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Health systems are placing increasing emphasis on improving the design and operation of clinical trials, with
a view to increasing the rate of innovation and adoption of health technologies in a ‘value-based’ world. We
present a value-based, Bayesian decision-theoretic model of a two-armed clinical trial and health technology
adoption decision in which the recruitment rate and duration of the recruitment period are optimised.
We account for a wide range of regulatory and practical contexts, addressing questions of how health is
valued (considering discounting, the horizon of an adoption decision, and the endogenisation of outcomes for
patients in the trial), and the state of clinical practice prior to commencement of the trial (we consider both
exploratory trials for pharmaceutical research and pragmatic trials which compare technologies currently in
use). We apply the model using research and treatment cost data from an existing trial and health technology
assessment and challenge traditional perceptions concerning the efficiency, length and knowledge that may

be gained from clinical research when trial teams are charged with delivering ‘value’ efficiently.
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The need to establish ‘value for money’ in health care systems is becoming increasingly impor-
tant, with service providers facing the dual challenges of rising demand for technologies and growing
pressure on their budgets. A particular concern surrounds the evaluation of the clinical efficacy,
effectiveness and cost-effectiveness of health technologies. With a large body of evidence suggest-
ing that there is a productivity crisis in biopharmaceutical R&D (Paul et al. 2014, DiMasi et al.
2016), and with an estimated US$100 billion of public funds invested in medical research world-
wide (Chakma et al. 2014), there is a growing focus on trying to improve what is often termed the
‘efficiency’ of clinical trial designs.

In this paper we present a value-based, Bayesian decision-theoretic model of a two-armed clini-
cal trial and health technology adoption decision, with the goal of improving the efficiency of the
health technology innovation process. This topic is timely and significant. In the United King-
dom, a National Institute for Health Research (NIHR)/Medical Research Council partnership has
launched the ‘Efficacy and Mechanism Evaluation’ programme. This seeks to fund studies with

‘novel methodological designs that deliver results more efficiently, reduce the study timeline, and



maximise the knowledge gained’ (NIHR 2018). The NIHR is also funding projects which explicitly
focus on innovation in trial design, via its ‘Annual Efficient Studies’ funding calls (NTHR 2020). In
the United States, the National Institutes for Health (NIH) have launched a drive to improve the
quality and ‘efficiency, accountability and transparency’ in clinical research (Hudson et al. 2016).

The notion of efficiency in clinical research is not always clearly or consistently defined. One
common view is that greater efficiency implies that fewer patients are recruited to the trial, given
predefined type I and type II error rates for identifying a smallest clinically relevant difference.
Another perspective sees greater efficiency resulting from the way way trials operate, by improving
retention rates, making it easier to recruit sites, and so on. In this paper, we see the idea of
efficiency as being a way of designing a trial so as to maximise the value obtained for the patient
population who may benefit from treatment with the health technologies under consideration,
accounting for the costs of carrying out that trial, switching technologies and the costs of the
technologies themselves. This proposed notion is analogous to the well-known definition from supply
chains related to inefficiencies caused by double-marginalization. If a manufacturer and retailer
collaborate, the supply chain as a whole can retain more value than if each optimises separately.
Here, the unknown cost-effectiveness of treatments being compared takes the role of uncertainty,
the trial manager is the manufacturer, the technology adopter is the retailer, and collaboration is
the alignment of trial design decisions with technology adoption decisions.

Our Bayesian framework maximises the overall value of the clinical trial through the optimal
choices of the trial’s recruitment period, as well as its recruitment rate. It accounts for value accruing
to the full patient population who may benefit from the technologies under consideration: those
included in the trial, those available for inclusion in the trial but not recruited, those who require
treatment while endpoints for health benefit and outcome are followed up, and those in the post-
trial population. We account for trials in which there is mixed practice prior to commencement, and
we consider different regulatory contexts according to whether costs and rewards are discounted
and in the definition of the post trial ‘patient horizon’: one in which the number of patients affected
by the technology adoption decision is a fixed value, the other in which it is a function of the trial’s
duration. We provide structural results which help characterise solutions, give comparative statics
results for key performance measures for the trial with respect to disease prevalence and other
parameters, and asymptotic results which shed insight about trial size. We consider both one-shot
and sequential versions of the model, and apply it to a recent pragmatic trial carried out in the
United Kingdom’s National Health Service (Rangan et al. 2015, Handoll et al. 2015). Although
Bayesian in nature, the model provides frequentist power curves, in line with FDA (2019) guidance

regarding the communication of complex and innovative trial designs.



In comparison with exploration-exploitation methods in other applications, several specific fea-
tures of the problem make it interesting. Firstly, the rate of recruitment of patients in a trial is
capped by the disease incidence and recruitment capacity may be costly and nonlinear. Hence the
problem is richer than one which involves simply selecting an optimal number of samples. Secondly,
the regulatory context influences the valuation of benefits accruing to the patient population and,
in turn, the expected value of information that is to be obtained from patients recruited to the
trial. Thirdly, there may be significant delays between the time a trial participant is treated and
the time that health outcomes and treatment costs are observed. By addressing these matters, the
model assists diverse groups of health care decision makers in addressing a range of questions: (1)
Clinical trial managers: What is the optimal recruitment rate for the trial? How many recruitment
sites should be opened? How long should the trial run? (2) Funders of trials: is the recruitment
rate and number of patients in the trial appropriate, given disease prevalence and potential health
benefits? If several trials are proposed, which have the greater expected health benefit? (3) Public
sector policy makers: How do the aforementioned regulatory issues affect the value of optimal trial
designs? Is a trial even worth running?

We review background literature in section 1, set up the model in section 2, and present struc-
tural results for the optimal solution, comparative statics, and asymptotic properties in section 3.
Section 4 illustrates how this framework can be applied in a practical trial setting. Section 5 shows
how the framework can be extended to allow the recruitment rate and sampling duration to be
adapted sequentially as outcomes are observed. Section 6 discusses our main results and presents

directions for future work. Appendices provide supplementary information.

1. Background literature
Claxton and Posnett (1996) criticise the classical approach to clinical trial design because it ignores
economic principles, such as the value of information and its cost of acquisition. They propose, as
an alternative, a decision-theoretic approach using rules from cost-effectiveness analysis. Draper
(2013) advocates for the use of a Bayesian decision-theoretic approach which uses a utility function
comprising clinically relevant outcomes, such as Quality Adjusted Life Years (QALYS). In line with
these initiatives, a range of Bayesian decision-theoretic models have been proposed as alternatives
to the classical approach (Claxton et al. 2000, Gittins and Pezeshk 2000, Willan and Pinto 2005,
Eckermann and Willan 2007, Griffin et al. 2010). These are based on a comparison of the cost of
carrying out research with the value that the additional research generates, using so-called ‘value
of information’ calculations (Raiffa and Schlaifer 1961, Brennan et al. 2007, Strong et al. 2015).
The majority of these decision-theoretic models concern one-shot trials. More recently, interest

has grown in approaches that are adaptive in nature (Pertile et al. 2014, Ahuja and Birge 2016,



Villar et al. 2015a,b, Williamson et al. 2017, Chick et al. 2017, 2018). For example, Chick et al.
(2017) solve a Bayesian decision-theoretic model of a two arm clinical trial with delay in observing
the outcome for cost-effectiveness. Villar et al. (2015b) consider adaptive allocation to treatments
within a multiple-arm setting using the Gittins Index. The related Bayesian ranking and selection
literature has proposed various combinations of discounted or undiscounted rewards and online
and offline learning (Branke et al. 2007, Frazier et al. 2008, Ryzhov et al. 2012, Russo 2020). None
of these works have considered optimising the rate of recruitment, although this may be useful in
applications besides clinical trials, such as when the optimal treatment choice from an A/B test
has a reward which is highly time-sensitive.

Although it is natural for a Bayesian approach to maximise expected value, or equivalently
minimise expected regret, it would also be possible to consider frequentist approaches to expected
regret (e.g., see Chick and Wu 2005 for frequentist regret in ranking and selection, or the rich
literature on asymptotic regret in bandit problems (Bubeck and Cesa-Bianchi 2012)). It is also
possible to have Bayesian beta-bernoulli models in clinical trial design for sequential allocation in
0-1 trials (Villar et al. 2015a, Williamson et al. 2017). We choose a Bayesian, value-based framework
to be consistent with the UK’s National Institute for Health and Care Excellence (NICE) guidance
for uncertainty quantification for probabilistic sensitivity analysis for health technology assessments
(NICE 2012, Section 7).

There exists a range of other approaches to value in clinical trial design. Some consider changing
the balance of allocation to treatment arms as a function of the past history of allocations. Exam-
ples include Berry and Eick (1995) and Villar et al. (2015b). Others maintain balanced allocation,
but allow for the trial to stop at any stage of the process as a function of the accumulating evidence.
Examples include Berry and Ho (1988), Chick et al. (2017) and Jennison and Turnbull (1989).
Although our principal focus is on one-shot designs, we also provide extensions for adaptive trials,

The societal perspective to measuring value that is adopted in this work contrasts with the
Bayesian decision-theoretic contributions of Gittins and Pezeshk (2000) and Willan (2008), which
consider a trial’s optimal choice of sample size from the industry perspective. In these studies, the
terminal reward of the trial is a function of the probability that the technology is approved by a
regulator and the market share that it may gain. Jobjornsson et al. (2016) consider the optimal
sample size and pricing decision for a new pharmaceutical product, given uncertainty over an
insurer’s willingness to pay and a prior distribution for efficacy. While contracting for incentive
alignment is an interesting question, our model focuses on the social welfare approach to value,
noting that contracting for public-private procurement is outside of scope.

Implementing a value-based trial in practice requires collecting cost and QALY data (or some

other health outcome which can be converted to money). While many clinical trials do not have



QALYs as a primary endpoint, much less data on treatment costs, accounting for QALY in clinical
trials has seen increasing attention (e.g., Angus et al. 2001, Ferguson et al. 2013, NICE 2014).
Costs and QALY are also part of the rich tradition in operations research, outside of clinical trial
design, in resource planning for health interventions (Long et al. 2008, is one of many examples).

To the best of our knowledge, a model addressing scenarios with mixed clinical practice has never
been proposed in the literature. This is surprising, given that they are commonly encountered in
clinical research (the ProFHER trial (Handoll et al. 2015), Caesarean section versus natural birth
(Betran et al. 2016), plates versus wires for certain fractures (Costa et al. 2014), etc.). Generalising
the model in this direction has wide-ranging implications for the way in-trial benefits are valued,
the way switching costs and patient horizons are handled when a technology adoption decision is
made, and the choice set that is available to the trial team. Further, the above contributions provide
limited analysis of the optimal value and trial length under differing mechanisms for how the post-
trial patient population is defined, a matter that we address in detail. Finally, we provide both
analytical comparative statics and numerical sensitivity analyses for some of the key parameters
in the model, lending insight into where we can claim definitive results for directional changes, as
well as applications which illustrate their absolute size.

The operations literature is also interested in the management of research and development
(R&D) projects, including for the pharmaceutical pipeline. Jacob and Kwak (2003) present a real
option approach to valuing such projects in response to changes in the health care economy and
scientific advances. Girotra et al. (2007) explore the value of portfolio management with Phase III
drug trials. These works call for operational flexibility and management of the pipeline process.
A control perspective on R&D investment decisions has been taken by a number of authors who
address uncertainties in costs and durations of clinical trial processes (Lucas Jr 1971, Schwartz
2004). Kouvelis et al. (2017) further link data from trials to a theoretical model of recruitment
rate optimisation decisions. Our work differs from these streams, in that we focus on uncertainties
related to the efficacy (and hence health benefits) of the technology adoption decision, rather than
on the uncertainties in the cost streams or patient accrual, and our focus is on optimising a rate

of recruitment and trial length.

2. Mathematical model of a value-based clinical trial

We present a Bayesian decision-theoretic model of a clinical trial comparing two health technologies
on cost-effectiveness grounds. The objective is to maximise the monetary value of health benefits
generated for the target population, minus the financial costs of carrying out trial and any costs
incurred in technology adoption. Below we discuss choice of decision variables, outcome measure,
objective function and the regulatory jurisdictions addressed by the model. A table of principal

notation is presented in Appendix A.



2.1. Trial design and decision variables

A clinical trial compares two health technologies — N (‘new’) and S (‘standard’) — on cost-
effectiveness grounds. We consider trials in which no patients are being treated with technology N
prior to commissioning (exploratory trials), as well as trials in which there exists mixed practice
(pragmatic trials like ProFHER). Define py € [0,1/2] as the fraction of the eligible population
which is treated with technology N at the trial’s inception, so that the fraction 1 — py is treated
with technology S. Without loss of generality, assume that a greater proportion of patients receive
S (it is always possible to rename the two technologies to satisfy this constraint).

The trial design comprises three decision variables: the adoption decision rule, D, the recruitment
period duration, T', and the recruitment rate, r, which is assumed constant. D € {S,N,M} is a
function that maps the state of information at the end of a trial to a treatment allocation decision
for all patients to be treated upon the trial’s conclusion. If D =S, all patients are treated with the
standard technology; if D = N, all patients are treated with the new technology; D = M implies
that patients are treated according to the mix that was in place prior to the trial’s inception.

The duration of the recruitment period, T', is constrained to lie in the interval [0, Tiyax], where
factors such as regulatory or funding requirements might constrain 71,.,. The recruitment rate, r,
is constrained to lie in [0, 7yayx]. The maximum permissible recruitment rate, rp.x, is determined by
factors such as the availability of recruitment sites and the incidence rate of the condition, { € R.
A decision to make T'=0 or r =0 means that the trial does not run and the adoption decision is
made using information available at the start of the trial alone.

