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Health systems are placing increasing emphasis on improving the design and operation of clinical trials, with

a view to increasing the rate of innovation and adoption of health technologies in a ‘value-based’ world. We

present a value-based, Bayesian decision-theoretic model of a two-armed clinical trial and health technology

adoption decision in which the recruitment rate and duration of the recruitment period are optimised.

We account for a wide range of regulatory and practical contexts, addressing questions of how health is

valued (considering discounting, the horizon of an adoption decision, and the endogenisation of outcomes for

patients in the trial), and the state of clinical practice prior to commencement of the trial (we consider both

exploratory trials for pharmaceutical research and pragmatic trials which compare technologies currently in

use). We apply the model using research and treatment cost data from an existing trial and health technology

assessment and challenge traditional perceptions concerning the efficiency, length and knowledge that may

be gained from clinical research when trial teams are charged with delivering ‘value’ efficiently.

Key words : clinical trials; health technology assessment; cost-effectiveness; health economics; Bayesian

statistics; value of information; sample size.

The need to establish ‘value for money’ in health care systems is becoming increasingly impor-

tant, with service providers facing the dual challenges of rising demand for technologies and growing

pressure on their budgets. A particular concern surrounds the evaluation of the clinical efficacy,

effectiveness and cost-effectiveness of health technologies. With a large body of evidence suggest-

ing that there is a productivity crisis in biopharmaceutical R&D (Paul et al. 2014, DiMasi et al.

2016), and with an estimated US$100 billion of public funds invested in medical research world-

wide (Chakma et al. 2014), there is a growing focus on trying to improve what is often termed the

‘efficiency’ of clinical trial designs.

In this paper we present a value-based, Bayesian decision-theoretic model of a two-armed clini-

cal trial and health technology adoption decision, with the goal of improving the efficiency of the

health technology innovation process. This topic is timely and significant. In the United King-

dom, a National Institute for Health Research (NIHR)/Medical Research Council partnership has

launched the ‘Efficacy and Mechanism Evaluation’ programme. This seeks to fund studies with

‘novel methodological designs that deliver results more efficiently, reduce the study timeline, and
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maximise the knowledge gained’ (NIHR 2018). The NIHR is also funding projects which explicitly

focus on innovation in trial design, via its ‘Annual Efficient Studies’ funding calls (NIHR 2020). In

the United States, the National Institutes for Health (NIH) have launched a drive to improve the

quality and ‘efficiency, accountability and transparency’ in clinical research (Hudson et al. 2016).

The notion of efficiency in clinical research is not always clearly or consistently defined. One

common view is that greater efficiency implies that fewer patients are recruited to the trial, given

predefined type I and type II error rates for identifying a smallest clinically relevant difference.

Another perspective sees greater efficiency resulting from the way way trials operate, by improving

retention rates, making it easier to recruit sites, and so on. In this paper, we see the idea of

efficiency as being a way of designing a trial so as to maximise the value obtained for the patient

population who may benefit from treatment with the health technologies under consideration,

accounting for the costs of carrying out that trial, switching technologies and the costs of the

technologies themselves. This proposed notion is analogous to the well-known definition from supply

chains related to inefficiencies caused by double-marginalization. If a manufacturer and retailer

collaborate, the supply chain as a whole can retain more value than if each optimises separately.

Here, the unknown cost-effectiveness of treatments being compared takes the role of uncertainty,

the trial manager is the manufacturer, the technology adopter is the retailer, and collaboration is

the alignment of trial design decisions with technology adoption decisions.

Our Bayesian framework maximises the overall value of the clinical trial through the optimal

choices of the trial’s recruitment period, as well as its recruitment rate. It accounts for value accruing

to the full patient population who may benefit from the technologies under consideration: those

included in the trial, those available for inclusion in the trial but not recruited, those who require

treatment while endpoints for health benefit and outcome are followed up, and those in the post-

trial population. We account for trials in which there is mixed practice prior to commencement, and

we consider different regulatory contexts according to whether costs and rewards are discounted

and in the definition of the post trial ‘patient horizon’: one in which the number of patients affected

by the technology adoption decision is a fixed value, the other in which it is a function of the trial’s

duration. We provide structural results which help characterise solutions, give comparative statics

results for key performance measures for the trial with respect to disease prevalence and other

parameters, and asymptotic results which shed insight about trial size. We consider both one-shot

and sequential versions of the model, and apply it to a recent pragmatic trial carried out in the

United Kingdom’s National Health Service (Rangan et al. 2015, Handoll et al. 2015). Although

Bayesian in nature, the model provides frequentist power curves, in line with FDA (2019) guidance

regarding the communication of complex and innovative trial designs.
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In comparison with exploration-exploitation methods in other applications, several specific fea-

tures of the problem make it interesting. Firstly, the rate of recruitment of patients in a trial is

capped by the disease incidence and recruitment capacity may be costly and nonlinear. Hence the

problem is richer than one which involves simply selecting an optimal number of samples. Secondly,

the regulatory context influences the valuation of benefits accruing to the patient population and,

in turn, the expected value of information that is to be obtained from patients recruited to the

trial. Thirdly, there may be significant delays between the time a trial participant is treated and

the time that health outcomes and treatment costs are observed. By addressing these matters, the

model assists diverse groups of health care decision makers in addressing a range of questions: (1)

Clinical trial managers: What is the optimal recruitment rate for the trial? How many recruitment

sites should be opened? How long should the trial run? (2) Funders of trials: is the recruitment

rate and number of patients in the trial appropriate, given disease prevalence and potential health

benefits? If several trials are proposed, which have the greater expected health benefit? (3) Public

sector policy makers: How do the aforementioned regulatory issues affect the value of optimal trial

designs? Is a trial even worth running?

We review background literature in section 1, set up the model in section 2, and present struc-

tural results for the optimal solution, comparative statics, and asymptotic properties in section 3.

Section 4 illustrates how this framework can be applied in a practical trial setting. Section 5 shows

how the framework can be extended to allow the recruitment rate and sampling duration to be

adapted sequentially as outcomes are observed. Section 6 discusses our main results and presents

directions for future work. Appendices provide supplementary information.

1. Background literature

Claxton and Posnett (1996) criticise the classical approach to clinical trial design because it ignores

economic principles, such as the value of information and its cost of acquisition. They propose, as

an alternative, a decision-theoretic approach using rules from cost-effectiveness analysis. Draper

(2013) advocates for the use of a Bayesian decision-theoretic approach which uses a utility function

comprising clinically relevant outcomes, such as Quality Adjusted Life Years (QALYs). In line with

these initiatives, a range of Bayesian decision-theoretic models have been proposed as alternatives

to the classical approach (Claxton et al. 2000, Gittins and Pezeshk 2000, Willan and Pinto 2005,

Eckermann and Willan 2007, Griffin et al. 2010). These are based on a comparison of the cost of

carrying out research with the value that the additional research generates, using so-called ‘value

of information’ calculations (Raiffa and Schlaifer 1961, Brennan et al. 2007, Strong et al. 2015).

The majority of these decision-theoretic models concern one-shot trials. More recently, interest

has grown in approaches that are adaptive in nature (Pertile et al. 2014, Ahuja and Birge 2016,
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Villar et al. 2015a,b, Williamson et al. 2017, Chick et al. 2017, 2018). For example, Chick et al.

(2017) solve a Bayesian decision-theoretic model of a two arm clinical trial with delay in observing

the outcome for cost-effectiveness. Villar et al. (2015b) consider adaptive allocation to treatments

within a multiple-arm setting using the Gittins Index. The related Bayesian ranking and selection

literature has proposed various combinations of discounted or undiscounted rewards and online

and offline learning (Branke et al. 2007, Frazier et al. 2008, Ryzhov et al. 2012, Russo 2020). None

of these works have considered optimising the rate of recruitment, although this may be useful in

applications besides clinical trials, such as when the optimal treatment choice from an A/B test

has a reward which is highly time-sensitive.

Although it is natural for a Bayesian approach to maximise expected value, or equivalently

minimise expected regret, it would also be possible to consider frequentist approaches to expected

regret (e.g., see Chick and Wu 2005 for frequentist regret in ranking and selection, or the rich

literature on asymptotic regret in bandit problems (Bubeck and Cesa-Bianchi 2012)). It is also

possible to have Bayesian beta-bernoulli models in clinical trial design for sequential allocation in

0-1 trials (Villar et al. 2015a, Williamson et al. 2017). We choose a Bayesian, value-based framework

to be consistent with the UK’s National Institute for Health and Care Excellence (NICE) guidance

for uncertainty quantification for probabilistic sensitivity analysis for health technology assessments

(NICE 2012, Section 7).

There exists a range of other approaches to value in clinical trial design. Some consider changing

the balance of allocation to treatment arms as a function of the past history of allocations. Exam-

ples include Berry and Eick (1995) and Villar et al. (2015b). Others maintain balanced allocation,

but allow for the trial to stop at any stage of the process as a function of the accumulating evidence.

Examples include Berry and Ho (1988), Chick et al. (2017) and Jennison and Turnbull (1989).

Although our principal focus is on one-shot designs, we also provide extensions for adaptive trials,

The societal perspective to measuring value that is adopted in this work contrasts with the

Bayesian decision-theoretic contributions of Gittins and Pezeshk (2000) and Willan (2008), which

consider a trial’s optimal choice of sample size from the industry perspective. In these studies, the

terminal reward of the trial is a function of the probability that the technology is approved by a

regulator and the market share that it may gain. Jobjörnsson et al. (2016) consider the optimal

sample size and pricing decision for a new pharmaceutical product, given uncertainty over an

insurer’s willingness to pay and a prior distribution for efficacy. While contracting for incentive

alignment is an interesting question, our model focuses on the social welfare approach to value,

noting that contracting for public-private procurement is outside of scope.

Implementing a value-based trial in practice requires collecting cost and QALY data (or some

other health outcome which can be converted to money). While many clinical trials do not have
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QALYs as a primary endpoint, much less data on treatment costs, accounting for QALYs in clinical

trials has seen increasing attention (e.g., Angus et al. 2001, Ferguson et al. 2013, NICE 2014).

Costs and QALYs are also part of the rich tradition in operations research, outside of clinical trial

design, in resource planning for health interventions (Long et al. 2008, is one of many examples).

To the best of our knowledge, a model addressing scenarios with mixed clinical practice has never

been proposed in the literature. This is surprising, given that they are commonly encountered in

clinical research (the ProFHER trial (Handoll et al. 2015), Caesarean section versus natural birth

(Betrán et al. 2016), plates versus wires for certain fractures (Costa et al. 2014), etc.). Generalising

the model in this direction has wide-ranging implications for the way in-trial benefits are valued,

the way switching costs and patient horizons are handled when a technology adoption decision is

made, and the choice set that is available to the trial team. Further, the above contributions provide

limited analysis of the optimal value and trial length under differing mechanisms for how the post-

trial patient population is defined, a matter that we address in detail. Finally, we provide both

analytical comparative statics and numerical sensitivity analyses for some of the key parameters

in the model, lending insight into where we can claim definitive results for directional changes, as

well as applications which illustrate their absolute size.

The operations literature is also interested in the management of research and development

(R&D) projects, including for the pharmaceutical pipeline. Jacob and Kwak (2003) present a real

option approach to valuing such projects in response to changes in the health care economy and

scientific advances. Girotra et al. (2007) explore the value of portfolio management with Phase III

drug trials. These works call for operational flexibility and management of the pipeline process.

