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Abstract

The classic �logistic�model has provided a realistic model of the behavior of Covid-19 in China and

many East Asian countries. Once these countries passed the peak, the daily case count fell back, mirroring

its initial climb in a symmetric way, just as the classic model predicts. However, in Italy and Spain, and

now the UK and many other Western countries, the experience has been very di¤erent. The daily count

has fallen back gradually from the peak but remained stubbornly high. The reason for the divergence

from the classical model remain unclear. We take an empirical stance on this issue and develop a model

that is based upon the statistical characteristics of the time series. With the possible exception of China,

the workhorse logistic model is decisively rejected against more �exible alternatives.

1 Introduction

There are many di¤erent ways of analyzing and projecting the progress of an epidemic like Covid-19. The

government and its advisors mainly rely upon large computer models that analyze the spread of the disease

and the e¤ects of public health interventions in �ne detail (Ferguson et al. (2020)). These so-called �mecha-

nistic�models are largely theory-based and in that sense resemble the large theory-based models constructed

for example by the Bank of England to analyze the e¤ect of policy interventions on the economy. Other

epidemiologists �t curves to the time series data and use the theoretical dynamics to make data-based predic-

tions (Batista (2020), Jia, Li, Jiang, Guo, and Zhao (2020), Murray (2020)). Avery, Bossert, Clark, Ellison,

and Ellison (2020) classify these models as �phenomenological�and note their resemblance to reduced-form

econometric models.

These approaches complement each other nicely. Large-scale theoretical models are very useful for an-

alyzing policy interventions and other structural changes but can miss important links, especially when
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confronted with �black swan� events such as a �nancial breakdown or the outbreak of an unknown virus

like Covid-19. Small data-based models can provide better forecasts. The Monetary Policy Committee uses

both types of model for informing their decisions and forecasting (Burgess et al. (2013)). Reduced form

models can also be used to check the properties of the theoretical models and match them better to the data

(Meenagh, Minford, and Wickens (2009)).

Although epidemiological models may di¤er in many respects, they are all based on the same theory

and they invariably predict that the daily counts for infections and deaths follow a bell-shaped curve. In

other words, once the peak is passed and the daily count begins to fall, it follows a path that mirrors the

upward climb, before slowing to a halt. In the large models, this classic pattern follows from the dynamics

of the epidemic, which naturally slows as the disease runs through the population and immunity increases.

Behavioral feedbacks and policy interventions may also be important in slowing the spread of the disease.

In the time series models, the daily count follows a bell-shaped path by assumption and means that the

cumulative count follows an S�shaped logistic curve. This idea is at the center of policymaking in this area

and expressions like ��attening the curve�are now part of everyday conversation.

These symmetric dynamics have provided a reliable way of modelling outbreaks of in�uenza and other

epidemics in the past. Indeed, simple regression models based on �tting the bell (or logistic) curve to the

data, also proved accurate in predicting the path of the Covid-19 outbreak in China and many East Asian

countries (Jia, Li, Jiang, Guo, and Zhao (2020), Batista (2020)). However, the experience of Italy and

Spain, which is now being followed by the UK and many other countries, has been very di¤erent. The daily

mortality �gures have fallen back gradually from the peak in these countries, but have remained stubbornly

high. This contrast is stark in the daily series plotted for China and for Italy and Spain in Figure 1.

A positive skew in the national time series can appear because they aggregate data for areas that are hit

by the virus at di¤erent times. However, US data for hospital admissions and fatalities areas like New York

and New Jersey that have been badly a¤ected by the virus exhibit a pronounced skew.1 Mortality data for

English regions, which are arranged by date of death rather than date of announcement, thus avoiding the

e¤ect of skewed reporting delays, also exhibit a pronounced upper tail.2 Data for large US cities and English

regions could also be prone to aggregation e¤ects, but this seems less likely than for national aggregates.

One reason for the mortality �gures to exhibit an upper tail is because the length of time from infection

to death or recovery follows a gamma distribution and is positively skewed, as is well known (Hogg (1978),

Bird (2013)). Some people recover very quickly, but others take much longer. This distribution is used by

the MRC Biostatistics Unit to infer the true number of infections and the reproduction number (R) from

mortality �gures for the UK regions (Seaman and De Angelis (2020)). The regional breakdown helps deal

1These data are available at: https://covidtracking.com/data.
2These data are available at: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths/.
A correction for the most recent reporting delay is available at: http://users.ox.ac.uk/~nu¤0078/Covid/index.htm
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with the problem that the epidemic a¤ects regions at di¤erent times. This methodology also takes into

account the positive skew in the reporting lag (Bird and Neilsen (2020), Birrell, Blake, van Leeuwen, and

De Angelis (2020)).

There is also a positive skew in the infections data for Italy and many other countries. This is much

harder to rationalize. Figure 1 contrasts the pattern of infections seen in China with that in Italy. We also

�nd a positive skew in data for infections in Lombardy, the Italian region most badly a¤ected. This positive

skew may again re�ect measurement problems, such as changes in the testing regime. However, it could

also be due to the non-normality of community transmission. For example, the number of transmissions per

person is known to have a long tail, due to the presence of �superspreaders�. It has also been suggested that

other delays, such as the infection period, may have a gamma distribution with a long tail (Shen, Taleb, and

Bar-Yam (2020)).

However, if the skew is due to the asymmetry of the various statistical distributions that are involved in

the complex web of transmission, why has the experience in the West been so di¤erent from that in the East?

Although most European countries are a¤ected by the B�strain rather then the original A�strain that broke

out in China (Forster, Forster, Forster, and Renfrew (2020)), these strains are similar. The answer may lie in

the behavior of people and their governments rather than that of the virus itself. Perhaps it is because Asian

countries were better prepared following their experience with the SARS epidemic a decade earlier. Perhaps

it is because, as Jenny (2020) argues, countries like China and Vietnam, where individual freedom is limited,

were less hesitant and better able to limit the spread of the virus than elsewhere. However, Frey, Chen, and

Presidente (2020) �nd that collectivist and democratic countries have both implemented relatively e¤ective

responses to the pandemic.

