UNIVERSITYW

Discussion Papers in Economics

No. 20/06

Modeling the Covid-19 Epidemic Using Time Series
Econometrics

Adam Golinski and Peter Spencer

Department of Economics and Related Studies
University of York
Heslington
York, YO10 5DD







Modeling the Covid-19 Epidemic Using Time Series Econometrics

Adam Golinski* and Peter Spencerf
University of York

26 May 2020

Abstract

The classic ‘logistic’ model has provided a realistic model of the behavior of Covid-19 in China and
many East Asian countries. Once these countries passed the peak, the daily case count fell back, mirroring
its initial climb in a symmetric way, just as the classic model predicts. However, in Italy and Spain, and
now the UK and many other Western countries, the experience has been very different. The daily count
has fallen back gradually from the peak but remained stubbornly high. The reason for the divergence
from the classical model remain unclear. We take an empirical stance on this issue and develop a model
that is based upon the statistical characteristics of the time series. With the possible exception of China,

the workhorse logistic model is decisively rejected against more flexible alternatives.

1 Introduction

There are many different ways of analyzing and projecting the progress of an epidemic like Covid-19. The
government and its advisors mainly rely upon large computer models that analyze the spread of the disease
and the effects of public health interventions in fine detail (Ferguson et al. (2020)). These so-called ‘mecha-
nistic’ models are largely theory-based and in that sense resemble the large theory-based models constructed
for example by the Bank of England to analyze the effect of policy interventions on the economy. Other
epidemiologists fit curves to the time series data and use the theoretical dynamics to make data-based predic-
tions (Batista (2020), Jia, Li, Jiang, Guo, and Zhao (2020), Murray (2020)). Avery, Bossert, Clark, Ellison,
and Ellison (2020) classify these models as ‘phenomenological’ and note their resemblance to reduced-form
econometric models.

These approaches complement each other nicely. Large-scale theoretical models are very useful for an-

alyzing policy interventions and other structural changes but can miss important links, especially when
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confronted with ‘black swan’ events such as a financial breakdown or the outbreak of an unknown virus
like Covid-19. Small data-based models can provide better forecasts. The Monetary Policy Committee uses
both types of model for informing their decisions and forecasting (Burgess et al. (2013)). Reduced form
models can also be used to check the properties of the theoretical models and match them better to the data
(Meenagh, Minford, and Wickens (2009)).

Although epidemiological models may differ in many respects, they are all based on the same theory
and they invariably predict that the daily counts for infections and deaths follow a bell-shaped curve. In
other words, once the peak is passed and the daily count begins to fall, it follows a path that mirrors the
upward climb, before slowing to a halt. In the large models, this classic pattern follows from the dynamics
of the epidemic, which naturally slows as the disease runs through the population and immunity increases.
Behavioral feedbacks and policy interventions may also be important in slowing the spread of the disease.
In the time series models, the daily count follows a bell-shaped path by assumption and means that the
cumulative count follows an S—shaped logistic curve. This idea is at the center of policymaking in this area
and expressions like ‘flattening the curve’ are now part of everyday conversation.

These symmetric dynamics have provided a reliable way of modelling outbreaks of influenza and other
epidemics in the past. Indeed, simple regression models based on fitting the bell (or logistic) curve to the
data, also proved accurate in predicting the path of the Covid-19 outbreak in China and many East Asian
countries (Jia, Li, Jiang, Guo, and Zhao (2020), Batista (2020)). However, the experience of Italy and
Spain, which is now being followed by the UK and many other countries, has been very different. The daily
mortality figures have fallen back gradually from the peak in these countries, but have remained stubbornly
high. This contrast is stark in the daily series plotted for China and for Italy and Spain in Figure 1.

A positive skew in the national time series can appear because they aggregate data for areas that are hit
by the virus at different times. However, US data for hospital admissions and fatalities areas like New York
and New Jersey that have been badly affected by the virus exhibit a pronounced skew.! Mortality data for
English regions, which are arranged by date of death rather than date of announcement, thus avoiding the
effect of skewed reporting delays, also exhibit a pronounced upper tail.> Data for large US cities and English
regions could also be prone to aggregation effects, but this seems less likely than for national aggregates.

One reason for the mortality figures to exhibit an upper tail is because the length of time from infection
to death or recovery follows a gamma distribution and is positively skewed, as is well known (Hogg (1978),
Bird (2013)). Some people recover very quickly, but others take much longer. This distribution is used by
the M RC Biostatistics Unit to infer the true number of infections and the reproduction number (R) from

mortality figures for the UK regions (Seaman and De Angelis (2020)). The regional breakdown helps deal

IThese data are available at: https://covidtracking.com/data.
2These data are available at: https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-daily-deaths//.
A correction for the most recent reporting delay is available at: http://users.ox.ac.uk/ nuff0078/Covid/index.htm



with the problem that the epidemic affects regions at different times. This methodology also takes into
account the positive skew in the reporting lag (Bird and Neilsen (2020), Birrell, Blake, van Leeuwen, and
De Angelis (2020)).

There is also a positive skew in the infections data for Italy and many other countries. This is much
harder to rationalize. Figure 1 contrasts the pattern of infections seen in China with that in Italy. We also
find a positive skew in data for infections in Lombardy, the Italian region most badly affected. This positive
skew may again reflect measurement problems, such as changes in the testing regime. However, it could
also be due to the non-normality of community transmission. For example, the number of transmissions per
person is known to have a long tail, due to the presence of ‘superspreaders’. It has also been suggested that
other delays, such as the infection period, may have a gamma distribution with a long tail (Shen, Taleb, and
Bar-Yam (2020)).