A control perspective on R&D investment decisions has been taken by a number of authors who

address uncertainties in costs and durations of clinical trial processes (Lucas Jr 1971, Schwartz

2004). Kouvelis et al. (2017) further link data from trials to a theoretical model of recruitment

rate optimisation decisions. Our work differs from these streams, in that we focus on uncertainties

related to the efficacy (and hence health benefits) of the technology adoption decision, rather than

on the uncertainties in the cost streams or patient accrual, and our focus is on optimising a rate

of recruitment and trial length.

2. Mathematical model of a value-based clinical trial

We present a Bayesian decision-theoretic model of a clinical trial comparing two health technologies

on cost-effectiveness grounds. The objective is to maximise the monetary value of health benefits

generated for the target population, minus the financial costs of carrying out trial and any costs

incurred in technology adoption. Below we discuss choice of decision variables, outcome measure,

objective function and the regulatory jurisdictions addressed by the model. A table of principal

notation is presented in Appendix A.
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2.1. Trial design and decision variables

A clinical trial compares two health technologies – N (‘new’) and S (‘standard’) – on cost-

effectiveness grounds. We consider trials in which no patients are being treated with technology N

prior to commissioning (exploratory trials), as well as trials in which there exists mixed practice

(pragmatic trials like ProFHER). Define pN ∈ [0,1/2] as the fraction of the eligible population

which is treated with technology N at the trial’s inception, so that the fraction 1− pN is treated

with technology S. Without loss of generality, assume that a greater proportion of patients receive

S (it is always possible to rename the two technologies to satisfy this constraint).

The trial design comprises three decision variables: the adoption decision rule, D, the recruitment

period duration, T , and the recruitment rate, r, which is assumed constant. D ∈ {S,N,M} is a

function that maps the state of information at the end of a trial to a treatment allocation decision

for all patients to be treated upon the trial’s conclusion. If D= S, all patients are treated with the

standard technology; if D = N, all patients are treated with the new technology; D = M implies

that patients are treated according to the mix that was in place prior to the trial’s inception.

The duration of the recruitment period, T , is constrained to lie in the interval [0, Tmax], where

factors such as regulatory or funding requirements might constrain Tmax. The recruitment rate, r,

is constrained to lie in [0, rmax]. The maximum permissible recruitment rate, rmax, is determined by

factors such as the availability of recruitment sites and the incidence rate of the condition, ζ ∈R>0.

A decision to make T = 0 or r= 0 means that the trial does not run and the adoption decision is

made using information available at the start of the trial alone.

Given these assumptions, the sample size of the trial is equal to rT . In contrast to the majority

of the literature, which focuses on sample size alone as the decision variable, we are able to study

the impact of both choice of trial length and recruitment rate on the total value generated by the

trial. We assume that patients are randomised to the two arms of the trial in pairs, and define

Q= Tr/2∈ [0,Qmax] as the number of recruited pairs, where Qmax ≤ Tmaxrmax/2.

If the trial runs, it is assumed that it incurs costs, ccap(r), which reflect set-up, recruitment site

and post-trial costs (such as those incurred in writing up and disseminating results). For example,

one model is ccap(r) = cfixed + crdr/xe where cfixed is the fixed cost, cr ≥ 0, and x patients per unit

time can be recruited per site. A model which accounts for an increasing cost of marginal capacity

is ccap(r) = cfixed + crr
3.

2.2. Value-based criterion for technology adoption decision

The value-based nature of the trial requires that we compare health outcomes and costs in a

common currency. We use the difference between the net monetary benefit of using treatment N

over S – the ‘incremental net monetary benefit’ (INMB) (Gold et al. 1996):

W = λ(EN−ES)− (CN−CS), (1)
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Figure 1 A fixed horizon trial. Each area represents the number of patients in the following classes: (1) recruited

to the trial; (2) not recruited to the trial during the recruitment period; (3) treated with current

practice during waiting period; (4) benefiting from the adoption decision.
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where Ej ∈ R and Cj ∈ R measure expected effectiveness (health or quality of life improvement)

and cost of technology j ∈ {N,S}, respectively. The parameter λ ∈R>0 is the monetary valuation

of one unit of effectiveness, defined by the regulatory body responsible for the study population.1

The value of W is not known a priori. Its prior distribution is assumed to be W ∼N (µ0, σ
2
0), as

might be informed by phase II trials or a pilot study. Let n0 = σ2
X/σ

2
0 be the effective sample size of

the prior distribution. Observations of INMB arrive with a fixed delay of ∆≥ 0 units of time after

treatment allocation and all outcomes must be observed before the adoption decision is made.

2.3. Objective function: expected net gain

The expected net gain of the trial is the difference between the expected values of: (1) running

the trial and treating post-trial patients with the technology recommended by its results and (2)

continuing to treat patients according to the practice in place before the trial commenced. Figure 1

shows how the expected net gain of the target population may be divided into four constituent

parts. The horizontal axis plots time, covering the horizon, [0,H], over which the trial operates

and its results are to be used for treating patients, for some H > ∆. The vertical axis plots the

incidence and recruitment rates of patients. Areas labelled are: (A) patients recruited to the trial;

(B) patients not recruited to the trial during the recruitment period; (C) patients in the ‘waiting

period’; (D) post-adoption patients treated with the recommended technology.

2.3.1. Patients recruited to the trial. Tr/2 pairs of patients are randomised during the

trial. The trial incurs a recruitment cost, c, for each patient enrolled. For patient pair i∈ 1, . . . ,Qmax,

we observe a noisy observation of INMB, defined as Xi. We assume that Xi |W
i.i.d.∼ N (W,σ2

X),

where σ2
X is the known sampling variance. The expected net gain for patients recruited to the

trial is (Tr/2)(1−2pN)E [W ]−cTr. The proportion receiving a different treatment under balanced

randomization, compared to what they would have received had the trial not taken place, is 1−2pN.

1 The UK’s National Institute for Health and Care Excellence may value one quality-adjusted life year at £20,000
(NICE 2013).
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2.3.2. Patients not participating in the trial during the recruitment period. During

the recruitment period, (ζ−r)T patients are not enrolled in the trial. We assume that these patients

continue being treated with the practice in place before the trial commenced. Hence they do not

affect the expected net gain (they incur no additional cost and their outcomes are the same as they

would have been had the trial not taken place).

2.3.3. Waiting period. The adoption decision is made at time T + ∆. During the period

[T,T + ∆], patients are treated according to the practice that was in place prior to the start of the

trial and so these patients do not contribute to the expected net gain.

2.3.4. Post-adoption patients. Define ID as the total cost of technology adoption. We

assume that IM = 0 because neither technology is adopted, and IN, IS ≥ 0. Let P be the num-

ber of post-adoption patients, assumed to be known at the start of the trial. If D = N, the

expected net gain for these patients is P (1 − pN)E [W ] − IN, where P (1 − pN) is the num-

ber of patients who, absent the trial, would be treated with technology S. If D = S, the

expected net gain is −PpNE [W ] − IS. If D = M, the expected net gain is zero because the

trial did not change practice. Thus the expected net gain for this portion of the population

is E [1D=N(P (1− pN)W − IN) + 1D=S(−PpNW − IS) | D, T, r ], where 1F is the indicator function,

equal to one if F is true and zero otherwise. We condition on D, T , and r to clarify that the

expectation depends on D after the outcomes from rT/2 pairwise allocations have been observed.

2.3.5. Expected net gain. Define the expected net gain of a trial design by V (T, r,D). If

the trial does not run, the post-adoption population is the entire population, and the expected net

gain is:

V (T,0,D) = V (0, r,D) =E [1D=N(P (1− pN)W − IN) + 1D=S(−PpNW − IS) | D, T, r ] . (2)

If the trial recruits at least one pair of patients, the expected net gain is the sum of the expected

net gains of the enrolled and post-adoption patients, minus the trial costs:

V (T, r,D) =− (ccap(r) + cTr)︸ ︷︷ ︸
trial cost

+ δon(Tr/2)(1− 2pN)E [W ]︸ ︷︷ ︸
trial participants

+E [1D=N(P (1− pN)W − IN) + 1D=S(−PpNW − IS) | D, T, r ]︸ ︷︷ ︸
post-adoption

.
(3)

Use of the indicator variable, δon, permits us to model ‘online learning’ (δon = 1, so that benefits to

trial participants are counted in the calculation of expected net gain) as well as ‘offline learning’

(δon = 0, so that benefits are not counted).
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2.4. The regulatory context

The above model already handles one important matter reflecting the regulatory context in which

the trial is conducted, namely online or offline learning. Online learning may be particularly relevant

in trials for orphan diseases. In addition to online learning, we extend the model to handle two

further matters concerned with the regulatory context: the size of the population that is affected

by the technology adoption decision and whether rewards are discounted or not.

2.4.1. Post-adoption population. We allow the number of post-adoption patients to depend

on the duration of the trial: P (T ), which we assume is not increasing in T . We focus our analysis

further on two possible cases motivated by potential scenarios in a health technology development:

1. There exists a fixed pool of patients, P (T ) = P .

2. There exists a fixed horizon, H ≥ Tmax + ∆, defined prior to the start of the trial and covering

both the trial and adoption horizons, so that P (T ) = ζ(H −T −1T>0∆).

Case 1 is motivated by regulatory regimes which grant exclusive marketisation rights for a

health technology for a defined period post-authorisation (see, e.g., FDA 2015), but we use it in

a more general sense to refer to situations in which there exists a fixed patient population to be

treated post-adoption (for example, when a regulator approves a health technology for a defined

period, prior to reviewing additional evidence). Case 2 is motivated by situations in which a patent

protection agreement operates from time 0 for a fixed time horizon H, during which the trial may

be run and the adoption decision implemented.2

2.4.2. Discounted expected net gain. The foregoing assumes that costs and benefits during

the trial are not discounted, an assumption which may be realistic for some jurisdictions but not

others. For example, discounting is not used in the design of ‘traditional’ clinical trials which use

statistical criteria to determine the sample size, whereas the UK’s NICE (2013) has recommended

an annual discount factor of 3.5% for health technology assessment decisions. Under continuous

time discounting at the rate ρ> 0, define the discounted recruitment period duration as T̃ρ(T ) and

the discounted post-adoption number of patients as Pρ(T ), under the assumption that the P (T )

patients arrive at a constant rate, ζ, over a duration of time P (T )/ζ:

T̃ρ(T ) =

∫ T

0

e−ρsds= ρ−1(1− e−ρT ); Pρ(T ) =

∫ P (T )/ζ

0

ζe−ρsds= (ζ/ρ)(1− e−ρP (T )/ζ), (4)

and T̃ρ(T ) = T and Pρ(T ) = P (T ) if ρ= 0.

2 Patent protection may be applied for at any time during the development process of a new drug (FDA 2015). Our
use of the term is more restrictive, in that the protection is assumed to apply over the interval [0,H].
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We can handle discounting by letting P (T ) = Pρ(T ) in (2) and (3):

V (T,0,D) = V (0, r,D) =E [1D=N(Pρ(0)(1− pN)W − IN) + 1D=S(−Pρ(0)pNW − IS) | D, T, r ] , (5a)

V (T, r,D) =−(ccap(r) + cT̃ρ(T )r) + δon(T̃ρ(T )r/2)(1− 2pN)E [W ]

+ e−ρ(T+∆)E [1D=N((1− pN)Pρ(T )W − IN) + 1D=S(−pNPρ(T )W − IS) | D, T, r] ,
(5b)

where (5b) applies when the trial runs (rT > 0).

2.5. One-shot optimal trial design problem

Our focal optimal value-based trial design problem is

V ∗ =max
T,r,D

V (T, r,D)

s.t. T ∈ [0, Tmax], r ∈ [0, rmax],
(6)

where V (T, r,D) is defined by (5a) when the trial does not run and is otherwise defined by (5b).