Whatever the reason for this asymmetry, it is clear that the classic model has failed us badly this time.

This has been documented by several recent studies. For example, Marchant, Samia, Tanner, and Cripps

(2020) show that forecasts from the Institute for Health Metrics and Evaluation (IHME) at the University

of Washington, which underpin hospital resource planning in the US and are used in White House brie�ngs,

are usually overtaken by the data within a few days. The IHME model �ts daily mortality data using the

Gaussian bell curve (Murray (2020)).

Instead of trying to delve deeper into the data to try and �nd the reasons why so many countries have

departed from the classic pattern, we take an empirical stance in this paper and develop a model that is

based upon the statistical characteristics of the national time-series. We model the daily mortality data

published by the European Centre for Disease Control (ECDC). We use these data rather than infections

because of the acute public and policy interest focus on these data and because it is more di¢ cult to �nd

comprehensive and comparable data on infections.

We start by looking at the way that the tools developed by econometricians, to handle non-standard
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time-series representing economic growth and speculative bubbles in �nancial markets for example, can be

used to analyze an epidemic. We then document the systematic failure of the logistic model in the US,

Canada, Brazil and nine large West European countries using standard out-of-sample forecast tests. We

review alternative statistical models and show that a model of the trend resembling the gamma probability

density function is �exible enough to handle the positive skew now evident in many countries. Because it

has greater �exibility to handle the initial stages of the epidemic, it also provides a better model than the

logistic in countries like Brazil where the daily death toll is still increasing and countries like Denmark that

do not have a positive skew. This model also performs well in post-sample forecast tests, suggesting that

with a sample of just three or four weeks data, accurate two-, and for many countries, four-week projections

can be made.

This analysis suggests that the dynamics of Covid-19 are primarily determined by the behavior of the

population rather than the textbook behavior of the virus. That is because once the death toll began to

soar, it then decelerated much faster than could plausibly be explained by the number of reported infections

and the implied build up of immunity. It remains possible that this number is just the tip of an iceberg

of infections, but as Dimdore-Miles and Miles (2020) demonstrate, it would need 250 unrecorded cases for

every recorded case for immunity to explain the deceleration. It will require an antibody test survey to

resolve this issue, but in the meantime it seems more plausible to think that the deceleration occurred not

so much because the disease spread and built herd immunity but because news about its e¤ects spread and

made individuals and families take precautions, which were then reinforced in many countries by government

lockdowns.

2 Modeling an epidemic using time-series econometrics

Econometricians are used to dealing with di¢ cult economic and �nancial times series. Their data often

violate the classical assumptions adopted in the statistical texts and thus need to be handled using special

techniques. For example, macroeconomic data like GDP exhibit exponential growth and �nancial prices

can exhibit speculative bubbles that are explosive. They may respond with long and variable lags to policy

interventions and exogenous shocks. These data may be measured with error and subject to structural shifts

as behavior or government policies change.

As Castle, A. Doornik, and Hendry (2020) argue, epidemiological data are fraught with similar problems.

These econometricians have used the sophisticated linear trend �tting techniques to decompose the cumu-

lative death counts. They split each series into trend and remainder terms, then project them forward and

recombine them to produce a forecast for the following week. As they note, a signi�cant fall in outcomes

relative to extrapolations from such models can be an indication that policy interventions are having the
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desired e¤ect. Epidemiologists use similar models to separate the noise from the trend in the time-series and

use the trend to estimate the reproduction number R, the number of people an infected person is likely to

infect.

However, deviations from a linear trend can occur for many other reasons. For example, as the death

toll mounts and people begin to worry about the virus and its consequences, they are likely to modify their

behavior in a way that reduces outcomes relative to a linear extrapolation. Longer term, the trend should

bend as immunity builds up and the population becomes less susceptible to the disease. These endogenous

feedback e¤ects are built into the non-linear dynamics of the large-scale epidemiological models, which allow

the trend to change as the epidemic progresses. This should in principle improve forecasts beyond the weekly

horizon and make it more likely that systematic forecast errors are due to government interventions or other

external in�uences.

2.1 The logistic process

These epidemiological models range from the large-scale computer models built by the Imperial College and

other modelling groups to simple data-based curve-�tting techniques. For example, many epidemiologists �t

a logistic curve to the cumulative number of infections C(t):

C(t)

K
=

1

1 +Ae�rt
; (1)

where: A = K=C(0) � 1, K is the �nal epidemic size and r � 0 the propagation or infection rate (see for

example Batista (2020), equation (2)). However, in view of the well known issues around estimation with

non-stationary data Sims (1980) we model the number of new cases. Di¤erentiating (1) and substituting

Ae�rt = K=C(t) � 1 shows that the number of new cases at any time is a bell-shaped function of the

accumulated cases:
dC(t)

dt
= rC(t)

�
1� C(t)

K

�
: (2)

This model provides a simple way of allowing for the non-linear feedback mechanisms, loosely based

on the SIR (susceptible, infectious, removed) model (Kermack, McKendrick, and Walker (1927), Avery,

Bossert, Clark, Ellison, and Ellison (2020), Dimdore-Miles and Miles (2020)). Initially, with C(0) cases

observed when the outbreak is detected, all of them are �infectious�and will infect other �susceptible�people

at the rate r per unit of time (dt) causing dC(0) = rC(0)dt new cases. Thus initially, the disease will spread

exponentially, at the reproduction rate � = dC(t)=(C(t)dt) = r. However, various negative feedbacks then

arise, which reduce the reproduction rate.

The classic feedback mechanism is provided by herd immunity. If people who have had the disease are

less susceptible to catching it again, then they move into the �removed�class. As they increase as a share
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of the population (N) the probability that an infectious person will meet a susceptible one falls from 1 to

(1�C(t)=N)). This results in rC(t)(1�C(t)=N)dt new cases per unit of time, resulting in (1) with K = N .