However, if the skew is due to the asymmetry of the various statistical distributions that are involved in
the complex web of transmission, why has the experience in the West been so different from that in the East?
Although most European countries are affected by the B—strain rather then the original A—strain that broke
out in China (Forster, Forster, Forster, and Renfrew (2020)), these strains are similar. The answer may lie in
the behavior of people and their governments rather than that of the virus itself. Perhaps it is because Asian
countries were better prepared following their experience with the SARS epidemic a decade earlier. Perhaps
it is because, as Jenny (2020) argues, countries like China and Vietnam, where individual freedom is limited,
were less hesitant and better able to limit the spread of the virus than elsewhere. However, Frey, Chen, and
Presidente (2020) find that collectivist and democratic countries have both implemented relatively effective
responses to the pandemic.

Whatever the reason for this asymmetry, it is clear that the classic model has failed us badly this time.
This has been documented by several recent studies. For example, Marchant, Samia, Tanner, and Cripps
(2020) show that forecasts from the Institute for Health Metrics and Evaluation (IHMFE) at the University
of Washington, which underpin hospital resource planning in the US and are used in White House briefings,
are usually overtaken by the data within a few days. The IHMFE model fits daily mortality data using the
Gaussian bell curve (Murray (2020)).

Instead of trying to delve deeper into the data to try and find the reasons why so many countries have
departed from the classic pattern, we take an empirical stance in this paper and develop a model that is
based upon the statistical characteristics of the national time-series. We model the daily mortality data
published by the European Centre for Disease Control (ECDC'). We use these data rather than infections
because of the acute public and policy interest focus on these data and because it is more difficult to find
comprehensive and comparable data on infections.

We start by looking at the way that the tools developed by econometricians, to handle non-standard



time-series representing economic growth and speculative bubbles in financial markets for example, can be
used to analyze an epidemic. We then document the systematic failure of the logistic model in the US,
Canada, Brazil and nine large West European countries using standard out-of-sample forecast tests. We
review alternative statistical models and show that a model of the trend resembling the gamma probability
density function is flexible enough to handle the positive skew now evident in many countries. Because it
has greater flexibility to handle the initial stages of the epidemic, it also provides a better model than the
logistic in countries like Brazil where the daily death toll is still increasing and countries like Denmark that
do not have a positive skew. This model also performs well in post-sample forecast tests, suggesting that
with a sample of just three or four weeks data, accurate two-, and for many countries, four-week projections
can be made.

This analysis suggests that the dynamics of Covid-19 are primarily determined by the behavior of the
population rather than the textbook behavior of the virus. That is because once the death toll began to
soar, it then decelerated much faster than could plausibly be explained by the number of reported infections
and the implied build up of immunity. It remains possible that this number is just the tip of an iceberg
of infections, but as Dimdore-Miles and Miles (2020) demonstrate, it would need 250 unrecorded cases for
every recorded case for immunity to explain the deceleration. It will require an antibody test survey to
resolve this issue, but in the meantime it seems more plausible to think that the deceleration occurred not
so much because the disease spread and built herd immunity but because news about its effects spread and
made individuals and families take precautions, which were then reinforced in many countries by government

lockdowns.

2 Modeling an epidemic using time-series econometrics

Econometricians are used to dealing with difficult economic and financial times series. Their data often
violate the classical assumptions adopted in the statistical texts and thus need to be handled using special
techniques. For example, macroeconomic data like GDP exhibit exponential growth and financial prices
can exhibit speculative bubbles that are explosive. They may respond with long and variable lags to policy
interventions and exogenous shocks. These data may be measured with error and subject to structural shifts
as behavior or government policies change.

As Castle, A. Doornik, and Hendry (2020) argue, epidemiological data are fraught with similar problems.
These econometricians have used the sophisticated linear trend fitting techniques to decompose the cumu-
lative death counts. They split each series into trend and remainder terms, then project them forward and
recombine them to produce a forecast for the following week. As they note, a significant fall in outcomes

relative to extrapolations from such models can be an indication that policy interventions are having the



desired effect. Epidemiologists use similar models to separate the noise from the trend in the time-series and
use the trend to estimate the reproduction number R, the number of people an infected person is likely to
infect.

However, deviations from a linear trend can occur for many other reasons. For example, as the death
toll mounts and people begin to worry about the virus and its consequences, they are likely to modify their
behavior in a way that reduces outcomes relative to a linear extrapolation. Longer term, the trend should
bend as immunity builds up and the population becomes less susceptible to the disease. These endogenous
feedback effects are built into the non-linear dynamics of the large-scale epidemiological models, which allow
the trend to change as the epidemic progresses. This should in principle improve forecasts beyond the weekly
horizon and make it more likely that systematic forecast errors are due to government interventions or other

external influences.

2.1 The logistic process

These epidemiological models range from the large-scale computer models built by the Imperial College and
other modelling groups to simple data-based curve-fitting techniques. For example, many epidemiologists fit
a logistic curve to the cumulative number of infections C(%):

cr 1
K 1+ Ae (1)

where: A = K/C(0) — 1, K is the final epidemic size and r > 0 the propagation or infection rate (see for
example Batista (2020), equation (2)). However, in view of the well known issues around estimation with
non-stationary data Sims (1980) we model the number of new cases. Differentiating (1) and substituting
Ae™" = K/C(t) — 1 shows that the number of new cases at any time is a bell-shaped function of the

accumulated cases:
dC(t) _ C(t)
e rC(t) (1 % )

This model provides a simple way of allowing for the non-linear feedback mechanisms, loosely based

(2)

on the SIR (susceptible, infectious, removed) model (Kermack, McKendrick, and Walker (1927), Avery,
Bossert, Clark, Ellison, and Ellison (2020), Dimdore-Miles and Miles (2020)). Initially, with C(0) cases
observed when the outbreak is detected, all of them are ‘infectious’ and will infect other ‘susceptible’ people
at the rate  per unit of time (dt) causing dC(0) = rC(0)dt new cases. Thus initially, the disease will spread
exponentially, at the reproduction rate p = dC(t)/(C(t)dt) = r. However, various negative feedbacks then
arise, which reduce the reproduction rate.