Given these assumptions, the sample size of the trial is equal to 7. In contrast to the majority
of the literature, which focuses on sample size alone as the decision variable, we are able to study
the impact of both choice of trial length and recruitment rate on the total value generated by the
trial. We assume that patients are randomised to the two arms of the trial in pairs, and define
Q=Tr/2€[0,Qumax] as the number of recruited pairs, where Qmax < TinaxTmax/2-

If the trial runs, it is assumed that it incurs costs, c..p(r), which reflect set-up, recruitment site
and post-trial costs (such as those incurred in writing up and disseminating results). For example,
one model 1S Ceap(7) = Chixea + ¢ [7/2] Where cgxeq is the fixed cost, ¢, >0, and x patients per unit
time can be recruited per site. A model which accounts for an increasing cost of marginal capacity

1S Ceap(7") = Cixea + 7.

2.2. Value-based criterion for technology adoption decision
The value-based nature of the trial requires that we compare health outcomes and costs in a
common currency. We use the difference between the net monetary benefit of using treatment N

over S — the ‘incremental net monetary benefit’” (INMB) (Gold et al. 1996):

W =X Enx— Es) — (Cx — Cs), (1)



Figure 1 A fixed horizon trial. Each area represents the number of patients in the following classes: (1) recruited
to the trial; (2) not recruited to the trial during the recruitment period; (3) treated with current

practice during waiting period; (4) benefiting from the adoption decision.
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where E; € R and C; € R measure expected effectiveness (health or quality of life improvement)
and cost of technology j € {N,S}, respectively. The parameter A € R, is the monetary valuation
of one unit of effectiveness, defined by the regulatory body responsible for the study population.!
The value of W is not known a priori. Its prior distribution is assumed to be W ~ N (g, 07), as
might be informed by phase II trials or a pilot study. Let ng = 0% /o3 be the effective sample size of
the prior distribution. Observations of INMB arrive with a fixed delay of A > 0 units of time after

treatment allocation and all outcomes must be observed before the adoption decision is made.

2.3. Objective function: expected net gain

The expected net gain of the trial is the difference between the expected values of: (1) running
the trial and treating post-trial patients with the technology recommended by its results and (2)
continuing to treat patients according to the practice in place before the trial commenced. Figure 1
shows how the expected net gain of the target population may be divided into four constituent
parts. The horizontal axis plots time, covering the horizon, [0, H|, over which the trial operates
and its results are to be used for treating patients, for some H > A. The vertical axis plots the
incidence and recruitment rates of patients. Areas labelled are: (A) patients recruited to the trial;
(B) patients not recruited to the trial during the recruitment period; (C) patients in the ‘waiting

period’; (D) post-adoption patients treated with the recommended technology.

2.3.1. Patients recruited to the trial. Tr/2 pairs of patients are randomised during the
trial. The trial incurs a recruitment cost, ¢, for each patient enrolled. For patient pairi € 1,. .., Quax,
we observe a noisy observation of INMB, defined as X;. We assume that X, | W "= N'(W,0%),
where 0% is the known sampling variance. The expected net gain for patients recruited to the
trial is (7'r/2)(1 —2pn)E[W ] —¢T'r. The proportion receiving a different treatment under balanced

randomization, compared to what they would have received had the trial not taken place, is 1 —2px.

! The UK’s National Institute for Health and Care Excellence may value one quality-adjusted life year at £20,000
(NICE 2013).



2.3.2. Patients not participating in the trial during the recruitment period. During
the recruitment period, (( —r)T patients are not enrolled in the trial. We assume that these patients
continue being treated with the practice in place before the trial commenced. Hence they do not
affect the expected net gain (they incur no additional cost and their outcomes are the same as they

would have been had the trial not taken place).

2.3.3. Waiting period. The adoption decision is made at time T + A. During the period
[T, T + A], patients are treated according to the practice that was in place prior to the start of the

trial and so these patients do not contribute to the expected net gain.

2.3.4. Post-adoption patients. Define Ip as the total cost of technology adoption. We
assume that Iy; = 0 because neither technology is adopted, and Iy,Is > 0. Let P be the num-
ber of post-adoption patients, assumed to be known at the start of the trial. If D = N, the
expected net gain for these patients is P(1 — py)E[W]| — Iy, where P(1 — py) is the num-
ber of patients who, absent the trial, would be treated with technology S. If D = S, the
expected net gain is —PpyE[W ] — Is. If D =M, the expected net gain is zero because the
trial did not change practice. Thus the expected net gain for this portion of the population
is E[1p_n(P(1 —pn)W — Ix) 4+ 1p_s(—PpxW — Is) | D, T, r], where 1 is the indicator function,
equal to one if F' is true and zero otherwise. We condition on D, T, and r to clarify that the

expectation depends on D after the outcomes from 771'/2 pairwise allocations have been observed.

2.3.5. Expected net gain. Define the expected net gain of a trial design by V(T,r,D). If
the trial does not run, the post-adoption population is the entire population, and the expected net

gain is:
V(T,O,D) = V(O,r, D) = E[lD:N(P(l _pN)W - IN) + 1pzs(—PpNW - Is) | D,T,?"] . (2)

If the trial recruits at least one pair of patients, the expected net gain is the sum of the expected

net gains of the enrolled and post-adoption patients, minus the trial costs:

V(T,r,D) = — (Ceap(r) + T'r) + don(Tr/2)(1 = 2pn)E[ W]
trial cost trial pa?gcipants (3)

+E[1D:N(P(1 _pN)W_IN) +1D:S(_PPNW_IS) |D,T,T] .

post-adoption

Use of the indicator variable, d,,, permits us to model ‘online learning’ (d,, = 1, so that benefits to
trial participants are counted in the calculation of expected net gain) as well as ‘offline learning’

(6on =0, so that benefits are not counted).



2.4. The regulatory context

The above model already handles one important matter reflecting the regulatory context in which
the trial is conducted, namely online or offline learning. Online learning may be particularly relevant
in trials for orphan diseases. In addition to online learning, we extend the model to handle two
further matters concerned with the regulatory context: the size of the population that is affected

by the technology adoption decision and whether rewards are discounted or not.

2.4.1. Post-adoption population. We allow the number of post-adoption patients to depend
on the duration of the trial: P(7"), which we assume is not increasing in 7. We focus our analysis
further on two possible cases motivated by potential scenarios in a health technology development:

1. There exists a fized pool of patients, P(T) = P.

2. There exists a fized horizon, H > T,,.. + A, defined prior to the start of the trial and covering

both the trial and adoption horizons, so that P(T) =((H —T — 17-0A).

Case 1 is motivated by regulatory regimes which grant exclusive marketisation rights for a
health technology for a defined period post-authorisation (see, e.g., FDA 2015), but we use it in
a more general sense to refer to situations in which there exists a fixed patient population to be
treated post-adoption (for example, when a regulator approves a health technology for a defined
period, prior to reviewing additional evidence). Case 2 is motivated by situations in which a patent
protection agreement operates from time 0 for a fixed time horizon H, during which the trial may

be run and the adoption decision implemented.?

2.4.2. Discounted expected net gain. The foregoing assumes that costs and benefits during
the trial are not discounted, an assumption which may be realistic for some jurisdictions but not
others. For example, discounting is not used in the design of ‘traditional’ clinical trials which use
statistical criteria to determine the sample size, whereas the UK’s NICE (2013) has recommended
an annual discount factor of 3.5% for health technology assessment decisions. Under continuous
time discounting at the rate p > 0, define the discounted recruitment period duration as TP(T) and
the discounted post-adoption number of patients as P,(T"), under the assumption that the P(T)

patients arrive at a constant rate, ¢, over a duration of time P(7")/(:
- T P(T)/¢
T,(T) = / e Pds=p(1—e"T); P,(T) = / CePds = (¢/p)(1—e?PDC), (4)
0 0
and T,(T) =T and P,(T) = P(T) if p=0.

2 Patent protection may be applied for at any time during the development process of a new drug (FDA 2015). Our
use of the term is more restrictive, in that the protection is assumed to apply over the interval [0, H].
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We can handle discounting by letting P(T') = P,(T) in (2) and (3):

V(T,0,D)=V(0,7,D) =E[1p_n(P,(0)(1 — px)W — Ix) + 1p_s(—P,(0)pxW — Is) | D, T, 7], (5a)
V(T,7,D) = —(Ceap(r) + T,(T)r) + Son(T,(T)r/2) (1 — 2px)E[ W] (5b)
+ e PTTE [1pon (1 — pn) Py (T)W — Ix) + 1p—g(—px P, (T)W — Is) | D, T, 7],

where (5b) applies when the trial runs (7" > 0).

2.5. One-shot optimal trial design problem

Our focal optimal value-based trial design problem is

V*=max V(T,r,D)
T,r, D

(6)
S.t. T - [O>Tmax]a re [O;TmaxL

where V(T,7,D) is defined by (5a) when the trial does not run and is otherwise defined by (5b).
The expectations which determine V(T,r, D) are with respect to the prior distribution for W in
section 2.2 (which can be informed by prior pilot studies or expert opinion) and the likelihood for
the samples in section 2.3.1 which inform D. We refer to this problem as a ‘one-shot’ trial because
it fixes the trial parameters T',r at the start and does not vary them as the trial progresses. The

model is general, in the sense that it accounts for all regulatory context options in section 2.4.

3. Analysis of the one-shot optimal trial design problem
We first show that the optimal adoption decision rule is easily found. Then, we consider the
structural properties of 7* and r*. Some mild assumptions guarantee the existence of a solution.

We then provide comparative statics and explore the asymptotics of the optimal solution.

3.1. Optimal adoption decision rule
Define Zr, as the posterior mean of W given that realisations of incremental net monetary benefit

for rT'/2 pairwise allocations will be observed:
ZTTEE [W|X1,...,XTT/2] .

Define 6% = 0% (rT/2)/[no(no +rT/2)]. Then it can be shown that (DeGroot 1970)

rT/2
_ Nofho + Zi=1 Xi 2
T g +rT)2 N (10,0%) )

and W | Zg, ~ N (Zrpp,0% [ (ng +1T/2)).

ZT'/‘

Thus, Zr, is a sufficient statistic for all the information obtained in the trial, and D* is a function

of Zr, instead of the sequence X; of all observations.
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Figure 2 Predictive distribution for the posterior mean and regions where it is optimal to select N, S, or M.
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The optimal adoption decision rule maximises the benefits for the P,(T") post-adoption patients:

D*(Zr,) = argmax {0, P,(T)(1 —px)Zrr — In, —P,(T)pxnZrr — Is },

De{M,N,S}

where the terms inside the argmax operator are the post-adoption expected net gains for each of
M, N and S, respectively.

Let an(T) = In/((1—pn)P,(T)) and ag(T) = Is/(pnP,(T')) be the expected per patient switching

costs given adoption of technology N or S, respectively. To avoid undefined expressions, we set
as(T) = { 25, glai_:% or P,(T) =0; ax(T) = { gé, g&?: 0.

The optimal adoption rule divides the open interval for posterior beliefs into three regions,
delineated by ax(T') and ag(T): if Zz, > ax(T), it is optimal to adopt N; if Z7, < —ag(T), it is
optimal to adopt S, otherwise it is optimal to continue with the current mix. We refer to ax(7T)
and ag(7T') as ‘indifference points’, because one is indifferent between N and M when Zz, = ax(T),
and one is indifferent between S and M when Zr, = —ag(T'). Figure 2 shows a distribution for Zz,
and the rewards for the optimal adoption decision for a prior mean lying between the indifference
points. The slopes of the linear reward functions are given by —pnP,(T") when S is adopted and

(1 —pn)P,(T) when N is adopted.

3.2. Simplified objective function
Given the optimal adoption decision, we now define, with some abuse of notation, the expected net
gain as a function of T'and r: V/(T,r) = V(T,r,D*). Thus, (5b) simplifies to the following expression

by conditioning on Zr,, setting ™ = max{0,z}, and using the tower property of expectations:

V(T,7) = = (Cap(r) + T, (T)r) + 6on(T,(T)r/2) (1 = 2px)E[ Zr, ]

8
+ e~ P(T+AR [(PP(T)(I —pN)ZTr _ IN)+ + (—PP(T)PNZTT - Is)+] . ( )
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Define the normal linear loss function ¥(z) =E[(Z —2)"] = ¢(z) — 2(1 — ®(2)), where Z is a
standard normal random variable with cumulative distribution function ® and probability density

function ¢. When T'r > 0, (8), and therefore (5b), can be computed as follows:

V(T,r) = = (eap(r) + T, (T)r) + 8on(T,(T)r/2) (1 — 20x) 120
+ €_p(T+A)Pp(T)O'Z [(1 —pn) ¥ <O‘N(T)_MO> + a0 (OMW))] ] (9)

Oz Oz

The probabilities of adopting N, S and M are, respectively, 1 —®((an(T") — o) /02), 1 —P((as(T) +
to)/oz), and ®((an(T) — po)/oz) + ((as(T) + po)/oz) — 1. When 7T =0,

V(T,r) =max{0, (1 —px)P,(0)po — In, —pnPp(0) 10 — Is} (10)

In the remainder of this section, we focus the analysis to solving a simplified version of (6):

V*=maxV (T,r)
o (11)
$.6. T € [0, Tax), 7€ [0, Tmax)s

3.3. Structural properties of the optimal trial design
The following proposition proves the existence of an optimal fixed sample size trial design under
two reasonable assumptions. Firstly, we assume that cc,,(r) is non-decreasing, that is, additional
recruitment capacity is costly, and lower semi-continuous, a mathematical condition for the exis-
tence of a solution. This assumption is not restrictive because it accepts any continuous, increasing
function. Secondly, we assume that P(T') is non-increasing, that is, the post-trial population does
not increase with a longer trial. To guarantee the existence of a solution, we assume that P(7T) is
bounded and upper semi-continuous. The two special cases (fixed patient pool and fixed horizon)
that were introduced in section 2.4.1 both satisfy these conditions, as does the example cost of

capacity model in section 2.1. The proof of the following proposition is presented in Appendix C.1.