However, there is a problem with this interpretation. If this were the only mechanism at work, we would

expect K to be of a similar size to the population N . But it is much smaller than N empirically, suggesting

that C is under-recorded. For example, Dimdore-Miles and Miles (2020) assume that the number of new

cases that are symptomatic and recorded is a fraction � of the true number. If C represents the true number

and Co the recorded number, then substituting C = Co=� into (2) gives the model:

dCo(t)

dt
= rCo(t)

�
1� C

o(t)

�K

�
:

Thus the estimator �K e¤ectively replaces K. However, as they conclude the value of � would need to be

extremely low to fully explain this �nding.

Behavioral feedbacks can also help to reduce the reproduction rate, as argued in the introduction. For

example, as C grows, people are likely to modify their behavior in a way that mimics the e¤ect of immunity,

reducing the reproduction rate � = rC(t)(1�C(t)=K) via the K parameter. This behavior can be reinforced

by government interventions like lockdown. On a more pessimistic view, if immunity from exposure to the

disease is partial or tends to fall with the time since exposure, then there may not be an upper limit to the

cumulative number of cases.

The logistic model is designed to explain the transmission of a virus within a closed community. But

apart from the country where the virus originates, all the initial cases must involve people that have recently

entered the country and the number of new cases n will be related to the number of new passenger arrivals

rather than C. Thus in the initial stages, before community transmission begins: dC(0) = ndt and not

dC(0) = nC(0)dt as implied by the logistic model.

A more obvious problem with this model is that the bell and logistic curves are symmetric. The bell

curve has a single peak at C = K=2: Once this is passed, the number of new cases begins to fall, following

a path that mirrors the upward climb, before slowing to a stop as C approaches K. This was in fact the

experience of China and many East Asian countries, which is why the logistic curve �ts their data well.

Unfortunately, the experience in Italy and Spain has been very di¤erent. The number of deaths fell back

from the peak, but then remained stubbornly high.

2.2 A long, thin-tailed epidemic

We need a more �exible model to allow for these possible e¤ects. Mathematically, we can achieve this simply

by raising the C and (1� C=K) terms in (2) by the powers � and �: This makes it a beta function, which
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is much more �exible:
dC(t)

dt
= rC(t)�

�
1� C(t)

K

��
: (3)

However, we �nd that this function is too �exible in practice, making it di¢ cult to estimate its parameters

reliably given the relatively short data sets currently available. For example, � usually takes a large value,

producing a long but very thin tail, which makes it hard to pin down the upper bound K.

Instead, suppose that precautionary behavior by individuals, family groups or government means that

the reproduction rate � falls exponentially as the number of cases mounts: �(t) = re�
C(t): Then:

dC(t)

C(t)
= �(t)dt = re�
C(t)dt() dC(t) = rC(t)e�
C(t)dt:

We �nd that although this model has two fewer parameters than the beta model, it gives a similar �t.

However, its performance can be improved by changing the power of the C term to �, thus giving the trend

a form similar to that of the gamma density function:

dC(t) = rC(t)�e�
C(t)dt: (4)

This function does not impose an upper limit on the cumulative number of cases and is still �exible enough

to provide a local approximation to a bell curve and an upper skew, depending upon its parameters. It

is used extensively in statistics to describe probability distributions for this reason, the well-known �2

distribution being a special case (Mood, Graybill, and Boes (1973)). This function is also attractive since it

can be integrated to get a closed form for the cumulative count C, the analogue of the logistic function (1)

associated with the bell curve (2). Its mathematical properties are reviewed in Appendix 1.

These processes are non-stationary and should be handled using techniques developed for modelling non-

stationary economic data, like growth and in�ation. Their dynamics are dictated by stochastic di¤erential

equations with drift (i.e. trend) and volatility terms, like those used to model interest rates (Ait-Sahalia

(1996)). We give the volatility term a form that is congruent with the drift.

3 Modeling the ECDC death data

The logistic model outlined in the previous section was originally developed to explain the number of new

infections. However, in the absence of mass testing, the true numbers of people who are infected and those

that have recovered are likely to be much larger than those recorded, especially if there is a large proportion

of asymtomatic cases that are not recorded. To avoid these measurement problems, we extend the reasoning

of the logistic infections speci�cation to track deaths instead, following Murray (2020) and many others.

Suppose that deaths represent a constant lagged fraction of the true number of infections C(t). Substi-
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tuting this into (4) and suitably reinterpreting the parameters, we assume:

dD(t) = g(D(t)) = rD(t)�e�
D(t)dt; (5)

whereD(t) represents the cumulative number of deaths at time t. To model the daily data we add a congruent

volatility speci�cation and discretize the model:

Dt �Dt�1 = rD�
t exp (�
Dt) + � [rD�

t exp (�
Dt)]
�
�t+1; (6)

where �; 
; r and � are parameters to be estimated and �t � N(0; 1) is a Gaussian error term. Similarly, the

discrete time logistic (bell) model is

Dt+1 �Dt = rDt(1�Dt=K) + � [rDt(1�Dt=K)]� �t+1 (7)

and the beta model corresponding to (3) is:

Dt+1 �Dt = rD�
t (1�Dt=K)� + �

�
rD�

t (1�Dt=K)�
��
�t+1: (8)

Setting �; � = 1 simpli�es this to the logistic speci�cation. Initial experiments showed that � was close to

0:75 for these models for most countries and this parameter is �xed at this value in the regressions reported

here.

