and to Europe and the US during March-April 2020. This trajectory asserts that the world economy
returns to the long-run growth path in around 2020Q4, in the absence of a second outbreak. Scenario
2 assumes a second wave of pandemic around 2021Q1 and Q2 with an associated decline in GDP
growth, which is slightly smaller in magnitude than that of the first wave.

Scenario 0 Scenario 1 Scenario 2

Note: Scenarios 0 and 1 are based on the forecast in IMF (2020a,b). Scenario 2 assumes another wave
of pandemic in 2021Q1.

Figure 1: Three GDP scenarios with and without the global economic shock from COVID-19

A few remarks are warranted on this method of constructing the conditioning GDP scenarios.
First, naturally, the estimated GDP trend of our model and the IMF’s hypothesised GDP trend in the
advanced and emerging groups may be slightly different.5 Second, even though the GDP growth rates
would differ across individual countries, we assume a common GDP growth trend across countries
within each of the two groups following the available published IMF forecasts. This assumption may
be innocuous to the extent that our primary aim is to assess the impact of the (almost) simultaneous
spread of COVID-19 to the advanced and emerging economies by comparing the conditional forecasts
under Scenario 0 to those under Scenarios 1 and 2. We partially address this concern by further
comparing the conditional forecasts with the unconditional forecasts from the GVAR model (1) in
Appendix C.1. Finally, the IMF published revised GDP forecasts on 24 June 2020 (IMF, 2020c;
Figure 1), in which the drop in 2020Q2 is larger for both the advanced and emerging groups compared
to their April 2020 forecasts (IMF, 2020b). This was further revised slightly upwards in October
(IMF, 2020d).Unfortunately, unlike IMF (2020b), the revised quarterly forecast figures are not publicly
available and we could not update our exercise. However, because the IMF’s (2020c,d) revised GDP
forecasts fall between our Scenario 1 and Scenario 2 forecasts, it is likely that the forecasts of fossil
fuel consumption and CO2 emissions under this revised Scenario 1 would be lower than those under
Scenario 1 but higher than those under Scenario 2. Therefore, the general results in this paper would
still hold with the revised scenarios in IMF (2020c,d).

4.1 Conditional forecasting: method

Consider the estimated GVAR(3) model given by

yt = ĉ0 + ĉ1t+ Ĉ1yt−1 + Ĉ2yt−2+Ĉ3yt−3 + ε̂t, (8)

t = 1, ..., T . We produce conditional forecasts from model (8) for each quarter T +h, for h = 1, 2, ..., 8
conditional on the IMF forecasted GDP growth paths of 2020Q1-2021Q4 implied by each of the
Scenarios 0-2.

The GDP growth paths are applied to the gdp variable of all countries in model (8) starting from
the last quarterly observation of our sample, T . This results in eight quarterly values for the gdp
variable for every country: namely, gdpi,T+j , j = 1, ...,H(= 8) (two different sets of values for the
advanced and emerging economies). These can be written compactly as

SyT+j = gT+j , j = 1, 2, ...,H, (9)

5As an alternative the GDP trend of 2019Q4 could be used.
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where S is a suitably defined (N+1)×(k+3) matrix with 1 in the position of gdpi,T+j for each country
i, 0 elsewhere; gT+j is a (N + 1)×1 vector that contains the values for the gdp variable corresponding
to quarter T + j for a given scenario; and H denotes the conditioning horizon, which is equal to
eight (the same as the forecast horizon). The forecast for every quarter, T + h, is then obtained by
conditioning on all eight quarterly values for gdp defined by (9) across all countries simultaneously.

The conditional point forecasts of yT+h are given by

µ∗h = E
(
yT+h

∣∣IT ,SyT+j = gT+j , j = 1, 2, ...,H
)

, for h = 1, 2, ...,H, (10)

where IT is the information set at time T . In deriving the expectations it is assumed that conditioning
on the GDP growth paths does not affect the GVAR model parameters, Ci, i = 1, 2, 3 and the
covariance matrix, Σε, associated with εt, which is also assumed to be jointly normally distributed.

We further define the unconditional point forecasts of yT+h given by

µh = E (yT+h |IT ) , for h = 1, 2, ...,H. (11)

While these forecasts condition on the information set IT , we define them as unconditional to distin-
guish them from the conditional forecasts in (10), which in addition condition on the gdp values given
by SyT+j = gT+j , j = 1, 2, ...,H.

We use the latter forecasts to construct the difference, δh = µ∗h − µh. Obtaining the probability
distribution of this difference then allows us to compute the probability, for example, that consumption
is lower in view of Scenarios 1 and 2, and to check whether these probabilities are in line with the
differences of the point forecasts obtained between Scenarios 1-0 and 2-0. It is the probabilities
associated with δh that are given in Appendix C.1 referred to earlier. Further technical details related
to the derivation of the conditional and unconditional forecasts, as well as the difference between the
two, are available in Section S.3 of the supplementary material.

4.2 Conditional forecasting: results

In this subsection we report the conditional forecast results of the total amount of energy consumption
and CO2 emissions for the different groups (see Table 1) under the different GDP scenarios.

4.2.1 Energy consumption

Figure 2 summarizes the conditional forecasts of the total amount of energy consumption. The hori-
zontal axis represents the quarters over the two-year forecast horizon and the vertical axis reports the
forecasts of the amount of consumption. We first focus on the results for Scenario 0 (no COVID-19
effects). In the initial period (the observed 2019Q4 data point), the EU+ and the advanced groups
have a similar composition of energy consumption. In 2019Q4 the shares of coal, natural gas and oil
for the advanced economies are 14.4%, 41.4% and 44.3%, respectively. For the EU+ countries, perhaps
reflecting their stringent emission policy, the coal share is smaller (9.3%) while the natural gas share
is larger (44.9%). In contrast, coal is the major energy source in the emerging group, which accounts
for 54.3% of the total. Under Scenario 0, total fuel consumption in the emerging economies rises much
faster than in the advanced over the eight-quarter horizon. This reflects the different average GDP
growth rate of the two groups. The fuel mix for these two groups stay similar over the horizons.

We next turn to the results of Scenario 1, which assumes a one-time spread of COVID-19. The
EU+ group appears to be hit much harder than the advanced group as a whole in the first quarter
(2020Q1), displaying large negative drops in oil and natural gas consumption, simultaneously. Ad-
vanced economies as a whole follow a similar, but less pronounced pattern compared to EU+. This
is followed by fast recovery of consumption in the subsequent quarter(s), and a further up and down
movement in consumption. This implies that the observed effects of the COVID-10 outbreak in the
first year may continue during the second forecast year even though patterns from this GDP scenario
are stable at the end of the first year. The emerging economies exhibit a notable negative hit in the
first quarter (2020Q1), but then start growing at a similar pace as under Scenario 0. Under Scenario
2, which assumes a resurgence of the corona virus, the consumption patterns in EU+ are similar over
the first year (2020). The plunge in the fifth quarter (2021Q1) is deeper and the recovery in the
subsequent quarter is much weaker than in Scenario 1. A similar observation applies to the advanced
economies. For emerging economies, the second wave of negative GDP shocks push down consumption
in the fifth quarter (2021Q1), which drags down consumption growth.
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Scenario 0 Scenario 1 Scenario 2
EU+

Advanced

Emerging

World

Figure 2: Forecasts of consumption of coal, natural gas, and oil by country group (annualised, in
Mtoe)

4.2.2 CO2 emissions

Based on the forecast energy consumption levels, we estimate the amount of emissions due to fossil
fuel combustion. We use the simple emission factors which were used in the BP report. Specifically,
a tonne of oil equivalent (toe) coal, natural gas and oil is converted to 3.96, 2.35 and 3.07 tonnes of
CO2.

6

6We found that this simple method produces larger emission estimates compared to the BP estimates by 8.0%-10.1%,
which is in line with BP’s note. See Appendix A.3 for the comparison of our estimates with BP’s and related details.
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As expected, the emissions forecasts are qualitatively similar to the consumption forecasts as the
former are a scaled version of the latter, weighted by the above emission factors. To save space, the
emission forecasts are reported in Figure C.2 in Appendix C.2. Here we focus on investigating the effect
of COVID-19’s negative economic shock on emissions for the different country groups. We measure
the effect by the change in the emissions by fuel source implied by Scenario 1 or 2 (with a COVID-19
shock) over Scenario 0 (without the shock), which is reported in Figure 3. The figures in the first
row report the difference between the emissions in Scenario 1 and 0. For the advanced economies, the
Scenario 1 GDP shock reduces emissions due to oil and gas use across all eight quarters, except the
sharp increase for gas use in the second quarter (2021Q2). The emissions due to coal decrease during
2020, then increase continuously over the quarters in 2021. It is clear that oil and gas are the main
contributor to the reduction of emissions. Table 2 reports the changes of the emissions for Scenarios
1 and 2 against Scenario 0. On average, over the eight quarters, the Scenario 1 GDP shock reduces
emissions by 3.9% in advanced economies. On the other hand, in the emerging economies, apart from
the drop in the first quarter, the emissions in the rest of the quarters are greater in Scenario 1 than in
Scenario 0. The increase in emissions is mostly due to higher coal consumption. The average change
in emissions for Scenario 1 over 0 is +3.4%. (see first panel of Table 2). Consequently, despite the
massive 5.7% decrease of world emissions in the first quarter, the average emission changes over the
two-year horizon, shown in the same panel of Table 2, is +0.4%, which is very small. This is because
the decline in emissions in advanced economies is offset by the increases in emissions in emerging
economies. We next turn to the second row of Figure 3 and the second panel of Table 2, which report
the change in emissions for Scenario 2 over 0. Due to the second negative shock to GDP, emissions are
more negatively affected compared to Scenario 1, particularly in the second forecast year. This reduces
the growth in emissions in both the advanced and the emerging economies. The average changes in
the advanced and in the emerging economies are -5.4% and +2.3%, respectively. Consequently, the
average world emission changes is -0.9%.

Why does our analysis forecast relatively small effects of COVID-19 on fossil fuel consumption
and CO2 emissions over a two-year period? Several factors can explain the result. First, although
the IMF (2020b) forecasts predict a large and immediate negative impact on GDP across countries
that is unforeseen in the recent history, they indicate that the advanced economies’ output recovers
to the pre-pandemic level in the two-year period, while the emerging economies’ output recovers even
quicker. Second, existing cross-country studies on energy demand indicate that energy consumption
may not be highly responsive to income changes.7 Figure 1 indicates a decline in GDP by more than
5% for the emerging economies under Scenario 1 relative to Scenario 0 in the first quarter; and more
than a 10% decline for the advanced economies in the second quarter. Table 2, on the other hand,
suggests that CO2 emissions decline by a smaller magnitude in both country groups in the initial
quarters. These observations are consistent with the income elasticity estimates in the literature. As
the income level increases over the later quarters, the fossil fuel consumption catches up, resulting in
a fast recovery of CO2 emissions.