PROPOSITION 1. If ceop(r) is non-decreasing and lower semi-continuous, and P(T) is non-

increasing, bounded, and upper semi-continuous, then an optimal solution (T*,r*) to (11) ezists.

A closed-form solution to (11) is not available, but first order conditions may be obtained (see
Appendix B). The function V (7, r) is not guaranteed to have a unique local optimum, so the global

optimum is found by starting a common optimisation algorithm at several random points.?

3In our numerical experiments, we have not found more than two local optima for the product T'r.
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3.4. A taxonomy of value-based designs and their solutions

Table 1 presents a taxonomy of commonly encountered fixed sample size clinical trials which
may be solved using our model. We classify the trials as cases I-IV, according to whether the
recruitment site cost function, c,p, is constant and whether the trial incorporates discounting and
a fixed patient pool. For each case, Table 1 records the version of (11) which should be solved.
The following propositions show that, for cases I-11I but not case IV, the problem reduces to the
optimal choice of a single variable: T" or r or their product. These cases are useful for comparative

statics results in section 3.5.

3.4.1. Case I: constant costs, undiscounted rewards and fixed patient pool. Choose
the decision variables T and r so their product optimises the number of pairwise allocations, Q*.

This gives some flexibility in selecting 71" as long as Q* is optimised.

PROPOSITION 2. If Coop(T) = Ceap, p=0, P(T) = P, then all members of the set S ={(T,r) €
[0, Trnasx] X [0y Tmax] : 7T/2=Q*}, for some Q* that represents the optimal number of pairwise allo-

cations, are solutions of (11).

As a corollary of Prop. 2, the marginal benefit of an additional unit of recruitment for Case I
is exactly 0: an increase in r is accompanied by a proportional decrease in T' to retain the same
optimal @*. This is because a postponement of rewards is costless from the perspective of both

marginal costs of recruitment and the benefit to the adopting population.

3.4.2. Case II: constant costs and discounted rewards and/or variable patient pool.
For such trials, an increase in the recruitment rate accrues more benefits to patients by permitting
an earlier adoption decision, without incurring additional cost. It is optimal to recruit as fast as

possible and to optimise over 7.

PROPOSITION 3. If Coop(r) = Ceap, there is an optimal solution (T™*,r*) to (11) with r* = Tyax:

V* = max V(T7 Tmax)' (12)

TG[O:Tmax]

3.4.3. Case III: nonconstant costs, undiscounted rewards and fixed patient pool.
The presence of a fixed patient pool and undiscounted rewards means there is no penalty for
recruiting later rather than earlier. Without loss of generality, it is optimal to run the trial for as

long as possible and optimise over the recruitment rate.
ProposITION 4. If P(T) = P, p=0, there is an optimal solution (T*,r*) to (11) with T* = Tyyax.

V*= max V(Tyax, 7). (13)

T‘E[O,Tmax]
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Table 1 A taxonomy of value-based designs for commonly encountered fixed sample size clinical trials.

Undiscounted fixed patient pool Otherwise
Constant setup costs | I. Optimise sample size II. Fix 7" = rmax, Optimise over T
(section 3.4.1, Proposition 2) (section 3.4.2, Proposition 3)

Otherwise | ITI. Fix T = Ty,.x, optimise over r IV. Optimise over both r and T
(section 3.4.3, Proposition 4) (section 3.4.4)

3.4.4. Case IV: nonconstant costs and discounted rewards and/or fixed patient

pool. It necessary to optimise over both r and 7" to solve (11).

3.5. Comparative statics.

We now discuss comparative statics to assess how the optimal expected net gain V* and the optimal
decision variables 7™, r* and Q*, depend on key parameters P, H, nyg and py. These results are
summarised in Table 2.

The sensitivity of V* to changes in a parameter b (one of P, H, ny and py) may be obtained
if we assume that the optimal values of the decision variables lie in the interior of the domain,
satisfying the relevant first order necessary conditions. By the envelope theorem:

dv*  oV(a*)
b ob

where a* = Q* for case I of section 3.4, T* for case II, r* for case III and (T™*,r*) for case IV.
Comparative statics of the optimal values of @Q*, T and r* with respect to b may be obtained by
applying the implicit function theorem to the relevant first order necessary conditions evaluated

at the optimal values of the decision variables. For example, for a Case IV problem:

‘ =V Vry
dT™ _‘/rb ‘/rr
= 14

where the denominator of (14) is the determinant of the Hessian for the problem, H, and is strictly
negative at an interior solution (a similar expression applies for the partial derivative of r* with
respect to b). Equation (14) simplifies to da*/db= —[0*V (a*)/0adb][0*V (a*)/Da?]~! for Cases I-
III. The denominator of each expression is strictly negative at an interior solution, so the problem
of signing the derivative of interest reduces to one of signing the numerator. In Appendix C.3, we
illustrate the algebra that leads to the results presented in this section.

Results for dV*/db are the same across cases I-IV: the maximised expected net gain of the
trial is strictly increasing in P and H and is strictly decreasing in ng. It can be positive, zero or
negative for py, according to values taken by other parameters of the model. This latter result is
not surprising: an increase in py increases the size of the population that benefits from adopting S

but, at the same time, decreases the size of the population that benefits from adopting N.
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Table 2 Comparative statics results for the value function and
decision variables, as a function of cases I-1V in section 3.4.

Value function Optimal choice variables
dv+/db da*/db
Parameter b  Cases -1V~ Cases [-1II ~ Case IV

< <
P >0 = =0
H >0 =0 =0
no <0 =02 =0
PN = §O3 =0

TStrictly positive when an(T) = as(T) =0.

2Strictly negative when ng > rT7* /4.

39a* /Opx = 0 when Iy = Is = o = 0, or Ix = Is = 0 with
offline learning and fixed patient pool.

It is not possible to unambiguously sign the expressions for the optimal values of the decision
variables in any of the four cases. These results highlight some counterintuitive behaviour of the
decision variables for cases I-1II in response to changes in the parameters of interest for which we
now provide intuition.

Firstly, da*/OP (fixed patient pool) and da*/OH (fixed horizon) may be positive or negative
because of two forces operating in opposite directions. Increasing the population affected by the
adoption decision forces a* upwards because each observation is more valuable. However, increasing
the population decreases an(T') and as(T') — the expected per patient switching costs — which
makes the adoption decision less costly, forcing a* downwards. When ax(7T) = as(T') = 0, the latter
force disappears and a* is increasing in P and H.

Secondly, da*/0ny is not always negative. When ny > r*T* /4, a* is decreasing with ny because
a larger effective sample size for the prior distribution requires fewer additional observations to
achieve the same degree of precision to make an adoption decision. For ny < r*T™* /4, an additional
force may change the sign of da*/0ny. Intuitively, an increase in m, means that we have more
confidence in our prior beliefs. Thus, to produce any changes in the adoption decision requires more
observations that contradict our prior beliefs. Mathematically, we show that 9?0 ,/0Tn, can be
negative in the region where ng < r*7* /4.

Finally, although 0a*/Opx has no definitive sign, we point out two special cases in which
da*/0py = 0 for any py. The first is when Iy = Is = po = 0; the second is when Iy = Is =0 with
offline learning and fixed patient pool. Notice that the effect of pxy on the optimal trial design is

highly dependent on Iy and Is. We explore this interaction with numerical results in section 4.2.1.

3.6. Asymptotically large P(T)
We conclude this section by presenting results as the number of post-trial patients who benefit from

the adoption decision, P(T'), approaches infinity. Results are of methodological relevance because
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they permit us better to understand the effect of some parameters on the solution; they are of
practical relevance because trials often target a large population and the approximations can be

very accurate, as our application in section 4 shows.

3.6.1. Undiscounted rewards. We study the limiting behavior of V* and Q* as P — oo for
a fixed patient pool and as H — oo for a fixed horizon. We study these limits while ignoring the
constraints T' < Ty, and 7 < 7., unless they are necessary for the existence of a solution to (11).
Prop. 5 presents this asymptotic behaviour for the case of undiscounted rewards (cases II and
IV are necessarily fixed horizon). It assumes that ¢ — don(1 — 2pn)po/2 > 0; otherwise, the limits
often do not exist. It further assumes that ccap(7) = Caxea + ¢ where ¢, =0 for cases I and IT with

constant setup costs and where ¢, > 0 for cases III and IV with variable costs.

PROPOSITION 5. Assume ¢ — don(1 — 2pN) /2 >0, p=0, and ceap(r) = Cfizea + 7. Then, for
cases I (¢, =0) and III (¢, >0)

o ( Nt >/ v
i )

I - lim = (1—py)oo®(— v .
Pgr;o\/ﬁ ¢—0on(1—2pn)1o/2 ' pony P (1= pn) o0 ¥ (=Ho/00) +pnoo ¥ (po/ o)

For cases II (¢, =0) and IV (¢, >0)

*

. 14
P}g{l)o m = (1 =pn)oo¥(—po/0o0) +prnoo¥(po/00).

For case II, where ¢, =0,
lim Qo - \/@WHO/UO) v
oo \JC(H—A)  \ 4= bon(1=2pn)10/2) +4¢o0(¥ (o /00) + (1 = px)po/00) /Tmax |

For case IV, where ¢, >0,

lim

s \JC(H - A)

Q" _ ( mfb(#o/ao) )1/2
4(c = don(1 —2pn)Ho/2) '
Appendix C.4 proves Prop. 5. The proofs introduce additional results on the asymptotics of T™*
and r* that are particularly interesting for case IV as both H and incidence ¢ grow without bound.
For a finite value of P(T), asymptotic approximations to the optimal value of the decision variable
and maximised value function may be obtained by multiplying the right-hand side constants by
the relevant denominators in the left-hand side of Prop. 5. Denote with (T,f') the asymptotic
approximations. The approximations are accurate when P(T)Uo, which we may think of as the
standard deviation of the prior distribution for expected benefits for the post-trial population, is
much larger than pg, Iy, Is, and ch, and 71" is much larger than ny.

Prop. 5 provides three additional insights. First, the optimal sample size increases in the limit

of large P(T) as the square root of P (fixed patient pool) and the square root H (fixed horizon).
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Second, both the fixed patient pool and fixed horizon models attain the same expected net gain
in the limit. Finally, the switching costs Iy and Is do not appear in these propositions and can be

ignored if P(T) is large enough.

3.6.2. Discounted rewards. We now turn to the case of a positive discount rate, p > 0. This
is only applicable to cases IT and IV (because cases I and III require undiscounted rewards). We
denote with subscripts the adoption decision type. For instance, Vi (T, r) refers to the expected
net gain with fixed horizon, while Vi (7T, 7) refers to the expected net gain with fixed patient pool.
Unlike the undiscounted rewards asymptotic results, V*, T* r*, and @* do not diverge in the limit
of large P(T'). Therefore, the results here take a completely different form. Results are proven in
Appendix C.5.

It is easy to check that limp_, . P, = (/p with fixed patient pool, and limy_,. P,(T') = (/p
with fixed horizon. Define similarly oy =limp_, o ax =limy oo an(T') = Inp/((1 —pn)(), and ag =
limp_ o ag = limpy o as(T) = Isp/(pnC). Prop. 6 states that V(T,r) converges to the following
expression with both fixed patient pool and fixed horizon, which is obtained by substituting P,(7")
with ¢/p, ax(T') with af, and ag(T") with o in (9) and (10):

—(Ceap(r) + Ty (T)) + 6o (rT,(T) /2) (1 — 2px) o
0 (1 )@ (B) oy (20 ] i T >0 (15)

P Z

max{0, (1 —px)Cuo/p— In, —pnCiio/p — Is}, if rT'=0.

Vo (T, r) =

PROPOSITION 6. If p >0, then Vp(T,r) (as P — o0) and Vg(T,r) (as H — 00) converge uni-
formly to Vo (T',r) on the compact domain {(T,7):0<T < Tax,0 <7 <7Tpax} and
legq;oVP:HllgioVH: max Vo (T,r).

0<T<Tmax
0<r<rmax

In addition, if (Ts,7s) = argmaxy,, Voo (T,7) is unique, then limp_ oo Tp = limy oo T} = Tie,

limp oo =My oo 75 = Too, and limp_ oo Q% =limpy 00 Qf =T0c T /2.
In summary, for finite but large P(7T), we can approximate (11) with

max V. (T, )
T,r (16)
st. T e [O, Trnax]7 re [07 rmax]‘

The function V. (T, ) is equivalent to the discounted fixed patient pool model with P, = (/p. Thus,
all the previous results related to discounted fixed patient pool are also valid when solving (16).
Both the fixed patient pool and fixed horizon models converge to the same function and maximisers.
However, we find in numerical examples in section 4.2.1 that fixed patient pool converges faster

than fixed horizon.
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4. Application to the ProFHER pragmatic trial

We apply our model to data from the ProFHER pragmatic trial (Rangan et al. 2015, Handoll
et al. 2015, Corbacho et al. 2016) using a series of numerical experiments. The application is
illustrative and is not intended to advocate for a given technology decision. The ProFHER trial
was a multicentre, randomised clinical trial conducted in the UK National Health Service (NHS)
which investigated the use of surgery versus nonsurgical intervention (sling) to treat patients with
a displaced proximal humeral fracture. Over a period of approximately two and a half years, 250
patients across 32 NHS hospitals were randomised, on an equal basis, to the two arms of the trial.
Follow-up of both the primary endpoint (the Oxford Shoulder Score) and the cost-effectiveness
endpoints (QALYSs for health outcomes, using the EQ-5D-3L questionnaire, together with treatment
and rehabilitation costs) took place after six, twelve, and 24 months. Results suggested there was
no difference between surgery and sling in terms of effectiveness, but that surgery cost, on average,
approximately £1,800 more than sling. Surgery was therefore deemed to be neither more effective,
nor more cost-effective, than sling.