3.1 China

We start by �tting three candidate models (logistic, beta and gamma) to the Chinese mortality data. Table

1 shows the regression results for the three rival models. To avoid the bias in estimates caused by an integer

data count and the long left tail seen in some countries, we start the estimation for each country from the

date when the cumulative number of deaths reached 15 deaths (see tables�footnotes for more details). China

was of course the �rst country to be hit by Covid-19 and managed to suppress it e¤ectively by the end of

March, therefore we end the sample period on 31 March 2020. Figure 2 shows the in-sample �t of the logistic

(red line), gamma (black line) and beta (green line) regression models. As noted in the introduction, the

bell-logistic model represents the behavior of this outbreak nicely, although the beta-drift model is better in

terms of statistical criteria, and with � > � indicates a small positive skew in the data. The improvement of

the �t of the beta model over the bell-logistic model is, however, achieved by construction, since since the

bell model is nested by the beta model.
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3.2 Italy and Spain

We next apply these three models to Italy and Spain, which were the �rst western countries to be overwhelmed

by the virus and where the skew in the mortality �gures �rst became apparent. Table 2 shows the regression

results for the three rival models. The poor performance of the logistic bell curve is apparent from the

likelihood statistics, which show that the gamma and beta models �t the data much better. Moreover, the

estimates of K, which indicates the �nal size of the epidemic, look very low, only slightly ahead of the

cumulative number of deaths as they stand at the time of writing. This is because the bell curve predicts

a sharp deceleration, mirroring the initial explosive acceleration, which has regrettably proved to be too

optimistic. The beta model predicts a much larger �nal death toll in Italy. However, this estimate is poorly

de�ned, since as noted, the large value of the power parameter � means the tail is very thin, making it hard

to know where to truncate it. This model is clearly over-parameterised. The gamma model is much more

robust. It has one fewer parameters and these parameters are estimated more precisely.

The in-sample �t of the logistic and gamma regression models for Italy and Spain is shown in the panels

on the left hand side of Figure 3. These �gures make it clear that the logistic function performs poorly. Its

reproduction rate is initially too slow, which means that the predicted peak comes too late and is followed

by a decline in mortality that is too rapid. The gamma model, on the other hand, plots straight through the

observations. The dashed lines in the left panels of Figure 3 show the median out-of-sample forecast for both

models based on simulations for the period of four weeks following the last observation. The shaded areas

indicate the con�dence intervals for the gamma model. The logistic model predicts that the daily death rates

for both countries will decline to close to zero within a couple of weeks, while the gamma model indicates

that the number of deaths will continue to hover around 150 � 200, declining slowly. Appendix 2 explains

the simulation procedure.

The tendency for the logistic bell curve model to under-predict the �nal death toll is brought out more

clearly by right-hand side panels of Figure 3. These illustrate out-of-sample dynamic forecasts based on the

parameters estimated on samples ending one (continuous lines), two (dashed lines), three (dotted lines) and

four (dash-dotted lines) weeks before the most recent observation 20May 2020.3 For instance, the continuous

lines show the forecasts of the logistic (red) and gamma (black) models estimated on 13 May for the three

week period ending on 20 May. It shows that the logistic model tends to under-predict the most recent

observations. It invariably predicts a sharp fall in the death count that is almost immediately overtaken by

the out-turn. This is also the case with the two- three- and four-week ahead forecasts. Remarkably, despite

these relatively short data sets, the gamma model predicts the behavior of the mortality data in these two

3The dynamic forecast from any date is made using the parameter estimates from the sample ending on that data. The last
cumulative count in this sample is used to predict the daily count for the following day, which is then added to the cumulative
used to predict the next day�s count, with this procedure repeated until the forecast horizon. This provides a forecast conditional
upon the sample.
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countries nicely over this period, predicting a gradual fall in the daily counts and the slope of the cumulative

curve. In strong contrast, the logistic bell model tends to �atten out immediately on, or shortly after the

date the forecast was made. The beta model is not used in this exercise because its parameters are often

poorly determined in short data samples, which can cause it to forecast erratically out of sample.

3.3 The US and the UK

Next we turn to the US and the UK, two of the countries with the highest total number of deaths. The daily

counts in these countries are also proving to be stubbornly high. Due to operational issues in these countries,

the reported number of Covid-19-related deaths is signi�cantly lower on weekends than on weekdays. We

account for this feature of data by interacting the rate parameter r with a dummy variable for a weekend

day, so for instance, we estimate the gamma model as:

Dt �Dt�1 = (r + rw1t2w=e)D�
t exp (�
Dt) + � [(r + rw1)D�

t exp (�
Dt)]
�
�t+1; (9)

where 1t2w=e is an indicator variable equal to 1 if the day t is a weekend day, and zero otherwise. We also

incorporate the weekend e¤ect in the logistic and gamma models for both countries.

The regression results for the US and the UK are shown in Table 2. The poor performance of the bell

curve is again apparent from the likelihood statistics and the low estimates of K. The beta model is clearly

over-parameterised and gives a nonsensical estimate of K. Nevertheless, the gamma model has a likelihood

similar to that of the beta model and its parameters are nicely identi�ed.

The left-hand side panels of Figure 4 shows the �t of the logistic and gamma models to the daily death

rates for the US and the UK. Again, the peak of the epidemic is again too late in the logistic model,

although the misalignment with the observations is not as pronounced as it is for Italy and Spain. Although

the weekend dummy brings the logistic model closer to the weekend data, these predictions are far from

close. The gamma model, on the other hand, closely �ts both the weekday and weekend data. The dashed

lines show the out-of-sample forecasts for the next three weeks. The logistic model predicts a rapid decline in

death rates to negligible levels over this period, while the gamma model forecasts death rates of 500� 1; 000

for the US and 200� 400 for the UK.

The right-hand panels of Figure 4 again shows the persistent tendency of the logistic curve to under-

predict the total number of deaths. On the other hand, the out-of-sample-sample forecasts of the gamma

model for the US are closely aligned with the data out-turn up to a month ahead, as are the forecasts for

the UK.