To sum up, under Scenario 1 where the COVID-19 shock negatively affects the world economy
in early 2020 but not in late 2020 to 2021, advanced economies will struggle to restore their energy
consumption growth to the no COVID-19 levels until the end of 2021. In contrast, the emerging
economies may recover faster from the drop in early 2020 and consume more energy than for the case
without COVID-19. Consequently, total emissions in the world during 2020-2021 may not be affected
much by the COVID-19 shock. However, if a second COVID-19 outbreak takes place, then energy
consumption in advanced and emerging economies will go down further. As a result, the world CO2

emissions level could be slightly less than that under the no-COVID-19 scenario.

4.3 Forecasting fossil fuel prices after the COVID-19 spread

We have seen that the global negative shock due to COVID-19 has different impacts on fuel consump-
tion, and hence CO2 emissions, in different countries. Our model also forecast fossil fuel prices by

7Huntington et al. (2019) reviews income elasticity estimates for liquid fuels in the literature, indicating a wide range
of estimates that average at around less than 1. They find little evidence that countries with higher income levels have
lower income responses.
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Advanced Emerging World
Scenario 1 - 0

Scenario 2 - 0

Figure 3: Difference in CO2 emissions (annualised in MtCO2)

Table 2: Changes in CO2 emissions under Scenerios 1 and 2

Scenario 1 to 0 Scenario 2 to 0
Horizon EU+ Advanced Emerging World EU+ Advanced Emerging World

2020Q1 -20.4% -9.5% -2.8% -5.7% -20.1% -9.2% -2.8% -5.6%
2020Q2 13.1% 3.2% 3.0% 3.1% 13.3% 2.8% 3.0% 2.9%
2020Q3 -4.1% -10.3% 3.5% -2.3% -4.8% -11.2% 2.9% -3.0%
2020Q4 -4.1% -5.3% 5.4% 0.9% -3.2% -4.2% 4.2% 0.6%
2021Q1 0.7% -2.8% 4.6% 1.5% -11.6% -8.1% 0.5% -3.1%
2021Q2 -4.8% -3.4% 4.3% 1.1% -0.9% -2.8% 2.7% 0.4%
2021Q3 -1.6% -2.1% 4.7% 1.9% -3.0% -7.4% 3.5% -1.0%
2021Q4 1.2% -1.2% 4.9% 2.4% 1.4% -2.7% 4.5% 1.6%

Average -2.5% -3.9% 3.4% 0.4% -3.6% -5.4% 2.3% -0.9%

taking into account (short-term) feedback effects of the domestic variables on the fuel prices as seen
in equation (7).

Figure 4 lists the conditional forecast of prices using the GDP shock scenarios. Under Scenario 1,
the prices of coal and gas first increase then drop sharply, and exhibit a gradual recovery thereafter.
The oil price drop first then increases towards the common peak in the second quarter, then drop
sharply. Under Scenario 2, over the first four quarters during 2020 the prices move similarly to
those under Scenario 1, but during 2021 coal prices exhibit a sharper rise-and-drop. Importantly, the
exogenous shocks can change the relative prices of coal, natural gas and oil, which would affect the
future consumption of these fuels.
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Scenario 0 Scenario 1 Scenario 2

Figure 4: Conditional forecasts of fossil fuel prices conditional on GDP scenarios after the COVID-19
spread

4.4 Forecast performance evaluation

The primary interest of this paper is assessing a potential impact of the tight COVID-19 prevention
measures by conditional forecasting rather than choosing the best forecasting models. However, inves-
tigating the efficacy of our forecasting approach is also useful because it may affect the quality of such
an assessment. Here we inspect forecast performance of our approach. The efficacy of the conditional
forecasts of energy consumption during 2020-2021, conditioned on the GDP projection for 2020Q1-
2021Q4 by IMF, depends on two factors: the quality of the GDP forecast by IMF and the forecast
ability of our global model. Here we aim to disentangle and examine the effects of these two factors,
separately. Unfortunately, we cannot inspect out-of-sample forecasts during 2020-21, as we do not
observe the actual consumption. Instead, we investigate out-of-sample forecasting errors during the
most recent sharp economic fall around the 2008-09 financial crisis. Specifically, we estimate the model
using the sample for the estimation period, from 1984Q1 to 2008Q4, and obtain the out-of-sample
(conditional) forecast errors for energy consumption during the forecasting period, from 2009Q1 to
2010Q4.8 For the forecast comparison, we employ the test for multi-horizon superior predictive ability
(SPA), proposed by Quaedvlieg (2019). This serial correlation robust test considers all horizons of a
forecast jointly, which is the desirable property for evaluation of our forecasts. We report the average
SPA test scores based on mean squared forecast errors. The SPA test is upper one-tailed: for forecasts
C and D, define the associated loss (here mean squared forecast errors over the horizon), LC and LD.
The null is H0: E(LC − LD) = 0 whilst the alternative is HA1: E(LC − LD) > 0. We report the test
results for HA1: E(LC −LD) > 0 (Forecast D outperforms C) and HA1: E(LD−LC) > 0 (Forecast C
outperforms D), since the test results of these are different in general. Following Quaedvlieg (2019),
we employ a bootstrap test.9 First, to investigate the effects of choice of the GDP projections we im-
plement the SPA test to compare the conditional forecasts based on the IMF projection of GDP and
the actual GDP for the forecasting horizon 2009Q4-2010Q4. The forecast GDP is based on the IMF
(2009) World Economic Outlook, January 2009 and OECD (2008), The OECD Economic Outlook,
December 2008. The latter is employed when IMF (2009) does not contain the necessary information.
We interpolated the quarterly GDP from the annual projections. The test is implemented for each of
coal, gas and oil consumption for the 32 countries. In total, 89 test results are obtained. At the 5%
significance level, the null of equal forecast performance is rejected in favour of the alternative that
the conditional forecast with the actual GDP projection is better for 23 series out of the 89 (26%),
whereas for all the 89 series the null is not rejected for the alternative that the conditional forecast with
the IMF GDP projection is better. The full results are available in Table S.3.1 of the supplementary
material. This can be seen as evidence that the choice of the GDP projection can affect the quality
of the conditional forecast, which might be expected. Second, to examine the forecast ability of our
global VAR model, we conduct the average SPA test to compare the unconditional forecast of our
global VAR model with that of a benchmark model. For the latter, we have chosen country specific

8We are grateful to a referee for suggesting this exercise.
9See Quaedvlieg (2019) for more details.
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vector autoregression models of coal, gas and oil consumption.10 At the 5% significance level, the null
hypothesis of equal forecast performance is rejected in favour of the alternative that the näıve VAR is
better only for 4 series out of the 89 series (4.5%) whilst the null is rejected for the alternative that
our unconditional forecast is better only for 2 series (2.2%). The full results are available in Table
S.3.2 of the supplementary material. Since both portions of the rejections are less than the significance
level, neither of the benchmark model or our global model outperforms the other. Provided that our
global model can capture far more complicated spatial-dynamic dependencies, essentially this result
reveals the promising forecast ability of our global model.11 To sum up, the evidence in this subsection
suggests that: (i) the accuracy of the conditional forecast depends on the quality of the projection
conditioned upon, and; (ii) the forecast performance of our global model is as reliable as other bench-
mark models. We emphasise that the primary aim of this paper is assessing potential impact of the
tight COVID-19 prevention measures on the global carbon emissions by conditional forecasting, rather
than choosing the best forecasting models. The GDP scenarios 0-2 for 2020Q1-2021Q4 that we employ
may not be very accurate ex post, however, they reflect the ex ante stylised economic impacts and
suite the research aim of this paper.

5 The effect of changes in the fossil fuel prices on fuel consumption
and output

Our analysis so far indicates that the effect of COVID-19 on the global CO2 emissions would be close
to zero over the two-year time horizon though the fossil fuel prices are expected to have sizeable
fluctuations (5% or more) during this period. In particular, it shows that (i) an exogenous shock can
change the relative prices of fossil fuels; and (ii) COVID-19 will not alleviate the urgency to reduce
more CO2 emissions globally. What does the model predict as the effect of carbon pricing on CO2

emissions? In this section, we investigate the effect of changes in the relative prices of coal, natural
gas and oil on fuel consumption and output.

Since coal is the most carbon intensive among the three fossil fuels, we implement a counterfactual
experiment that raises the coal price. The unconditional forecast prices serve as the benchmark. We
restrict the GVAR model so that contemporaneous and lagged feedback from the domestic variables
(energy consumption, GDP, exchange rates and equity prices) to the fossil fuel equation are shut off
and do not confound the interpretation of the experiment. Under this restriction, given the value of
the prices, forecasts are produced from the following model

xt = b̂0 + b̂1t+ F̂1xt−1 + F̂2xt−2 + F̂3xt−3 + Υ̂0dt + Υ̂1dt−1 + Υ̂2dt−2 + v̂t, (12)

where the estimated coefficients embody the internal and external linkages and dynamics resulting
from the estimation of the country-specific models in Section 3.1 (see Section B.2 of the Appendix for
further details). In what follows, the unconditional forecast refers to the forecasts from the above model
for xt, with the given global prices obtained as forecasts from the estimated VAR(3) representation of
model (4) that includes the error-correction term given in (5). Under the counterfactual scenario, the
forecasts for xt are obtained subject to an increase in the price of coal by 12.5%. We refer to these
forecasts as the conditional forecasts. In order to describe long-run effects, we consider forecasts over
forty quarters.

Figure 5 reports the unconditional and conditional forecasts. Each panel displays average per
capita log fuel consumption and per capita log GDP for each country group. The solid lines are the
unconditional forecasts and the dashed lines are conditional on higher coal prices. The first panel shows
that coal consumption in the advanced economies declines over the horizon, whereas it increases in the
emerging economies. The second panel indicates that natural gas consumption increases worldwide,
but much faster in the emerging economies. The third panel shows that oil consumption in the
advanced economies stays almost constant over 10 years while it increases rapidly in the emerging
economies. Finally, GDP grows faster in the emerging economies than in the advanced economies as

10Specifically, we estimate the VAR(2) for first-differenced logarithms of coal, gas and oil consumption with an intercept
for the estimation period 1984Q1-2008Q4.