The expectations which determine V (T, r,D) are with respect to the prior distribution for W in

section 2.2 (which can be informed by prior pilot studies or expert opinion) and the likelihood for

the samples in section 2.3.1 which inform D. We refer to this problem as a ‘one-shot’ trial because

it fixes the trial parameters T, r at the start and does not vary them as the trial progresses. The

model is general, in the sense that it accounts for all regulatory context options in section 2.4.

3. Analysis of the one-shot optimal trial design problem

We first show that the optimal adoption decision rule is easily found. Then, we consider the

structural properties of T ∗ and r∗. Some mild assumptions guarantee the existence of a solution.

We then provide comparative statics and explore the asymptotics of the optimal solution.

3.1. Optimal adoption decision rule

Define ZTr as the posterior mean of W given that realisations of incremental net monetary benefit

for rT/2 pairwise allocations will be observed:

ZTr ≡E
[
W |X1, . . . ,XrT/2

]
.

Define σ2
Z = σ2

X(rT/2)/[n0(n0 + rT/2)]. Then it can be shown that (DeGroot 1970)

ZTr =
n0µ0 +

∑rT/2

i=1 Xi

n0 + rT/2
∼ N

(
µ0, σ

2
Z

)
, (7)

and W |ZTr ∼N (ZTr, σ
2
X/(n0 + rT/2)).

Thus, ZTr is a sufficient statistic for all the information obtained in the trial, and D∗ is a function

of ZTr instead of the sequence Xi of all observations.
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Figure 2 Predictive distribution for the posterior mean and regions where it is optimal to select N, S, or M.

Select standard (S) Select new (N)Select mix (M)

−αS(T ) µ0 αN(T )

slope =−pNPρ(T )

slope = (1− pN)Pρ(T )

ZTr

The optimal adoption decision rule maximises the benefits for the Pρ(T ) post-adoption patients:

D∗(ZTr) = arg max
D∈{M,N,S}

{0 , Pρ(T )(1− pN)ZTr− IN , −Pρ(T )pNZTr− IS },

where the terms inside the arg max operator are the post-adoption expected net gains for each of

M, N and S, respectively.

Let αN(T ) = IN/((1−pN)Pρ(T )) and αS(T ) = IS/(pNPρ(T )) be the expected per patient switching

costs given adoption of technology N or S, respectively. To avoid undefined expressions, we set

αS(T ) =

{
0, IS = 0
∞, pN = 0 or Pρ(T ) = 0;

αN(T ) =

{
0, IN = 0
∞, Pρ(T ) = 0.

The optimal adoption rule divides the open interval for posterior beliefs into three regions,

delineated by αN(T ) and αS(T ): if ZTr > αN(T ), it is optimal to adopt N; if ZTr <−αS(T ), it is

optimal to adopt S, otherwise it is optimal to continue with the current mix. We refer to αN(T )

and αS(T ) as ‘indifference points’, because one is indifferent between N and M when ZTr = αN(T ),

and one is indifferent between S and M when ZTr =−αS(T ). Figure 2 shows a distribution for ZTr

and the rewards for the optimal adoption decision for a prior mean lying between the indifference

points. The slopes of the linear reward functions are given by −pNPρ(T ) when S is adopted and

(1− pN)Pρ(T ) when N is adopted.

3.2. Simplified objective function

Given the optimal adoption decision, we now define, with some abuse of notation, the expected net

gain as a function of T and r: V (T, r) = V (T, r,D∗). Thus, (5b) simplifies to the following expression

by conditioning on ZTr, setting x+ = max{0, x}, and using the tower property of expectations:

V (T, r) =− (ccap(r) + cT̃ρ(T )r) + δon(T̃ρ(T )r/2)(1− 2pN)E [ZTr ]

+ e−ρ(T+∆)E
[
(Pρ(T )(1− pN)ZTr− IN)+ + (−Pρ(T )pNZTr− IS)+

]
.

(8)
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Define the normal linear loss function Ψ(z) ≡ E [ (Z − z)+ ] = φ(z)− z(1−Φ(z)), where Z is a

standard normal random variable with cumulative distribution function Φ and probability density

function φ. When Tr > 0, (8), and therefore (5b), can be computed as follows:

V (T, r) =− (ccap(r) + cT̃ρ(T )r) + δon(T̃ρ(T )r/2)(1− 2pN)µ0

+ e−ρ(T+∆)Pρ(T )σZ

[
(1− pN)Ψ

(
αN(T )−µ0

σZ

)
+ pNΨ

(
αS(T ) +µ0

σZ

)]
.

(9)

The probabilities of adopting N, S and M are, respectively, 1−Φ((αN(T )−µ0)/σZ), 1−Φ((αS(T )+

µ0)/σZ), and Φ((αN(T )−µ0)/σZ) + Φ((αS(T ) +µ0)/σZ)− 1. When rT = 0,

V (T, r) = max{0, (1− pN)Pρ(0)µ0− IN, −pNPρ(0)µ0− IS} (10)

In the remainder of this section, we focus the analysis to solving a simplified version of (6):

V ∗ =max
T,r

V (T, r)

s.t. T ∈ [0, Tmax], r ∈ [0, rmax],
(11)

3.3. Structural properties of the optimal trial design

The following proposition proves the existence of an optimal fixed sample size trial design under

two reasonable assumptions. Firstly, we assume that ccap(r) is non-decreasing, that is, additional

recruitment capacity is costly, and lower semi-continuous, a mathematical condition for the exis-

tence of a solution. This assumption is not restrictive because it accepts any continuous, increasing

function. Secondly, we assume that P (T ) is non-increasing, that is, the post-trial population does

not increase with a longer trial. To guarantee the existence of a solution, we assume that P (T ) is

bounded and upper semi-continuous. The two special cases (fixed patient pool and fixed horizon)

that were introduced in section 2.4.1 both satisfy these conditions, as does the example cost of

capacity model in section 2.1. The proof of the following proposition is presented in Appendix C.1.

Proposition 1. If ccap(r) is non-decreasing and lower semi-continuous, and P (T ) is non-

increasing, bounded, and upper semi-continuous, then an optimal solution (T ∗, r∗) to (11) exists.

A closed-form solution to (11) is not available, but first order conditions may be obtained (see

Appendix B). The function V (T, r) is not guaranteed to have a unique local optimum, so the global

optimum is found by starting a common optimisation algorithm at several random points.3

3 In our numerical experiments, we have not found more than two local optima for the product Tr.
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3.4. A taxonomy of value-based designs and their solutions

Table 1 presents a taxonomy of commonly encountered fixed sample size clinical trials which

may be solved using our model. We classify the trials as cases I–IV, according to whether the

recruitment site cost function, ccap, is constant and whether the trial incorporates discounting and

a fixed patient pool. For each case, Table 1 records the version of (11) which should be solved.

The following propositions show that, for cases I–III but not case IV, the problem reduces to the

optimal choice of a single variable: T or r or their product. These cases are useful for comparative

statics results in section 3.5.

3.4.1. Case I: constant costs, undiscounted rewards and fixed patient pool. Choose

the decision variables T and r so their product optimises the number of pairwise allocations, Q∗.

This gives some flexibility in selecting T as long as Q∗ is optimised.

Proposition 2. If ccap(r) = ccap, ρ = 0, P (T ) = P , then all members of the set S = {(T, r) ∈

[0, Tmax]× [0, rmax] : rT/2 =Q∗}, for some Q∗ that represents the optimal number of pairwise allo-

cations, are solutions of (11).

As a corollary of Prop. 2, the marginal benefit of an additional unit of recruitment for Case I

is exactly 0: an increase in r is accompanied by a proportional decrease in T to retain the same

optimal Q∗. This is because a postponement of rewards is costless from the perspective of both

marginal costs of recruitment and the benefit to the adopting population.

3.4.2. Case II: constant costs and discounted rewards and/or variable patient pool.

For such trials, an increase in the recruitment rate accrues more benefits to patients by permitting

an earlier adoption decision, without incurring additional cost. It is optimal to recruit as fast as

possible and to optimise over T .

Proposition 3. If ccap(r) = ccap, there is an optimal solution (T ∗, r∗) to (11) with r∗ = rmax:

V ∗ = max
T∈[0,Tmax]

V (T, rmax). (12)

3.4.3. Case III: nonconstant costs, undiscounted rewards and fixed patient pool.

The presence of a fixed patient pool and undiscounted rewards means there is no penalty for

recruiting later rather than earlier. Without loss of generality, it is optimal to run the trial for as

long as possible and optimise over the recruitment rate.

Proposition 4. If P (T ) = P , ρ= 0, there is an optimal solution (T ∗, r∗) to (11) with T ∗ = Tmax.

V ∗ = max
r∈[0,rmax]

V (Tmax, r). (13)
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Table 1 A taxonomy of value-based designs for commonly encountered fixed sample size clinical trials.

Undiscounted fixed patient pool Otherwise
Constant setup costs I. Optimise sample size II. Fix r∗ = rmax, optimise over T

(section 3.4.1, Proposition 2) (section 3.4.2, Proposition 3)

Otherwise III. Fix T ∗ = Tmax, optimise over r IV. Optimise over both r and T
(section 3.4.3, Proposition 4) (section 3.4.4)

3.4.4. Case IV: nonconstant costs and discounted rewards and/or fixed patient

pool. It necessary to optimise over both r and T to solve (11).

3.5. Comparative statics.

We now discuss comparative statics to assess how the optimal expected net gain V ∗ and the optimal

decision variables T ∗, r∗ and Q∗, depend on key parameters P , H, n0 and pN. These results are

summarised in Table 2.

The sensitivity of V ∗ to changes in a parameter b (one of P , H, n0 and pN) may be obtained

if we assume that the optimal values of the decision variables lie in the interior of the domain,

satisfying the relevant first order necessary conditions. By the envelope theorem:

dV ∗

db
=
∂V (a∗)

∂b
,

where a∗ =Q∗ for case I of section 3.4, T ∗ for case II, r∗ for case III and (T ∗, r∗) for case IV.

Comparative statics of the optimal values of Q∗, T ∗ and r∗ with respect to b may be obtained by

applying the implicit function theorem to the relevant first order necessary conditions evaluated

at the optimal values of the decision variables. For example, for a Case IV problem:

dT ∗

db
=

∣∣∣∣−VTb VTr−Vrb Vrr

∣∣∣∣
|H|

, (14)

where the denominator of (14) is the determinant of the Hessian for the problem, H, and is strictly

negative at an interior solution (a similar expression applies for the partial derivative of r∗ with

respect to b). Equation (14) simplifies to da∗/db=−[∂2V (a∗)/∂a∂b][∂2V (a∗)/∂a2]−1 for Cases I–

III. The denominator of each expression is strictly negative at an interior solution, so the problem

of signing the derivative of interest reduces to one of signing the numerator. In Appendix C.3, we

illustrate the algebra that leads to the results presented in this section.

Results for dV ∗/db are the same across cases I–IV: the maximised expected net gain of the

trial is strictly increasing in P and H and is strictly decreasing in n0. It can be positive, zero or

negative for pN, according to values taken by other parameters of the model. This latter result is

not surprising: an increase in pN increases the size of the population that benefits from adopting S

but, at the same time, decreases the size of the population that benefits from adopting N.
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Table 2 Comparative statics results for the value function and
decision variables, as a function of cases I-IV in section 3.4.