We assess the performance of the model using expected net gain, the optimal recruitment rate,
r*, the duration of the optimal recruitment period, 7%, and the optimal number of pairwise obser-
vations, Q* = r*T*/2. We consider how these metrics are affected by regulatory concerns such as
the post-adoption population and the discount factor. We also consider two probabilistic mea-
sures. The first is based on Bayesian principles and we refer to it as the ‘conditional probability of
correct selection’ (CPCS). CPCS is defined as the probability of adopting the correct technology,
given a specific value of W. Let D°"*¢ be the ‘oracle’ adoption decision that selects the technology
with the highest benefits for the patients post-trial, knowing the true value of W a priori. Then
CPCS(w) = Pr(D* =D | W = w). The probability of correct selection, PCS=E[CPCS(W)], is
a more commonly used measure, but we use CPCS for ease of comparison with the next measure.

The second probabilistic measure, which we call ‘power’, is akin to the frequentist concept of
the power of a hypothesis test, the probability of rejecting the null hypothesis that W =0, given
W =w, in a two-tailed test at the 5% significance level. We plot power curves which show the
probability that a 95% CI for the unknown mean does not contain zero, as a function of w.

CPCS and power quantify the probability of correctly adopting a technology, but they differ
in two respects. Firstly, CPCS uses prior information, while power considers only the samples
collected during the trial. Secondly, CPCS makes use of the optimal adoption decision according to
our models, while the power calculations assume a rejection region that guarantees a type I error

probability. Further details of the computation of CPCS and power are given in Appendix E.
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4.1. Parameter values

The analysis presented here is based primarily on the parameter estimates reported in Forster
et al. (2019, Table 1), who estimated parameters for the ProFHER trial by referencing its main
publications and consulting with coauthors from the trial. Define surgery as technology N and
sling as technology S. We consider the case of offline learning (d,, = 0) and set py = 0.39, po = £0,
ng =2, and ox = £4,400. We consider the cases of both fixed patient pool and fixed horizon, with
parameters H = 15 years, A =1 year, ( = 7,000/ year, so that P = (H = 105,000. Our choice of
H =15 differs from the choice H =6 in Forster et al. (2019) and reflects the fact that gains from
an adoption decision are likely acquired beyond a period of 6 years.

Following Forster et al. (2019), we set Iy = £0, Is = £0, ¢ = £2,040 and fix the recruitment
rate to be 7 = 94 patients /year. Forster et al. (2019) did not model site-specific setup costs,
which we handle as follows. We assume a setup cost function of the form: cc.,(7) = Cixea + €7
We assume that half of the setup costs of the trial were fixed and the other half represent
marginal costs, obtaining the following estimates: ¢fixea = Ceap(7)/2 = £480,000; ¢, = Ceap(7)/2/7 =
£5,080 per patient per year. Finally, we let p = 3.44% /year, equivalent to the 3.5% annual discount
rate recommended by NICE (2013) and used in Corbacho et al. (2016). We refer to analysis based

on these parameter values as the ‘base case’ analysis.

4.2. Numerical experiments
In section 4.2.1, we fix the recruitment rate at 7 = 94 patients / year and we optimise the recruitment
duration, considering both undiscounted and discounted rewards. In section 4.2.2, we optimise
both the recruitment rate and duration. For clarity of exposition, we use subscripts to denote the
adoption decision type. For instance, Vj; and V refer to the maximum expected net gain for fixed
horizon and fixed patient pool, respectively.

Inspection of (9) shows that, when po = 0, online and offline learning have the same optimal one-
shot design. Hence, given our assumption that py = 0, results presented here are equally applicable
to the cases of online and offline learning. The optimal design can differ for online and offline when

o # 0 or when a trial is sequential (see section 5).

4.2.1. Fixed recruitment rate (7 =94/year), optimal choice of recruitment period
duration, T'. Figure 3 shows the expected net gain as a function of the duration of the recruitment
period, T', measured in months, when the recruitment rate is fixed (left subfigure: fixed horizon;
right subfigure: fixed patient pool). The base case is represented by the dashed line and the undis-
counted version of the base case by the continuous line. T* is marked with a circle or square. The

duration of the ProFHER trial itself is marked with a vertical dotted line.
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Figure 3 The expected net gain versus the recruitment period duration for the ProFHER application with fixed

horizon (left), and fixed patient pool (right).
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We point out two important observations. Firstly, both the maximum expected net gain of the
trial and the optimal recruitment period duration are highly dependent on the adoption decision
type. In this example, the expected net gain is approximately 10% higher for fixed patient pool
and the optimal duration of the recruitment period is over 1.6 times larger than for fixed horizon.
Secondly, the expected net gain function is more sensitive to changes in T in the fixed horizon
case than the fixed patient pool case: extending the length of the trial by recruiting more patients
reduces the size of the population to benefit in the fixed horizon case, but not in the fixed patient
pool case. This result holds more strongly when rewards are not discounted.

Sensitivity to the size of the post-trial population, P(T). Figure 4 shows how the optimal number
of pairwise allocations increases as a function of H (left subfigure, for the fixed horizon case) and
P (right subfigure, for the fixed patient pool case). Plotted with dotted lines are the asymptotic
approximations that were derived in section 3.6. Horizontal dotted lines correspond to the approx-
imations with discounted rewards, increasing dotted lines to those without discounted rewards.
The approximations with undiscounted rewards are close to the actual values in the range plotted,
with a better fit for fixed patient pool. This is due to Iy = Is = o =0, and P(T*)oy > cr. The
approximations for discounted rewards are accurate for fixed patient pool, but the range of values
of H for fixed horizon is not large enough.

Figure 5 presents the CPCS and power curves for the optimal recruitment duration in the base
case and a version in which the post-trial population (H and P) is doubled. The vertical lines

represent the smallest relevant difference for the frequentist sample size calculations.? Because

4 The sample size of the ProFHER trial was based on setting a type I error probability of a = 0.05, power of 0.8,
and a specified smallest clinically relevant difference for the primary outcome. The number of pairwise allocations is
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Figure 4  The optimal number of pairwise allocations increases with H for fixed horizon (left) and with P for

fixed patient pool (right) in the ProFHER application.
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In =1Is = £0 (so that ax(T) = as(T") =0), it is almost never optimal to choose D* = M. This means
that the CPCS has a kink at w =0, whereas it will have a kink at w = ax(T") and w = —as(T') when
an(T) #0 and ag(T') #0. Both CPCS and power are higher for a fixed patient pool compared to
fixed horizon in this example.

Figure 5 shows that, for the application presented here, at the optimal T, the CPCS beyond
the smallest relevant difference is high (i.e. it is above 0.87 for fixed horizon and above 0.93 for
fixed patient pool). According to the CPCS, making the correct selection with high probability
for the given smallest relevant difference is worth the expenditure in a sufficiently long trial. The
power plot shows a completely different story: at the optimal 7', the power for the smallest relevant
difference is below 0.22 for fixed horizon, and below 0.32 for fixed patient pool. This illustrates why
the frequentist decision rule based on the type I error probability of 0.05 can lead health technology
adoption decisions which do not maximise value, as argued by Claxton (1999): maximising the
trial’s value, as defined in (11), does not necessarily gather enough information to satisfy widely
acknowledged standards in trial design.® It might also gather more than enough.

Sensitivity to the fraction of patients on the new technology, py. When Iy = Is = po =0, px has
no effect on the expected net gain or optimal trial length (see section 3.5). Here we consider the
given by n= 0% (¢a/2 +qs)°/3°, where 3 is the type II error probability, J is the smallest relevant difference, and g,

is the 1 — 2 quantile of a standard normal random variable (Lachin 1981). The smallest relevant difference in terms
of INMB that equates the sample size calculations of the actual trial is £1105.

® The difference in the CPCS and power when the time horizon is doubled illustrates another interesting feature of
our model. For fixed horizon, the increase in the number of pairwise allocations is 13 (30%). This represents a large
increase in pairwise allocations, but the maximum increase in the CPCS is only about 3%. This emphasises the point
that, although the increase in the CPCS is not very large, it represents a large improvement in the expected benefits
to patients.
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Figure 5

Figure 6

CPCS (left) and power (right) curves for the

ProFHER application with fixed horizon and fixed patient
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cases of Iy = Is = £10Mill and Iy = Is = £100Mill. Figure 6 shows that, for the fixed horizon,

changes in py have a negligible effect on Q* for Iy = Is = £10Mill and they have a small effect for

In = I = £100Mill. V* is more sensitive to changes in py, especially at small values, and more so

when the switching costs are high. For fixed patient pool, Q* is sensitive to py for large switching

costs. V* is sensitive to py, especially at small values.

4.2.2,

Optimal choice of recruitment period duration, 7" and recruitment rate, r.

We relax the assumption of a fixed recruitment rate and optimise over both T" and r. We do not

present the case of undiscounted fixed patient pool because it requires optimization of a single



23

Figure 7 Marginal value and cost of the recruitment rate showing the optimal levels for three versions of the

model.
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decision variable (it falls under case III in section 3.4). Figure 7 plots the marginal value of the
trial’s recruitment rate, mv,, computed as the derivative of V(T*,r) excluding setup costs with
respect to r, at the optimal choice of trial duration, T*, together with the constant marginal cost,
¢, as a function of r. The intersection of marginal value and marginal cost functions corresponds
to the optimal recruitment rate: 22.6 patients /month for fixed patient pool, 30.5 for fixed horizon,
and 34.0 for undiscounted fixed horizon. This corresponds to between three and five times the
recruitment rate used in the ProFHER trial itself (7 = 7.8 patients /month). The corresponding
optimal recruitment period durations, 7, are 5.1 months (57 patient pairs), 2.7 months (42 patient
pairs), and 2.9 months (50 patient pairs).

Figure 7 can assist a trial manager with the decision about whether or not to open an additional
site. At the actual recruitment rate of the ProFHER trial (7 = 7.8 patients /month), Figure 7 shows
that the marginal value of increasing r exceeds the marginal cost by £440, 000 per additional recruit
per month for fixed horizon and £292,000 for fixed patient pool. A trial manager charged with
maximising the value of the trial can think of these marginal values as representing the maximum
willingness to pay (WTP) for an additional unit of recruitment per month and compare them with
the cost of opening an additional site. It is optimal to open an additional site if the cost of doing
so is lower than the WTP.

Sensitivity to changing the trial horizon. For ease of exposition, we fix P =H and analyse the
effect of a change in H for both fixed horizon and fixed patient pool. Figure 8 presents the results
for the optimal number of pairwise allocations, recruitment rate, and recruitment duration, along

with the appropriate asymptotic approximations derived in section 3.6. Similar to Figure 4, the
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Figure 8  Optimal number of pairwise allocations (left), recruitment rate (middle), and recruitment duration

(right) as a function of the time horizon.
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optimal number of pairwise allocations is increasing in H. The more interesting result is how the
additional patients are obtained in terms of T and r. The optimal recruitment rate is increasing for
both fixed horizon and fixed patient pool. However, the optimal recruitment duration is increasing
for fixed horizon but decreasing for fixed patient pool: T}; approaches the asymptote from below,

while T} approaches it from above.5

4.3. Optimizing the recruitment rate for convex increasing setup costs

The analysis so far has assumed that the trial’s setup cost function is linear in the recruitment
rate. In practice, it is likely that decreasing returns to scale operate: opening new sites is likely to
become increasingly difficult and the recruitment rate of new sites will be smaller if more productive
ones are opened earlier. While the cost function may not be known a priori, a reasonable estimate
of it may be made based on site-specific factors such past experience with setup costs, clinical
investigators, incidence rates and so on.

Using the recruitment data from the ProFHER study, together with some additional assump-
tions, we estimate the setup cost function, ce.,(7), and compute the optimal trial design. Handoll
et al. (2015, Fig. 5, page 37) report the number of patients recruited at each site. For illustrative
purposes, we assume that the cost of opening each site has the same cost, but that the recruitment
rates of the sites vary.

Given the assumptions made for the application, the cost of opening each of the 35 sites was
about £13,700.” Assuming the sites are opened from the most productive (highest recruitment
6 The asymptotic approximation for the case of fixed horizon, undiscounted rewards, fits the actual optimal values
poorly because the marginal cost of sampling, ¢, is much smaller than the marginal cost recruitment rate, c,. In fact,

the approximation that assumes ¢ — don(1 — 2pn)p0/2 =0 in Lemma EC.4 of the appendix fits the optimal values
much better in the range of values considered here.

" The cost of opening sites for oncology trials is estimated at $20,000-$30,000 (Fassbender 2016).
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Figure 9 Cost of recruitment rate assuming a constant variable cost per site (left) and the corresponding marginal
cost of recruitment rate with the WTP for an additional unit of recruitment (right)
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rate) to least productive, the left panel of Figure 9 presents the variable cost of recruitment rate
with the best fit (minimum mean squared error) function of the form f(z)= az®. The estimated
setup cost function is ceap (1) = 480,000 4 766736, so that the marginal cost of a unit increase in
recruitment is proportional to 7%,

The right panel of Figure 9 plots this marginal cost function against the marginal value functions.
The optimal recruitment rates are 9.3/month for fixed patient pool, 10.5/month for discounted
fixed horizon, and 11.0/month for undiscounted fixed horizon. The optimal recruitment rates are
higher than the actual recruitment rate. However, compared with the results in 4.2.2, the difference
between the optimal recruitment rate and the actual trial is much smaller. The corresponding
optimal durations are 8.1 months (38 patient pairs), 4.7 months (25 patient pairs), and 5.2 months

(28 patient pairs), which are much smaller than the 125 patient pairs enrolled in the actual trial.

5. Analysis of response adaptive extensions

The one-shot design does not permit interim analysis of the data as it accumulates. Here we consider
two extensions which enable the trial to be extended, or shortened, according to interim evidence.
We consider how to adapt fully the duration of the recruitment period, holding the recruitment rate
fixed. We also consider how to adapt both the recruitment rate and recruitment period duration,

taking into account additional costs that such a design may incur.