11Pesaran et al. (2009) demonstrate an extensive forecasting exercise of the GVAR model against typical benchmarks;
and find that a double-averaged GVAR model forecast performs better than the benchmark competitors, particularly
for output and inflation.
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Figure 5: Forecasts of fuel consumption and GDP for benchmark and higher coal price cases

EU+ Advanced Emerging

Figure 6: Difference in forecasts of fuel consumption and GDP between benchmark and higher coal
price cases

illustrated in the last panel. These trajectories are remarkably similar under the scenario with higher
coal prices. However, the negative effects of the higher coal price appear to be larger for EU+ and the
advanced economies than for the emerging ones.

In order to assess the effect of the higher coal price more clearly, we report the difference in
consumption and GDP with and without the 12.5% coal price increase in Figure 6. The properties
of the differences in consumption and GDP for the baseline and for the higher coal price are similar
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Table 3: The forecast elasticity of fossil fuel consumption and GDP per capita with respect to coal
price

EU+

coal gas oil GDP

average change (annual) -2.6% -1.9% -0.5% -0.8%
s.e.(autocorrelation robust) 2.0% 0.7% 0.2% 0.3%
t-ratio -1.30 -2.88 -2.64 -2.64
p-value 0.097 0.002 0.004 0.004

Advanced
coal gas oil GDP

average change (annual) -1.8% -1.6% -0.6% -0.7%
s.e.(autocorrelation robust) 1.5% 0.6% 0.2% 0.3%
t-ratio -1.20 -2.90 -2.63 -2.54
p-value 0.115 0.002 0.004 0.006

Emerging
coal gas oil GDP

average change (annual) -0.3% -0.5% -0.3% -0.2%
s.e.(autocorrelation robust) 0.4% 0.2% 0.1% 0.1%
t-ratio -0.73 -2.19 -2.65 -1.79
p-value 0.234 0.014 0.004 0.037

Note: The average annual change refers to the annualized average (over 40 quarters) of the quarterly change
due to a 100% increase in the relative price of coal.

for EU+ and the advanced economies, but the former group is more sensitive to the coal price hike.
Eventually the higher coal price reduces energy consumption and GDP while the gap under the two
scenarios widens. Though natural gas consumption increases in the initial two years, it decreases
thereafter.

Table 3 reports the ‘elasticity’ of fossil fuel consumption and GDP per capita due to a 100% increase
in the price of coal. The elasticity estimates are small across the board. The estimated own price
elasticity of coal consumption in EU+, which is weakly significant at the 10% level. The estimates for
Advanced and Emerging economies are not significant. The figures for gas and oil are within the range
of estimated price elasticity of energy demand in the literature.12 Why does the elasticity estimate
exhibit such a small magnitude, in particular for coal? The coal consumption has been decreasing over
the past decade in many advanced countries including the U.S. and EU, accompanied by increased
shares of natural gas and renewable energy in the energy mix (IEA, 2019). China, in contrast, has
been increasing its coal consumption while some researchers estimate that its demand for coal is very
inelastic (Ma and Stern, 2016). These factors may explain the weak association between the observed
coal price and consumption.

For the emerging economies, the negative effect of the higher coal price on coal consumption is
much smaller than that of the advanced economies and insignificant. The effects on GDP and natural
gas consumption are much smaller for emerging than for advanced economies. The results also indicate
that, relative to the fuel consumption, the negative impact of a higher coal price on GDP is smaller.

Overall, the above simulation reveals that a substantial increase in the coal price can significantly
reduce fossil fuel consumption across the world. The effects on GDP are smaller than those on coal
consumption. The negative effect on GDP due to a higher coal price is more limited in the emerging
than in the advanced economies.

12According to a meta analysis by Huntington et al. (2019), estimated short-run price elasticity of oil demand varies
substantially in the literature, averaging at -0.07 for developing countries and -0.11 for OECD countries among the
reviewed studies. Note that our estimate is not the price elasticity of energy demand, so it is not directly comparable to
the elasticity estimates in the literature.
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6 Concluding remarks

We employ a global vector autoregressive (GVAR) model, which captures cross-sectional and time se-
ries interdependencies across countries, to study the global energy impacts of the COVID-19 pandemic
and its global propagation. Its application based on data for 32 countries, which generate 81% of the
global CO2 emissions due to fossil fuel use, indicates that the negative effect of COVID-19 on global
fossil fuel consumption, and hence CO2 emissions, is large in the first quarter but limited over the
two-year horizon. On one hand, the advanced economies will barely restore their energy consumption
growth by the end of the two years to the level under the counterfactual scenario without COVID-19.
On the other hand, the emerging economies may recover from the drop in early 2020 rather quickly
and consume more energy than for the case of no COVID-19 outbreak. Consequently, total emissions
in the world during 2020-2021 may not be affected much by the COVID-19 shock. However, if the
world economy is further negatively affected, such as by a second wave of the coronavirus, energy
consumption in the advanced and the emerging economies will decline further. The CO2 emissions
could be substantially lower than in the case of no COVID-19 shock for the advanced economies, but
the impact is more limited for the emerging economies. Overall, our GVAR analysis indicates that the
pandemic and the resulting economic shut down will not lead to a sizeable reduction in CO2 emissions
over a two-year time horizon. Thus COVID-19 would not provide countries with a reason to delay
climate-change mitigation efforts.

What will happen if these economies adopt carbon pricing which increases the relative price of coal?
Our conditional forecast analysis reveals that higher coal prices lead to lower fossil fuel consumption
with less-than-proportional decreases in GDP. In particular, the impact on fossil fuel consumption
and GDP is smaller for the emerging economies.

This result indicates that continued efforts to reduce CO2 emissions, through an expanded intro-
duction of carbon pricing in other countries, may not be too costly in terms of the magnitude of the
GDP impacts. As the effects on GDP are expected to be more limited in the emerging than in the
advanced economies, global application of carbon pricing may not exacerbate distributional impacts
across countries with different income levels.

With regard to the impact of the economic shock from COVID-19 on the advanced versus emerging
economies, the following caveats are in order: our analysis does not study the effects on each country
separately; and stringent financing restrictions in emerging economies may drag down their recovery
from the pandemic’s negative economic effects (IMF, 2020b). Considering a global model that can
reflect differences in sovereign credits across countries is left for future research.

Our analysis also demonstrates differential impacts of slower GDP growth due to COVID-19 on
different fossil fuel sources in different parts of the world. The simulation associated with a higher
coal price also indicated different effects on natural gas and oil consumption. In the context of climate
change mitigation, it would be useful to consider the impact on renewable energy integration, which
this paper does not address due to data availability. Future research could address how the pandemic’s
negative economic shocks influence the speed of renewables integration.

Appendix A: Further Description of the Data

A.1 Data Sources

A.1.1 Macroeconomic variables, PPP-GDP and trade data

Real GDP, the real exchange rate and real equity price for all countries, as well as PPP-GDP figures
and the trade data for construction of the trade matrix (used in computing the foreign variables of the
GVAR model) were taken from the GVAR 2019 Vintage available at https://www.mohaddes.org/gvar.
This is an updated version of the 2016 Vintage, updated by Kamiar Mohaddes and Mehdi Raissi. The
PPP-GDP data are from the World Development Indicator database of the World Bank. The trade
data is from the IMF Direction of Trade statistics constructed based on the average of Exports and
Imports (c.i.f.) at the annual frequency. Further details including the source of the macroeconomic
variables for each country can be found there.
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A.1.2 Population

Population data are from the World Bank website https://data.worldbank.org/indicator/SP.POP.TOTL
available at the annual frequency. The annual data were interpolated to obtain the quarterly values
using the approx function in R selecting the method “linear.” Figures for 2018Q1-2019Q4 were set
equal to the annual 2018 figure, the last available annual data point for all countries.

A.1.3 Energy consumption

Energy consumption data were obtained from Oxford Economics (https://www.oxfordeconomics.com/)
whose provider is the International Energy Agency (IEA). The Lisman and Sandee (1964) method
was used for interpolation where required.

Data for coal consumption (domestic demand, annualised, Mtoe) for all countries are constructed
from the IEA World Energy Balances service, Summary and Extended Energy Balances database
which contains annual data. Quarterly values were interpolated from the annual series.

Data for natural gas consumption (domestic demand, annualised, Mtoe) for all OECD countries
are constructed from the IEA Natural Gas Monthly service, Natural Gas Balance database. Monthly
figures were summed to obtain the quarterly values. Quarterly data for non-OECD countries were
interpolated from annual data which were constructed from the IEA World Energy Balances service,
Summary and Extended Energy Balances database.

Data for oil consumption (domestic demand, annualised, Mtoe) for all OECD countries, and non-
OECD countries over the period 1991-2019, are from the IEA Monthly Oil Service. Monthly figures
are summed to obtain the quarterly data. Quarterly values for non-OECD data for the period 1991Q1-
2019Q4 were interpolated from the annual data of the IEA World Energy Balances service.

A.1.4 Global energy prices

The coal, natural gas and oil quarterly prices are computed from the monthly prices obtained from
the World Bank Commodity Price Data (‘Pink Sheet’ Data).

A.1.5 Temperature data

Daily temperature data from monitoring stations across the countries of interest were extracted from
the Global Historical Climatology Network- Daily (GHCN) hosted by the National Centers for En-
vironmental Information (NCEI) of the National Oceanic and Atmospheric Administration (NOAA)
over the period 1981-2014. GHCN daily is an integrated database of daily climate summaries from
land surface stations across the globe that have been subjected to a common suite of quality assurance
reviews. It contains records from over 100,000 stations in 180 countries and territories. NCEI pro-
vides numerous daily variables, including maximum temperature (Tmin) and minimum temperature
(Tmax), total daily precipitation, snowfall, and snow depth. Both the record length and period of
record vary by station and cover intervals ranging from less than a year to more than 175 years.

For each monitoring station, all available data that fulfilled the following criteria were retained:
(i) both Tmax and Tmin were available for each day and (ii) no quality assurance or quality control
issues were identified for either Tmax or Tmin. For those countries with missing data over the period
of interest, namely Canada, Germany, Singapore and UK, data from the monitoring stations of the top
three largest metropolitan areas based on population were included. Similarly for the US, data from
the monitoring stations of the top three largest states in terms of population were included namely
California, Texas and New York.

A.2 Temperature and Seasonal Adjustment

Temperature adjustment and/or seasonal adjustment of the energy consumption data was initially
performed on the 2016 Vintage (ending in 2014). The 2016 Vintage was subsequently updated by
forward extrapolation using the seasonal adjusted (where appropriate) growth rate of the 2020 Vintage.
Gas consumption for 2019 for Argentina, China, India, Indonesia, Malaysia, Philippines, Saudi Arabia,
Singapore, South Africa, and Thailand, were replaced with forecasts produced by Oxford Economics,
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as these were not yet available. This was also the case for coal consumption for all countries except
Brazil.