Value function Optimal choice variables
dV ∗/db da∗/db

Parameter b Cases I–IV Cases I–III Case IV

P ≥ 0 Q 01 Q 0

H ≥ 0 Q 01 Q 0

n0 ≤ 0 Q 02 Q 0

pN Q 0 Q 03 Q 0

1Strictly positive when αN(T ) = αS(T ) = 0.
2Strictly negative when n0 > rT ∗/4.
3∂a∗/∂pN = 0 when IN = IS = µ0 = 0, or IN = IS = 0 with

offline learning and fixed patient pool.

It is not possible to unambiguously sign the expressions for the optimal values of the decision

variables in any of the four cases. These results highlight some counterintuitive behaviour of the

decision variables for cases I–III in response to changes in the parameters of interest for which we

now provide intuition.

Firstly, ∂a∗/∂P (fixed patient pool) and ∂a∗/∂H (fixed horizon) may be positive or negative

because of two forces operating in opposite directions. Increasing the population affected by the

adoption decision forces a∗ upwards because each observation is more valuable. However, increasing

the population decreases αN(T ) and αS(T ) – the expected per patient switching costs – which

makes the adoption decision less costly, forcing a∗ downwards. When αN(T ) = αS(T ) = 0, the latter

force disappears and a∗ is increasing in P and H.

Secondly, ∂a∗/∂n0 is not always negative. When n0 ≥ r∗T ∗/4, a∗ is decreasing with n0 because

a larger effective sample size for the prior distribution requires fewer additional observations to

achieve the same degree of precision to make an adoption decision. For n0 < r
∗T ∗/4, an additional

force may change the sign of ∂a∗/∂n0. Intuitively, an increase in n0 means that we have more

confidence in our prior beliefs. Thus, to produce any changes in the adoption decision requires more

observations that contradict our prior beliefs. Mathematically, we show that ∂2σZ/∂T∂n0 can be

negative in the region where n0 < r
∗T ∗/4.

Finally, although ∂a∗/∂pN has no definitive sign, we point out two special cases in which

∂a∗/∂pN = 0 for any pN. The first is when IN = IS = µ0 = 0; the second is when IN = IS = 0 with

offline learning and fixed patient pool. Notice that the effect of pN on the optimal trial design is

highly dependent on IN and IS. We explore this interaction with numerical results in section 4.2.1.

3.6. Asymptotically large P (T )

We conclude this section by presenting results as the number of post-trial patients who benefit from

the adoption decision, P (T ), approaches infinity. Results are of methodological relevance because
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they permit us better to understand the effect of some parameters on the solution; they are of

practical relevance because trials often target a large population and the approximations can be

very accurate, as our application in section 4 shows.

3.6.1. Undiscounted rewards. We study the limiting behavior of V ∗ and Q∗ as P →∞ for

a fixed patient pool and as H →∞ for a fixed horizon. We study these limits while ignoring the

constraints T ≤ Tmax and r≤ rmax unless they are necessary for the existence of a solution to (11).

Prop. 5 presents this asymptotic behaviour for the case of undiscounted rewards (cases II and

IV are necessarily fixed horizon). It assumes that c− δon(1− 2pN)µ0/2 > 0; otherwise, the limits

often do not exist. It further assumes that ccap(r) = cfixed + crr where cr = 0 for cases I and II with

constant setup costs and where cr > 0 for cases III and IV with variable costs.

Proposition 5. Assume c− δon(1− 2pN)µ0/2 > 0, ρ = 0, and ccap(r) = cfixed + crr. Then, for

cases I (cr = 0) and III (cr > 0)

lim
P→∞

Q∗√
P

=

( √
n0σ2

Xφ(µ0/σ0)

4(c− δon(1− 2pN)µ0/2)

)1/2

; lim
P→∞

V ∗

P
= (1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0).

For cases II (cr = 0) and IV (cr > 0)

lim
H→∞

V ∗

ζ(H −∆)
= (1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0).

For case II, where cr = 0,

lim
H→∞

Q∗√
ζ(H −∆)

=

( √
n0σ2

Xφ(µ0/σ0)

4(c− δon(1− 2pN)µ0/2) + 4ζσ0(Ψ(µ0/σ0) + (1− pN)µ0/σ0)/rmax

)1/2

.

For case IV, where cr > 0,

lim
H→∞

Q∗√
ζ(H −∆)

=

( √
n0σ2

Xφ(µ0/σ0)

4(c− δon(1− 2pN)µ0/2)

)1/2

.

Appendix C.4 proves Prop. 5. The proofs introduce additional results on the asymptotics of T ∗

and r∗ that are particularly interesting for case IV as both H and incidence ζ grow without bound.

For a finite value of P (T ), asymptotic approximations to the optimal value of the decision variable

and maximised value function may be obtained by multiplying the right-hand side constants by

the relevant denominators in the left-hand side of Prop. 5. Denote with (T̂ , r̂) the asymptotic

approximations. The approximations are accurate when P (T̂ )σ0, which we may think of as the

standard deviation of the prior distribution for expected benefits for the post-trial population, is

much larger than µ0, IN, IS, and cr̂T̂ , and r̂T̂ is much larger than n0.

Prop. 5 provides three additional insights. First, the optimal sample size increases in the limit

of large P (T ) as the square root of P (fixed patient pool) and the square root H (fixed horizon).
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Second, both the fixed patient pool and fixed horizon models attain the same expected net gain

in the limit. Finally, the switching costs IN and IS do not appear in these propositions and can be

ignored if P (T ) is large enough.

3.6.2. Discounted rewards. We now turn to the case of a positive discount rate, ρ> 0. This

is only applicable to cases II and IV (because cases I and III require undiscounted rewards). We

denote with subscripts the adoption decision type. For instance, VH(T, r) refers to the expected

net gain with fixed horizon, while VP(T, r) refers to the expected net gain with fixed patient pool.

Unlike the undiscounted rewards asymptotic results, V ∗, T ∗, r∗, and Q∗ do not diverge in the limit

of large P (T ). Therefore, the results here take a completely different form. Results are proven in

Appendix C.5.

It is easy to check that limP→∞Pρ = ζ/ρ with fixed patient pool, and limH→∞Pρ(T ) = ζ/ρ

with fixed horizon. Define similarly α′N = limP→∞αN = limH→∞αN(T ) = INρ/((1−pN)ζ), and α′S =

limP→∞αS = limH→∞αS(T ) = ISρ/(pNζ). Prop. 6 states that V (T, r) converges to the following

expression with both fixed patient pool and fixed horizon, which is obtained by substituting Pρ(T )

with ζ/ρ, αN(T ) with α′N, and αS(T ) with α′S in (9) and (10):

V∞(T, r) =


−(ccap(r) + crT̃ρ(T )) + δon(rT̃ρ(T )/2)(1− 2pN)µ0

+ ζe−ρ(T+∆)σZ
ρ

[
(1− pN)Ψ

(
α′N−µ0

σZ

)
+ pNΨ

(
α′S+µ0

σZ

)]
, if rT > 0

max{0, (1− pN)ζµ0/ρ− IN, −pNζµ0/ρ− IS}, if rT = 0.

(15)

Proposition 6. If ρ > 0, then VP(T, r) (as P →∞) and VH(T, r) (as H →∞) converge uni-

formly to V∞(T, r) on the compact domain {(T, r) : 0≤ T ≤ Tmax,0≤ r≤ rmax} and

lim
P→∞

V ∗P = lim
H→∞

V ∗H = max
0≤T≤Tmax
0≤r≤rmax

V∞(T, r).

In addition, if (T∞, r∞) = arg maxT,r V∞(T, r) is unique, then limP→∞ T
∗
P = limH→∞ T

∗
H = T∞,

limP→∞ r
∗
P = limH→∞ r

∗
H = r∞, and limP→∞Q

∗
P = limH→∞Q

∗
H = r∞T∞/2.

In summary, for finite but large P (T ), we can approximate (11) with

max
T,r

V∞(T, r)

s.t. T ∈ [0, Tmax], r ∈ [0, rmax].
(16)

The function V∞(T, r) is equivalent to the discounted fixed patient pool model with Pρ = ζ/ρ. Thus,

all the previous results related to discounted fixed patient pool are also valid when solving (16).

Both the fixed patient pool and fixed horizon models converge to the same function and maximisers.

However, we find in numerical examples in section 4.2.1 that fixed patient pool converges faster

than fixed horizon.
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4. Application to the ProFHER pragmatic trial

We apply our model to data from the ProFHER pragmatic trial (Rangan et al. 2015, Handoll

et al. 2015, Corbacho et al. 2016) using a series of numerical experiments. The application is

illustrative and is not intended to advocate for a given technology decision. The ProFHER trial

was a multicentre, randomised clinical trial conducted in the UK National Health Service (NHS)

which investigated the use of surgery versus nonsurgical intervention (sling) to treat patients with

a displaced proximal humeral fracture. Over a period of approximately two and a half years, 250

patients across 32 NHS hospitals were randomised, on an equal basis, to the two arms of the trial.

Follow-up of both the primary endpoint (the Oxford Shoulder Score) and the cost-effectiveness

endpoints (QALYs for health outcomes, using the EQ-5D-3L questionnaire, together with treatment

and rehabilitation costs) took place after six, twelve, and 24 months. Results suggested there was

no difference between surgery and sling in terms of effectiveness, but that surgery cost, on average,

approximately £1,800 more than sling. Surgery was therefore deemed to be neither more effective,

nor more cost-effective, than sling.

We assess the performance of the model using expected net gain, the optimal recruitment rate,

r∗, the duration of the optimal recruitment period, T ∗, and the optimal number of pairwise obser-

vations, Q∗ = r∗T ∗/2. We consider how these metrics are affected by regulatory concerns such as

the post-adoption population and the discount factor. We also consider two probabilistic mea-

sures. The first is based on Bayesian principles and we refer to it as the ‘conditional probability of

correct selection’ (CPCS). CPCS is defined as the probability of adopting the correct technology,

given a specific value of W . Let Dorac be the ‘oracle’ adoption decision that selects the technology

with the highest benefits for the patients post-trial, knowing the true value of W a priori. Then

CPCS(w) = Pr(D∗ =Dorac |W =w). The probability of correct selection, PCS =E [CPCS(W ) ], is

a more commonly used measure, but we use CPCS for ease of comparison with the next measure.

The second probabilistic measure, which we call ‘power’, is akin to the frequentist concept of

the power of a hypothesis test, the probability of rejecting the null hypothesis that W = 0, given

W = w, in a two-tailed test at the 5% significance level. We plot power curves which show the

probability that a 95% CI for the unknown mean does not contain zero, as a function of w.

CPCS and power quantify the probability of correctly adopting a technology, but they differ

in two respects. Firstly, CPCS uses prior information, while power considers only the samples

collected during the trial. Secondly, CPCS makes use of the optimal adoption decision according to

our models, while the power calculations assume a rejection region that guarantees a type I error

probability. Further details of the computation of CPCS and power are given in Appendix E.
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4.1. Parameter values

The analysis presented here is based primarily on the parameter estimates reported in Forster

et al. (2019, Table 1), who estimated parameters for the ProFHER trial by referencing its main

publications and consulting with coauthors from the trial. Define surgery as technology N and

sling as technology S. We consider the case of offline learning (δon = 0) and set pN = 0.39, µ0 = £0,

n0 = 2, and σX = £4,400. We consider the cases of both fixed patient pool and fixed horizon, with

parameters H = 15 years, ∆ = 1 year, ζ = 7,000/year, so that P = ζH = 105,000. Our choice of

H = 15 differs from the choice H = 6 in Forster et al. (2019) and reflects the fact that gains from

an adoption decision are likely acquired beyond a period of 6 years.

Following Forster et al. (2019), we set IN = £0, IS = £0, c = £2,040 and fix the recruitment

rate to be ř = 94patients/year. Forster et al. (2019) did not model site-specific setup costs,

which we handle as follows. We assume a setup cost function of the form: ccap(r) = cfixed + crr.