The classic feedback mechanism is provided by herd immunity. If people who have had the disease are

less susceptible to catching it again, then they move into the ‘removed’ class. As they increase as a share



of the population (N) the probability that an infectious person will meet a susceptible one falls from 1 to
(1—=C(t)/N)). This results in rC(t)(1 — C(t)/N)dt new cases per unit of time, resulting in (1) with K = N.
However, there is a problem with this interpretation. If this were the only mechanism at work, we would
expect K to be of a similar size to the population N. But it is much smaller than N empirically, suggesting
that C is under-recorded. For example, Dimdore-Miles and Miles (2020) assume that the number of new
cases that are symptomatic and recorded is a fraction 7 of the true number. If C' represents the true number

and C° the recorded number, then substituting C = C°/w into (2) gives the model:

Thus the estimator wK effectively replaces K. However, as they conclude the value of © would need to be

extremely low to fully explain this finding.

Behavioral feedbacks can also help to reduce the reproduction rate, as argued in the introduction. For
example, as C grows, people are likely to modify their behavior in a way that mimics the effect of immunity,
reducing the reproduction rate p = rC(t)(1—C(t)/K) via the K parameter. This behavior can be reinforced
by government interventions like lockdown. On a more pessimistic view, if immunity from exposure to the
disease is partial or tends to fall with the time since exposure, then there may not be an upper limit to the
cumulative number of cases.

The logistic model is designed to explain the transmission of a virus within a closed community. But
apart from the country where the virus originates, all the initial cases must involve people that have recently
entered the country and the number of new cases n will be related to the number of new passenger arrivals
rather than C. Thus in the initial stages, before community transmission begins: dC(0) = ndt and not
dC(0) = nC(0)dt as implied by the logistic model.

A more obvious problem with this model is that the bell and logistic curves are symmetric. The bell
curve has a single peak at C' = K/2. Once this is passed, the number of new cases begins to fall, following
a path that mirrors the upward climb, before slowing to a stop as C' approaches K. This was in fact the
experience of China and many East Asian countries, which is why the logistic curve fits their data well.
Unfortunately, the experience in Italy and Spain has been very different. The number of deaths fell back

from the peak, but then remained stubbornly high.

2.2 A long, thin-tailed epidemic

We need a more flexible model to allow for these possible effects. Mathematically, we can achieve this simply

by raising the C' and (1 — C/K) terms in (2) by the powers « and . This makes it a beta function, which



is much more flexible:

dC(t) C’(t))g . 3

0 _ o (1€

However, we find that this function is too flexible in practice, making it difficult to estimate its parameters
reliably given the relatively short data sets currently available. For example, 8 usually takes a large value,
producing a long but very thin tail, which makes it hard to pin down the upper bound K.

Instead, suppose that precautionary behavior by individuals, family groups or government means that

the reproduction rate p falls exponentially as the number of cases mounts: p(t) = re~7“®). Then:

dC(t
C?(Et)) = p(t)dt = re Wit = dC(t) = rC(t)e 7D dt.
We find that although this model has two fewer parameters than the beta model, it gives a similar fit.

However, its performance can be improved by changing the power of the C term to «, thus giving the trend

a form similar to that of the gamma density function:

dC(t) = rC(t)*e 79V, (4)

This function does not impose an upper limit on the cumulative number of cases and is still flexible enough
to provide a local approximation to a bell curve and an upper skew, depending upon its parameters. It
is used extensively in statistics to describe probability distributions for this reason, the well-known x?2
distribution being a special case (Mood, Graybill, and Boes (1973)). This function is also attractive since it
can be integrated to get a closed form for the cumulative count C, the analogue of the logistic function (1)
associated with the bell curve (2). Its mathematical properties are reviewed in Appendix 1.

These processes are non-stationary and should be handled using techniques developed for modelling non-
stationary economic data, like growth and inflation. Their dynamics are dictated by stochastic differential
equations with drift (i.e. trend) and volatility terms, like those used to model interest rates (Ait-Sahalia

(1996)). We give the volatility term a form that is congruent with the drift.

3 Modeling the ECDC death data

The logistic model outlined in the previous section was originally developed to explain the number of new
infections. However, in the absence of mass testing, the true numbers of people who are infected and those
that have recovered are likely to be much larger than those recorded, especially if there is a large proportion
of asymtomatic cases that are not recorded. To avoid these measurement problems, we extend the reasoning
of the logistic infections specification to track deaths instead, following Murray (2020) and many others.

Suppose that deaths represent a constant lagged fraction of the true number of infections C(t). Substi-



tuting this into (4) and suitably reinterpreting the parameters, we assume:
dD(t) = g(D(t)) = rD(t)*e~"PWat, (5)

where D(t) represents the cumulative number of deaths at time ¢. To model the daily data we add a congruent

volatility specification and discretize the model:

Dy = Dioy = rDf exp (—yDy) + 0 [rDf exp (—yD1))” evan, (6)

where «, v, 7 and o are parameters to be estimated and e; ~ N(0,1) is a Gaussian error term. Similarly, the

discrete time logistic (bell) model is
Diy1 — Dy =rDy(1 — Dy/K) + 0 [rDy(1 — Dy /K))° €111 (7)

and the beta model corresponding to (3) is:

4
Dyy1 — Dy =rD(1 — Dy/K)P + o [rD{(1 — Dy /K)?]" €141 (8)

Setting «, 5 = 1 simplifies this to the logistic specification. Initial experiments showed that § was close to
0.75 for these models for most countries and this parameter is fixed at this value in the regressions reported

here.