A.2.1 Construction of HDD and CDD

The daily temperature data were converted from degree Fahrenheit to Celsius and heating and cooling
degree days, HDDiτd and CDDiτd respectively, were construted for each country i and each day d of
each year τ as follows

HDDiτd =

{
18 ◦C − mean daily temperature of country i

0, if 18◦C > mean daily temperature of country i

CDDiτd =

{
mean daily temperature of country i − 21 ◦C

0, if 21 ◦C < mean daily temperature of country i

where mean daily temperature was computed as (Tmin+Tmin)/2.
The corresponding quarterly data for HDDit and CDDit for t = 1, 2, ..., T were constructed by

taking the average daily HDDiτd and CDDiτd values for each of the four quarters. Missing values
of no more than six consecutive values were encountered for HDD for Germany and for CDD for
Germany, Indonesia and Malaysia. These gaps were filled using a simple linear interpolation method.

A.2.2 Temperature adjustment

Let yit be quarterly energy consumption for country i. Following common practice (see for example
Elkhafif, 1996) temperature adjustment of energy consumption was performed as follows:

1. Run the regression based on the quarterly data

yit = b0i + b1iHDDit + b2iCDDit + εit, t = 1, 2, ..., T. (A.1)

Equation (A.1) may consist of only HDDit or CDDit see Table A.2.

2. Construct the correction factor as

CORRiτq = b̂1i(HDDiτq −NHDDiq) + b̂2i(CDDiτq −NCDDiq)

where τ is the year (τ = 1984, 1985, ..., 2014) and q is the quarter (q = Q1, Q2, Q3, Q4),

NHDDiq = the 30 year average of HDDi for the qth quarter (1981-2010)

NCDDiq = the 30 year average of CDDi for the qth quarter (1981-2010),

are climate normals, typically computed over a three consecutive ten-year period the most recent
being 1981-2010, see Won et al. (2016) for a discussion of climate normals.

3. The temperature adjusted consumption series is then

(yit)ta = yit − CORRiτq.

A.2.3 Seasonal adjustment

Joint significance of seasonal components was tested for all consumption and price series based on the
procedure described in Section A.2.4. For consumption, seasonal effects were not significant for any
of the annual series namely all coal series and the natural gas non-OECD series. Significant seasonal
effects were found for all natural gas OECD series with the exception of Norway and for all oil series
with the exception of Indonesia13 and Malaysia. No temperature and/or seasonal adjustment was
performed for the natural gas series of Norway and the oil series of Malaysia nor for the coal and
non-OECD natural gas series. For prices, only the natural gas prices exhibited seasonal effects and
was seasonally adjusted.

13For the oil series of Indonesia we did peform seasonal adjustent despite the non-significant finding of the seasonality
test as the high volatility of the series appeared to obscure the clear seasonal pattern in the less volatile part of the series
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To seasonally adjust the data we start from log(y) (where y here is either the original consumption
series or the temperature adjusted one, or the natural gas price series) and take the first difference,
∆ log(y). This is seasonally adjusted using the X-12 quarterly seasonal adjustment method under the
additive option to obtain ∆ log(y)sa. Then using the first observation of the raw series log(y) (levels,
not seasonally adjusted) the seasonally adjusted log changes, ∆ log(y)sa, are cumulated to obtain the
log adjusted series log(y)sa. Finally, the seasonal adjusted level series, (y)sa, is obtained by taking the
exponential of log(y)sa.

Table A.2 summarises all adjustments to the energy consumption series for each country for the
Vintage 2016 (ending 2014). It also includes information on the available HDD and CDD series for each
country, with a ‘no’ indicating that the corresponding series was zero throughout the sample period
1984-2014 and was therefore not included in the temperature adjustment procedure (if performed),
yes indicating otherwise.
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Table A.2: Summary of adjustments to energy consumption of each country

Coal Natural Gas Oil HDD CDD
Argentina original data original data sa yes yes
Australia original data ta & sa ta & sa yes yes
Austria original data ta & sa sa yes yes
Belgium original data ta & sa sa yes yes
Brazil original data original data sa yes yes
Canada original data sa sa yes yes
Chile original data sa sa yes yes
China original data original data sa yes yes
Finland original data ta & sa ta & sa yes no
France original data ta & sa sa yes yes
Germany original data sa ta & sa yes yes
India original data original data sa yes yes
Indonesia original data original data sa no yes
Italy original data sa ta & sa yes yes
Japan original data sa ta & sa yes yes
Korea original data - sa yes yes
Malaysia original data original data original data no yes
Mexico original data sa sa yes yes
Netherlands original data sa sa yes yes
New Zealand original data ta & sa sa yes yes
Norway original data original data sa yes no
Philippines original data - sa no yes
Saudi Arabia - original data sa yes yes
Singapore - original data sa no yes
South Africa original data - sa yes yes
Spain original data sa ta & sa yes yes
Sweden original data - ta & sa yes no
Switzerland original data ta & sa sa yes yes
Thailand original data original data sa no yes
Turkey original data - sa yes yes
UK original data sa ta & sa yes yes
US original data ta & sa ta & sa yes yes

Note: ‘original data’ signifies that the no temperature and/or seasonal adjustment was performed on the corresponding
series. ‘ta’ and ‘sa’ signifies temperature adjusted and seasonally adjusted respectively. For the oil series any ‘ta’
and/or ‘sa’ for non-OECD countries was performed over the period 1991Q1-2014Q4 as prior to 1991 the series are
interpolated from annual data. ‘no’ for any HDD or CDD series signifies that all values for the corresponding series were
zero throughout the sample for the associated country and was therefore not included in the temperature adjustment
procedure (if performed), ‘yes’ signifies otherwise. Post 2014 the consumption series were extrapolated using the seasonal
adjusted (where appropriate) growth rate of the 2020 Vintage.

A.2.4 Assessing the joint significance of seasonal effects

To assess the joint significance of the seasonal components for a series y we consider its natural
logarithm denoted by log(y), and use the following procedure:

1. Let S1, S2, S3 and S4 be the usual seasonal dummies, such that Si, i = 1, 2, 3, 4, takes the value
of 1 in the ith quarter and zero in the remaining three quarters.

2. Construct S14 = S1 − S4, S24 = S2 − S4, S34 = S3 − S4.

3. Run a regression of ∆ log(y) (where the lower case denotes the natural logarithm of the corre-
sponding variable) on an intercept and S14, S24, S34. Denote the OLS estimates of S14, S24 and
S34 by a1, a2 and a3.

4. Asses the joint significance of the seasonal components by testing the hypothesis that a1 = a2 =
a3 = 0 using the F-statistic.

5. In cases where the null hypothesis was rejected at the 10% level, seasonal adjustment was
performed on the log-difference of the original series using the X-12 procedure as described
above.
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A.3 Comparison of Consumption and Emissions Data with BP Data

Our CO2 emissions were calculated by applying the single emission factor used by BP14 to each of
the coal, natural gas and oil series. These emission factors are based on standard global average
conversion factors compiled on the basis of average carbon content: coal at 94,600 kg CO2 per TJ
(3.96 tonnes per tonne of oil equivalent); natural gas at 56,100 kg CO2 per TJ (2.35 tonnes per tonne
of oil equivalent); and oil at 73,300 kg CO2 per TJ (3.07 tonnes per tonne of oil equivalent).

We compared our CO2 emission data with published BP data, bp-stats-review-2019-consolidated
-dataset-panel-format.xlsx. The comparison is based on 2014Q4 annualised consumption and the
2014 BP data file15 for the four country groups of Table 1: (i) EU+, (ii) Advanced, (iii) Emerging,
(iv) Total. The CO2 emissions and consumption of coal, natural gas and oil per Mtoe is given in the
table that follows.

Table A.3: CO2 emissions and consumption of coal, natural gas and oil per Mtoe

(i) Advanced (ii) Emerging
coal gas oil total coal gas oil total

(a) Our consumption 851.1 1725.1 2108.9 4685.1 2683.7 533.4 1472.5 4689.6
(b) BP consumption 866.5 1201.9 1935.7 4004.1 2596.0 597.4 1431.3 4624.8
(c) Emission Factors 3.96 2.35 3.07 3.96 2.35 3.07
(d) CO2 (a)×(c) 3370.2 4054.1 6474.4 13898.6 10627.5 1253.4 4520.7 16401.6
(e) CO2 (b)×(c) 3431.3 2824.5 5942.6 12198.3 10280.2 1403.9 4394.2 16078.4
(f) BP CO2 11023.9 14988.2
(g) log((d)/(e)) (%) -1.8% 36.1% 8.6% 13.0% 3.3% -11.3% 2.8% 2.0%
(h) log((e)/(f)) (%) 10.1% 7.0%
(i) log((d)/(f)) (%) 23.2% 9.0%

(iii) EU+ Total (i) + (ii)
coal gas oil total coal gas oil total

(a) Our consumption 164.3 480.5 553.5 1198.3 3534.8 2258.5 3581.5
(b) BP consumption 165.7 288.5 517.4 971.6 3462.5 1799.3 3367.0 8628.8
(c) Emission Factors 3.96 2.35 3.07 3.96 2.35 3.07
(d) CO2 (a)×(c) 650.8 1129.2 1699.2 3479.1 13997.7 5307.5 10995.1 30300.2
(e) CO2 (b)×(c) 656.2 677.9 1588.5 2922.6 13711.5 4228.4 10336.8 28276.7
(f) BP CO2 2651.6 26012.1
(g) log((d)/(e)) (%) -0.8% 51.0% 6.7% 17.4% 2.1% 22.7% 6.2% 6.9%
(h) log((e)/(f)) (%) 9.7% 8.3%
(i) log((d)/(f)) (%) 27.2% 15.3%

Note: The difference between our CO2 emission estimates (d) and those of BP (f) for total emissions is 15.3%. This

discrepancy is wider for advanced economies (23.2%) than for emerging economies (9.0%). This difference can be

decomposed into two parts: that from converting energy consumption into emissions (h) and that associated with the

calculation of consumption (g). Our simple conversion method using the factor (c) tends to overestimate emissions by

7.0%-10.1%, which is in line with BP’s note according to footnote 11 below. The other source of discrepancy related

to consumption calculation is negligible for coal and moderate for oil, but substantial for natural gas. The difference

between our natural gas consumption figures (a) and those of BP (b) are reported in (g) as 36.1%, -11.3%, and 22.7%

for the Advanced, Emerging and Total groups, respectively. Since natural gas is far more used by the advanced group,

the discrepancy in emission estimates due to the difference in energy consumption is larger for this group: these (g) are

13%, 2.0% and 6.9% for advanced, emerging and total, respectively.