One feature that stands out from this table is that for both the beta and (with the exception of China,

Belgium and France) gamma models, the estimates of � are consistently below unity. This feature helps
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these models to handle the initial e¤ects of the virus, compared with the logistic which imposes � = 1. This

is because estimates of � are largely determined by initial stages of the epidemic, while � and 
 are more

strongly in�uenced by the post-peak behavior. As noted in Section 2.1, the �rst stage will be driven by

infected people entering the country at the rate ndt rather than reproduction in the community. Strictly

speaking, the community transmission statistic � = dC=C = ndt=nt = dt=t is then meaningless, but runs to

a larger and larger number as we go back in time. This is consistent with the behavior of the gamma model

with 0 < � < 1, which we can approximate by � = dC=C = C��1dt close to C = 0:

3.4 Other countries

One of the notable features of the current crisis is that the six Eastern European accession states have

remained largely untouched by the virus. This is also true of countries like Portugal, Greece, Slovenia and

Croatia, that joined the EU after the initial expansion in 1973, though not of course Spain. Nevertheless, most

Western European countries have been a¤ected in varying degrees. We estimate the models for seven other

West European countries a¤ected by Covid-19 to a varying degree: Belgium, Denmark, France, Germany,

Ireland, the Netherlands and Sweden. We also estimate models for Canada and Brazil. We found signi�cant

weekend e¤ects in the Netherlands and Sweden. The regression results for these two countries are reported

in Table 4 and for the other countries in Table 3.

The beta model performs as well or better than the gamma model for these countries in terms of likelihood.

Moreover, the parameter � is generally not signi�cantly di¤erent from unity, showing that the marked

outperformance against the logistic model is due to the relaxation of the unit restriction on � and not �.

Nevertheless, the gamma model is much better determined in the shorter data sets used for the post-sample

forecast tests and we focus on that model in what follows. Figures 6, 5 and 7 show the results of the post-

sample tests. Once again, the tendency for the logistic model to systematically under-predict the recent data

is evident. The gamma model generally provides accurate out-of-sample forecasts, as far as four weeks ahead

for many countries. One exception here is Ireland, where the four-week ahead prediction from the gamma

model tends to overshoot.4 The parameters of the gamma model are poorly determined on this short sample

and so this result should be ignored.

Germany, Denmark and Sweden provide interesting special cases. Germany has successfully combined

a lockdown with mass population testing. Denmark was the second European country after Italy to go

into lockdown, on 11 March, before any fatalities had occurred. Sweden is exceptional in having relied on

individual responsibility rather than lockdown to contain the spread of the virus. Nevertheless, the mortality

rate (deaths relative to population) is no higher than the median. Born, Dietrich, and Gernot Müller (2010)

4The Irish Department of Health changed the reporting methodology on 24 April, adjusting the death toll upwards by 185
additional cases. We account for this adjustment by re-scaling the daily death rates before the adjustement. We are grateful to
Donal Smith for help with this.
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use synthetic control techniques to construct a doppelganger for Sweden on the basis of pre-lockdown infection

rates and show that the Swedish dynamics are no di¤erence post-lockdown. Our time-series work shows that

although the bell curve model provides a satisfactory �t for Sweden, it systematically under-forecasts, just

as it does for other Western countries.

Another interesting case is Brazil, which is still experiencing a rising daily death toll. Despite this, the

parameters of the gamma model for Brazil are precisely estimated. The forecast formulated four weeks before

the end of the sample (see Figure 8) under-predicts in the long run, but still provides much accurate prediction

than the bell model, especially in the one or two weeks horizon. The other within-sample forecasts, one-,

two- and three-weeks ahead predict the dead toll very accurately. The bell model, in contrast, consistently

predicts that the end of (sub)sample is close to the epidemic peak and the total death number that is

overtaken by the out-turn within a couple of days.

3.5 Statistical comparisons

Time series models are designed to abstract from the noise in the data and provide estimates of the trend

in the series. In the case of non-linear process like an epidemic, they can also be used to indicate the

rate at which the trend is increasing or decreasing and whether this rate is accelerating or decelerating. In

this case, the trend in the cumulative death toll is the estimated number of daily deaths, described by the

gamma drift function in equations (8) or (9). Its properties can be seen from the shape of the curves in

Figures 3 to 8. However, rather than �eyeballing�charts it is often better to look at the results numerically,

using well-known statistics, particularly when comparing di¤erent countries. Table 5 shows some of the basic

numbers that emerge from this study for the US and Canada and West European countries. These arguably

allow a broader assessment of the characteristics of the virus than comparisons of death tolls in di¤erent

countries.

These statistics follow from the well-known mathematical properties of gamma-type functions, which

are reviewed in Appendix 1. The �rst three columns show the parameters estimated for each country,

reproduced from Tables 2 to 4. These are �rst used to determine when the peak in the death toll is likely

to have occurred. The table shows the date that this was reached in each country; the estimated number of

daily deaths at the peak (corresponding to the height of the peak in each �gure) and the cumulative number

of deaths at that point.

These parameters are then used to calculate the �skewness�coe¢ cient for each country, shown in column

(vii). This indicates how di¤erent the decline from the peak is proving to be, compared to the rise from the

�rst few cases to the peak. The rows of this table are ranked in terms of skewness, starting with the US at

the top. These statistics indicate a clear divide between the US, the UK, Italy, Spain and France on the one

hand with a marked positive skew and other West European countries on the other, with hardly any skew.
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Clearly, the outperformance of gamma and beta models for this second group is not due to a long upper

tail, but due to its ability to handle the start of the epidemic and other characteristics. The second panel

of the table gives the latest numerical estimates from the model and compares these with the values implied

by these full sample parameters a month earlier. These calculations depend upon the cumulative number of

deaths at these times, shown in the �rst two columns. Columns (iii) to (iv) show how the estimated daily

death toll has fallen back since the peak in each country (shown in column (v) of the top panel).