3.1 China

We start by fitting three candidate models (logistic, beta and gamma) to the Chinese mortality data. Table
1 shows the regression results for the three rival models. To avoid the bias in estimates caused by an integer
data count and the long left tail seen in some countries, we start the estimation for each country from the
date when the cumulative number of deaths reached 15 deaths (see tables’ footnotes for more details). China
was of course the first country to be hit by Covid-19 and managed to suppress it effectively by the end of
March, therefore we end the sample period on 31 March 2020. Figure 2 shows the in-sample fit of the logistic
(red line), gamma (black line) and beta (green line) regression models. As noted in the introduction, the
bell-logistic model represents the behavior of this outbreak nicely, although the beta-drift model is better in
terms of statistical criteria, and with 5 > « indicates a small positive skew in the data. The improvement of
the fit of the beta model over the bell-logistic model is, however, achieved by construction, since since the

bell model is nested by the beta model.



3.2 Italy and Spain

We next apply these three models to Italy and Spain, which were the first western countries to be overwhelmed
by the virus and where the skew in the mortality figures first became apparent. Table 2 shows the regression
results for the three rival models. The poor performance of the logistic bell curve is apparent from the
likelihood statistics, which show that the gamma and beta models fit the data much better. Moreover, the
estimates of K, which indicates the final size of the epidemic, look very low, only slightly ahead of the
cumulative number of deaths as they stand at the time of writing. This is because the bell curve predicts
a sharp deceleration, mirroring the initial explosive acceleration, which has regrettably proved to be too
optimistic. The beta model predicts a much larger final death toll in Italy. However, this estimate is poorly
defined, since as noted, the large value of the power parameter $ means the tail is very thin, making it hard
to know where to truncate it. This model is clearly over-parameterised. The gamma model is much more
robust. It has one fewer parameters and these parameters are estimated more precisely.

The in-sample fit of the logistic and gamma regression models for Italy and Spain is shown in the panels
on the left hand side of Figure 3. These figures make it clear that the logistic function performs poorly. Its
reproduction rate is initially too slow, which means that the predicted peak comes too late and is followed
by a decline in mortality that is too rapid. The gamma model, on the other hand, plots straight through the
observations. The dashed lines in the left panels of Figure 3 show the median out-of-sample forecast for both
models based on simulations for the period of four weeks following the last observation. The shaded areas
indicate the confidence intervals for the gamma model. The logistic model predicts that the daily death rates
for both countries will decline to close to zero within a couple of weeks, while the gamma model indicates
that the number of deaths will continue to hover around 150 — 200, declining slowly. Appendix 2 explains
the simulation procedure.

The tendency for the logistic bell curve model to under-predict the final death toll is brought out more
clearly by right-hand side panels of Figure 3. These illustrate out-of-sample dynamic forecasts based on the
parameters estimated on samples ending one (continuous lines), two (dashed lines), three (dotted lines) and
four (dash-dotted lines) weeks before the most recent observation 20 May 2020.% For instance, the continuous
lines show the forecasts of the logistic (red) and gamma (black) models estimated on 13 May for the three
week period ending on 20 May. It shows that the logistic model tends to under-predict the most recent
observations. It invariably predicts a sharp fall in the death count that is almost immediately overtaken by
the out-turn. This is also the case with the two- three- and four-week ahead forecasts. Remarkably, despite

these relatively short data sets, the gamma model predicts the behavior of the mortality data in these two

3The dynamic forecast from any date is made using the parameter estimates from the sample ending on that data. The last
cumulative count in this sample is used to predict the daily count for the following day, which is then added to the cumulative
used to predict the next day’s count, with this procedure repeated until the forecast horizon. This provides a forecast conditional
upon the sample.



countries nicely over this period, predicting a gradual fall in the daily counts and the slope of the cumulative
curve. In strong contrast, the logistic bell model tends to flatten out immediately on, or shortly after the
date the forecast was made. The beta model is not used in this exercise because its parameters are often

poorly determined in short data samples, which can cause it to forecast erratically out of sample.

3.3 The US and the UK

Next we turn to the US and the UK, two of the countries with the highest total number of deaths. The daily
counts in these countries are also proving to be stubbornly high. Due to operational issues in these countries,
the reported number of Covid-19-related deaths is significantly lower on weekends than on weekdays. We
account for this feature of data by interacting the rate parameter r with a dummy variable for a weekend

day, so for instance, we estimate the gamma model as:
«a « é
Dy = Di—y = (r + rwlicwse) D exp (=yDe) + o [(r + 1 1) D exp (—vDy)]” €141, (9)

where 1;¢,, /. is an indicator variable equal to 1 if the day ¢ is a weekend day, and zero otherwise. We also
incorporate the weekend effect in the logistic and gamma models for both countries.

The regression results for the US and the UK are shown in Table 2. The poor performance of the bell
curve is again apparent from the likelihood statistics and the low estimates of K. The beta model is clearly
over-parameterised and gives a nonsensical estimate of K. Nevertheless, the gamma model has a likelihood
similar to that of the beta model and its parameters are nicely identified.

The left-hand side panels of Figure 4 shows the fit of the logistic and gamma models to the daily death
rates for the US and the UK. Again, the peak of the epidemic is again too late in the logistic model,
although the misalignment with the observations is not as pronounced as it is for Italy and Spain. Although
the weekend dummy brings the logistic model closer to the weekend data, these predictions are far from
close. The gamma model, on the other hand, closely fits both the weekday and weekend data. The dashed
lines show the out-of-sample forecasts for the next three weeks. The logistic model predicts a rapid decline in
death rates to negligible levels over this period, while the gamma model forecasts death rates of 500 — 1, 000
for the US and 200 — 400 for the UK.

The right-hand panels of Figure 4 again shows the persistent tendency of the logistic curve to under-
predict the total number of deaths. On the other hand, the out-of-sample-sample forecasts of the gamma
model for the US are closely aligned with the data out-turn up to a month ahead, as are the forecasts for
the UK.