14These are the emission factors that BP used to estimate carbon emissions from energy consumption prior to revising
their process for the 2016 edition of the Statistical Review.2016.

15While these figures are based on BP’s revised methodology for constructing CO2 emissions since 2016, it is mentioned
in their note that applying their emission factors we use here would result in CO2 emissions about 8% higher than those
derived from their revised methodology.
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Appendix B: Further Description and Results of the GVAR Model

B.1 Country-specific Variables

Table B.1(i) Summary of domestic and foreign variables included in the country-specific models

All Countries Excluding US US

Variables Endogenous Weakly Exogenous Endogenous Weakly Exogenous

Coal consumption coalit coal∗it coalUS,t coal∗US,t
Nat. gas consumption gasit gas∗it gasUS,t gas∗US,t
Oil consumption oilit oil∗it oilUS,t oil∗US,t
GDP per capita gdpit gdp∗it gdpUS,t gdp∗US,t
Real exchange rate epit - - ep∗US,t
Real equity price eqit eq∗it eqUS,t -
Coal price - pcoalt - pcoalt
Nat. gas price - pgast - pgast
Oil price - poilt - poilt

Table B.1(ii) Composition of country variables

Variables # Countries

Coal consumption 30 Excluding: Saudi Arabia and Singapore

Nat. gas consumption 27 Excluding: Korea, Philippines, South Africa,
Sweden, Turkey

Oil consumption 32

GDP per capita 32

Real exchange rate 31 Excluding: US

Real equity price 26 Excluding: Brazil, China, Indonesia, Mexico,
Saudi Arabia, Turkey

Note: The excluded consumption series had at least some part of the series equal to zero.

B.2 Solving for the GVAR model

We solve for the GVAR model in terms of yt = (x′t,d
′
t)
′, using the the estimated VECMX* mod-

els (2) and the global price model (7). We initially obtain the global model associated with the
individual country equations given by (2), expressed in terms of the k × 1 global variable vector
xt = (x′0t,x

′
1t, ...,x

′
Nt)
′ with k =

∑N
i=0ki. To this end, by setting zit = (x′it,x

∗′
it)
′ (2) can be expressed

in terms of zit as follows

Gi0zit = ai0 + ai1t+ Gi1zi,t−1 + ...+ Gipizi,t−pi

+ Ψi1dt−1 + ...+ Ψiqidt−qi + uit, (B.1)

where Gi0 = (Iki ,−Λi0) and Gij = (Φij ,Λij), for j = 1, ..., pi. Then using the identity zit= Wixt, for
i = 0, 1, ..., N, where Wi are the link matrices defined by the trade weights wij , (B.1) can be written
as

Gi0Wixt = ai0 + ai1t+ Gi1Wixt−1+...+ GipiWixt−pi + Ψi0dt+

+ Ψi1dt−1 + ...+ Ψiqidt−qi + uit. (B.2)

The individual models in (B.2) are then stacked to yield the model for xt given by

G0xt = a0 + a1t+ G1xt−1 + ...+ Gpxt−p + Ψ0dt + Ψ1dt−1 + ...+ Ψqdt−q + ut, (B.3)
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where p = max(pi), q = max(qi), and

Gj =


G0jW0

G1jW1
...

GNjWN

 , Ψs =


Ψ0s

Ψ1s
...

ΨNs

 ,
j = 0, 1, ..., p;
s = 0, 1, ..., q,

a0 =


a00

a10
...

aN0

 , a1 =


a01

a11
...

aN1

 ,ut =


u0t

u1t
...

uNt

 .

Setting x̃t =
∑N

i=0w̃ixit = W̃xt,
16 and assuming that p = p̃ = q̃ = q for ease of exposition, (B.3)

and (7) can be written in terms of yt = (x′t,d
′
t)
′ as

H0yt = h0 + h1t+ H1yt−1 + ...+ Hpyt−p + ζt, (B.4)

where

H0 =

[
G0 −Ψ0

0md×k Imd

]
, h0 =

[
a0

µ0

]
, h1 =

[
a1

µ1

]
,

Hj=

[
Gj Ψj

ΛxjW̃j Φdj

]
, j = 1, ..., p, ζt =

[
ut
ηt

]
.

Assuming that H0 is invertible, premultiplying (B.4) by H−10 we arrive at the GVAR model

yt = c0 + c1t+ C1yt−1 + ...+ Cpyt−p + εt, (B.5)

with cj = H−10 hj , j = 0, 1,Cj = H−10 Hj , j = 1, ..., p, and εt = H−10 ζt, which is the model
used for forecasting. In general, the lag order of yt will be determined by the maximum lag or-
der max(max(p, p̃),max(q, q̃)). In our case the final estimated GVAR model is of order 3. Related
output on the stability of model (B.5) can be found in the supplementary material.17

For the purpose of forecasting when the global prices are taken as given (and no feedback effects
are considered) as in the experiment of Section 5, forecasts are based on the model

xt = b0 + b1t+ F1xt−1 + ...+ Fpxt−p + Υ0dt + Υ1dt−1 + ...+ Υqdt−q + vt, (B.6)

which follows from model (B.3) above with bj = G−10 aj , j = 0, 1,Fj = G−10 Gj , j = 1, ..., p, Υj =
G−10 Ψj , j = 0, 1, ..., q and vt = G−10 ut, where Gj j = 0, 1, ..., q, with p and q equal to 3 and 2
respectively.

Appendix C: Additional Empirical Results

C.1 Conditional Forecast Probabilities

There are discrepancies between the estimated GVAR model and the assertions implied by the forecast
scenarios, mainly due to the difference in the estimation periods. To address these, we compare the
conditional forecasts based on the implied GDP changes in Scenarios 0 to 2 with the unconditional
forecasts obtained from the estimated GVAR model. Figure C.1 reports the probabilities of positive
consumption of the difference between the conditional and unconditional forecast of coal, natural gas,

16Note that for expositional simplicity we are assuming that the PPP-GDP weights in W̃ are the same for all variables.
In practice, as in our case, these can be somewhat different if, for example, a certain variable is excluded from the
estimation of the country-specific models for certain countries (see Table B.1(ii)), as the weights then get re-weighted in
order to sum to one. The same holds true for the trade weights in Wi.

17All GVAR-related output in this paper has been obtained using the GVAR Toolbox 2.0 of Smith and Galesi (2014)
Smith and Galesi (2014) with modifications and additions to the existing functions.
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Scenario 0 Scenario 1 Scenario 2
EU+

Advanced

Emerging

World

Note: The vertical axis measures the probability that consumption under the conditional forecast exceeds that under
the unconditional forecast in deviation from 0.5.

Figure C.1: Conditional forecast probabilities of changes in relative consumption by country group
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and oil by country group. The reported probabilities are the deviations from 0.5. When the figure is
positive (negative), the chance of the conditional forecast of consumption being larger (smaller) than
the unconditional forecast is more than 50/50. For Scenario 0, all figures are positive and show an
increasing trend over time. For the advanced and EU+ countries, the figure is not very large, well
below 0.2. On the other hand, the figures for the emerging economies are mostly larger than 0.2.
These results suggest that, on average, the scenario growth rate is mostly higher than the estimated
rate, and the discrepancy is higher for the emerging economies. With this in mind, we turn to the
conditional forecast probability for Scenario 1 (against the unconditional forecast). For the EU+ and
advanced countries, in most quarters the chance of having negative consumption is higher. The chance
of negative consumption is the highest in the first quarter with a high chance maintained over the
first year, easing somewhat towards the second half of the year. For the emerging economies, after
the first quarter’s negative figure, chance evens out in the second and third quarters, with the figures
exceeding 0.1 thereafter and rising, mainly led by coal and oil. Hence, for emerging economies the
Scenario 1 effect of COVID-19 on consumption is limited to the first quarter. The result for the world
is a combination of that of advanced and emerging economies. The effect of COVID-19 on the world
in Scenario 1 is largely pronounced in the first quarter, with small negative effects in quarters two
until four, and consumption starting to grow thereafter, in the second year. Turning to the results for
Scenario 2, compared to Scenario 1 the figures for EU+ and advanced countries are similarly negative
during the first year but much more negative during the second year. In Scenario 2, the positive
figures for the emerging economies are much smaller, especially in the second year. Consequently, the
world figures are mostly negative.

C.2 Forecasts of CO2 Emissions

The conditional forecasts of the total amount of CO2 emissions for the different country groups is
summarised in Figure C.2. The horizontal axis represents the quarters over the two-year forecast
horizon and the vertical axis reports the forecasts of the amount of emissions. See the discussion in
Section 4.2.
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Scenario 0 Scenario 1 Scenario 2
EU+

Advanced

Emerging

World

Figure C.2: Forecasts of CO2 emissions due to fossil fuel use by country group (annualised in MtCO2)
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S.1 Introduction

This supplement is organised as follows: Section S.2 provides a selected set of results related to the
estimated GVAR(3) model and the associated country-specific models. Section S.3 give the technical
details associated with the GVAR forecasting discussed in Section 4.1 of the main paper.

S.2 Country Specific and GVAR results

The estimated GVAR(3) model in yt = (x′t,d
′
t)
′, where xt is the global variable vector and dt is the

vector of global prices, has 181 endogenous variables (3 of which correspond to the global prices), 112
stochastic trends (2 corresponding to the global prices) and 69 cointegrating relations (1 corresponding
to the global prices). All the roots of the global VAR model in the 32 countries either lie on or inside
the unit circle. The moduli of the largest non unit eigenvalue is 0.96. The lag orders for the domestic
variables, pi, and foreign variables, qi, are selected based on the Akaike criterion with pmax i = 3
and qmax i = 2. The individual country models are estimated subject to reduced rank restrictions
as described in Dées et al. (2007) and the cointegrating relations obtained are based on the trace
statistic at the 95% critical value.18 For estimation, x∗it are treated as “long-run forcing” or I(1)
weakly exogenous with respect to the parameters of the conditional model. This assumption can be
tested by regressing x∗it on the error correction terms for country i and testing whether these terms are
statistically significant. Tables S1-S4 and Figures S1 below provide a selected set of results related to
the estimated GVAR(3) and the associated country-specific models. Additional results are available
upon request.

18The number of cointegrating relations is determined for the case where unrestricted constants and restricted trend
coefficients are included in the individual country error correction models.
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Specification of Individual Country VARX*(p,q) Models

The table below shows the VARX* order and number of cointegrating relationships in the country
specific models.