We assume that half of the setup costs of the trial were fixed and the other half represent

marginal costs, obtaining the following estimates: cfixed = ccap(ř)/2 = £480,000; cr = ccap(ř)/2/ř=

£5,080per patient per year. Finally, we let ρ= 3.44%/year, equivalent to the 3.5% annual discount

rate recommended by NICE (2013) and used in Corbacho et al. (2016). We refer to analysis based

on these parameter values as the ‘base case’ analysis.

4.2. Numerical experiments

In section 4.2.1, we fix the recruitment rate at ř= 94patients/year and we optimise the recruitment

duration, considering both undiscounted and discounted rewards. In section 4.2.2, we optimise

both the recruitment rate and duration. For clarity of exposition, we use subscripts to denote the

adoption decision type. For instance, V ∗H and V ∗P refer to the maximum expected net gain for fixed

horizon and fixed patient pool, respectively.

Inspection of (9) shows that, when µ0 = 0, online and offline learning have the same optimal one-

shot design. Hence, given our assumption that µ0 = 0, results presented here are equally applicable

to the cases of online and offline learning. The optimal design can differ for online and offline when

µ0 6= 0 or when a trial is sequential (see section 5).

4.2.1. Fixed recruitment rate (ř = 94/year), optimal choice of recruitment period

duration, T . Figure 3 shows the expected net gain as a function of the duration of the recruitment

period, T , measured in months, when the recruitment rate is fixed (left subfigure: fixed horizon;

right subfigure: fixed patient pool). The base case is represented by the dashed line and the undis-

counted version of the base case by the continuous line. T ∗ is marked with a circle or square. The

duration of the ProFHER trial itself is marked with a vertical dotted line.
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Figure 3 The expected net gain versus the recruitment period duration for the ProFHER application with fixed

horizon (left), and fixed patient pool (right).
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We point out two important observations. Firstly, both the maximum expected net gain of the

trial and the optimal recruitment period duration are highly dependent on the adoption decision

type. In this example, the expected net gain is approximately 10% higher for fixed patient pool

and the optimal duration of the recruitment period is over 1.6 times larger than for fixed horizon.

Secondly, the expected net gain function is more sensitive to changes in T in the fixed horizon

case than the fixed patient pool case: extending the length of the trial by recruiting more patients

reduces the size of the population to benefit in the fixed horizon case, but not in the fixed patient

pool case. This result holds more strongly when rewards are not discounted.

Sensitivity to the size of the post-trial population, P (T ). Figure 4 shows how the optimal number

of pairwise allocations increases as a function of H (left subfigure, for the fixed horizon case) and

P (right subfigure, for the fixed patient pool case). Plotted with dotted lines are the asymptotic

approximations that were derived in section 3.6. Horizontal dotted lines correspond to the approx-

imations with discounted rewards, increasing dotted lines to those without discounted rewards.

The approximations with undiscounted rewards are close to the actual values in the range plotted,

with a better fit for fixed patient pool. This is due to IN = IS = µ0 = 0, and P (T ∗)σ0� cr. The

approximations for discounted rewards are accurate for fixed patient pool, but the range of values

of H for fixed horizon is not large enough.

Figure 5 presents the CPCS and power curves for the optimal recruitment duration in the base

case and a version in which the post-trial population (H and P ) is doubled. The vertical lines

represent the smallest relevant difference for the frequentist sample size calculations.4 Because

4 The sample size of the ProFHER trial was based on setting a type I error probability of α = 0.05, power of 0.8,
and a specified smallest clinically relevant difference for the primary outcome. The number of pairwise allocations is
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Figure 4 The optimal number of pairwise allocations increases with H for fixed horizon (left) and with P for

fixed patient pool (right) in the ProFHER application.
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IN = IS = £0 (so that αN(T ) = αS(T ) = 0), it is almost never optimal to choose D∗ = M. This means

that the CPCS has a kink at w= 0, whereas it will have a kink at w= αN(T ) and w=−αS(T ) when

αN(T ) 6= 0 and αS(T ) 6= 0. Both CPCS and power are higher for a fixed patient pool compared to

fixed horizon in this example.

Figure 5 shows that, for the application presented here, at the optimal T , the CPCS beyond

the smallest relevant difference is high (i.e. it is above 0.87 for fixed horizon and above 0.93 for

fixed patient pool). According to the CPCS, making the correct selection with high probability

for the given smallest relevant difference is worth the expenditure in a sufficiently long trial. The

power plot shows a completely different story: at the optimal T , the power for the smallest relevant

difference is below 0.22 for fixed horizon, and below 0.32 for fixed patient pool. This illustrates why

the frequentist decision rule based on the type I error probability of 0.05 can lead health technology

adoption decisions which do not maximise value, as argued by Claxton (1999): maximising the

trial’s value, as defined in (11), does not necessarily gather enough information to satisfy widely

acknowledged standards in trial design.5 It might also gather more than enough.

Sensitivity to the fraction of patients on the new technology, pN. When IN = IS = µ0 = 0, pN has

no effect on the expected net gain or optimal trial length (see section 3.5). Here we consider the

given by n= σ2
X(qα/2 + qβ)2/δ2, where β is the type II error probability, δ is the smallest relevant difference, and qx

is the 1− x quantile of a standard normal random variable (Lachin 1981). The smallest relevant difference in terms
of INMB that equates the sample size calculations of the actual trial is £1105.

5 The difference in the CPCS and power when the time horizon is doubled illustrates another interesting feature of
our model. For fixed horizon, the increase in the number of pairwise allocations is 13 (30%). This represents a large
increase in pairwise allocations, but the maximum increase in the CPCS is only about 3%. This emphasises the point
that, although the increase in the CPCS is not very large, it represents a large improvement in the expected benefits
to patients.
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Figure 5 CPCS (left) and power (right) curves for the ProFHER application with fixed horizon and fixed patient

pool.
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Figure 6 The effect of pN on the optimal expected net gain and number of pairwise allocations is small for low

switching costs in the ProFHER application.
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cases of IN = IS = £10Mill and IN = IS = £100Mill. Figure 6 shows that, for the fixed horizon,

changes in pN have a negligible effect on Q∗ for IN = IS = £10Mill and they have a small effect for

IN = IS = £100Mill. V ∗ is more sensitive to changes in pN, especially at small values, and more so

when the switching costs are high. For fixed patient pool, Q∗ is sensitive to pN for large switching

costs. V ∗ is sensitive to pN, especially at small values.

4.2.2. Optimal choice of recruitment period duration, T and recruitment rate, r.

We relax the assumption of a fixed recruitment rate and optimise over both T and r. We do not

present the case of undiscounted fixed patient pool because it requires optimization of a single
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Figure 7 Marginal value and cost of the recruitment rate showing the optimal levels for three versions of the

model.
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decision variable (it falls under case III in section 3.4). Figure 7 plots the marginal value of the

trial’s recruitment rate, mvr, computed as the derivative of V (T ∗, r) excluding setup costs with

respect to r, at the optimal choice of trial duration, T ∗, together with the constant marginal cost,

cr, as a function of r. The intersection of marginal value and marginal cost functions corresponds

to the optimal recruitment rate: 22.6patients/month for fixed patient pool, 30.5 for fixed horizon,

and 34.0 for undiscounted fixed horizon. This corresponds to between three and five times the

recruitment rate used in the ProFHER trial itself (ř = 7.8patients/month). The corresponding

optimal recruitment period durations, T ∗, are 5.1months (57 patient pairs), 2.7months (42 patient

pairs), and 2.9months (50 patient pairs).

Figure 7 can assist a trial manager with the decision about whether or not to open an additional

site. At the actual recruitment rate of the ProFHER trial (ř= 7.8patients/month), Figure 7 shows

that the marginal value of increasing r exceeds the marginal cost by £440,000 per additional recruit

per month for fixed horizon and £292,000 for fixed patient pool. A trial manager charged with

maximising the value of the trial can think of these marginal values as representing the maximum

willingness to pay (WTP) for an additional unit of recruitment per month and compare them with

the cost of opening an additional site. It is optimal to open an additional site if the cost of doing

so is lower than the WTP.

Sensitivity to changing the trial horizon. For ease of exposition, we fix P = ζH and analyse the

effect of a change in H for both fixed horizon and fixed patient pool. Figure 8 presents the results

for the optimal number of pairwise allocations, recruitment rate, and recruitment duration, along

with the appropriate asymptotic approximations derived in section 3.6. Similar to Figure 4, the
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Figure 8 Optimal number of pairwise allocations (left), recruitment rate (middle), and recruitment duration

(right) as a function of the time horizon.
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optimal number of pairwise allocations is increasing in H. The more interesting result is how the

additional patients are obtained in terms of T and r. The optimal recruitment rate is increasing for

both fixed horizon and fixed patient pool. However, the optimal recruitment duration is increasing

for fixed horizon but decreasing for fixed patient pool: T ∗H approaches the asymptote from below,

while T ∗P approaches it from above.6

4.3. Optimizing the recruitment rate for convex increasing setup costs

The analysis so far has assumed that the trial’s setup cost function is linear in the recruitment

rate. In practice, it is likely that decreasing returns to scale operate: opening new sites is likely to

become increasingly difficult and the recruitment rate of new sites will be smaller if more productive

ones are opened earlier. While the cost function may not be known a priori, a reasonable estimate

of it may be made based on site-specific factors such past experience with setup costs, clinical

investigators, incidence rates and so on.

Using the recruitment data from the ProFHER study, together with some additional assump-

tions, we estimate the setup cost function, ccap(r), and compute the optimal trial design. Handoll

et al. (2015, Fig. 5, page 37) report the number of patients recruited at each site. For illustrative

purposes, we assume that the cost of opening each site has the same cost, but that the recruitment

rates of the sites vary.

Given the assumptions made for the application, the cost of opening each of the 35 sites was

about £13,700.7 Assuming the sites are opened from the most productive (highest recruitment

6 The asymptotic approximation for the case of fixed horizon, undiscounted rewards, fits the actual optimal values
poorly because the marginal cost of sampling, c, is much smaller than the marginal cost recruitment rate, cr. In fact,
the approximation that assumes c− δon(1− 2pN)µ0/2 = 0 in Lemma EC.4 of the appendix fits the optimal values
much better in the range of values considered here.

7 The cost of opening sites for oncology trials is estimated at $20,000-$30,000 (Fassbender 2016).
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Figure 9 Cost of recruitment rate assuming a constant variable cost per site (left) and the corresponding marginal

cost of recruitment rate with the WTP for an additional unit of recruitment (right)
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rate) to least productive, the left panel of Figure 9 presents the variable cost of recruitment rate

with the best fit (minimum mean squared error) function of the form f(x) = αxβ. The estimated

setup cost function is ccap(r) = 480,000 + 766r3.06, so that the marginal cost of a unit increase in

recruitment is proportional to r2.06.

The right panel of Figure 9 plots this marginal cost function against the marginal value functions.

The optimal recruitment rates are 9.3/month for fixed patient pool, 10.5/month for discounted

fixed horizon, and 11.0/month for undiscounted fixed horizon. The optimal recruitment rates are

higher than the actual recruitment rate. However, compared with the results in 4.2.2, the difference

between the optimal recruitment rate and the actual trial is much smaller. The corresponding

optimal durations are 8.1 months (38 patient pairs), 4.7 months (25 patient pairs), and 5.2 months

(28 patient pairs), which are much smaller than the 125 patient pairs enrolled in the actual trial.

5. Analysis of response adaptive extensions

The one-shot design does not permit interim analysis of the data as it accumulates. Here we consider

two extensions which enable the trial to be extended, or shortened, according to interim evidence.