One feature that stands out from this table is that for both the beta and (with the exception of China,

Belgium and France) gamma models, the estimates of « are consistently below unity. This feature helps
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these models to handle the initial effects of the virus, compared with the logistic which imposes o = 1. This
is because estimates of « are largely determined by initial stages of the epidemic, while 5 and v are more
strongly influenced by the post-peak behavior. As noted in Section 2.1, the first stage will be driven by
infected people entering the country at the rate ndt rather than reproduction in the community. Strictly
speaking, the community transmission statistic p = dC/C = ndt/nt = dt/t is then meaningless, but runs to
a larger and larger number as we go back in time. This is consistent with the behavior of the gamma model

with 0 < a < 1, which we can approximate by p = dC/C = C*~1dt close to C = 0.

3.4 Other countries

One of the notable features of the current crisis is that the six Eastern European accession states have
remained largely untouched by the virus. This is also true of countries like Portugal, Greece, Slovenia and
Croatia, that joined the EU after the initial expansion in 1973, though not of course Spain. Nevertheless, most
Western European countries have been affected in varying degrees. We estimate the models for seven other
West European countries affected by Covid-19 to a varying degree: Belgium, Denmark, France, Germany,
Ireland, the Netherlands and Sweden. We also estimate models for Canada and Brazil. We found significant
weekend effects in the Netherlands and Sweden. The regression results for these two countries are reported
in Table 4 and for the other countries in Table 3.

The beta model performs as well or better than the gamma model for these countries in terms of likelihood.
Moreover, the parameter [ is generally not significantly different from unity, showing that the marked
outperformance against the logistic model is due to the relaxation of the unit restriction on « and not .
Nevertheless, the gamma model is much better determined in the shorter data sets used for the post-sample
forecast tests and we focus on that model in what follows. Figures 6, 5 and 7 show the results of the post-
sample tests. Once again, the tendency for the logistic model to systematically under-predict the recent data
is evident. The gamma model generally provides accurate out-of-sample forecasts, as far as four weeks ahead
for many countries. One exception here is Ireland, where the four-week ahead prediction from the gamma
model tends to overshoot.* The parameters of the gamma model are poorly determined on this short sample
and so this result should be ignored.

Germany, Denmark and Sweden provide interesting special cases. Germany has successfully combined
a lockdown with mass population testing. Denmark was the second European country after Italy to go
into lockdown, on 11 March, before any fatalities had occurred. Sweden is exceptional in having relied on
individual responsibility rather than lockdown to contain the spread of the virus. Nevertheless, the mortality

rate (deaths relative to population) is no higher than the median. Born, Dietrich, and Gernot Miiller (2010)

4The Irish Department of Health changed the reporting methodology on 24 April, adjusting the death toll upwards by 185
additional cases. We account for this adjustment by re-scaling the daily death rates before the adjustement. We are grateful to
Donal Smith for help with this.
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use synthetic control techniques to construct a doppelganger for Sweden on the basis of pre-lockdown infection
rates and show that the Swedish dynamics are no difference post-lockdown. Our time-series work shows that
although the bell curve model provides a satisfactory fit for Sweden, it systematically under-forecasts, just
as it does for other Western countries.

Another interesting case is Brazil, which is still experiencing a rising daily death toll. Despite this, the
parameters of the gamma model for Brazil are precisely estimated. The forecast formulated four weeks before
the end of the sample (see Figure 8) under-predicts in the long run, but still provides much accurate prediction
than the bell model, especially in the one or two weeks horizon. The other within-sample forecasts, one-,
two- and three-weeks ahead predict the dead toll very accurately. The bell model, in contrast, consistently
predicts that the end of (sub)sample is close to the epidemic peak and the total death number that is

overtaken by the out-turn within a couple of days.

3.5 Statistical comparisons

Time series models are designed to abstract from the noise in the data and provide estimates of the trend
in the series. In the case of non-linear process like an epidemic, they can also be used to indicate the
rate at which the trend is increasing or decreasing and whether this rate is accelerating or decelerating. In
this case, the trend in the cumulative death toll is the estimated number of daily deaths, described by the
gamma drift function in equations (8) or (9). Its properties can be seen from the shape of the curves in
Figures 3 to 8. However, rather than ‘eyeballing’ charts it is often better to look at the results numerically,
using well-known statistics, particularly when comparing different countries. Table 5 shows some of the basic
numbers that emerge from this study for the US and Canada and West European countries. These arguably
allow a broader assessment of the characteristics of the virus than comparisons of death tolls in different
countries.

These statistics follow from the well-known mathematical properties of gamma-type functions, which
are reviewed in Appendix 1. The first three columns show the parameters estimated for each country,
reproduced from Tables 2 to 4. These are first used to determine when the peak in the death toll is likely
to have occurred. The table shows the date that this was reached in each country; the estimated number of
daily deaths at the peak (corresponding to the height of the peak in each figure) and the cumulative number
of deaths at that point.

These parameters are then used to calculate the ‘skewness’ coefficient for each country, shown in column
(vii). This indicates how different the decline from the peak is proving to be, compared to the rise from the
first few cases to the peak. The rows of this table are ranked in terms of skewness, starting with the US at
the top. These statistics indicate a clear divide between the US, the UK, Italy, Spain and France on the one

hand with a marked positive skew and other West European countries on the other, with hardly any skew.
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Clearly, the outperformance of gamma and beta models for this second group is not due to a long upper
tail, but due to its ability to handle the start of the epidemic and other characteristics. The second panel
of the table gives the latest numerical estimates from the model and compares these with the values implied
by these full sample parameters a month earlier. These calculations depend upon the cumulative number of
deaths at these times, shown in the first two columns. Columns (iii) to (iv) show how the estimated daily
death toll has fallen back since the peak in each country (shown in column (v) of the top panel).