Table S1: VARX* order and number of cointegrating relationships

VARX*(pi, qi ) # Cointegrating
Country pi qi Relationships

ARGENTINA 3 1 1
AUSTRALIA 3 1 2
AUSTRIA 2 2 3
BELGIUM 3 2 2
BRAZIL 3 2 2
CANADA 3 2 2
CHILE 3 1 1
CHINA 3 1 1
FINLAND 3 1 1
FRANCE 3 2 3
GERMANY 2 2 3
INDIA 3 1 1
INDONESIA 3 1 3
ITALY 1 2 4
JAPAN 3 1 1
KOREA 3 2 2
MALAYSIA 3 1 3
MEXICO 3 2 2
NETHERLANDS 2 1 2
NEW ZEALAND 2 1 4
NORWAY 3 2 3
PHILIPPINES 3 1 1
SAUDI ARABIA 3 1 0
SINGAPORE 1 1 2
SOUTH AFRICA 2 1 1
SPAIN 2 2 4
SWEDEN 3 1 2
SWITZERLAND 3 1 3
THAILAND 3 1 3
TURKEY 3 2 2
UNITED KINGDOM 3 2 3
USA 2 1 1

Note: The lag orders for the domestic variables, pi, and foreign variables, qi, are selected based on the Akaike criterion
with pmax i = 3 and qmax i = 2. The individual country models are estimated subject to reduced rank restrictions as
described in DdPS and the cointegrating relations obtained are based on the trace statistic at the 95% critical value. The
number of cointegrating relations was reduced for certain countries based on the performance of the persistence profiles
of the GVAR.
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Figure S1: Persistence profiles

Table S2: Number of rejections of the null of parameter constancy per variable across the country
specific models at the 1 percent level

Alternative Domestic Variables
Test Statistics coal gas oil gdp ep eq Numbers(%)

PKsup 0(0.0) 1(3.7) 1(3.1) 1(3.1) 0(0.0) 0(0.0) 3(1.7)
PKmsq 0(0.0) 3(11.1) 1(3.1) 2(6.3) 0(0.0) 0(0.0) 6(3.4)
N 11(36.7) 2(7.4) 2(6.3) 1(3.1) 2(6.5) 1(3.8) 19(10.7)

robust-N 2(6.7) 2(7.4) 1(3.1) 0(0.0) 1(3.2) 0(0.0) 6(3.4)
QLR 18(60.0) 5(18.5) 5(15.6) 5(15.6) 7(22.6) 3(11.5) 43(24.2)

robust-QLR 3(10.0) 0(0.0) 1(3.1) 0(0.0) 4(12.9) 1(3.8) 9(5.1)
MW 14(46.7) 5(18.5) 6(18.8) 3(9.4) 5(16.1) 2(7.7) 35(19.7)

robust- MW 3(10.0) 1(3.7) 2(6.3) 0(0.0) 5(16.1) 1(3.8) 12(6.7)
APW 18(60.0) 6(22.2) 5(15.6) 7(21.9) 7(22.6) 3(11.5) 46(25.8)

robust- APW 3(10.0) 0(0.0) 1(3.1) 0(0.0) 4(12.9) 1(3.8) 9(5.1)

Note: The test statistics PKsup and PKmsq are based on the cumulative sums of OLS residuals, N is the Nyblom test for
time-varying parameters and QLR, MW and APW are the sequential Wald statistics for a single break at an unknown
change point. Statistics with the prefix robust denote the heteroskedasticity robust version of the tests. All tests are
implemented at the 1% significance level.
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Table S3. Contemporaneous effects of the foreign variables on their domestic counterparts in the
country-specific models

Country coal gas oil gdp eq

ARGENTINA 0.21 [0.32] 0.05 [0.10] 0.41 [0.29] 0.24 [0.39] 1.34† [0.43]

AUSTRALIA -0.06 [0.19] -0.20 [0.54] 0.25 [0.14] 0.28† [0.09] 0.84† [0.12]

AUSTRIA 0.40† [0.18] 0.11 [0.12] 0.55† [0.14] 0.79† [0.12] 1.04† [0.13]

BELGIUM 1.46† [0.41] 0.17 [0.16] 1.14† [0.25] 0.87† [0.14] 1.02† [0.07]

BRAZIL 0.34† [0.12] -0.01 [0.10] 0.17 [0.15] -0.27 [0.35] -

CANADA 0.74† [0.09] 0.37† [0.15] 0.63† [0.17] 0.53† [0.09] 0.86† [0.06]

CHILE 0.26 [0.24] 0.48 [0.80] -0.05 [0.24] 1.04† [0.33] 0.78† [0.10]

CHINA 0.10† [0.03] -0.05 [0.04] -0.04 [0.24] 0.61 [0.31] -

FINLAND 0.46† [0.21] 0.38† [0.18] 0.45† [0.20] 1.30† [0.22] 1.10† [0.17]

FRANCE 0.07 [0.23] 0.93† [0.34] 0.61† [0.13] 0.60† [0.07] 1.06† [0.04]

GERMANY 0.23† [0.05] 0.30 [0.19] 1.38† [0.28] 1.51† [0.23] 1.11† [0.04]

INDIA -0.02 [0.03] -0.10 [0.07] 0.13 [0.22] 0.51 [0.40] 0.71† [0.14]
INDONESIA 0.57 [1.07] -0.10 [0.15] 1.00 [0.84] 0.16 [0.32] -

ITALY 0.14 [0.72] 0.60† [0.13] 0.52† [0.13] 0.88† [0.10] 1.08† [0.09]

JAPAN 0.10† [0.04] 0.08 [0.21] 0.59† [0.22] 0.44† [0.21] 0.85† [0.11]

KOREA 0.44† [0.21] - 0.33 [0.29] 0.34 [0.20] 1.10† [0.21]

MALAYSIA 1.13† [0.52] 0.07 [0.06] 0.24 [0.27] 0.90† [0.18] 0.99† [0.18]

MEXICO 0.13 [0.12] 0.07 [0.11] 0.14 [0.18] 0.63† [0.22] -

NETHERLANDS 0.20 [0.14] 0.71† [0.14] 0.06 [0.13] 0.37† [0.10] 1.01† [0.04]

NEW ZEALAND 0.27 [0.49] -0.22 [0.38] 0.91† [0.32] 0.20 [0.14] 0.69† [0.08]

NORWAY 0.70 [0.46] 0.63 [0.74] 0.74† [0.35] 0.52† [0.26] 1.18† [0.09]

PHILIPPINES 0.02 [0.20] - 0.45 [0.30] 0.01 [0.29] 1.06† [0.12]
SAUDI ARABIA - -0.01 [0.09] -0.26 [0.16] 0.46 [0.27] -

SINGAPORE - -1.29† [0.63] 0.53† [0.22] 1.20† [0.23] 1.19† [0.08]

SOUTH AFRICA -0.04 [0.13] - 0.07 [0.26] 0.32† [0.11] 0.87† [0.12]

SPAIN 0.60† [0.28] 0.41† [0.17] 0.68† [0.14] 0.05 [0.08] 1.11† [0.06]

SWEDEN -0.01 [0.14] - 1.05† [0.24] 0.98† [0.13] 1.15† [0.06]

SWITZERLAND 0.35 [0.45] 0.18 [0.18] 0.70† [0.28] 0.73† [0.16] 0.91† [0.05]

THAILAND 0.03 [0.11] 0.01 [0.06] 0.77† [0.21] 0.62† [0.31] 1.26† [0.18]

TURKEY 0.24† [0.11] - 0.51 [0.32] 0.95 [0.61] -

UNITED KINGDOM 0.64† [0.31] 0.51† [0.18] 0.63† [0.14] 0.51† [0.11] 0.88† [0.06]

USA 0.47† [0.12] 0.41 [0.23] 0.20 [0.12] 0.38† [0.09] -

Note: White’s heteroskedastic-robust standard errors are given in square brackets. † denotes statistical significance at
the 5% level.
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Table S4: F Statistics for testing the weak exogeneity of the country-specific foreign variables and
global prices

Country F test coal∗ gas∗ oil∗ gdp∗ ep∗ eq∗ pcoal pgas poil

ARGENTINA F(1,123) 2.21 0.08 0.06 2.14 - 2.64 0.00 0.04 0.85
AUSTRALIA F(2,122) 2.34 0.37 0.26 0.31 - 1.41 0.25 2.86 0.02
AUSTRIA F(3,105) 1.79 1.78 0.22 0.20 - 0.65 1.01 0.10 0.61
BELGIUM F(2,106) 2.66 0.55 1.31 0.15 - 1.21 1.55 1.51 1.16
BRAZIL F(2,123) 1.37 1.00 1.43 0.43 - 0.09 0.96 0.38 1.16
CANADA F(2,122) 1.57 0.07 0.63 1.69 - 1.06 0.06 2.07 2.23
CHILE F(1,107) 0.08 0.81 0.13 0.00 - 0.64 2.81 0.78 0.55
CHINA F(1,124) 1.40 0.32 0.13 0.12 - 1.76 0.29 0.05 0.28
FINLAND F(1,113) 2.75 0.32 1.73 2.26 - 0.46 0.26 0.75 0.26
FRANCE F(3,105) 0.20 0.80 0.09 0.91 - 0.79 0.50 1.04 1.32

GERMANY F(3,101) 1.41 1.34 1.08 3.01
†

- 0.19 0.84 0.03 2.18
INDIA F(1,123) 4.07 1.62 0.08 0.38 - 0.51 0.26 0.55 0.16
INDONESIA F(3,107) 3.05 1.48 0.77 0.86 - 0.82 1.73 1.36 1.51
ITALY F(4,110) 0.64 0.19 0.85 0.23 - 1.24 0.21 0.29 1.44
JAPAN F(1,123) 1.52 1.15 0.05 0.14 - 0.11 1.04 1.81 0.11
KOREA F(2,108) 1.59 0.07 0.20 0.75 - 0.29 0.37 2.52 0.14
MALAYSIA F(3,114) 0.63 1.06 0.80 0.27 - 1.51 0.53 1.61 1.59
MEXICO F(2,123) 2.23 0.73 0.79 2.31 - 1.48 1.65 1.54 2.39
NETHERLANDS F(2,112) 0.99 0.37 1.07 0.07 - 1.14 2.34 0.37 0.36
NEW ZEALAND F(4,120) 0.53 0.77 0.82 0.14 - 1.37 1.41 0.30 0.10
NORWAY F(3,121) 6.19 2.01 3.95 1.63 - 0.31 0.10 1.13 0.60