Although this research project was initially aimed at modeling the features of the stubborn upper tail

seen in Italy and elsewhere, these results also help us to a better understanding of the early, exponential,

phase of this pandemic. In this early, pre-peak phase, attention is focussed on the time that it takes for

the cumulative number of infections to double. One of the striking features of Tables 1 to 4 is that the

estimates of the parameter �(1) = r from the bell-logistic model are remarkably close, ranging from 0:11 for

Denmark to 0:157 for China. This parameter is important because it shows the daily growth rate during the

initial phase of the epidemic, before the various negative feedback e¤ects are signi�cant. Thus the logistic

model would suggest that country-speci�c factors like age structure, population density, social behavior and

size of capital city that are widely regarded as in�uencing the spread of the disease are probably much less

important than supposed initially. However, the gamma drift model, which allows more �exibility in the

initial phase through the parameter �, suggests that the logistic model covers up important idiosyncratic

e¤ects. Table 5 shows the values of �(5) and �(15) and the respective doubling times during the initial

phase. With D = 5 the doubling time ranges widely, from just 1:3 days for Spain to 5:6 for France, in strong

contrast to the impression given by the logistic model.

4 Conclusion

There are many ways of analyzing the economy and the same is true of an epidemic. On the one hand, we

need detailed structural models to analyze the likely e¤ects of public health interventions like the current

lock-down and on the other we need reduced-form data-based models to track the progression of the virus

and assess its likely evolution. Our approach to this problem is based on non-linear stochastic di¤erence

equations that are designed to mimic the theoretical dynamics of an epidemic. Our experience reminds

us that conventional models often use inappropriate parameter restrictions and that post-sample forecast

performance is crucial in testing these. We �nd that a model that uses a gamma-type function to model the

drift and volatility in the daily mortality data emerges from these tests and is tracking the evolution of this

epidemic nicely, even in countries that are not following the classic pattern seen in China and many East

Asian countries.

Time series models provide useful statistics that summarize the virulence, morbidity and mortality rates
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in di¤erent countries. We can use these to look at the e¤ects on these indicators of variations in containment

and testing strategies across a cross-section of countries, while controlling for di¤erent demographic and other

characteristics. Their dynamics are the result of a convolution of the long and possibly variable lags involved

in the data generation process, as they are in any model. In this case, they involve infection, reporting and

other lags as well as behavioral responses that can change over time, causing systematic deviations from

the projected path. These provide an early warning signal that the dynamics are changing, either because

policies or people are changing or because the virus itself has changed.

Looking forward, we can potentially use these models to identify structural breaks and analyze the

impact of policy interventions. Econometricians have a variety of handy tools for conducting this kind of

task, including tests for discrete changes when the break-point is unknown a priori as well as tests for breaks

at points when a change is likely to have occurred, due to policy a interventions for example. The explosive

behavior test proposed in a series of papers by Phillips, Shi and Yu (Phillips, S. Shi, and Yu (2014), Phillips,

S. Shi, and Yu (2015)) also looks potentially useful in this respect. This was developed for testing bubbles

in �nancial time-series, which are analogous to the early phase of the epidemic spread.

Our daily short-term forecasts of the coronavirus mortality rates for the UK are available on our web-

site: https://sites.google.com/york.ac.uk/adam-golinski/coronametrics. The Matlab code is available upon

request.
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Appendix 1: Properties of the gamma drift function

The mathematical properties of gamma-type functions are well known. This function is used to de�ne the

gamma probability distribution Mood, Graybill, and Boes (1973). Health economists are also used to dealing

with skewness and kurtosis. For example Jones, Lomas, and Rice (2015) use generalized gamma and beta

functions to handle the tails in health cost distributions.

The peak in mortality

The value of the drift in (6) at any time gives the expected number of deaths and is obtained by substituting

the cumulative number of deaths at that time. However, analytically, it is often easier to work in continuous

rather than discrete time, using (5) instead of (6). Gamma-type functions have a single peak. This is found

by taking the �rst derivative of the drift:

@

@D
rD�e�
D = rD��1e�D
 (��D
)

and setting this to zero by setting D = �=
: These values are shown in column of the �rst panel of Table

5 and substituting them back into (5) gives the estimate of the daily death toll at the peak. The peak
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corresponds to the mode in the gamma distribution. Similarly, the skewness coe¢ cient shown in column

(vii) follows from that of the gamma distribution (Mood, Graybill, and Boes (1973)):

Skew =
(�+ 1)(�+ 2)(�+ 3)


3
:

Doubling time

Although this paper is focussed on the features of the stubborn upper tail, our results also help us to a better

understanding of the early, exponential, phase of this pandemic. In that phase, attention is focussed on the

time that it takes for the cumulative number of infections to double. This can also be used to assess the

initial behavior of the mortality rate. But to gauge that we need to have an estimate of the reproduction rate

�(D(t)). Table 5 shows three estimates implied by the gamma drift function (8). These show the expected

daily change as a decimal fraction of the cumulative. The �rst is evaluated at the start of the sample

with D = 15; suggesting that is in the range of 0:2 � 0:4 for most countries. The second is a pre-sample

extrapolation value for D = 5. The third is the value at the peak.

We can then calculate the doubling time by dividing (5) by D to get the percentage or logarithmic change:

d lnD(t) = dD(t)=D(t) = �(D(t))dt = rD(t)��1e�
D(t)dt;

which we can integrate to get the approximation: lnD(t+ �)=D(t) = �(D(t))� ; where � is measured in days.

The doubling time is found by setting D(t+ �)=D(t) = 2 and solving for � :

� = ln 2=�(D(t)) = 0:693=�(D(t)):

As noted in Section 3.5, the values in the table range widely across di¤erent countries. Absent a second wave,

the cumulative cannot re-double once the peak is passed, at least in the case of a symmetric speci�cation.

5 Appendix 2: Out-of-sample forecast simulation

We analyze the uncertainty surrounding the out-of-sample forecasts using Monte Carlo simulations. There

are two sources of uncertainty to evaluate. The �rst source of uncertainty concerns the parameters. This is

indicated by their estimated variance-covariance matrix. To capture the correlation between the parameter

estimates, we decompose the variance-covariance matrix of the estimates using the Cholesky decomposition

and generate a new set of parameters as e�s = b�+ C�s; (10)
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where b� is a vector of maximum likelihood parameter estimates, C is the lower-triangular of the variance

matrix of b� and �s is a vector of standard normal variable generated by a random number generator.