Although this research project was initially aimed at modeling the features of the stubborn upper tail
seen in Italy and elsewhere, these results also help us to a better understanding of the early, exponential,
phase of this pandemic. In this early, pre-peak phase, attention is focussed on the time that it takes for
the cumulative number of infections to double. One of the striking features of Tables 1 to 4 is that the
estimates of the parameter p(1) = r from the bell-logistic model are remarkably close, ranging from 0.11 for
Denmark to 0.157 for China. This parameter is important because it shows the daily growth rate during the
initial phase of the epidemic, before the various negative feedback effects are significant. Thus the logistic
model would suggest that country-specific factors like age structure, population density, social behavior and
size of capital city that are widely regarded as influencing the spread of the disease are probably much less
important than supposed initially. However, the gamma drift model, which allows more flexibility in the
initial phase through the parameter «, suggests that the logistic model covers up important idiosyncratic
effects. Table 5 shows the values of p(5) and p(15) and the respective doubling times during the initial
phase. With D = 5 the doubling time ranges widely, from just 1.3 days for Spain to 5.6 for France, in strong

contrast to the impression given by the logistic model.

4 Conclusion

There are many ways of analyzing the economy and the same is true of an epidemic. On the one hand, we
need detailed structural models to analyze the likely effects of public health interventions like the current
lock-down and on the other we need reduced-form data-based models to track the progression of the virus
and assess its likely evolution. Our approach to this problem is based on non-linear stochastic difference
equations that are designed to mimic the theoretical dynamics of an epidemic. Our experience reminds
us that conventional models often use inappropriate parameter restrictions and that post-sample forecast
performance is crucial in testing these. We find that a model that uses a gamma-type function to model the
drift and volatility in the daily mortality data emerges from these tests and is tracking the evolution of this
epidemic nicely, even in countries that are not following the classic pattern seen in China and many East
Asian countries.

Time series models provide useful statistics that summarize the virulence, morbidity and mortality rates
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in different countries. We can use these to look at the effects on these indicators of variations in containment
and testing strategies across a cross-section of countries, while controlling for different demographic and other
characteristics. Their dynamics are the result of a convolution of the long and possibly variable lags involved
in the data generation process, as they are in any model. In this case, they involve infection, reporting and
other lags as well as behavioral responses that can change over time, causing systematic deviations from
the projected path. These provide an early warning signal that the dynamics are changing, either because
policies or people are changing or because the virus itself has changed.

Looking forward, we can potentially use these models to identify structural breaks and analyze the
impact of policy interventions. Econometricians have a variety of handy tools for conducting this kind of
task, including tests for discrete changes when the break-point is unknown a priori as well as tests for breaks
at points when a change is likely to have occurred, due to policy a interventions for example. The explosive
behavior test proposed in a series of papers by Phillips, Shi and Yu (Phillips, S. Shi, and Yu (2014), Phillips,
S. Shi, and Yu (2015)) also looks potentially useful in this respect. This was developed for testing bubbles
in financial time-series, which are analogous to the early phase of the epidemic spread.

Our daily short-term forecasts of the coronavirus mortality rates for the UK are available on our web-
site: https://sites.google.com/york.ac.uk/adam-golinski/coronametrics. The Matlab code is available upon

request.
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Appendix 1: Properties of the gamma drift function

The mathematical properties of gamma-type functions are well known. This function is used to define the
gamma probability distribution Mood, Graybill, and Boes (1973). Health economists are also used to dealing
with skewness and kurtosis. For example Jones, Lomas, and Rice (2015) use generalized gamma and beta

functions to handle the tails in health cost distributions.

The peak in mortality

The value of the drift in (6) at any time gives the expected number of deaths and is obtained by substituting
the cumulative number of deaths at that time. However, analytically, it is often easier to work in continuous
rather than discrete time, using (5) instead of (6). Gamma-type functions have a single peak. This is found

by taking the first derivative of the drift:

%T’Daefﬂj =rD* e P (o — Dry)

and setting this to zero by setting D = «/~. These values are shown in column of the first panel of Table

5 and substituting them back into (5) gives the estimate of the daily death toll at the peak. The peak
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corresponds to the mode in the gamma distribution. Similarly, the skewness coefficient shown in column

(vii) follows from that of the gamma distribution (Mood, Graybill, and Boes (1973)):

(a+ 1D(a+2)(a+3)
3

Skew =

Doubling time

Although this paper is focussed on the features of the stubborn upper tail, our results also help us to a better
understanding of the early, exponential, phase of this pandemic. In that phase, attention is focussed on the
time that it takes for the cumulative number of infections to double. This can also be used to assess the
initial behavior of the mortality rate. But to gauge that we need to have an estimate of the reproduction rate
p(D(t)). Table 5 shows three estimates implied by the gamma drift function (8). These show the expected
daily change as a decimal fraction of the cumulative. The first is evaluated at the start of the sample
with D = 15, suggesting that is in the range of 0.2 — 0.4 for most countries. The second is a pre-sample
extrapolation value for D = 5. The third is the value at the peak.

We can then calculate the doubling time by dividing (5) by D to get the percentage or logarithmic change:

dIn D(t) = dD(1)/D(t) = p(D(t))dt = rD(1)* e~ POy,

which we can integrate to get the approximation: In D(t+7)/D(¢t) = p(D(t))7, where 7 is measured in days.
The doubling time is found by setting D(¢t + 7)/D(t) = 2 and solving for 7 :

7 =In2/p(D(t)) = 0.693/p(D(t)).

As noted in Section 3.5, the values in the table range widely across different countries. Absent a second wave,

the cumulative cannot re-double once the peak is passed, at least in the case of a symmetric specification.

5 Appendix 2: Out-of-sample forecast simulation

We analyze the uncertainty surrounding the out-of-sample forecasts using Monte Carlo simulations. There
are two sources of uncertainty to evaluate. The first source of uncertainty concerns the parameters. This is
indicated by their estimated variance-covariance matrix. To capture the correlation between the parameter
estimates, we decompose the variance-covariance matrix of the estimates using the Cholesky decomposition

and generate a new set of parameters as

O, = 0 + Ce,, (10)
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where O is a vector of maximum likelihood parameter estimates, C' is the lower-triangular of the variance

matrix of © and ¢, is a vector of standard normal variable generated by a random number generator.