PHILIPPINES F(1,109) 0.26 0.33 0.22 2.47 - 0.94 6.42† 1.82 0.13
SAUDI ARABIA F(0,126) - - - - - - - - -
SINGAPORE F(2,108) 1.73 0.48 0.24 2.60 - 0.71 0.27 0.64 0.03
SOUTH AFRICA F(1,124) 1.01 0.34 0.02 0.20 - 0.04 0.06 0.00 0.60
SPAIN F(4,110) 1.87 0.27 0.82 0.50 - 0.96 0.65 1.56 0.57
SWEDEN F(2,113) 2.28 0.64 0.55 1.45 - 0.77 0.17 1.58 0.77
SWITZERLAND F(3,121) 4.16 0.33 0.96 0.85 - 0.95 1.35 0.33 1.91
THAILAND F(3,121) 1.78 2.02 0.64 0.36 - 0.57 0.31 0.17 0.27
TURKEY F(2,124) 0.06 0.30 0.52 0.42 - 0.43 0.34 0.62 0.88
UNITED KINGDOM F(3,111) 1.64 1.92 1.69 0.28 - 0.58 0.63 1.35 2.63
USA F(1,116) 0.53 0.77 0.05 0.24 0.55 - 0.31 0.43 1.40

Note: These F statistics test zero restrictions on the coefficients of the error correction terms in the error-correction
regressions for the country-specific variables. The lag orders for the domestic variables and those for the foreign and
global price variables were selected based on the Akaike criterion with the maximum value for both set to two. Increasing
the lag orders further reduced the number of statistically significant outcomes. † denotes statistical significance at the
5% level.

S.3 Forecasting using the GVAR

S.3.1 Unconditional forecasts

The unconditional forecasts based on the estimated GVAR(3) model in (8) are computed recursively by

µh = ĉ0 + ĉ1 (T + h) + Ĉ1µh−1 + Ĉ2µh−2 + Ĉ3µh−3, for h = 1, 2, ..., H. (S.1)

with initial values µ0 = yT , µ−1 = yT−1 and µ−2 = yT−2, where h is the forecast horizon.
Equivalently expressed in terms of the GVAR(1) companion form we have yt

yt−1

yt−2

 =

 C1 C2 C3

Ik+md 0 0
0 Ik+md

0

 yt−1

yt−2

yt−3

+

 b0 + b1t
0
0

+

 εt
0
0

 ,

or
Yt = CYt−1 + Dt + Et (S.2)

where recall k +md is the total number of domestic variables and global prices in the GVAR model.
Hence

YT+h = ChYT +
∑h−1

`=0 C`DT+h−` +
∑h−1

`=0 C`ET+h−`, (S.3)

and
yT+h = FYT+h, (S.4)

where
F =

(
Ik+md 0k+md×k+md 0k+md×k+md

)
. (S.5)

Conditional on the initial values, YT , the point forecasts µh equivalently to (S.1) are given by

µh = FChYT +
∑h−1

`=0 FC`DT+h−`. (S.6)
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S.3.2 Conditional forecasts

Under joint normality of the GVAR shocks we have that yT+h |LT is normally distributed

yT+h |LT ∼ N(µh,Ωhh),

where µh = E (yT+h |LT ) and Ωhh is given by

Ωhh = F
h−1∑
`=0

C`ΣC′`F ′, (S.7)

with

Σ =

 Σε 0 0
0 0 0
0 0 0

 , (S.8)

and Σε=Cov(εT+h−i), and C and F are given by (S.2) and (S.5), respectively. The covariance of εt can be estimated
using the residuals of (8) as Σ̂ε = 1

T
ε̂tε̂
′
t.

Furthermore we have
yT+h = µh + ξT+h, (S.9)

where
ξT+h =

∑h−1
`=0 FC`ET+h−`,

with ξT+h |LT normally distributed as N(0,Ωhh), and ET+h−` is defined by (S.2).
From (9) and (S.9) it follows that

SξT+j = gT+j − Sµj for j = 1, 2, ..., H, (S.10)

and setting qT+j = gT+j − Sµj ∀j, (S.10) can be written as

(IH⊗S)ξH= qH ,

where ξH= (ξ′T+1, ξ
′
T+2, ..., ξ

′
T+H)′ and qH= (q′T+1,q

′
T+2, ...,q

′
T+H)′.

Under joint normality of the shocks and surpressing the dependence of ξT+h on H we have

E
(
ξT+h

∣∣LT ,SyT+j = gT+j , j = 1, ..., H
)

= E (ξT+h |LT , (IH⊗S)ξH= qH )

= (s′hH⊗Ik+md
)ΩH(IH⊗S′)[(IH⊗S)ΩH(IH⊗S′)]−1qH ,

where shH is a H × 1 selection vector with unity as its hth element and zeros elsewhere, and ΩH is the kH × kH matrix

ΩH =


Ω11 Ω12 · · · Ω1H

Ω21 Ω22 · · · Ω2H

...
...

. . .
...

ΩH1 ΩH2 · · · ΩHH

 . (S.11)

The diagonal elements of ΩH , that is {Ωii}Hi=1, are given by (S.7), while the off-diagonal elements can be expressed as

Ωij =

{
F(
∑i−1

`=0 C`ΣC′`)C′(j−i)F ′, i < j

FC(i−j)(
∑j−1

`=0 C`ΣC′`)F ′, i > j

where Σ is defined by (S.8).
Hence, the conditional point forecasts are given by

µ∗h = µh + (s′hH⊗Ik+md
)ΩH(IH⊗S′)[(IH⊗S)ΩH(IH⊗S′)]−1qH .

S.3.3 Probability distribution of the difference between conditional and uncondi-
tional forecasts

Let y∗T+h be the values of yT+h conditional on a given GDP growth path scenario given by

y∗T+h = µh + ξ∗T+h, h = 1, 2, ..., H,

where µh is given by (S.1) and ξ∗T+h is the random variable defined by the probability distribution of ξT+h conditional
on (IH⊗S)ξH= qH , that is

ξ∗T+h =
∑h−1

`=0 FC`ET+h−` | (IH⊗S)ξH= qH . (S.12)

The difference between y∗T+h and yT+h is given by

δT+h = y∗T+h − yT+h = ξ∗T+h − ξT+h.

The mean difference is
E (δT+h |LT ) = µ∗h − µh.
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The variance V (δT+h | LT ) is given by

V (δT+h | LT ) = V (ξ∗T+h | LT ) + V (ξT+h | LT ) (S.13)

− Cov (ξ∗T+h, ξT+h | LT )− Cov (ξT+h, ξ
∗
T+h | LT )

where19

V (ξ∗T+h | LT ) = Ω∗hh (S.14)

with
Ω∗hh = Ωhh − (s′hH⊗Ik+md

)ΩH(IH⊗S′)[(IH⊗S)ΩH(IH⊗S′)]−1(IH⊗S)ΩH(shH⊗Ik+md
). (S.15)

To obtain Cov (ξ∗T+h, ξT+h | LT ), recall that conditional on LT the (k + md) × 1 random vector ξ∗T+h defined by

(S.12) is dependently distributed with mean µ∗h and variance V (ξ∗T+h | LT ) = Ω∗hh. Let S′H = Ω
1/2
H (IH⊗S′) and note

that (S.15) can alternatively be expressed as

Ωhh −Ω∗hh = (s′hH⊗Ik+md
)Ω

1/2
H P

1/2
H Ω

1/2
H (shH⊗Ik+md

),

where PH = S′H (SHS′H)
−1

SH is a projection matrix which is symmetric, idempotent and positive semi-definite. Hence,
Ωhh −Ω∗hh is a positive semi-definite matrix.

Under the assumption that20

Cov (ξT+h, ξ
∗
T+h | LT ) = V (ξ∗T+h | LT ) , (S.16)

using this result in (S.13) the variance of δT+h is derived as

V (δT+h | LT ) = Ωhh −Ω∗hh ≥ 0

which is a positive semi-definite matrix. Hence,

δT+h | LT ∼ N(µ∗h − µh, Ωhh −Ω∗hh). (S.17)

19The dependence of Ω∗hh on H is supressed.here.
20For a similar assumption and related argument see Pesaran et al. (2007).
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Table S5. Average superior predictive ability (SPA) test results, comparison of conditional forecasts upon actual
GDP and IMF projection GDP

HA1: CFActual better than CFIMF HA2: CFIMF better than CFActual

country consumption SPA p-value pvalue<5% SPA p-value pvalue<5%

Algentina coal 7.157 0.031 1 -7.157 0.971 0

Algentina gas 1.290 0.199 0 -1.290 0.788 0

Algentina oil 3.446 0.026 1 -3.446 0.982 0

Australia coal 2.000 0.121 0 -2.000 0.889 0

Australia gas 0.911 0.217 0 -0.911 0.766 0

Australia oil 2.027 0.040 1 -2.027 0.971 0

Austria coal 9.520 0.016 1 -9.520 0.987 0

Austria gas -0.249 0.569 0 0.249 0.386 0

Austria oil 2.725 0.151 0 -2.725 0.854 0

Belgium coal 2.063 0.130 0 -2.063 0.867 0

Belgium gas 7.577 0.000 1 -7.577 1.000 0

Belgium oil 2.624 0.051 0 -2.624 0.957 0

Brazil coal 2.910 0.098 0 -2.910 0.930 0

Brazil gas 2.538 0.085 0 -2.538 0.911 0

Brazil oil 8.230 0.008 1 -8.230 0.994 0

Canada coal 2.436 0.097 0 -2.436 0.882 0

Canada gas 2.704 0.062 0 -2.704 0.942 0

Canada oil 1.303 0.137 0 -1.303 0.864 0

China coal 2.186 0.114 0 -2.186 0.869 0

China gas 2.897 0.102 0 -2.897 0.906 0

China oil 10.975 0.025 1 -10.975 0.963 0

Chile coal 0.885 0.289 0 -0.885 0.712 0

Chile gas 7.115 0.029 1 -7.115 0.969 0

Chile oil 1.515 0.063 0 -1.515 0.917 0

Finland coal 0.432 0.372 0 -0.432 0.593 0

Finland gas 4.731 0.109 0 -4.731 0.903 0

Finland oil 1.892 0.171 0 -1.892 0.842 0

France coal -1.568 0.821 0 1.568 0.190 0

France gas 1.350 0.147 0 -1.350 0.828 0

France oil 0.821 0.240 0 -0.821 0.741 0

Germany coal -1.777 0.875 0 1.777 0.134 0

Germany gas 2.934 0.000 1 -2.934 1.000 0

Germany oil 1.219 0.171 0 -1.219 0.846 0

India coal 2.804 0.104 0 -2.804 0.897 0

India gas -0.380 0.616 0 0.380 0.384 0

India oil 4.033 0.011 1 -4.033 0.980 0

Indonasia coal 18.980 0.000 1 -18.980 1.000 0

Indonasia gas 3.724 0.075 0 -3.724 0.916 0

Indonasia oil 0.114 0.469 0 -0.114 0.586 0
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(Table S5 continued)