We consider how to adapt fully the duration of the recruitment period, holding the recruitment rate

fixed. We also consider how to adapt both the recruitment rate and recruitment period duration,

taking into account additional costs that such a design may incur.

5.1. Fully response adaptive trial with a fixed recruitment rate

For some special cases, parameter transformation may be used to obtain a version of the one-shot

design which fits the model of sequential experimentation proposed by Chick et al. (2017), a design
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which assumed pN = 0. We fix the recruitment rate and define decision epochs t= 0, . . . ,Qmax− 1.

At each decision epoch, measurements of health outcome and treatment cost are observed (with

appropriate delay) for a pair of patients randomised to each arm of the trial. An action at ∈ {0,1}
is made to continue sampling (at = 1) or stop sampling (at = 0). Once recruitment has stopped, we

observe the outcomes of patients in the ‘pipeline’ – those who have been randomised, but whose

outcomes have yet to be observed – prior to making the adoption decision. A policy, π, maps

available knowledge (prior information, plus acquired data) to an action at each decision epoch.

Let Eπ [ · ] denote the expectation induced by policy π. If a0 = 0, the trial does not run and the

adoption decision is made immediately, based on the prior information alone.

The model in section 2 assumes that T and r are continuous, whereas the decision epochs are

discrete. We transform the model into a discrete time version by defining the following parameters:

τ = dr∆/2e is the number of patient pairs enrolled in the trial during the follow-up period of length

∆; ρ̃= e2ρ/r−1 is the discrete discount rate per patient pair. Given this setup, Q∈ {0,1, . . . ,Qmax}
and the expected net gain for the sequential trial is:

V (π) =−1Q>0ccap(r) +Eπ

[
Q−1∑
t=0

δon(1− 2pN)Xt+1− 2c

(1 + ρ̃)t

]

+Eπ
[

1D=N((1− pN)Pρ(2Q/r)W − IN) + 1D=S(−pNPρ(2Q/r)W − IS)

(1 + ρ̃)1Q>0(Q+τ)

]
.

(17)

An optimal sequential trial design is a policy π∗ that maximises V (π).

If we assume a fixed patient pool (P (T ) = P ), we may identify four special cases which permit

this problem to be stated and solved using the methods of Chick et al. (2017): (1) current practice

is one treatment only (pN = 0); (2) rewards are undiscounted and one of the two technologies must

be adopted (ρ̃= 0 and D ∈ {N,S}); (3) rewards are undiscounted and there are no switching costs

(ρ̃ = 0, IN = IS = 0); (4) there are no switching costs and the prior mean is equal to zero, but

rewards need not be discounted (ρ̃≥ 0, IN = IS = µ0 = 0). Appendix D provides full details. It also

corrects a misstatement in Alban et al. (2018), who presented preliminary analysis of these cases.

The scenarios which enable fully sequential trials here are aesthetically linked to the two special

cases for comparative statics noted in the last paragraph of section 3.5.

5.2. Response adaptive recruitment rate and duration

There may be added value in making the recruitment rate a ‘response adaptive’ decision variable.

For example, for fixed horizon trials which report promising initial data, it might be beneficial to

learn more quickly by increasing the rate at which patients enter the trial. Changing the recruitment

rate mid-trial might be costly, however. For example, it might entail additional work to open new

sites or train up personnel. We present a block sequential approach, in which a fixed and finite

number of decision points (interim analyses) are available for adapting the recruitment rate.
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Figure 10 Timeline of decisions and information.
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5.2.1. Decision variables and dynamic programming formulation. Let the trial pro-

ceed in a sequence of up to B stages, each of which commences with an interim look at the data.

B is an exogenous parameter whose value is fixed prior to the start of the trial. At the beginning

of each stage, a recruitment rate and duration are selected for the next batch of patients, as a

function of the information accumulated. This process is repeated until the Bth stage, where the

data from the pipeline patients is observed after the usual delay, and a technology is adopted.

Figure 10 shows a timeline for the trial. Let b = 0,1,2, . . . ,B − 1 index decision points, where

the batch duration, Tb+1, and batch recruitment rate, rb+1, for the b+ 1st batch are selected on

the basis of information obtained thus far. The number of patient pairs recruited in batch b+ 1 is

Tb+1rb+1/2. If Tb+1 = 0, the trial stops, so that Ti, ri for i > b+ 1 are set to 0.

At the end of the bth batch, for b= 1,2, . . . ,B, the elapsed time is Tb =
∑b

i=1 Ti, and the maximum

rate of recruitment to that time is r̄b = max{ri : i = 1,2, . . . , b}. Define T0 = 0, r̄0 = 0, and let

K0 = (µ0, n0) denote the prior information set. The information set KTb = (µTb , nTb) at the end of

the bth batch is computed as a function of the information set at the prior batch KTb−1
and the

sample average of the n̄b observations, X̄b, observed during the bth batch. When recruitment ends,

the adoption decision is taken at time TB + ∆, with information set KTB+∆.

To keep track of the number of patients in the pipeline, define qTb(T) as the number of patient

pairs in the pipeline at time Tb, whose outcomes will be observed within duration T. The total

number of patients in the pipeline is thus qTb(∆). The function qTb is a piecewise linear function of

the recruitment rates and durations of batches to that time.

We assume the trial incurs the cost (ccap(rb+1)− ccap(r̄b−1))+ at decision point b for selecting

recruitment rate rb+1. This assumes that a non-zero cost is incurred if and only if the recruitment

rate reaches a new maximum.

Define Vb(K,T , r̄, q), b= 0,1, . . . ,B, as the value-to-go functions for the information set K, time

since the start of the trial T , maximum recruitment rate to date r̄, and number of patient pairs

in the pipeline q. The terminal reward is the expected health outcomes for the post-adoption

population. The dynamic programming formulation of our block sequential trial problem is

VB(K,T , r̄, q) = e−ρ∆1T>0E
[
1D=N((1− pN)Pρ(T )W − IN) + 1D=S(−pNPρ(T )W − IS)

∣∣K ] ,
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Vb(K,T , r̄, q) = max
0≤T≤Tmax−T

0≤r≤rmax

−(ccap(r)− ccap(r̄))+− cT̃ρ(T )r+ δon(1− 2pN)T̃ρ(T )rE [W |K ]/2 (18)

+ e−ρTE
[
Vb+1(U(K,X̄, n̄b+1),T +T,max{r̄, r}, Ũ(q,T, r))

∣∣K ] ,
where the expectation is taken over the variables W and X̄. Recall that X̄b+1 |W ∼N (W,σ2

X/n̄b+1)

and W | KTb ∼ N (µTb , σ
2
X/nTb), where nTb is the effective number of samples that have been

observed until Tb, and n̄b+1 is the number of samples observed in batch b+ 1 and is computable

from information at time Tb as well as T and r. Thus, nTb+1
= nTb + n̄b+1.

The terminal reward function, VB, is discounted only if the trial runs, and accounts for the

optimal adoption decision after samples have arrived with delay. The function U maps a prior

distribution KTb , sample mean X̄b+1 and number of samples n̄b+1 to a posterior distribution using

Bayes’ rule. The function Ũ outputs qTb+1
given qTb , batch b + 1 sampling rate rb+1 and dura-

tion Tb+1. Through backward induction in (18) we can obtain the expected net gain of the trial

V0(K0,0,0,0). The state space of this model is large and obtaining an exact solution using back-

ward induction is difficult owing to the curse of dimensionality. In Appendix D.2 we propose a

forward-looking heuristic to find a policy with large expected net gain.

6. Discussion and conclusion

Innovating the design of clinical research has high priority across many jurisdictions. In the United

States, the NIH’s recent initiative to increase efficiency, accountability and transparency in clinical

trials covers a wide range of areas, running from improved training for investigators through to

reducing delays (Hudson et al. 2016). A similar exercise is being undertaken in Europe, where the

European Union will introduce the ‘Clinical Trial Regulation’ (European Union 2014), which seeks

to harmonise the process of assessment and supervision of trials across the nation states, with the

aim of increasing their transparency and efficiency. And in the United Kingdom, the NIHR is fund-

ing a range of studies which have novel methodological designs that aim to deliver research results

with greater efficiency. In part, these initiatives appear designed to increase technical efficiencies

in the way trials operate under the existing frequentist paradigm. However, echoing Claxton and

Posnett (1996) and those who have followed, the current drive for more ‘value-based’ health care

also raises questions about whether there exists a role for more ‘value-based’ clinical research in

the health technology assessments of the future.

Our literature survey has shown how, complementing these initiatives to innovate clinical

trial design, Bayesian decision-theoretic models have grown to challenge traditional frequentist

approaches. Our model has contributed to this literature in a number of ways. To begin with, it

can handle scenarios in which clinical practice is mixed prior to the commencement of the trial,

a common occurrence in many areas of clinical research. Trial teams considering designing more
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value-based trials should be aware that mixed practice can affect optimal decisions and also that,

under particular parameter values, it can safely be ignored (sections 3.5 and 4.2.1). Moreover, opti-

mal decisions concerning the recruitment rate and duration are affected by the manner in which

the population of patients to benefit from the trial is defined. The application of section 4 showed

how the value of the trial is highly sensitive to the optimal decision of trial length under a fixed

horizon, but is less sensitive under a fixed patient pool. Further, we showed that optimising the

trial recruitment duration of our model can lead to a sample size which is less than (fixed horizon)

or greater than (fixed patient pool) the sample size of a frequentist trial. So, it is not necessarily

the case that a value-based design such as the one we solve will lead to a trial which is of shorter

duration. We also showed that trials which recruit more quickly, so as to make an earlier decision,

provide larger expected benefits to patients. This analysis can provide useful insights at the design

stage of the trial: our results suggest that providing a grant that ensures a higher recruitment rate

and a shorter trial length can accrue higher rewards for patients. We have provided both qualitative

and quantitative comparative statics results, the former of which, to the best of our knowledge,

have not been obtained previously. We have also obtained asymptotic results that complement the

comparative statics analysis. Notably, we show that, generally but not always, the optimal number

of enrolled patients is increasing with the post-trial population and decreasing with effective sample

size of the prior distribution.

We briefly consider future research. Firstly, as seen in the application of section 4, the fixed hori-

zon case can lead to a sample size which is low when compared with that which would be obtained

from a frequentist design. This could lead to problems of incomplete or non-existent adoption. Our

work also raises interesting questions about outcomes-based reimbursement contracts for a public

sector procurer and a private technology provider. There most likely exists a large gap between

how regulators would view ‘innovation’ and ‘efficiency’ in clinical trial design, and how Bayesian

decision-theory views it. Finally, while this work focused on jointly considering clinical trial design

and technology adoption decisions, some of the results associated with the regulatory context might

find application in very different sectors, particularly when A/B tests have observations which

occur long after exposure to the test stimulus, or when the value of a choice of A or B is highly

time sensitive (so that delayed decisions result in lower exploitation value).
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Appendices
Appendix A summarises the principal notation in the main paper. Appendix B gives technical details

for the derivatives of the focal objective function. Appendix C justifies mathematical claims in section 3.

Appendix D shows how the one-shot trial design of the main paper can be amenable to running a fully

sequential trial in certain special cases. Appendix E provides formalism for the probabalistic performance

measures in the numerical experiments of section 4.

Appendix A: Table of principal notation

Table EC.1 Table of principal notation.