5.1. Fully response adaptive trial with a fixed recruitment rate
For some special cases, parameter transformation may be used to obtain a version of the one-shot

design which fits the model of sequential experimentation proposed by Chick et al. (2017), a design
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which assumed py =0. We fix the recruitment rate and define decision epochs t =0, ..., Q. — 1.
At each decision epoch, measurements of health outcome and treatment cost are observed (with
appropriate delay) for a pair of patients randomised to each arm of the trial. An action a, € {0,1}
is made to continue sampling (a; = 1) or stop sampling (a; = 0). Once recruitment has stopped, we
observe the outcomes of patients in the ‘pipeline’ — those who have been randomised, but whose
outcomes have yet to be observed — prior to making the adoption decision. A policy, m, maps
available knowledge (prior information, plus acquired data) to an action at each decision epoch.
Let E, [-] denote the expectation induced by policy 7. If ag =0, the trial does not run and the
adoption decision is made immediately, based on the prior information alone.

The model in section 2 assumes that 1" and r are continuous, whereas the decision epochs are
discrete. We transform the model into a discrete time version by defining the following parameters:
7= [rA/2] is the number of patient pairs enrolled in the trial during the follow-up period of length
A; p=e?/" —1 is the discrete discount rate per patient pair. Given this setup, Q € {0,1,..., Quax

and the expected net gain for the sequential trial is:

Q-1
Oon (1 —2pn) Xy1 — 2
V(1) = —1050Ceap(r) T Er | Y ( (ﬁ)~)§+l c]
t=0 p (17)

L1p_n((1—pn) B, (2Q/r)W — Ix) + 1p—_s(—pn P, (2Q/r)W — I5)
(1 _|_ﬁ)1Q>O(Q+T)

+E |

An optimal sequential trial design is a policy 7* that maximises V().

If we assume a fixed patient pool (P(T") = P), we may identify four special cases which permit
this problem to be stated and solved using the methods of Chick et al. (2017): (1) current practice
is one treatment only (px = 0); (2) rewards are undiscounted and one of the two technologies must
be adopted (p=0 and D € {N, S}); (3) rewards are undiscounted and there are no switching costs
(p=0, Iy =Is=0); (4) there are no switching costs and the prior mean is equal to zero, but
rewards need not be discounted (p >0, Ix = Is = 1o = 0). Appendix D provides full details. It also
corrects a misstatement in Alban et al. (2018), who presented preliminary analysis of these cases.
The scenarios which enable fully sequential trials here are aesthetically linked to the two special

cases for comparative statics noted in the last paragraph of section 3.5.

5.2. Response adaptive recruitment rate and duration

There may be added value in making the recruitment rate a ‘response adaptive’ decision variable.
For example, for fixed horizon trials which report promising initial data, it might be beneficial to
learn more quickly by increasing the rate at which patients enter the trial. Changing the recruitment
rate mid-trial might be costly, however. For example, it might entail additional work to open new
sites or train up personnel. We present a block sequential approach, in which a fixed and finite

number of decision points (interim analyses) are available for adapting the recruitment rate.



27

Figure 10  Timeline of decisions and information.
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5.2.1. Decision variables and dynamic programming formulation. Let the trial pro-
ceed in a sequence of up to B stages, each of which commences with an interim look at the data.
B is an exogenous parameter whose value is fixed prior to the start of the trial. At the beginning
of each stage, a recruitment rate and duration are selected for the next batch of patients, as a
function of the information accumulated. This process is repeated until the Bth stage, where the
data from the pipeline patients is observed after the usual delay, and a technology is adopted.

Figure 10 shows a timeline for the trial. Let 56=0,1,2,..., B — 1 index decision points, where
the batch duration, T}, and batch recruitment rate, r,,1, for the b+ 1st batch are selected on
the basis of information obtained thus far. The number of patient pairs recruited in batch b+ 1 is
Tyr17mp41/2. If Tyy =0, the trial stops, so that T;,r; for i > b+ 1 are set to 0.

At the end of the bth batch, for b=1,2,..., B, the elapsed time is T, = Zle T;, and the maximum
rate of recruitment to that time is 7, = max{r; : i = 1,2,...,b}. Define 7o =0, 7o = 0, and let
Ko = (ft0,m0) denote the prior information set. The information set K7, = (p7,,n7,) at the end of
the bth batch is computed as a function of the information set at the prior batch K7, | and the
sample average of the 7, observations, X, observed during the bth batch. When recruitment ends,
the adoption decision is taken at time 7z + A, with information set K a.

To keep track of the number of patients in the pipeline, define g7, (T) as the number of patient
pairs in the pipeline at time 7, whose outcomes will be observed within duration 7. The total
number of patients in the pipeline is thus g7, (A). The function g7, is a piecewise linear function of
the recruitment rates and durations of batches to that time.

We assume the trial incurs the cost (Ceap(T6+1) — Ceap(To—1))T at decision point b for selecting
recruitment rate 1. This assumes that a non-zero cost is incurred if and only if the recruitment
rate reaches a new maximum.

Define Vi (K, T,7,q), b=0,1,..., B, as the value-to-go functions for the information set K, time
since the start of the trial 7, maximum recruitment rate to date 7, and number of patient pairs

in the pipeline ¢. The terminal reward is the expected health outcomes for the post-adoption

population. The dynamic programming formulation of our block sequential trial problem is

Vs(K,T,7,q) = *2'7>E [ 1p_x((1—pxn) P,(T)W = Ix) + 1p—s(—pn B, (T)W — Is)| K |,
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Vo(K,T,7,q) = ooy ax 7T—(ccap(r) — Ceap (F)) T = T, (T)r + Son(1 = 2px )T, (T)rE[W | K] /2 (18)
< <rmax

4 e TR {%+1(U(K,X,ﬁb+1),7'+ T, max{7,r},0(q, T, r))|K] ,

where the expectation is taken over the variables W and X. Recall that X1 | W ~ N (W, 0% /fiy 1)
and W | K7, ~ N(up,,0%/n7,), where ny, is the effective number of samples that have been
observed until 7;, and 7,41 is the number of samples observed in batch b+ 1 and is computable
from information at time 7, as well as T" and r. Thus, ny, | =ng + N1

The terminal reward function, Vg, is discounted only if the trial runs, and accounts for the
optimal adoption decision after samples have arrived with delay. The function U maps a prior
distribution K7;, sample mean X, 41 and number of samples 71,4 to a posterior distribution using
Bayes’ rule. The function U outputs qr,,, given g7, batch b+ 1 sampling rate 7., and dura-
tion Ty, 1. Through backward induction in (18) we can obtain the expected net gain of the trial
Vo(Ko,0,0,0). The state space of this model is large and obtaining an exact solution using back-
ward induction is difficult owing to the curse of dimensionality. In Appendix D.2 we propose a

forward-looking heuristic to find a policy with large expected net gain.

6. Discussion and conclusion

Innovating the design of clinical research has high priority across many jurisdictions. In the United
States, the NIH’s recent initiative to increase efficiency, accountability and transparency in clinical
trials covers a wide range of areas, running from improved training for investigators through to
reducing delays (Hudson et al. 2016). A similar exercise is being undertaken in Europe, where the
European Union will introduce the ‘Clinical Trial Regulation’ (European Union 2014), which seeks
to harmonise the process of assessment and supervision of trials across the nation states, with the
aim of increasing their transparency and efficiency. And in the United Kingdom, the NIHR is fund-
ing a range of studies which have novel methodological designs that aim to deliver research results
with greater efficiency. In part, these initiatives appear designed to increase technical efficiencies
in the way trials operate under the existing frequentist paradigm. However, echoing Claxton and
Posnett (1996) and those who have followed, the current drive for more ‘value-based’ health care
also raises questions about whether there exists a role for more ‘value-based’ clinical research in
the health technology assessments of the future.

Our literature survey has shown how, complementing these initiatives to innovate clinical
trial design, Bayesian decision-theoretic models have grown to challenge traditional frequentist
approaches. Our model has contributed to this literature in a number of ways. To begin with, it
can handle scenarios in which clinical practice is mixed prior to the commencement of the trial,

a common occurrence in many areas of clinical research. Trial teams considering designing more
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value-based trials should be aware that mixed practice can affect optimal decisions and also that,
under particular parameter values, it can safely be ignored (sections 3.5 and 4.2.1). Moreover, opti-
mal decisions concerning the recruitment rate and duration are affected by the manner in which
the population of patients to benefit from the trial is defined. The application of section 4 showed
how the value of the trial is highly sensitive to the optimal decision of trial length under a fixed
horizon, but is less sensitive under a fixed patient pool. Further, we showed that optimising the
trial recruitment duration of our model can lead to a sample size which is less than (fixed horizon)
or greater than (fixed patient pool) the sample size of a frequentist trial. So, it is not necessarily
the case that a value-based design such as the one we solve will lead to a trial which is of shorter
duration. We also showed that trials which recruit more quickly, so as to make an earlier decision,
provide larger expected benefits to patients. This analysis can provide useful insights at the design
stage of the trial: our results suggest that providing a grant that ensures a higher recruitment rate
and a shorter trial length can accrue higher rewards for patients. We have provided both qualitative
and quantitative comparative statics results, the former of which, to the best of our knowledge,
have not been obtained previously. We have also obtained asymptotic results that complement the
comparative statics analysis. Notably, we show that, generally but not always, the optimal number
of enrolled patients is increasing with the post-trial population and decreasing with effective sample
size of the prior distribution.

We briefly consider future research. Firstly, as seen in the application of section 4, the fixed hori-
zon case can lead to a sample size which is low when compared with that which would be obtained
from a frequentist design. This could lead to problems of incomplete or non-existent adoption. Our
work also raises interesting questions about outcomes-based reimbursement contracts for a public
sector procurer and a private technology provider. There most likely exists a large gap between
how regulators would view ‘innovation’ and ‘efficiency’ in clinical trial design, and how Bayesian
decision-theory views it. Finally, while this work focused on jointly considering clinical trial design
and technology adoption decisions, some of the results associated with the regulatory context might
find application in very different sectors, particularly when A/B tests have observations which
occur long after exposure to the test stimulus, or when the value of a choice of A or B is highly

time sensitive (so that delayed decisions result in lower exploitation value).
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Appendices

Appendix A summarises the principal notation in the main paper. Appendix B gives technical details
for the derivatives of the focal objective function. Appendix C justifies mathematical claims in section 3.
Appendix D shows how the one-shot trial design of the main paper can be amenable to running a fully
sequential trial in certain special cases. Appendix E provides formalism for the probabalistic performance

measures in the numerical experiments of section 4.

Appendix A: Table of principal notation

Table EC.1 Table of principal notation.

Parameter Description

pxn €10,1/2] Fraction of patients treated with technology N under the current practice
En,Es€R Effectiveness of technologies N and S, respectively

Cn,Cs €R5g Patient-level costs of using technologies N and S, respectively

AeR5y Monetary value of one unit of effectiveness (e.g., £30,000 / QALY)

X €R (random variable)

WeR

0% €Rso

o €R, O'g SN
no=o0%/oa
Tmax € Rug

A €Rsp, A <Thax

Incremental net monetary benefit of technology N over S
Unknown expected value of X

Known variance of X

Mean and variance of prior distribution for W

Effective sample size of prior distribution

Maximum time duration of recruitment in trial

Delay in observing realisation of pairwise allocation (in time units)

CeRyp Incidence rate of the condition in the population

Tmax € [0,(] Capacity of rate of recruitment

Quax €N Maximum number of pairwise allocations recruited to the trial

T €0, Trax] Recruitment period duration (decision variable)

7 € [0, "max) Rate of recruitment to the trial (decision variable)

D e {M,N,S} Adoption decision to implement the current practice (mix of technologies)
M, the new technology N, or the standard technology S (decision variable)

Ly Posterior mean to be obtained, given uo and T'r time units of patients to
be observed

P(T)eRsy Number of patients to receive implemented technology once adoption
decision is made at T+ A

H Maximum time horizon for decision, in the case of fixed horizon

P Number of patients affected by adoption decision, in the case of fixed
patient pool

Pyr Annual discount rate, e.g., 3.5% for UK NICE

p€l0,1) Continuous time discount rate, p =1In(1+ p,,)

T,(T) Effective discounted recruitment period duration

P,(T) Effective discounted number of patients to receive implemented technol-
ogy once adoption decision is made at T+ A

don 1 = ‘online learning’; 0 = ‘offline learning’

ceR5g Recruitment cost for an additional participant

Ceap(T) Setup cost of the trial with recruitment rate r

C, Marginal cost of an additional unit of recruitment rate

Ip eR5g Fixed cost of switching to technology D from standard technology

aN (T), Cks(T) eR
U(z)

Expected costs per patient if technology N or S is adopted
Standard normal loss function, U(2)=E[(Z — 2)T ]| = ¢(z) — 2(1 — ®(2))
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Appendix B: Derivation of partial derivatives of V

The first order conditions for interior solutions of (11), assuming that P(7") and ccap(r) are differentiable,

are given by
oV (T,r) — 0 and oV (T,r)

oT or

In this appendix, we show the main steps to find the partial derivatives of V' with respect to T and r. We

=0.

first introduce some derivatives that will be used repeatedly:

dax(T)  on(T)dP,(T) das(T)  as(T) dP,(T)
T ’ 5] T ’

or —  P,(T) dT T  P/(T) dT
doz noo%r dog noo%T
ar —\| (2ne +rT)3T or \| (2ng+rT)3r’
The following equations are useful relationships in deriving the partial derivatives:

(ax(T))oz)  an(T)( 1 dP(T) 1 doy,
T T oy <Pp(T) dT +028T)