The second source of uncertainty comes from the additive equation error term e;, geared up by the
volatility term. This uncertainty builds up initially with the horizon of the forecast, but eventually starts
to decline as the process exceeds the peak. Given the (randomized) parameter values, a random number
generator of a standard normal variable is used to simulate values of e;, which are then fed back into
the dynamics equation (6). For example, given the parameters generated for the s’th simulation és =
(Fs, @s,74,05), we simulate the future realizations of the gamma process for t = 1, ...,21 as:

_ _ 10.75
D = DY, + 7, D% exp (<3,D{7) +&, [ Dy + 7D |7 el (11)
where ¢ = 0 is the last observation in the sample. We repeat this procedure 10,000 times. The daily death

figures show the median and the 95% interval of these simulations.
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Tables and figures

Model  log-lik. r K « 1) v x 10,000 o
China
Bell -284.98 0.1566 3,309 - - - 1.2981
0.0100 3 0.1283
Gamma -310.45 0.0689 - 1.3384 - 16.290 1.5828
0.0388 0.1107 1.494 0.1683
Beta -257.40 0.5820 3,349 0.8387 1.2343 - 0.8537
0.1747 19 0.0505  0.1007 0.0789

Table 1: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation period is from 23 January to 31 March 2020.

Model  log-lik. r Tw K Q@ B8 v x 10,000 o
Italy
Bell -545.95 0.1098 - 32,883 - - - 2.6597
0.0076 137 0.2447
Gamma -464.92 0.4695 - - 0.9246 - 1.0846 0.9103
0.1070 0.0305 0.0418 0.07292
Beta -457.47  0.9290 - 50,458 0.8083  3.1367 - 0.8293
0.2608 8/591 0.0406  0.9938 0.0667
Spain
Bell -481.83  0.1361 - 28,046 - - - 3.1611
0.0119 65 0.3337
Gamma -434.54 0.6071 - - 0.9334 - 1.3905 1.4543
0.2251 0.0512 0.0836 0.1309
Beta -423.23  1.5216 - 37,061 0.7746  2.5379 - 1.2559
0.1266 6,104 0.0278  0.9362 0.1001
Us
Bell -534.30 0.1394 —0.0454 98,469 - - - 3.0455
0.0105 0.0135 1,111 0.2865
Gamma -489.83 0.4539 —0.1623 - 0.9328 - 0.2962 1.4392
0.1290 0.0520 0.0336 0.0170 0.1272
Beta -490.91 0.5288 —0.1895 395,310  0.9087 9.9678 - 1.4517
0.1626 0.0648 252,370 0.0377  7.5345 0.1285
UK
Bell -455.18  0.1404 —0.0462 36,908 - - - 2.5532
0.0110 0.01457 291 0.2532
Gamma -385.22 0.7229 —0.3075 - 0.8859 - 0.8335 0.8234
0.1559 0.0728 0.0281 0.0344 0.0726
Beta -385.15  0.7283 —0.3099 2.93e+06 0.8846 242.01 - 0.8226
0.1568 0.0733 1.56¢+06 0.0280  129.71 0.0723

Table 2: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: Italy - 29 February, Spain - 11 March, US - 9 March, UK - 16 March and ends
on 20 May 2020, except for Spain - 19 May 2020.

19



Model  log-lik. r K « 8 ~v x 10,000 o

Belgium
Bell -352.86 0.1478 9,248 - - - 2.0542
0.0116 30 0.2178
Gamma -338.77 0.3169 - 1.0063 - 4.0651 1.4953
0.1352 0.0687 0.3384 0.1488
Beta -326.23  1.0922 9,622 0.7547 1.1991 - 1.2680
0.4380 285 0.0606 0.2129 0.1231

Brazil
Bell -347.29 0.1115 29,619 - - - 1.6610
0.0074 2,496 0.1652
Gamma, -327.06 0.6450 - 0.7590 - 0.1001 1.0821
0.1955 0.0436 0.1046 0.1057
Beta -326.84 0.7541 1.11e+ 08 0.7337 305.82 - 1.0745
0.1711 3.07e+09 0.0291  7,314.20 0.1031

Canada
Bell -290.13  0.1277 6,604 - - - 1.2618
0.0076 108 0.1247
Gamma -270.42 0.3719 - 0.8797 - 3.2468 0.8359
0.1163 0.0532 0.3666 0.0800
Beta -269.89  0.5205 9,881 0.8072 1.8897 - 0.8250
0.2333 6,665 0.0850 2.2654 0.0794

Denmark
Bell -174.48 0.1087 575 - - - 0.9585
0.0084 4 0.1025
Gamma -146.44 0.2433 - 1.0281 - 65.4530 0.5931
0.1692 0.1690 8.1861 0.0585
Beta -145.64 0.6898 879 0.7188 2.8630 - 0.5870
0.8558 614 0.3337 4.1204 0.0580

France
Bell -477.05 0.1387 28,409 - - - 2.7701
0.0108 94 0.2772
Gamma -453.18 0.0909 - 1.1873 - 1.6444 1.8912
0.0353 0.0543 0.0953 0.1764
Beta -448.06 0.1824 42,049 1.0546 3.8772 - 1.7816
0.0803 8,166 0.0649 1.4634 0.1648

Germany
Bell -343.89  0.1298 8,312 - - - 1.8072
0.0094 52 0.1860
Gamma -329.35 0.2641 - 0.9919 - 4.0025 1.3454
0.1388 0.0414 0.4082 0.1319
Beta -323.44 0.9544 8,990 0.7456 1.2257 - 1.2346
0.4952 679 0.0814 0.3853 0.1196

Ireland
Bell -221.00 0.1358 1,610 - - - 1.1787
0.0100 10 0.1273
Gamma -214.02 0.2336 - 1.0333 - 21.9360 0.9924
0.1290 0.1161 2.6866 0.1041
Beta -202.62 0.8161 1,681 0.7105 1.0940 - 0.8274
0.3485 65 0.0825 0.2434 0.0843