The second source of uncertainty comes from the additive equation error term et, geared up by the

volatility term. This uncertainty builds up initially with the horizon of the forecast, but eventually starts

to decline as the process exceeds the peak. Given the (randomized) parameter values, a random number

generator of a standard normal variable is used to simulate values of et, which are then fed back into

the dynamics equation (6). For example, given the parameters generated for the s�th simulation e�s =
(ers; e�s; e
s; e�s)0, we simulate the future realizations of the gamma process for t = 1; :::; 21 as:

D
(s)
t = D

(s)
t�1 + ersD(s)e�s

t exp
�
�e
sD(s)

t

�
+ e�s hD(s)

t�1 + ersD(s)e�s
t

i0:75
e
(s)
t+1; (11)

where t = 0 is the last observation in the sample. We repeat this procedure 10; 000 times. The daily death

�gures show the median and the 95% interval of these simulations.
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Tables and �gures

Model log-lik. r K � � 
 � 10; 000 �
China

Bell -284.98 0:1566
0:0100

3; 309
3

- - - 1:2981
0:1283

Gamma -310.45 0:0689
0:0388

- 1:3384
0:1107

- 16:290
1:494

1:5828
0:1683

Beta -257.40 0:5820
0:1747

3; 349
19

0:8387
0:0505

1:2343
0:1007

- 0:8537
0:0789

Table 1: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation period is from 23 January to 31 March 2020.

Model log-lik. r rw K � � 
 � 10; 000 �
Italy

Bell -545.95 0:1098
0:0076

- 32; 883
137

- - - 2:6597
0:2447

Gamma -464.92 0:4695
0:1070

- - 0:9246
0:0305

- 1:0846
0:0418

0:9103
0:07292

Beta -457.47 0:9290
0:2608

- 50; 458
8;591

0:8083
0:0406

3:1367
0:9938

- 0:8293
0:0667

Spain
Bell -481.83 0:1361

0:0119
- 28; 046

65
- - - 3:1611

0:3337

Gamma -434.54 0:6071
0:2251

- - 0:9334
0:0512

- 1:3905
0:0836

1:4543
0:1309

Beta -423.23 1:5216
0:1266

- 37; 061
6;104

0:7746
0:0278

2:5379
0:9362

- 1:2559
0:1001

US
Bell -534.30 0:1394

0:0105
�0:0454
0:0135

98; 469
1;111

- - - 3:0455
0:2865

Gamma -489.83 0:4539
0:1290

�0:1623
0:0520

- 0:9328
0:0336

- 0:2962
0:0170

1:4392
0:1272

Beta -490.91 0:5288
0:1626

�0:1895
0:0648

395; 310
252;370

0:9087
0:0377

9:9678
7:5345

- 1:4517
0:1285

UK
Bell -455.18 0:1404

0:0110
�0:0462
0:01457

36; 908
291

- - - 2:5532
0:2532

Gamma -385.22 0:7229
0:1559

�0:3075
0:0728

- 0:8859
0:0281

- 0:8335
0:0344

0:8234
0:0726

Beta -385.15 0:7283
0:1568

�0:3099
0:0733

2:93e+ 06
1:56e+06

0:8846
0:0280

242:01
129:71

- 0:8226
0:0723

Table 2: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: Italy - 29 February, Spain - 11 March, US - 9 March, UK - 16 March and ends
on 20 May 2020, except for Spain - 19 May 2020.
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Model log-lik. r K � � 
 � 10; 000 �
Belgium

Bell -352.86 0:1478
0:0116

9; 248
30

- - - 2:0542
0:2178

Gamma -338.77 0:3169
0:1352

- 1:0063
0:0687

- 4:0651
0:3384

1:4953
0:1488

Beta -326.23 1:0922
0:4380

9; 622
285

0:7547
0:0606

1:1991
0:2129

- 1:2680
0:1231

Brazil
Bell -347.29 0:1115

0:0074
29; 619
2;496

- - - 1:6610
0:1652

Gamma -327.06 0:6450
0:1955

- 0:7590
0:0436

- 0:1001
0:1046

1:0821
0:1057

Beta -326.84 0:7541
0:1711

1:11e+ 08
3:07e+09

0:7337
0:0291

305:82
7;314:20

- 1:0745
0:1031

Canada
Bell -290.13 0:1277

0:0076
6; 604
108

- - - 1:2618
0:1247

Gamma -270.42 0:3719
0:1163

- 0:8797
0:0532

- 3:2468
0:3666

0:8359
0:0800

Beta -269.89 0:5205
0:2333

9; 881
6;665

0:8072
0:0850

1:8897
2:2654

- 0:8250
0:0794

Denmark
Bell -174.48 0:1087

0:0084
575
4

- - - 0:9585
0:1025

Gamma -146.44 0:2433
0:1692

- 1:0281
0:1690

- 65:4530
8:1861

0:5931
0:0585

Beta -145.64 0:6898
0:8558

879
614

0:7188
0:3337

2:8630
4:1204

- 0:5870
0:0580

France
Bell -477.05 0:1387

0:0108
28; 409

94
- - - 2:7701

0:2772

Gamma -453.18 0:0909
0:0353

- 1:1873
0:0543

- 1:6444
0:0953

1:8912
0:1764

Beta -448.06 0:1824
0:0803

42; 049
8;166

1:0546
0:0649

3:8772
1:4634

- 1:7816
0:1648

Germany
Bell -343.89 0:1298

0:0094
8; 312
52

- - - 1:8072
0:1860

Gamma -329.35 0:2641
0:1388

- 0:9919
0:0414

- 4:0025
0:4082

1:3454
0:1319

Beta -323.44 0:9544
0:4952

8; 990
679

0:7456
0:0814

1:2257
0:3853

- 1:2346
0:1196

Ireland
Bell -221.00 0:1358

0:0100
1; 610
10

- - - 1:1787
0:1273

Gamma -214.02 0:2336
0:1290

- 1:0333
0:1161

- 21:9360
2:6866

0:9924
0:1041

Beta -202.62 0:8161
0:3485

1; 681
65

0:7105
0:0825

1:0940
0:2434

- 0:8274
0:0843

Table 3: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: Belgium - 31 March, Brazil - 23 March, Canada - 23 March, Denmark - 25
March, France - 10 March, Germany - 21 March, Ireland - 28 March 2020 and ends on 20 May 2020.
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Model log-lik. r rw K � � 
 � 10; 000 �
The Netherlands