HosDes) _osD) (1 4D 1 omy)
or oz \P,(T) dT oz OT
dog oir B NyO
T~ 07(2n0+rT)2 (20 +rT)T
0oy o:T NoO z

or  0z(2n0+7rT)2  (2ne +rT)r

Consider first

9 (eP(T—&-A)Pp(T)UZ\I, <aN(T) - uo>)

or oy
= —pe ?TTXP (T)o, ¥ on(T) = Ho +efp(T+A)dpp(T)0_Z\I, oan(T) — po
Oz dT 2
0o an(T)—p
—p(T+A) p (222 [ 2N ) — O
+€ P( )aT oy

prea) ox(M=poy ) (_ox(D) (1 dB(T) 1005 podoy
+e Py (T)oz (‘I’< . 1 o, \B(T) dar o, 0T ) o3 or

= T [ (02 P 4 P 2 = Toap) w (=00

N (al\;(ZT) (ozdi;f) +Pp(T)%UTZ> _W%?) (1—@ (W))]

Similarly,
0 _ as(T) + po
p(T+A) s
oT (8 Pp(T)Uz‘I’ ( o,
_ dP (T) 60’2 (07 (T) + Lo
— o r(T+4A) ld — A S
- <UZ dT +F,(T) oT ”(T)Uzp> v ( oy

+ (O‘i(ZT) (Uzd%;T) +Pp(T)a;TZ> + P’JSFZ)’“)%';) (1 —® (O‘S(TU);”O)) ]

Thus, we get
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ov(T,r) (1 B B
“or ¢ gl i mer (EC.1)
_ dP,(T) doy an(T) — po
_ p(T+A) P . an({d) — Ho
+1=p)e 0 | (o T )22 — by 1) ) (2L

+ (ai(ZT) (O’z d%’;T) +Pp(T)%UTZ> - P"f:’“%';) <1 By (cm(ig)z—m)ﬂ

T pwe T+ [ <az —digg) + ()22 - PP(T)azp> w (O‘S(TU) - ’“‘0>
Z

(222 (e e ) B ) (1-0 (20 )|

The partial derivative with respect to r follows similar steps to the ones to find the derivatives with respect

to T', so we only present the final result:

OVALr) __Bceanlt) _ o (7) 45, T(T)(1 — 2px o /2

ar or
o(T+A) nooxT B an(T) — po as(T) + po
+eTTRE,(T) (2no +7T)3r {(1 PN)$ ( Oy Tone Oy

Appendix C: Proofs of mathematical claims

C.1. Proofs in section 3.3

Proof of Prop. 1. Weierstrass’ theorem states that the optimal solution of max,s f(x) exists if f is upper
semi-continuous and S is closed and bounded (Andreasson et al. 2007, section 4.2). A function f:S — R
is upper semi-continuous at xo if limsup, ,, f(x) < f(xo), or equivalently, if for every e >0 there is a
neighborhood S’ around x¢ such that f(x) < f(zo)+e¢€ for all z € 5.

The domain of V(T,r) is D={(T,r) |0 <T < Thax, 0 <7 <7rpax} which is closed and bounded. Hence,
to prove the existence of a solution, it is sufficient to show that V(T,r) is upper semi-continuous.

It is easy to check that P,(T') is upper semi-continuous given that P(T) is upper semi-continuous. Because
Ceap(T) 18 lower semi-continuous, —ce.p(r) is upper semi-continuous. It follows that V(T,r) is upper semi-
continuous in {(T,7) |0 <T < Tiax, 0 <7 < 7Tmax} and we only need to show that V(T',r) is upper semi-
continuous when either 7'=0 or r =0.

For T'=0, first consider the neighborhood when T is exactly zero. Then, V(0,r +4,) =V (0,r) for any J,
in the domain D by the definition in (5a). Now, let 6 >0 and consider the following inequality using (5b):

V(0r,746,) = —(Ceap(r + 6,) + c(r + 8,)T,(51)) + Son|(r + 6,)T, (51 /2] (1 — 2px ) o
+ e POTHAE[(P,(87)(1 = px)W — In) T + (=P, (0r)px W — Is)* ]
< Gon[(r+6,)T,(67) /2] (1 — 2px) o
+ e e AR [ (P, (0)(1— pr)W — In)* + (=P, (0)px W — Is)* ] .

The inequality holds because ccap (1) > 0 and P,(T') is non-increasing, so P,(d7) < P,(0). Now, we use e =77 <
(14 perlPrl|57]) and E[(P,(0)(1 —pn)W — In) T 4+ (=P, (0)pxW — Is) T ] < V(0,7) to get:

V(67,7 +0,) < SonlrmaxTp(57)/2](1 = 2px) o + (1 + pe?7! |52 )V (0, 7)
<V(0,7)+e,
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and the last inequality holds for any e > 0 if we choose |dr| small enough. Hence, V' is upper semi-continuous
at T'=0.

For =0, consider first the neighborhood when r is exactly zero. Then, V(T + 6,0) = V(T,0) for any dr
in the domain of V(T,r), by the definition of V in (5a). Now, let §, > 0 and consider the following inequality

that follows similar steps as the previous case with T'=0:

V(T +61,3,) = —(Ceap(8:) + 8, T, (T + 51)) + 0on[(6,)T, (T + 67) /2] (1 — 2px) o
+ e PTHrT DR [(P,(T + 67) (1 — pn)W — In) T + (=P, (T + 57 )px W — Is) "]
< Gon[0:T,(67)/2)(1 — 2px) 110
+e e TTIE[(P,(0)(1—pa)W — In) T + (=B, (0)px W — Is) " ]
< Bon[6: Ty (Tumax) /2)(1 = 2px) o + (L + pe”*7 1|6 )V (T, 0)
<V(T,0) +e,

and the last inequality holds for any € > 0 in the neighborhood with |4,| and |d67| small enough. Notice
that the first inequality requires that P(T") is non-increasing not only upper semi-continuous. Thus, we have

shown that V' is upper semi-continuous for » =0. [

C.2. Proofs in section 3.4

Proof of Prop. 2. Tt is sufficient to show that V(T,r) is the same for all members of the the set & =
{(T,r) € [0, Tmax] X [0,7max]) : 7T/2=Q}. If @ =0, then V(r,T) =V (0,0) for all members S. This follows
directly from the definition of V' in (5a). Now suppose that @ >0, and let 0% = 0% Q/(no(2no + Q)). Then,

we obtain, for all members of the set S, the same expected net gain:

V(T7 T) = 6011@(1 - 2pN)M0/2 - CQ - ccap + PO'Z |:(1 _pN)\I’ (aNo__'uO) +pN\I’ <as_|_'u0):| . (]

Oz
Proof of Prop. 3. Let (T*,r*) be an optimal solution to (11). First, observe that if 7* =0 or r* =0, then
(0, "max) is also an optimal solution by the definition of V' in (5a).
Now, consider the case T* >0 and r* > 0. We show that the alternative trial design (r*T™*/Tmax; Tmax)
achieves an expected net gain at least as good as the optimal solution (7*,7*). Note that the online learning
term, Oon [T,(T)/2](1 — 2px)pto, and the cost of the trial, —(ccap + ¢rT,(T)), in (5b) are smaller or equal to

the corresponding costs under the alternative solution (r*T™ /Tmax, "'max):
Son[r™T,(T")/2](1 = 2px) 0 — (Ceap + er™T,(T™))
> Oon [r*Tp(T*T*/rmax)/Q](l —2pN) o — (Ceap + CT*TP(T‘*T*/Tmax)).
By construction, the number of patients recruited under the alternative design is the same as under the
optimal solution and the posterior mean variance, 0%, is the same under both solutions. The non-increasing

assumption of P(T") implies that P,(T") is non-increasing, and, hence, P,(T*) < P,(r*T* /Tmax), an(T*) >

an(r*T* /Tmax), and as(T*) > as(r*T* /Tmax ). Because U(+) is decreasing, we have established that

P,(T")o, [(1 —pn)¥ <aN(TgiM°> TNt (Wﬂ
< BT frss)os [(1 - (aN(r*T*éZmax) —MO) U (aS(T*T*/O—TZrnax) —Hio)} 7
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which are the remaining terms in the expression of V. Thus, we conclude that V(r*T*/rmax, "max) >
V(T*,r*). Because (T*,r*) is optimal, we have established that V (r*T* /"max, "max) = V(T*,r*) and that an
optimal solution with r =7, exists. [

Proof of Prop. 4. Let (T*,r*) be an optimal solution and consider the alternative solution
(Traxs T [ Trax ). It is straightforward to show that the alternative solution is also optimal by following

the same procedure as in the proof of Prop. 3. 0O

C.3. Comparative statics results in section 3.5

In this appendix, we present the algebra that leads to the results of comparative statics of (11) presented in
section 3.5. For simplicity, we present the results assuming a fixed recruitment rate, maxreo, ..V (7,7),
and undiscounted rewards. The results are, however, as general as presented in section 3.5.

e Post-trial population. For fixed patient pool, the optimal expected net gain is increasing in P:

ov(T,r an — as +
W(Tr) —(1—pn)o¥ [ NHO) 4 pio,w (22 THO
3P Oz Oz

+(1—pn)an <1—<1> (M» +pros (1-@ (w» > 0.
Oz Oz

Using the implicit function theorem, the sign of T*/JP is the same as the sign of:

?V(T,r) Doy anN — o as + o

+(1_pN)aN(a0N2_MO)¢(aN_,U0> +pNOés(@§2+Mo)¢<asa-;Mo>

7z Oz A

The first two terms in brackets have a positive effect on the optimal trial length, because the value
of information is higher when P is higher. The third and fourth terms come from the change in the
adoption decision rule because ayn and ag decrease as P increases. When an < o there is a negative
contribution from the third term but positive from all other terms. Similarly, when ag < —pg there
is a negative contribution from the fourth term but negative from all other terms. In general, we
cannot conclude that the optimal T is increasing with P, but this is often the case. For instance, if
—ag < po < an, or equivalently, it is a priori optimal to adopt M, then T* is increasing with P.

For fixed horizon, we perform the sensitivity analysis on parameter H. The results are very similar to

fixed patient pool. The expected net gain is again increasing in H:

% =C|(1—pn)oy ¥ (‘J‘N(?Z_ “°> +pnos ¥ (O‘S(?j “°>
+ (1= px)an(T) (1 —® (CW(?Z_’“’)) + pxas(T) (1 —® (“S(?j’“)ﬂ >0

The derivative that determines the direction of change of the optimal trial length is

PULD 0021y (P g (D010

+(1 _pNWN(T)(aUNéT) 1) (aN@Z - Mo) . OéS(T)(aséT) + o) (aS(Ta); ,uo)

_ C(S (_};?i)zl\i(?))Q 5 (OéN(i)Z_ Mo) B UZC(]EiSLTfT) 5 (as(z;); Mo) .
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82V (T,r)
aToP

Comparing this expression to that for , we have two additional terms with a negative effect
which capture the reduction in the post-trial patients for a longer trial. The direction of change of T™*

is not definitive through comparative statics.

Fraction of patients in new technology py. It is is straightforward to check that

(- (S28)) o 10 (2259 |

There are three summands in this expression. The first is the online learning effect. The second is

+ P(T)

the effect due to the post-trial benefits. The third is a correction due to the change of the optimal
adoption decision rule. The magnitude of the second summand depends on the magnitude of P(T)o,
while the magnitude of the third summand depends on the magnitudes of P(T)ax(T) and P(T)as(T).
When P(T)o, dominates, the effect depends on the expected gains of adopting technologies N or S; if
U ((as(T)+po)/oz) >V ((an(T) — po)/0z), then an increase in py (increase in the number of people
who would benefit from the adoption of S) would increase the expected net gain.

The second derivative 02V (T,r)/0Tdpy is a long expression that does not elucidate any interesting
insights. We present a special case with some interesting results, Iy = Is = 0. Note that an(T) =

as(T) =0 and we obtain

O*V(T,r) dP(T) 1o
TYDT) 95 g —2 1—a(H)).
9T apx don g dT “O( <JZ>)

From this expression, observe that under some additional conditions the optimal trial length becomes

independent of px. One possibility is pg = 0. The second possibility is under fixed patient pool and

offline learning. However, the optimal expected net gain is not independent of pyx under such conditions.

Effective number of samples for the prior distribution. To analyse the sensitivity of V' to ng, we compute

OV(I.r) _ P(T)o3(2ny+1T) {(1 o) (%I(T)ﬂo> ¢ pud (O‘S(T)W)ﬂ <o.

Ong 2no(ng +rT) oy oy
The optimal expected net gain is decreasing in ng because ng is a measure of the confidence in the
beliefs, and therefore, the lower the confidence, the higher the rewards obtained from learning through

a trial.

To analyse the sensitivity on the optimal trial length, we use the fixed patient pool adoption decision

type for simplicity and obtain the following derivative:

*V(T,r) _ %0y an(T) — o as(T) + po
GTome | 9T0ng [“‘pNW (Uz> Ml <>}

Oz
_ an(T) = po \ (an(T) — po)® 0oz 0oy
+a pN)P¢< oz ) log ) oT Ong
as(T) +po '\ (as(T) + po)? 9oz doy
ToxPe ( oz ) o AT dny’

The second and third terms are negative because 0o, /0ng < 0, which correspond to the effect of

a larger ng requiring a smaller sample size to achieve the required confidence in a decision. These
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two terms correspond to the intuitive effect of a less informative prior requiring more evidence to be
gathered. However, an additional effect is found in the first term which is positive for ny < rT'/4 because
0?0, /0TOng = 07(—4ng + rT)/4(2ng + rT)*T. Therefore, it is possible that T* increases with ng in

some range where ng <11 /4.

C.4. Proofs for asymptotic results of Prop. 5 in section 3.6.1

Claims are proved separately for the four cases of section 3.4 in Lemmas EC.1 to EC.4. The combination of
the four lemmas completes the proof of Prop. 5. The proofs assume that ¢ — don (1 — 2pn)po/2 > 0 and that
there is no discounting, p = 0. The proofs further assume that ccap () = Caxea + ¢ Where ¢, =0 for cases I

and IT with constant setup costs and where ¢, > 0 for cases III and IV with variable costs.