HA1: CFActual better than CFIMF HA2: CFIMF better than CFActual

country consumption SPA p-value pvalue<5% SPA p-value pvalue<5%

Italy coal 1.324 0.198 0 -1.324 0.790 0

Italy gas 4.075 0.147 0 -4.075 0.845 0

Italy oil 3.444 0.003 1 -3.444 0.998 0

Japan coal 6.114 0.019 1 -6.114 0.987 0

Japan gas 3.360 0.138 0 -3.360 0.846 0

Japan oil 10.374 0.003 1 -10.374 0.996 0

South Korea coal 2.843 0.087 0 -2.843 0.904 0

South Korea oil -0.163 0.544 0 0.163 0.445 0

Malaysia coal 2.374 0.135 0 -2.374 0.878 0

Malaysia gas 4.195 0.092 0 -4.195 0.934 0

Malaysia oil 1.980 0.112 0 -1.980 0.907 0

Mexico coal 3.798 0.095 0 -3.798 0.923 0

Mexico gas 3.752 0.061 0 -3.752 0.941 0

Mexico oil 1.389 0.145 0 -1.389 0.849 0

Netherland coal 3.627 0.158 0 -3.627 0.826 0

Netherland gas 0.015 0.486 0 -0.015 0.515 0

Netherland oil 5.125 0.069 0 -5.125 0.922 0

Norway coal 2.374 0.084 0 -2.374 0.894 0

Norway gas 2.943 0.000 1 -2.943 1.000 0

Norway oil 1.677 0.037 1 -1.677 0.956 0

Newzealand coal 2.810 0.104 0 -2.810 0.895 0

Newzealand gas 2.367 0.120 0 -2.367 0.894 0

Newzealand oil 4.329 0.038 1 -4.329 0.970 0

Phllipines coal 2.707 0.136 0 -2.707 0.878 0

Phllipines oil 18.738 0.010 1 -18.738 0.990 0

South Africa coal 1.001 0.234 0 -1.001 0.774 0

South Africa oil 11.877 0.000 1 -11.877 1.000 0

Saudi Arabia gas -0.704 0.683 0 0.704 0.326 0

Saudi Arabia oil -3.185 0.916 0 3.185 0.078 0

Singapore gas 0.462 0.266 0 -0.462 0.729 0

Singapore oil 2.935 0.137 0 -2.935 0.863 0

Spain coal 2.051 0.057 0 -2.051 0.931 0

Spain gas 2.327 0.142 0 -2.327 0.857 0

Spain oil 1.422 0.232 0 -1.422 0.791 0

Sweden coal 0.999 0.262 0 -0.999 0.743 0

Sweden oil 3.385 0.012 1 -3.385 0.985 0

Switzerland coal 5.810 0.106 0 -5.810 0.903 0

Switzerland gas 4.597 0.077 0 -4.597 0.923 0

Switzerland oil 0.299 0.333 0 -0.299 0.673 0

Thailand coal 1.865 0.191 0 -1.865 0.802 0

Thailand gas 2.079 0.131 0 -2.079 0.883 0

Thailand oil 2.170 0.130 0 -2.170 0.851 0

Turkey coal 3.058 0.117 0 -3.058 0.893 0

Turkey oil 16.927 0.003 1 -16.927 0.998 0

UK coal 2.756 0.076 0 -2.756 0.929 0

UK gas 2.107 0.085 0 -2.107 0.923 0

UK oil 8.566 0.015 1 -8.566 0.985 0

USA coal 0.427 0.377 0 -0.427 0.624 0

USA gas 2.329 0.074 0 -2.329 0.914 0

USA oil 6.746 0.000 1 -6.746 1.000 0
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Table S6. Average superior predictive ability (SPA) test results, comparison of unconditional forecasts of näıve
country VAR and GVAR

HA1: CFActual better than CFIMF HA2: CFIMF better than CFActual

country consumption SPA p-value pvalue<5% SPA p-value pvalue<5%

Algentina coal 7.157 0.031 1 -7.157 0.971 0

Algentina gas 1.290 0.199 0 -1.290 0.788 0

Algentina oil 3.446 0.026 1 -3.446 0.982 0

Australia coal 2.000 0.121 0 -2.000 0.889 0

Australia gas 0.911 0.217 0 -0.911 0.766 0

Australia oil 2.027 0.040 1 -2.027 0.971 0

Austria coal 9.520 0.016 1 -9.520 0.987 0

Austria gas -0.249 0.569 0 0.249 0.386 0

Austria oil 2.725 0.151 0 -2.725 0.854 0

Belgium coal 2.063 0.130 0 -2.063 0.867 0

Belgium gas 7.577 0.000 1 -7.577 1.000 0

Belgium oil 2.624 0.051 0 -2.624 0.957 0

Brazil coal 2.910 0.098 0 -2.910 0.930 0

Brazil gas 2.538 0.085 0 -2.538 0.911 0

Brazil oil 8.230 0.008 1 -8.230 0.994 0

Canada coal 2.436 0.097 0 -2.436 0.882 0

Canada gas 2.704 0.062 0 -2.704 0.942 0

Canada oil 1.303 0.137 0 -1.303 0.864 0

China coal 2.186 0.114 0 -2.186 0.869 0

China gas 2.897 0.102 0 -2.897 0.906 0

China oil 10.975 0.025 1 -10.975 0.963 0

Chile coal 0.885 0.289 0 -0.885 0.712 0

Chile gas 7.115 0.029 1 -7.115 0.969 0

Chile oil 1.515 0.063 0 -1.515 0.917 0

Finland coal 0.432 0.372 0 -0.432 0.593 0

Finland gas 4.731 0.109 0 -4.731 0.903 0

Finland oil 1.892 0.171 0 -1.892 0.842 0

France coal -1.568 0.821 0 1.568 0.190 0

France gas 1.350 0.147 0 -1.350 0.828 0

France oil 0.821 0.240 0 -0.821 0.741 0

Germany coal -1.777 0.875 0 1.777 0.134 0

Germany gas 2.934 0.000 1 -2.934 1.000 0

Germany oil 1.219 0.171 0 -1.219 0.846 0

India coal 2.804 0.104 0 -2.804 0.897 0

India gas -0.380 0.616 0 0.380 0.384 0

India oil 4.033 0.011 1 -4.033 0.980 0

Indonasia coal 18.980 0.000 1 -18.980 1.000 0

Indonasia gas 3.724 0.075 0 -3.724 0.916 0

Indonasia oil 0.114 0.469 0 -0.114 0.586 0

S10



(Table S6 continued)

HA1: CFActual better than CFIMF HA2: CFIMF better than CFActual

country consumption SPA p-value pvalue<5% SPA p-value pvalue<5%

Italy coal 1.324 0.198 0 -1.324 0.790 0

Italy gas 4.075 0.147 0 -4.075 0.845 0

Italy oil 3.444 0.003 1 -3.444 0.998 0

Japan coal 6.114 0.019 1 -6.114 0.987 0

Japan gas 3.360 0.138 0 -3.360 0.846 0

Japan oil 10.374 0.003 1 -10.374 0.996 0

South Korea coal 2.843 0.087 0 -2.843 0.904 0

South Korea oil -0.163 0.544 0 0.163 0.445 0

Malaysia coal 2.374 0.135 0 -2.374 0.878 0

Malaysia gas 4.195 0.092 0 -4.195 0.934 0

Malaysia oil 1.980 0.112 0 -1.980 0.907 0

Mexico coal 3.798 0.095 0 -3.798 0.923 0

Mexico gas 3.752 0.061 0 -3.752 0.941 0

Mexico oil 1.389 0.145 0 -1.389 0.849 0

Netherland coal 3.627 0.158 0 -3.627 0.826 0

Netherland gas 0.015 0.486 0 -0.015 0.515 0

Netherland oil 5.125 0.069 0 -5.125 0.922 0

Norway coal 2.374 0.084 0 -2.374 0.894 0

Norway gas 2.943 0.000 1 -2.943 1.000 0

Norway oil 1.677 0.037 1 -1.677 0.956 0

Newzealand coal 2.810 0.104 0 -2.810 0.895 0

Newzealand gas 2.367 0.120 0 -2.367 0.894 0

Newzealand oil 4.329 0.038 1 -4.329 0.970 0

Phllipines coal 2.707 0.136 0 -2.707 0.878 0

Phllipines oil 18.738 0.010 1 -18.738 0.990 0

South Africa coal 1.001 0.234 0 -1.001 0.774 0

South Africa oil 11.877 0.000 1 -11.877 1.000 0

Saudi Arabia gas -0.704 0.683 0 0.704 0.326 0

Saudi Arabia oil -3.185 0.916 0 3.185 0.078 0

Singapore gas 0.462 0.266 0 -0.462 0.729 0

Singapore oil 2.935 0.137 0 -2.935 0.863 0

Spain coal 2.051 0.057 0 -2.051 0.931 0

Spain gas 2.327 0.142 0 -2.327 0.857 0

Spain oil 1.422 0.232 0 -1.422 0.791 0

Sweden coal 0.999 0.262 0 -0.999 0.743 0

Sweden oil 3.385 0.012 1 -3.385 0.985 0

Switzerland coal 5.810 0.106 0 -5.810 0.903 0

Switzerland gas 4.597 0.077 0 -4.597 0.923 0

Switzerland oil 0.299 0.333 0 -0.299 0.673 0

Thailand coal 1.865 0.191 0 -1.865 0.802 0

Thailand gas 2.079 0.131 0 -2.079 0.883 0

Thailand oil 2.170 0.130 0 -2.170 0.851 0

Turkey coal 3.058 0.117 0 -3.058 0.893 0

Turkey oil 16.927 0.003 1 -16.927 0.998 0

UK coal 2.756 0.076 0 -2.756 0.929 0

UK gas 2.107 0.085 0 -2.107 0.923 0

UK oil 8.566 0.015 1 -8.566 0.985 0

USA coal 0.427 0.377 0 -0.427 0.624 0

USA gas 2.329 0.074 0 -2.329 0.914 0

USA oil 6.746 0.000 1 -6.746 1.000 0
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