Parameter Description
pN ∈ [0,1/2] Fraction of patients treated with technology N under the current practice
EN,ES ∈R Effectiveness of technologies N and S, respectively
CN,CS ∈R≥0 Patient-level costs of using technologies N and S, respectively
λ∈R≥0 Monetary value of one unit of effectiveness (e.g., £30,000 / QALY)
X ∈R (random variable) Incremental net monetary benefit of technology N over S
W ∈R Unknown expected value of X
σ2
X ∈R>0 Known variance of X
µ0 ∈R, σ2

0 ∈R>0 Mean and variance of prior distribution for W
n0 = σ2

X/σ
2
0 Effective sample size of prior distribution

Tmax ∈R>0 Maximum time duration of recruitment in trial
∆∈R≥0, ∆<Tmax Delay in observing realisation of pairwise allocation (in time units)
ζ ∈R>0 Incidence rate of the condition in the population
rmax ∈ [0, ζ] Capacity of rate of recruitment
Qmax ∈N Maximum number of pairwise allocations recruited to the trial
T ∈ [0, Tmax] Recruitment period duration (decision variable)
r ∈ [0, rmax] Rate of recruitment to the trial (decision variable)
D ∈ {M,N,S} Adoption decision to implement the current practice (mix of technologies)

M, the new technology N, or the standard technology S (decision variable)
ZTr Posterior mean to be obtained, given µ0 and Tr time units of patients to

be observed
P (T )∈R≥0 Number of patients to receive implemented technology once adoption

decision is made at T + ∆
H Maximum time horizon for decision, in the case of fixed horizon
P Number of patients affected by adoption decision, in the case of fixed

patient pool
ρyr Annual discount rate, e.g., 3.5% for UK NICE
ρ∈ [0,1) Continuous time discount rate, ρ= ln(1 + ρyr)

T̃ρ(T ) Effective discounted recruitment period duration
Pρ(T ) Effective discounted number of patients to receive implemented technol-

ogy once adoption decision is made at T + ∆
δon 1 = ‘online learning’; 0 = ‘offline learning’
c∈R≥0 Recruitment cost for an additional participant
ccap(r) Setup cost of the trial with recruitment rate r
cr Marginal cost of an additional unit of recruitment rate
ID ∈R≥0 Fixed cost of switching to technology D from standard technology
αN(T ), αS(T )∈R Expected costs per patient if technology N or S is adopted
Ψ(z) Standard normal loss function, Ψ(z)≡E [ (Z − z)+ ] = φ(z)− z(1−Φ(z))
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Appendix B: Derivation of partial derivatives of V

The first order conditions for interior solutions of (11), assuming that P (T ) and ccap(r) are differentiable,

are given by
∂V (T, r)

∂T
= 0 and

∂V (T, r)

∂r
= 0.

In this appendix, we show the main steps to find the partial derivatives of V with respect to T and r. We

first introduce some derivatives that will be used repeatedly:

∂αN(T )

∂T
=−αN(T )

Pρ(T )

dPρ(T )

dT
,

∂αS(T )

∂T
=−αS(T )

Pρ(T )

dPρ(T )

dT
,

∂σZ
∂T

=

√
n0σ2

Xr

(2n0 + rT )3T
,

∂σZ
∂r

=

√
n0σ2

XT

(2n0 + rT )3r
.

The following equations are useful relationships in deriving the partial derivatives:

∂((αN(T ))/σZ)

∂T
=−αN(T )

σZ

(
1

Pρ(T )

dPρ(T )

dT
+

1

σZ

∂σZ
∂T

)
∂((αS(T ))/σZ)

∂T
=−αS(T )

σZ

(
1

Pρ(T )

dPρ(T )

dT
+

1

σZ

∂σZ
∂T

)
∂σZ
∂T

=
σ2
Xr

σZ(2n0 + rT )2
=

n0σZ
(2n0 + rT )T

∂σZ
∂r

=
σ2
XT

σZ(2n0 + rT )2
=

n0σZ
(2n0 + rT )r

.

Consider first

∂

∂T

(
e−ρ(T+∆)Pρ(T )σZΨ

(
αN(T )−µ0

σZ

))
=−ρe−ρ(T+∆)Pρ(T )σZΨ

(
αN(T )−µ0

σZ

)
+ e−ρ(T+∆) dPρ(T )

dT
σZΨ

(
αN(T )−µ0

σZ

)
+ e−ρ(T+∆)Pρ(T )

∂σZ
∂T

Ψ

(
αN(T )−µ0

σZ

)
+ e−ρ(T+∆)Pρ(T )σZ

(
Φ

(
αN(T )−µ0

σZ

)
− 1

)(
− αN(T )

σZ

(
1

Pρ(T )

dPρ(T )

dT
+

1

σZ

∂σZ
∂T

)
− µ0

σ2
Z

∂σZ
∂T

)

= e−ρ(T+∆)

[(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T
−Pρ(T )σZρ

)
Ψ

(
αN(T )−µ0

σZ

)

+

(
αN(T )

σZ

(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T

)
− Pρ(T )µ0

σZ

∂σZ
∂T

)(
1−Φ

(
αN(T )−µ0

σZ

))]
.

Similarly,

∂

∂T

(
e−ρ(T+∆)Pρ(T )σZΨ

(
αS(T ) +µ0

σZ

))
= e−ρ(T+∆)

[(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T
−Pρ(T )σZρ

)
Ψ

(
αS(T ) +µ0

σZ

)

+

(
αS(T )

σZ

(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T

)
+
Pρ(T )µ0

σZ

∂σZ
∂T

)(
1−Φ

(
αS(T ) +µ0

σZ

))]
.

Thus, we get



ec3

∂V (T, r)

∂T
= e−ρT

(
1

2
δonr(1− 2pN)µ0− cr

)
(EC.1)

+ (1− pN)e−ρ(T+∆)

[(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T
−Pρ(T )σZρ

)
Ψ

(
αN(T )−µ0

σZ

)

+

(
αN(T )

σZ

(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T

)
− Pρ(T )µ0

σZ

∂σZ
∂T

)(
1−Φ

(
αN(T )−µ0

σZ

))]

+ pNe
−ρ(T+∆)

[(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T
−Pρ(T )σZρ

)
Ψ

(
αS(T ) +µ0

σZ

)

+

(
αS(T )

σZ

(
σZ
dPρ(T )

dT
+Pρ(T )

∂σZ
∂T

)
+
Pρ(T )µ0

σZ

∂σZ
∂T

)(
1−Φ

(
αS(T ) +µ0

σZ

))]
.

The partial derivative with respect to r follows similar steps to the ones to find the derivatives with respect

to T , so we only present the final result:

∂V (T, r)

∂r
=−∂ccap(r)

∂r
− cT̃ρ(T ) + δonT̃ρ(T )(1− 2pN)µ0/2

+ eρ(T+∆)Pρ(T )

√
n0σ2

XT

(2n0 + rT )3r

[
(1− pN)φ

(
αN(T )−µ0

σZ

)
+ pNφ

(
αS(T ) +µ0

σZ

)]
Appendix C: Proofs of mathematical claims

C.1. Proofs in section 3.3

Proof of Prop. 1. Weierstrass’ theorem states that the optimal solution of maxx∈S f(x) exists if f is upper

semi-continuous and S is closed and bounded (Andreasson et al. 2007, section 4.2). A function f : S→ R
is upper semi-continuous at x0 if lim supx→x0 f(x) ≤ f(x0), or equivalently, if for every ε > 0 there is a

neighborhood S′ around x0 such that f(x)≤ f(x0) + ε for all x∈ S′.
The domain of V (T, r) is D = {(T, r) | 0≤ T ≤ Tmax, 0≤ r ≤ rmax} which is closed and bounded. Hence,

to prove the existence of a solution, it is sufficient to show that V (T, r) is upper semi-continuous.

It is easy to check that Pρ(T ) is upper semi-continuous given that P (T ) is upper semi-continuous. Because

ccap(r) is lower semi-continuous, −ccap(r) is upper semi-continuous. It follows that V (T, r) is upper semi-

continuous in {(T, r) | 0 < T ≤ Tmax, 0 < r ≤ rmax} and we only need to show that V (T, r) is upper semi-

continuous when either T = 0 or r= 0.

For T = 0, first consider the neighborhood when T is exactly zero. Then, V (0, r+ δr) = V (0, r) for any δr

in the domain D by the definition in (5a). Now, let δT > 0 and consider the following inequality using (5b):

V (δT , r+ δr) =−(ccap(r+ δr) + c(r+ δr)T̃ρ(δT )) + δon[(r+ δr)T̃ρ(δT )/2](1− 2pN)µ0

+ e−ρ(δT+∆)E
[
(Pρ(δT )(1− pN)W − IN)+ + (−Pρ(δT )pNW − IS)+

]
≤ δon[(r+ δr)T̃ρ(δT )/2](1− 2pN)µ0

+ e−ρδT e−ρ∆E
[

(Pρ(0)(1− pN)W − IN)+ + (−Pρ(0)pNW − IS)+
]
.

The inequality holds because ccap(r)≥ 0 and Pρ(T ) is non-increasing, so Pρ(δT )≤ Pρ(0). Now, we use e−ρδT ≤
(1 + ρeρ|δT ||δT |) and E [ (Pρ(0)(1− pN)W − IN)+ + (−Pρ(0)pNW − IS)+ ]≤ V (0, r) to get:

V (δT , r+ δr)≤ δon[rmaxT̃ρ(δT )/2](1− 2pN)µ0 + (1 + ρeρ|δT ||δT |)V (0, r)

≤ V (0, r) + ε,
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and the last inequality holds for any ε > 0 if we choose |δT | small enough. Hence, V is upper semi-continuous

at T = 0.

For r= 0, consider first the neighborhood when r is exactly zero. Then, V (T + δT ,0) = V (T,0) for any δT

in the domain of V (T, r), by the definition of V in (5a). Now, let δr > 0 and consider the following inequality

that follows similar steps as the previous case with T = 0:

V (T + δT , δr) =−(ccap(δr) + cδrT̃ρ(T + δT )) + δon[(δr)T̃ρ(T + δT )/2](1− 2pN)µ0

+ e−ρ(T+δT+∆)E
[

(Pρ(T + δT )(1− pN)W − IN)+ + (−Pρ(T + δT )pNW − IS)+
]

≤ δon[δrT̃ρ(δT )/2](1− 2pN)µ0

+ e−ρδT e−ρ(T+∆)E
[

(Pρ(0)(1− pN)W − IN)+ + (−Pρ(0)pNW − IS)+
]

≤ δon[δrT̃ρ(Tmax)/2](1− 2pN)µ0 + (1 + ρeρ|δT ||δT |)V (T,0)

≤ V (T,0) + ε,

and the last inequality holds for any ε > 0 in the neighborhood with |δr| and |δT | small enough. Notice

that the first inequality requires that P (T ) is non-increasing not only upper semi-continuous. Thus, we have

shown that V is upper semi-continuous for r= 0. �

C.2. Proofs in section 3.4

Proof of Prop. 2. It is sufficient to show that V (T, r) is the same for all members of the the set S =

{(T, r) ∈ [0, Tmax]× [0, rmax] : rT/2 = Q}. If Q = 0, then V (r,T ) = V (0,0) for all members S. This follows

directly from the definition of V in (5a). Now suppose that Q> 0, and let σ2
Z = σ2

XQ/(n0(2n0 +Q)). Then,

we obtain, for all members of the set S, the same expected net gain:

V (T, r) = δonQ(1− 2pN)µ0/2− cQ− ccap +PσZ

[
(1− pN)Ψ

(
αN−µ0

σZ

)
+ pNΨ

(
αS +µ0

σZ

)]
. �

Proof of Prop. 3. Let (T ∗, r∗) be an optimal solution to (11). First, observe that if T ∗ = 0 or r∗ = 0, then

(0, rmax) is also an optimal solution by the definition of V in (5a).