C.4.1. Case I: constant setup costs, no discounting, fixed patient pool. If c—d,,(1—2pN)po/2 <
0 in this case, the effective cost of sampling is less than or equal to zero, and, given the trial is run, it is
optimal to sample infinitely for any P. We, therefore, analyse the more interesting setting where ¢ — §,,(1 —
2pN)o/2 > 0. Because @Q* grows unbounded with P (shown below), we let ry., = 00 and Tax = 00, i.e.,

there is no upper bound on the decision variables.
LEMMA EC.1. If Ceop(r) = Ceap, p=0, P(T) =P and ¢ — Jon(1 — 2pn)1i0/2 > 0, then

lim Q" _( V1005 9(0/00) )1/2
) b)

P—oo \/7 4(07 50n(1 - 2pN):u“0/2

= (1 =pwn)oo¥(—po/c0) +prxoo¥(po/00)-

P—oco P

Proof of Lemma EC.1. For functions f and g, we use the notation f(P) ~ g(P) to denote
limp_, o f(P)/g(P) =1. Without loss of generality, the proof assumes that r is fixed and T is the decision
variable. For clarity, we make the dependence of T* on P explicit with T*(P). We need to show that

V1o d(y/opo/ox) )1/2

¢ = don(1 = 2px)pio/2

We know that T*(P) either satisfies the first order condition OV (T,r)/0T =0 or T*(P) = 0. However,

rT*(P) ~ <

T*(P) =0 is not optimal for sufficiently large P and T*(P) satisfies the first order condition. The expression
OV (T,r)/0T =0 was derived in Appendix B. By rearranging terms, we obtain

202 3 rT*(P) rT*(P)

Ver Var
_ \/ (2n0 + rT*(P))3T*(P)

noor

(EC.2)

, (1 — PN n0(2n0+7‘T (P) (i —110)? PN 7710(220n0+7‘T (P))(as+uo)2>
(& (&

(cr — Oonr(1 — 2pN) 10 /2).

The left-hand side approaches infinity as P — oo, so that the right-hand side needs to approach infinity as
P — oo. Hence, limp_, ., T*(P) = 0o, and the right-hand side satisfies the following relationship:

\/ (o +r T (PYST(P) o o €= Bonl1 = 20)ito/2

2
nooxr V1Nook

r(T(P))?




ec8

Because an = In/(1—pn)P and ag = Is/px P, which approach zero as P — oo, the left-hand side of (EC.2)

satisfies the following relationship:

e 202 rT*(P) 20% rT*(P)

N Vo'

Combining results, we obtain

1—pn _no@rotrTT(P)) (02 PN _no@rotrTT(P) (1 y0)2 P —g .2
P + i

P29 e—6ou(1-2 2
— ¢ 2U§(MONC ( pN)/’l/O/ T2<T*(P))2

V2r Vngo%

and, by rearranging terms, the desired result for Q*/ VP.

Using the previous result, the asymptotic result for V* = V(T*) is straightforward to find. Let o3} be o

evaluated at T*. Because limp_,., T* = 0o, we know that limp_,., 0} = ox//mo = 0o. Then,

V™ == Ceap(r) — crT™ + Jon (1 —2pn)porT* /2 + Poy ((1 —pN)¥ <w> +pnT (QST—EMO>>
z z

V* ~ = rT* + Son(1 — 2px) porT* /2 + Po ((1 —pn)T <;“°> +pnT (:O ))
Z zZ

V* ~—erT" + Jon(1 = 2pn)porT™ /2 + Pog ((1 —pN) ¥ (;,uo) +pNU (?))
0 0

V" ~(=c+don(1 = 2pN)po/2) ( Vs ¢y opio /o) >1/2 VP + Poy ((1 —pN)V (%;0) +pnV <2L§>)

(€= don (1 —2pn)po/2)r?

V* ~Paog ((1 —pN)¥ (%‘?) +pn¥ (%)) )

and the last line is the statement in the lemma. 0O

C.4.2. Case II: constant setup costs, no discounting, fixed horizon. Because we assume undis-
counted rewards, case II is necessarily fixed horizon. If ¢ — don (1 — 2pn)po/2 < 0 in this case, then the first
order condition for 7™ is never satisfied, and it is optimal to sample infinitely. We therefore analyse the
setting where ¢ — 0o (1 — 2pN)f20/2 > 0. In addition, we allow Tyax = 00, i.e., there is no upper bound on T,
because T* — oo as P — oo, as shown below. Prop. 3 shows that r* = ry,, is optimal. By multiplying 7™

with ryax/2, we obtain asymptotic results for Q*.

LeEmMma EC.2. Ifccap(r) = Ceap, P = O; P(T) = C(H_T_ 1T>OA)7 C_(Son(l _2pN),U'O/2 > O; and Tmax =00,
then

1/2
i T _ \/7100?(@75(,“0/00)

o <<H—A><<c—50n<1—2pN>uo/2>r%;ax+<rmxao<w<uo/ao>+<1—pN>uo/oo>> - B9
lim. m — (1= P W (—p10/o0) + pco ¥ {110/ o),

Proof of Lemma EC.2. For functions f and g, we use the notation f(H) ~ g(H) to denote
limy_, o, f(H)/g(H)=1. For clarity, we make the dependence of T* on H explicit with 7*(H). We need to
show that

T"(H)~ m¢(MMO/UX)Q(H_A) 1/2
(= 0on(1—=2pN)o/2)r% + Crox //mo(¥(poy/no/ox) + (1 —px)poy/No/ox) '
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We know that T*(H) either satisfies the first order condition dV (T*(H))/dT =0 or T*(H) = 0. Because
T*(H) =0 is not optimal for sufficiently large H, T*(H) satisfies dV (T*(H))/dT = 0. Using the expression
derived in Appendix B, dV(T*(H))/dT =0 is equivalent to

302(H)¢<aN(T*(H)))—Mo>

er — Gonr(1 — 2pN) o /2 =(1 — px) lC(H —T*(H)-A)

aT oy (H
— oL (H)CW <W> — ax(T"(H))¢ (1 -2 (W)) ]
+p [C(H = T"(H) = A) 80§<TH) ¢ (aS(T;£?21)>+ HO)
—onew (SR ) —agranyc (10 (SR ]

where o}, (H) is 0, evaluated at T*(H). Because the left side of the equation is bounded for any H, the right
side must be as well. Thus, (H —T*(H) — A)9o},(H)/IT is bounded and implies that limy ., T*(H) = oo,
limy ,oo(H—T*(H) — A) =00, and (H — A) ~ (H —T*(H) — A), with the use of expression for do, /0T

derived in Appendix B. Using this observation on the above equation, we obtain the following relationship:
Ox (\I/ (Mox/no> + (1 _pN>H0\/no>
\/nio Ox Ox
nooxT Ho~/To
~C(H-T"(H)—A .
“f - )\/(2no+rT*(H))3T*(H)¢( ox >

By rearranging and some additional asymptotic approximations, we obtain

<cr_5onr(1 —QPN)NO/Q‘FC\;T% (fo (“(’U\)/:TO> +(1 —pN)”OU‘)/(%» J%iqb(?ﬁ)%) ~((H - A).

The desired result is obtained by rearranging the terms and setting r = 7,2, which we know to be an optimal

er — Oon(1 — 2pN) o/ 24€

decision from Prop. 3. Using this result and following a similar procedure as in the proof of lemma EC.1, we

can obtain the asymptotic result for V*:

* * * * * T* - T*
V' =—ceap(r) —erT™ +0on (1 —2px)porT™ /24 P(T")oy ((1 —pN) ¥ (W) +pnU (M))
z z

V*~—erT* + Gon(1 = 2pn)porT™ /2 + C(H —T" — A)og ((1 —pN)¥ (%‘LO) +pn¥ (?))
0 0

V* ~C(H — Ao ((1 — )T (_—“0) +paT (@)) . O
go go
C.4.3. Case III: affine setup costs, no discounting, fixed patient pool. If ¢—d,,(1—2px)po/2 <0,

then the first order condition is never satisfied and it is optimal to sample infinitely. In that scenario, a
solution to (11) does not exist unless r is constrained and r* = 7,,,,. We therefore analyse the setting where
¢—0on(1—2px)o/2 > 0. Because the optimal recruitment rate grows unboundedly with P (as shown below),
we assume that ., = 00, i.e., no upper bound on r. To obtain asymptotic results on Q*, we only need to

multiply the results of r* with T,.x/2, as Prop. 4 shows that T = Ty,.x is optimal.
LEMMA EC.3. If Coop(r) = Cpigea + ¢, where ¢, >0, p=0, P(T) =P and ¢ — don(1 —2pn)o/2 >0 then

* V) 1/2
lim — <[ Roo ${to/90) ]> : (EC.4)

P—oo \/ﬁ - CTmax + Cr — 5on(]- - 2pN)/JfOTmax/2

‘; = UO[\I/(MO/UO) +(1 _pN)MO/OO]'

lim
P—oo
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Proof of Lemma EC.3. Prop. 4 shows that it is optimal to have T* =T,,.,. The optimal r has to satisfy
the first order optimality condition OV (Tiax,r)/0r = 0 for large enough P. The optimality condition is
equivalent to

P <1 — PN _ ng(2ng+r*(P)Tmax) (O‘N*NO)Q N PN _ ng(2ng+r* (P)Tmax) (as+#0)2>

e 202 r* (P)Tmax 202, * (P)Tmax

Var Var
_ \/ (2n0 + 1 (P) Topa )21+ (P)

2
nOO—X Tmax

(cr +cl — 5onTmax(1 - 2pN)MO/2)

The optimality condition is the same as (EC.2) with the exception of exchanging T*(P) with r*(P), exchang-
ing r with Tp.x, and an additional ¢, on the right-hand side. The rest of the proof follows as the proof of

Lemma EC.1 and is not reproduced here. [

C.4.4. Case IV: affine setup costs, no discounting, fixed horizon. If ¢— §,,(1 — 2pn)uo/2 <0 in
this case, the effective cost of sampling is less than or equal to zero, and, given the trial is run, it is optimal to
sample infinitely for any H. We, therefore, analyse the more interesting setting where ¢ — do, (1 — 2pn) o /2 >
0. Notice that, unlike the previous cases, ¢ — don(1 — 2pn)o/2 = 0 is considered here and gives interesting
results that differ substantially from the scenario when ¢ — o, (1 — 2pn)po/2 > 0. Because both T* and r*
grow unbounded with P (shown below), we let Ty,a = 00 and ryax = 00, i.e., there is no upper bound on

the decision variables.

LEMMA EC.4. If p =0, Cop(T) = Cfizea + 7, where ¢, >0, P(T) =((H — T — 17504A), ¢ — don(l —
2pn)po/2 >0, and Tyax = 00 and Tmax = 00, then

*

Jim CH=A) (1=pn)oo¥(—po/00) +prnoo¥(po/o0)-

In addition, if ¢ — don(1 — 2pn)ie/2 > 0, then

r . KT <K2\/W¢(uo/oo) )1/4
DEE ’

JE&W = A (C(H-A ¢+ 6on(1—2pn)pio/2

if ¢—8on(1—2py)10/2 >0, and

. r . KT (K>neo%é(uo)oo)\
T G - A A (C(H—A))1/3_< c ) )

if ¢ —=0on(1—2pn)po/2 =0, where K =ox((¥(po/00) + (1 —pn)to/00)/(y/T00C:)-

Proof of Lemma EC.4. For large enough H, the optimal trial design satisfies r*7™ > 0 and the first
order optimality conditions OV (r*,T*)/0T =0 and OV (r*,T*)/0r = 0. Using the expressions derived in

T

Appendix B and the property do,/0r = (r/T)Jo, /T, the first order optimality conditions are equivalent

to
(e don(1= 2o/ + (1= ) [Gan(r) (1= (DI ) g g o (TIZ00) | g
o () i (522)

.
Z Oz

=((H-T" —A)Z% [(1 —pN)o (W) +pno (OKS(TULHLOH
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and

(er (e~ don(1 = 2 2)T°) o =G T = )52 |1 = o (ANTIZ 00 4 (250
EC.5)

where o3 is 0, evaluated at (T™,r*). Notice that the right-hand side of both conditions are the same so we

can formulate a third condition:

(1= ) fgan(r) (10 (BLEIZ00 ) o ()t ) (EC.7)

b (oo .

We first show that limgy_, . H —T* — A = oo by means of contradiction. Assuming that limy_, ., H —T* —

A < oo implies that limy ., T = co. Then, the right-hand side of (EC.5) approaches zero as H — co. But
the left-hand side is larger than zero so that (EC.5) cannot be satisfied for large enough H and we have
reached a contradiction.

Next, we show that limy_,., T* = co by contradiction. Assuming that limy ., T* < oo, (EC.5) implies
that limy_, ., 7* = co. We reach a contradiction in (EC.7) because the left-hand side is bounded and the
right-hand side is not.

Because we have established that limgy_,., 7 = 0o, (EC.7) implies limpg_, ., 7* = 00. In fact, (EC.7) implies

that
- [cu —on) [on () (10 (RO ) ) oy (2t )

+Cpn {as(T*) (1 -® (W)) toz¥ (Ofs(TaiﬂLOH

~KT*, (EC.8)

<
*

where K = ((ox¥(—po\/no/0x)/(¢ry/T0). The asymptotic equivalence follows due to limy_,o T* = oo and
limg_, o 7 = 00.

The rest of the proof has to consider the two cases ¢ — don(1 — 2px)pto/2 =0 and ¢ — don (1 — 2px)po/2 >0
separately.