Table 3: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: Belgium - 31 March, Brazil - 23 March, Canada - 23 March, Denmark - 25
March, France - 10 March, Germany - 21 March, Ireland - 28 March 2020 and ends on 20 May 2020.
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Model  log-lik. r Tw K @ I} ~v x 10,000 o
The Netherlands

Bell -339.58  0.1440 —0.0522 5,826 - - - 1.7217
0.0116 0.01512 29 0.1747
Gamma -301.89 0.5178 —0.2090 - 0.9269 - 6.0142 0.9059
0.1853 0.0798 0.0606 0.4201 0.0830
Beta -293.24 1.1433 —0.4473 7,623 0.7557 2.2104 - 0.8045
0.2226 0.1100 1,090 0.0118  0.7142 0.0686
Sweden
Bell -305.35 0.1408 —0.0678 4,012 - - - 1.9371
0.0148 0.0167 61 0.2181
Gamma -292.27 0.4383 —0.2262 - 0.8911 - 6.4975 1.4761
0.2587 0.1405 0.1064 1.0913 0.1557
Beta -292.33  0.4937 —0.2549 19,332 0.8630 10.896 - 1.4763
0.1949 0.1119 56,593 0.0375 36.856 0.1555

Table 4: Estimates of the logistic, gamma and beta models. Standard errors are reported in small font. The
estimation periods start on: the Netherlands - 17 March, Sweden - 22 March and ends on 20 May 2020.
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Parameters

Peak numbers of deaths

r Q 0 Date Daily Cumulative Skewness

() G) i) v (v (v) (vii)
US 0.4539 0.9327 0.2962 14 April 2,803 31,492 75
UK 0.7229 0.8859 0.8335 10 April 1,100 10,628 25
Italy 0.4694 0.9245 1.0846 30 March 802 8524 20
France 0.0908 1.1873 1.6444 5 April 1,057 7,220 17
Spain 0.6070 0.9334 1.3905 1 April 891 6,712 16
Canada 0.3719 0.8797 3.2467 26 April 161 2,709 6
Belgium 0.3169 1.0063 4.0651 7 April 301 2,475 6
Germany 0.2641 0.9919 4.0025 7 April 227 2,478 6
Netherlands 0.5178 0.9268 6.0141 8 April 184 1,541 4
Sweden 0.4383 0.8911 6.4974 14 April 112 1,371 3
Ireland 0.2336 1.0333 21.936 14 April 48 471 1
Denmark 0.2433 1.0281 65.453 1 April 15 157 0.3

Cumulative deaths Daily deaths Reproduction rates Doubling time
20 April 20 May 20 April 20 May  p(5) p(15) p(peak) D=5 D=15

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)
UsS 37,054 93,439 2,767 1,234 0.40 0.37 0.09 1.70 1.83
UK 14,576 35,704 1,047 398 0.60 0.53 0.10 1.15 1.30
Italy 22,747 32,330 425 208 0.41 0.38 0.09 1.65 1.81
France 18,681 28,132 496 170 0.12 0.15 0.14 5.64 4.60
Spain 19,478 27,888 408 177 0.54 0.50 0.13 1.27 1.37
Canada 1,309 4,638 134 138 0.30 0.26 0.06 2.26 2.59
Belgium 5,163 9,150 211 74 0.31 0.32 0.12 2.17 2.16
Germany 4,110 8,147 195 76 0.26 0.25 0.10 2.66 2.67
Netherlands 3,458 5,748 123 49 0.45 0.42 0.11 1.50 1.64
Sweden 1,400 3,831 112 56 0.36 0.32 0.08 1.89 2.14
Ireland 530 1,571 47 14 0.24 0.24 0.10 2.84 2.80
Denmark 4,110 554 1 4 0.24 0.23 0.10 2.81 2.91

Table 5: Summary statistics for gamma drift models.
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Figure 1: Covid-19 infections in China and Italy.
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Figure 2: In sample fit and out of sample forecasts of daily deaths for China. The dots show data for the
daily death tolls. The black line shows the regression fits for the gamma model, the red line for the logistic
model and the green line for the beta model.
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Figure 3: In sample fit and out of sample forecasts of daily deaths for Italy and Spain. The dots show data for
the daily (left panels) and cumulative (right panels) death tolls. In the left panels, the continuous lines show
the regression fits for the logistic (red) and gamma (black) models. The dashed lines show the forecast made
for the next four weeks with the gamma-drift model using the full sample estimates conditional upon the last
observation in the sample, together with the confidence intervals. The right hand panels show out-of-sample
forecasts based on the parameters estimated on samples ending one (continuous lines), two (dashed lines),
three (dotted lines) and four (dash-dotted lines) weeks before the most recent observation.
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Figure 4: In sample fit and out of sample forecasts of daily deaths for the US and the UK. In the left
hand panels, the dots show weekday observations of the daily death toll and the squares show observations
that are affected by the weekend effect. The continuous lines show the regression fits for the logistic (red)

and gamma (black) models.

The dashed lines show the forecast made for the next four weeks with the

gamma-drift model using the full sample estimates conditional upon the last observation in the sample,
together with the confidence intervals. In the right hand panels, the dots show data for the cumulative death
toll. Out-of-sample forecasts are shown for samples ending one (continuous lines), two (dashed lines), three
(dotted lines) and four (dash-dotted) weeks before the most recent observation.
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Figure 5: In sample fit and out of sample forecasts of daily deaths for Belgium, Canada and Denmark. See
notes to Figure 3.
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Figure 6: In sample fit and out of sample forecasts of daily deaths for France, Germany and Ireland. See
notes to Figure 3.
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Figure 7: In sample fit and out of sample forecasts

notes to Figure 4.
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Figure 8: In sample fit and out of sample forecasts of daily deaths for Brazil. See
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