Bell -339.58 0:1440
0:0116

�0:0522
0:01512

5; 826
22

- - - 1:7217
0:1747

Gamma -301.89 0:5178
0:1853

�0:2090
0:0798

- 0:9269
0:0606

- 6:0142
0:4201

0:9059
0:0830

Beta -293.24 1:1433
0:2226

�0:4473
0:1100

7; 623
1;090

0:7557
0:0118

2:2104
0:7142

- 0:8045
0:0686

Sweden
Bell -305.35 0:1408

0:0148
�0:0678
0:0167

4; 012
61

- - - 1:9371
0:2181

Gamma -292.27 0:4383
0:2587

�0:2262
0:1405

- 0:8911
0:1064

- 6:4975
1:0913

1:4761
0:1557

Beta -292.33 0:4937
0:1949

�0:2549
0:1119

19; 332
56;593

0:8630
0:0375

10:896
36:856

- 1:4763
0:1555

Table 4: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: the Netherlands - 17 March, Sweden - 22 March and ends on 20 May 2020.
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Parameters Peak numbers of deaths
r � 
 Date Daily Cumulative Skewness
(i) (ii) (iii) (iv) (v) (vi) (vii)

US 0.4539 0.9327 0.2962 14 April 2,803 31,492 75
UK 0.7229 0.8859 0.8335 10 April 1,100 10,628 25
Italy 0.4694 0.9245 1.0846 30 March 802 8524 20
France 0.0908 1.1873 1.6444 5 April 1,057 7,220 17
Spain 0.6070 0.9334 1.3905 1 April 891 6,712 16
Canada 0.3719 0.8797 3.2467 26 April 161 2,709 6
Belgium 0.3169 1.0063 4.0651 7 April 301 2,475 6
Germany 0.2641 0.9919 4.0025 7 April 227 2,478 6
Netherlands 0.5178 0.9268 6.0141 8 April 184 1,541 4
Sweden 0.4383 0.8911 6.4974 14 April 112 1,371 3
Ireland 0.2336 1.0333 21.936 14 April 48 471 1
Denmark 0.2433 1.0281 65.453 1 April 15 157 0.3

Cumulative deaths Daily deaths Reproduction rates Doubling time
20 April 20 May 20 April 20 May �(5) �(15) �(peak) D = 5 D = 15
(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

US 37,054 93,439 2,767 1,234 0.40 0.37 0.09 1.70 1.83
UK 14,576 35,704 1,047 398 0.60 0.53 0.10 1.15 1.30
Italy 22,747 32,330 425 208 0.41 0.38 0.09 1.65 1.81
France 18,681 28,132 496 170 0.12 0.15 0.14 5.64 4.60
Spain 19,478 27,888 408 177 0.54 0.50 0.13 1.27 1.37
Canada 1,309 4,638 134 138 0.30 0.26 0.06 2.26 2.59
Belgium 5,163 9,150 211 74 0.31 0.32 0.12 2.17 2.16
Germany 4,110 8,147 195 76 0.26 0.25 0.10 2.66 2.67
Netherlands 3,458 5,748 123 49 0.45 0.42 0.11 1.50 1.64
Sweden 1,400 3,831 112 56 0.36 0.32 0.08 1.89 2.14
Ireland 530 1,571 47 14 0.24 0.24 0.10 2.84 2.80
Denmark 4,110 554 1 4 0.24 0.23 0.10 2.81 2.91

Table 5: Summary statistics for gamma drift models.
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Figure 1: Covid-19 infections in China and Italy.

Figure 2: In sample �t and out of sample forecasts of daily deaths for China. The dots show data for the
daily death tolls. The black line shows the regression �ts for the gamma model, the red line for the logistic
model and the green line for the beta model.
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Figure 3: In sample �t and out of sample forecasts of daily deaths for Italy and Spain. The dots show data for
the daily (left panels) and cumulative (right panels) death tolls. In the left panels, the continuous lines show
the regression �ts for the logistic (red) and gamma (black) models. The dashed lines show the forecast made
for the next four weeks with the gamma-drift model using the full sample estimates conditional upon the last
observation in the sample, together with the con�dence intervals. The right hand panels show out-of-sample
forecasts based on the parameters estimated on samples ending one (continuous lines), two (dashed lines),
three (dotted lines) and four (dash-dotted lines) weeks before the most recent observation.
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Figure 4: In sample �t and out of sample forecasts of daily deaths for the US and the UK. In the left
hand panels, the dots show weekday observations of the daily death toll and the squares show observations
that are a¤ected by the weekend e¤ect. The continuous lines show the regression �ts for the logistic (red)
and gamma (black) models. The dashed lines show the forecast made for the next four weeks with the
gamma-drift model using the full sample estimates conditional upon the last observation in the sample,
together with the con�dence intervals. In the right hand panels, the dots show data for the cumulative death
toll. Out-of-sample forecasts are shown for samples ending one (continuous lines), two (dashed lines), three
(dotted lines) and four (dash-dotted) weeks before the most recent observation.
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Figure 5: In sample �t and out of sample forecasts of daily deaths for Belgium, Canada and Denmark. See
notes to Figure 3.
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Figure 6: In sample �t and out of sample forecasts of daily deaths for France, Germany and Ireland. See
notes to Figure 3.
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Figure 7: In sample �t and out of sample forecasts of daily deaths for the Netherlands and Sweden. See
notes to Figure 4.

Figure 8: In sample �t and out of sample forecasts of daily deaths for Brazil. See notes to Figure 3.
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