Assume first that ¢ — o, (1 — 2pn)po/2 > 0. Combining (EC.6) and (EC.8), we obtain

K, + (0 8on (1~ 2px /2T ~ C(H T~ A>\/ T

and with further simplifications

AN e N NG
g (K%caon(mpmuo/m“H A>> '

From (EC.8) it follows

o (B2 Voxd(Viopo/ox) L )
' ( ¢ = don(1 —2px)po/2 H A)> ’

and we are done with the proof for the case ¢ — don(1 — 2pN)pto/2 > 0.
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Now, assume ¢ — don (1 — 2px) pho/2 = 0. Combining (EC.6) and (EC.8), we obtain

« noUgK
KCTNC(HiT A)\/(2nO+I(X(T*)2)3a

and with further simplifications

T ~ <\/7700X¢l((\2/§u0/ax) - A)) 1/3 |

From (EC.8) it follows

o~ (Kﬁaxéf’(\/ﬁouo/crx) CH - A)) 3 |

Cr
and we are done with the proof for the case ¢ — don(1 — 2pn)pho/2 = 0.

Using the asymptotic behaviour of T and r*, it is easy to show that
V'~ ((H = A) (1= pn)oo¥(—po/00) +pxnoo¥(po/0o)). O

C.5. Proofs for asymptotic results in section 3.6.2

Proof of Prop. 6 It is easy to check that limp ., P, = (/p with fixed patient pool and that

limy oo P,(T) = (/p with fixed horizon, where convergence is uniform on the bounded domain 0 < 7T <

Tnax. Similarly, of = Inp/((1 — pn)C) = limp_, o an = limy 0o an(T), and of = Isp/(pn¢ =limp_, o, ag =
limy o ag(T"). Consider first 71" > 0:
o () g () =te)
Oy Oz
g (@stho) g (as(T)+po
Oy Oz

o T _
g PP(T)‘ <(1 —pn) | P (aN'uO) — <aN()MO>‘
P 0z 0z

oo (255) -+ (2222

where the inequality uses o, < g9 and e P(T+A) < 1. Because U(-) is a bounded function in the domain,

Voo (T, r) = V(T,7)| = e P(T+8) 5 ’f) — PP(T)‘ <(1 —DN)

+ PN

<og

there is a constant C', independent of T and r, such that

<_
p
Because P,(T) converges uniformly to (/p, it follows that V(T,r) converges uniformly to V. (7T,r) when

Ve (Tor) = V(T,1)| < c' ppm‘ |

rT > 0. Consider now rT = 0:

|VOO(T’ T) - V(T,T)| = ‘%max{oa (1 _pN):U/O - INP/C; —PNHMo — ISP/C}

— P,(T)max{0, (1 —pn)po — In/P,(T), —pnpo — Is/P,(T)}

< % - Pp(T)‘ max{0, (1 —pn)po — Inp/¢, —pnpo — Isp/C}-
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Again, because P,(T') converges uniformly to (/p, it follows that V(T,r) converges uniformly to V. (T,r)
when 7T =0 and we are done proving that V(T,r) converges uniformly to V. (T,r) as P — co or H — oo.
Due to uniform convergence, it follows that limp_, ., Vg =limg_,., V55 = maxr . Voo (T, r). We cannot guar-
antee a unique maximiser of V., (T,r). However, uniform convergence also guarantees that, if a unique
maximiser (Tw,7s) = argmax,,, Vo (T,r) exists, then limp_, T3 = limy_ oo Tf; = T and limp_ 7 =

UMy o0 T = Feo- Thus, limp oo Qp =limpy 0o Qf = 70T /2. O
Appendix D: Additional analysis of response-adaptive extensions

D.1. Some special cases which allow fully sequential trials

The sequential version of the one-stage optimal trial design problem in section 2.5, for the case of a fixed rate
of recruitment r, was written in section 5.1 as having the objective function in (17). If we can show that this
problem is equivalent (after suitable reparameterization) to an existing fully sequential trial, then special
cases of the one-shot trials proposed in section 2.5 can be run as fully adaptive trials, at least for the case of
a fixed rate of recruitment. In a fully sequential trial, the decision to continue the trial or to stop sampling
is made after the outcome of each patient pair is observed, as for an optimal stopping time problem.

This section affirms that this can be done by reparameterizing (17) for several special cases to match
the model of Chick et al. (2017). For these special cases, then, we can allow the duration of the trial T
to be response adaptive to observed outcomes, for any given fixed rate of recruitment r > 0, with a simple
transformation of a few parameters. The scenarios which enable fully sequential trials here are aesthetically
linked to the two special cases for comparative statics noted in the last paragraph of section 3.5.

To this end, we recall the objective function of the fully sequential trial in Chick et al. (2017).

N et 5o Xn 1o_n(P,W —1I)
Vir) =Es [{; (1+p)t - } M (14 p)te>o(@+m) ] ' (EC.9)

Here, the policy 7 is a nonanticipative function which selects an action a, to either continue sampling, or to
stop, on the basis of prior knowledge and the ¢ samples observed so far, for t =0,1,2,...,Q. After stopping
and all data is observed, the new alternative is selected as best if P,W —1 > 0.

We first explore the differences between (17) and (EC.9) related to the fixed costs of the trial. The fixed
€ost Ceap(r) in (17) only affects the decision of running the trial or not, captured by action ag. Such decision
can also be made by computing the value of the optimal design with zero fixed costs, and then evaluating
whether it overcomes the fixed costs. Thus, fixed costs do not disturb the equivalence of the optimal trial
design once the decision to observe the first patient pair is taken, even though they do affect the optimal
choice of ag. We now explore equivalence of the sequential sampling models, assuming ag indicates the first
sample is to be observed, for several special cases.

All the special cases in this subsection assume the fixed pool of post-adoption population, P(T) = P, and
that the rate of recruitment is fixed. Preliminary results in this section were introduced in Alban et al. (2018).
This subsection corrects a misstatement from that paper for a special case below. The case of adapting the

rate of recruitment, rather than the number of patient pairs, is discussed in section 5.2.



ecl4

D.1.1. Current practice is standard treatment (px =0) When px =0, (17) becomes

V(ﬂ-) = _1Q>Occap(r) +E,

W) (1+p)as@r)

which is equivalent to (EC.9) by letting ¢’ =2¢ and I’ =

Qz‘:l Son X1 — 2(;] . [ Lo (P,W — Iy)

D.1.2. Forcing the decision to adopt one of the two technologies, undiscounted rewards When
the adoption decision is forced to be N or S with undiscounted rewards® (5= 0), we can use 1p—g =1 —1p_x

such that (17) becomes

V() = —1g>0Ceap(r) = pnPpo — Is + Ex

Q-1
> Gon(1=2pn) X141 — 2¢ + Lpox (PW — (INIS))]
t=0

If px < 1/2, then we can divide through by 1 — 2py and add the constant P,(Q/r)pnpo — Is without

changing the optimal 7. Thus, the optimal 7 maximises:

Q-1

P In— 1.
Z(SonXt+1_7+1’D N W — al S )
t=0 1 2pN

1—-2px 1-2pn

which is in the form of (EC.9) when we let ¢/ =2¢/(1—2pn), P’ =P/(1—2pn), and I' = (In — Is)/(1 — 2pn).

If px =1/2, the optimal 7 maximises

Q-1
ZQC+ 1D_N(PW_(IN_IS))‘| )

t=0
which is in the form of (EC.9) when 6/ =0, ¢/ =2¢, P’=P, and I' = Iy — Is.

D.1.3. No switching costs and undiscounted rewards When Iy = Is =0 and rewards are not
discounted (p = 0), then it is optimal to adopt N or S, and the transformation in Appendix D.1.2 is also

valid in this scenario.

D.1.4. No switching costs and pg=0 When Iy =I5 = o =0, whether rewards are discounted or
not, we obtain a special case of the above subsection that can additionally accommodate scenarios with
discounted rewards. We again use 1p—g=1—1p_n in (17) to obtain

Q-1
Z Oon(1—2pN) Xey1 —2¢ 1p_n(P,W)
= (1+0) (1+ p)ramo@*7

V(’]T) = _1Q>Occap +Eﬂ.

If pn < 1/2, then we can divide through by 1 — 2py and obtain the optimal 7 by solving (EC.9) with

¢ =2¢/(1-2pn), PP =P/(1—2pn), and I' = (Ix — Is)/(1 — 2pn). If px =1/2 we obtain the optimal 7 by

solving (EC.9) with 6/ =0, ¢ =2¢, P’=P, and I' =1y — Is.

D.2. A forward-looking heuristic to optimise the recruitment rate in a response-adaptive
design.

The idea of our heuristic is to use the one-shot design to inform the dynamic decisions by reevaluating the
one-shot solutions after a relevant amount of information is gathered in the spirit of (Branke et al. 2007,

Frazier et al. 2008). After recruiting patients for a fraction 1/B of the duration prescribed by the one-shot

8 Alban et al. (2018) incorrectly claim that this results is also valid with discounted rewards.
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design with the prescribed rate, we revisit the available data to adjust the recruitment rate and duration by
solving again the one-shot design, this time running for a fraction 1/(B — 1) of the newly prescribed duration
at the newly prescribed rate, given that there are B — 1 batches remaining. We continue in this manner, with
batch b+ 1 running for fraction 1/(B —b) of the remaining samples prescribed when solving at time 7,. We
now give a detailed explanation of the heuristic leading to the proposed algorithm in Table EC.2.

The one-shot decisions made by our heuristic are very similar to the analysis in section 3 with minor
differences in the objective and constraints because the dynamic decisions need to account for patient pairs
in the pipeline and different setup cost structure. Define the present expected net gain at time 7T given
information K, maximum recruitment rate 7, and patient pairs in the pipeline given by ¢, if the trial uses

recruitment rate r for an additional duration 7'

V(T D; K, T,7,q) = —(ceap (1) = eap(F))t = T, (T)7 + Son (T, (T)r/2) (1 — 2pn)E [W | K ] (EC.10)
e TTVR [1pon (1= pa) Py (T + T)W = Ix) + Lo=s(=px P (T + T)W —~ Is) | K, T,7,q].
Notice that (EC.10), unlike (5b), only accounts for additional costs of increasing recruitment rate and the

expectation is conditioned on having ¢ patient pairs in the pipeline. The analog analysis of section 3 yields

the following closed-form equation:

VT, K, T,7,q) = —(Ceap (7)) = Ceap(F)) T = T, (T)r) + Son (T, (T)r/2)(1 — 2px ) (EC.11)
+e’”(T+A)Pp(T+T)5Z {(1 —pn) W (O‘N(T;—T)_M> +pn U (W)} ,

where 6, =0%(Tr/2+ q(A))/(n(n+Tr/2+q(A))).

The algorithm in Table EC.2 shows how to use (EC.11) to make dynamic decisions using our forward-
looking heuristic. We present it for completeness to show how the one-shot value-based trial can be extended
in a natural way to batch sequential trials which adapt both the recruitment rate and duration of sampling.
We do not present numerical examples for this case, because the focus is on the one-shot trials, analysis and
extended numerical application above, and because adaptive durations for fixed rates have been discussed
by (Chick et al. 2017, Alban et al. 2018) and extended in section 5.1 above, and this groundwork lays the

work for future application-oriented batch sequential trials work.
Appendix E: Computation of CPCS and power

In section 3.5, we defined the CPCS as the conditional probability of correct selection of a technology for

adoption, given a specific value of W =w:
CPCS(w) =Pr(D* =D | W =w),

where D°7%¢ is the oracle’s adoption decision. In this section, we show how to compute it.
First of all, note that the optimal adoption decision depends on Zr,., which given W has the following

distribution:

Do | W~ (n0u0+rTW/2 2rTo2 ) .

no+rT/2 7 (2ng+rT)2
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Table EC.2 Heuristic for adapting recruitment rate and trial duration in B batches motivated by expected

value of information / knowledge gradient sampling approach.
1. Initialise: Set K to be the prior distribution for unknown W, 7 =0, 7 =0, ¢ =0.
2. For b=0,1,...,B — 1 batches of patient pairs.
(a) Find T™, r* to optimise (EC.11).
(b) Allocate samples for batch b+ 1 at rate r* for duration T*/(B — b).
(c¢) Update next decision time T < T +7T* /(B —b), the maximum rate 7 + max{7,r*}, the information
set K given prior and data observed while batch b4 1 samples were being allocated, the number

of patient pairs ¢ in pipeline at the end of sampling for batch b+ 1.

3. Wait for remaining outcomes to be observed, select best alternative D on the basis of all information.

If W > an(T), the oracle adoption decision is N. Thus, the CPCS simplifies to
CPCS(w) =Pr(Zr, > an(T) | W =w).

We can then compute CPCS(w) =1 — ®(Uy), where

U = 2o(an(T) = po) + 1T (an(T) — w)
N oxV2rT '

If w < —ag(T), the oracle’s adoption decision is S, and we obtain CPCS(w) =Pr(Zr, < —ag(T) |W =w) =

1—®(Us), where

1 210(as(T) + i) + 1 T(as(T) + )
oxV2rT '

Similarly, if —ag(T) < w < ax(T), the oracle adoption decision is M, and we obtain CPCS(w) = Pr(—ag(T) <

Zr, <an(T) | W =w)=o(Ux) + ®(Us) — 1.

The final closed-form expression of CPCS is then

].—(I)(U'N)7 w>aN(T)
CPCS(U})Z 1—(1)(Us>, ’w<—0és(T)
O(Un)+P(Us) — 1, —as(T) <w < an(T)

The computation of power requires the following definitions. Let « be the type I error and ¢, be the 1 —x
quantile of a standard normal distribution. A two-sided hypothesis test, rejects the (null) hypothesis that
the population mean W is zero if the sample average X = 2/(rT) Y./2/% X, is larger than g, ,20x//rT/2,
or smaller than —g,,20x/ m The power is the probability of rejection given W = w:

power(w) =Pr <X > —
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