Now, consider the case T ∗ > 0 and r∗ > 0. We show that the alternative trial design (r∗T ∗/rmax, rmax)

achieves an expected net gain at least as good as the optimal solution (T ∗, r∗). Note that the online learning

term, δon[rT̃ρ(T )/2](1− 2pN)µ0, and the cost of the trial, −(ccap + crT̃ρ(T )), in (5b) are smaller or equal to

the corresponding costs under the alternative solution (r∗T ∗/rmax, rmax):

δon[r∗T̃ρ(T
∗)/2](1− 2pN)µ0− (ccap + cr∗T̃ρ(T

∗))

≥ δon[r∗T̃ρ(r
∗T ∗/rmax)/2](1− 2pN)µ0− (ccap + cr∗T̃ρ(r

∗T ∗/rmax)).

By construction, the number of patients recruited under the alternative design is the same as under the

optimal solution and the posterior mean variance, σ2
Z , is the same under both solutions. The non-increasing

assumption of P (T ) implies that Pρ(T ) is non-increasing, and, hence, Pρ(T
∗) ≤ Pρ(r∗T ∗/rmax), αN(T ∗) ≥

αN(r∗T ∗/rmax), and αS(T ∗)≥ αS(r∗T ∗/rmax). Because Ψ(·) is decreasing, we have established that

Pρ(T
∗)σZ

[
(1− pN)Ψ

(
αN(T ∗)−µ0

σZ

)
+ pNΨ

(
αS(T ∗) +µ0

σZ

)]
≤ Pρ(r∗T ∗/rmax)σZ

[
(1− pN)Ψ

(
αN(r∗T ∗/rmax)−µ0

σZ

)
+ pNΨ

(
αS(r∗T ∗/rmax) +µ0

σZ

)]
,
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which are the remaining terms in the expression of V . Thus, we conclude that V (r∗T ∗/rmax, rmax) ≥
V (T ∗, r∗). Because (T ∗, r∗) is optimal, we have established that V (r∗T ∗/rmax, rmax) = V (T ∗, r∗) and that an

optimal solution with r= rmax exists. �

Proof of Prop. 4. Let (T ∗, r∗) be an optimal solution and consider the alternative solution

(Tmax, r
∗T ∗/Tmax). It is straightforward to show that the alternative solution is also optimal by following

the same procedure as in the proof of Prop. 3. �

C.3. Comparative statics results in section 3.5

In this appendix, we present the algebra that leads to the results of comparative statics of (11) presented in

section 3.5. For simplicity, we present the results assuming a fixed recruitment rate, maxT∈[0,Tmax] V (T, r),

and undiscounted rewards. The results are, however, as general as presented in section 3.5.

• Post-trial population. For fixed patient pool, the optimal expected net gain is increasing in P :

∂V (T, r)

∂P
= (1− pN)σZΨ

(
αN−µ0

σZ

)
+ pNσZΨ

(
αS +µ0

σZ

)
+ (1− pN)αN

(
1−Φ

(
αN−µ0

σZ

))
+ pNαS

(
1−Φ

(
αS +µ0

σZ

))
> 0.

Using the implicit function theorem, the sign of ∂T ∗/∂P is the same as the sign of:

∂2V (T, r)

∂T∂P
=
∂σZ
∂T

[
(1− pN)φ

(
αN−µ0

σZ

)
+ pNφ

(
αS +µ0

σZ

)

+ (1− pN)
αN(αN−µ0)

σ2
Z

φ

(
αN−µ0

σZ

)
+ pN

αS(αS +µ0)

σ2
Z

φ

(
αS +µ0

σZ

)]
.

The first two terms in brackets have a positive effect on the optimal trial length, because the value

of information is higher when P is higher. The third and fourth terms come from the change in the

adoption decision rule because αN and αS decrease as P increases. When αN < µ0 there is a negative

contribution from the third term but positive from all other terms. Similarly, when αS < −µ0 there

is a negative contribution from the fourth term but negative from all other terms. In general, we

cannot conclude that the optimal T is increasing with P , but this is often the case. For instance, if

−αS ≤ µ0 ≤ αN, or equivalently, it is a priori optimal to adopt M, then T ∗ is increasing with P .

For fixed horizon, we perform the sensitivity analysis on parameter H. The results are very similar to

fixed patient pool. The expected net gain is again increasing in H:

∂V (T, r)

∂H
=ζ

[
(1− pN)σZΨ

(
αN(T )−µ0

σZ

)
+ pNσZΨ

(
αS(T ) +µ0

σZ

)

+ (1− pN)αN(T )

(
1−Φ

(
αN(T )−µ0

σZ

))
+ pNαS(T )

(
1−Φ

(
αS(T ) +µ0

σZ

))]
> 0

The derivative that determines the direction of change of the optimal trial length is

∂2V (T, r)

∂T∂H
=ζ

∂σZ
∂T

[
(1− pN)φ

(
αN(T )−µ0

σZ

)
+ pNφ

(
αS(T ) +µ0

σZ

)

+ (1− pN)
αN(T )(αN(T )−µ0)

σ2
Z

φ

(
αN(T )−µ0

σZ

)
+ pN

αS(T )(αS(T ) +µ0)

σ2
Z

φ

(
αS(T ) +µ0

σZ

)]

− ζ(1− pN)αN(T )2

σZ(H −∆−T )
φ

(
αN(T )−µ0

σZ

)
− ζpNαS(T )2

σZ(H −∆−T )
φ

(
αS(T ) +µ0

σZ

)
.
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Comparing this expression to that for ∂2V (T,r)

∂T∂P
, we have two additional terms with a negative effect

which capture the reduction in the post-trial patients for a longer trial. The direction of change of T ∗

is not definitive through comparative statics.

• Fraction of patients in new technology pN. It is is straightforward to check that

∂V (T, r)

∂pN

=−2δonrTµ0 +P (T )σZ

(
Ψ

(
αS(T ) +µ0

σZ

)
−Ψ

(
αN(T )−µ0

σZ

))
+P (T )

[
αS(T )

(
1−Φ

(
αS(T ) +µ0

σZ

))
−αN(T )

(
1−Φ

(
αN(T )−µ0

σZ

))]
.

There are three summands in this expression. The first is the online learning effect. The second is

the effect due to the post-trial benefits. The third is a correction due to the change of the optimal

adoption decision rule. The magnitude of the second summand depends on the magnitude of P (T )σZ ,

while the magnitude of the third summand depends on the magnitudes of P (T )αN(T ) and P (T )αS(T ).

When P (T )σZ dominates, the effect depends on the expected gains of adopting technologies N or S; if

Ψ ((αS(T ) +µ0)/σZ)>Ψ ((αN(T )−µ0)/σZ), then an increase in pN (increase in the number of people

who would benefit from the adoption of S) would increase the expected net gain.

The second derivative ∂2V (T, r)/∂T∂pN is a long expression that does not elucidate any interesting

insights. We present a special case with some interesting results, IN = IS = 0. Note that αN(T ) =

αS(T ) = 0 and we obtain

∂2V (T, r)

∂T∂pN

=−2δonrµ0− 2
dP (T )

dT
µ0

(
1−Φ

(
µ0

σZ

))
.

From this expression, observe that under some additional conditions the optimal trial length becomes

independent of pN. One possibility is µ0 = 0. The second possibility is under fixed patient pool and

offline learning. However, the optimal expected net gain is not independent of pN under such conditions.

• Effective number of samples for the prior distribution. To analyse the sensitivity of V to n0, we compute

∂V (T, r)

∂n0

=−P (T )σ2
Z(2n0 + rT )

2n0(n0 + rT )

[
(1− pN)φ

(
αN(T )−µ0

σZ

)
+ pNφ

(
αS(T ) +µ0

σZ

)]
< 0.

The optimal expected net gain is decreasing in n0 because n0 is a measure of the confidence in the

beliefs, and therefore, the lower the confidence, the higher the rewards obtained from learning through

a trial.

To analyse the sensitivity on the optimal trial length, we use the fixed patient pool adoption decision

type for simplicity and obtain the following derivative:

∂2V (T, r)

∂T∂n0

=P
∂2σZ
∂T∂n0

[
(1− pN)φ

(
αN(T )−µ0

σZ

)
+ pNφ

(
αS(T ) +µ0

σZ

)]
+ (1− pN)Pφ

(
αN(T )−µ0

σZ

)
(αN(T )−µ0)2

σ3
Z

∂σZ
∂T

∂σZ
∂n0

+ pNPφ

(
αS(T ) +µ0

σZ

)
(αS(T ) +µ0)2

σ3
Z

∂σZ
∂T

∂σZ
∂n0

.

The second and third terms are negative because ∂σZ/∂n0 < 0, which correspond to the effect of

a larger n0 requiring a smaller sample size to achieve the required confidence in a decision. These
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two terms correspond to the intuitive effect of a less informative prior requiring more evidence to be

gathered. However, an additional effect is found in the first term which is positive for n0 < rT/4 because

∂2σZ/∂T∂n0 = σZ(−4n0 + rT )/4(2n0 + rT )2T . Therefore, it is possible that T ∗ increases with n0 in

some range where n0 < rT
∗/4.

C.4. Proofs for asymptotic results of Prop. 5 in section 3.6.1

Claims are proved separately for the four cases of section 3.4 in Lemmas EC.1 to EC.4. The combination of

the four lemmas completes the proof of Prop. 5. The proofs assume that c− δon(1− 2pN)µ0/2> 0 and that

there is no discounting, ρ= 0. The proofs further assume that ccap(r) = cfixed + crr where cr = 0 for cases I

and II with constant setup costs and where cr > 0 for cases III and IV with variable costs.

C.4.1. Case I: constant setup costs, no discounting, fixed patient pool. If c−δon(1−2pN)µ0/2≤

0 in this case, the effective cost of sampling is less than or equal to zero, and, given the trial is run, it is

optimal to sample infinitely for any P . We, therefore, analyse the more interesting setting where c− δon(1−

2pN)µ0/2 > 0. Because Q∗ grows unbounded with P (shown below), we let rmax =∞ and Tmax =∞, i.e.,

there is no upper bound on the decision variables.

Lemma EC.1. If ccap(r) = ccap, ρ= 0, P (T ) = P and c− δon(1− 2pN)µ0/2> 0, then

lim
P→∞

Q∗√
P

=

( √
n0σ2

Xφ(µ0/σ0)

4(c− δon(1− 2pN)µ0/2)

)1/2

,

lim
P→∞

V ∗

P
= (1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0).

Proof of Lemma EC.1. For functions f and g, we use the notation f(P ) ∼ g(P ) to denote

limP→∞ f(P )/g(P ) = 1. Without loss of generality, the proof assumes that r is fixed and T is the decision

variable. For clarity, we make the dependence of T ∗ on P explicit with T ∗(P ). We need to show that

rT ∗(P )∼

(√
n0σ2

Xφ(
√
n0µ0/σX)P

c− δon(1− 2pN)µ0/2

)1/2

.

We know that T ∗(P ) either satisfies the first order condition ∂V (T, r)/∂T = 0 or T ∗(P ) = 0. However,

T ∗(P ) = 0 is not optimal for sufficiently large P and T ∗(P ) satisfies the first order condition. The expression

∂V (T, r)/∂T = 0 was derived in Appendix B. By rearranging terms, we obtain

P

(
1− pN√

2π
e
−n0(2n0+rT∗(P ))

2σ2
X
rT∗(P )

(αN−µ0)2

+
pN√
2π
e
−n0(2n0+rT∗(P ))

2σ2
X
rT∗(P )

(αS+µ0)2
)

(EC.2)

=

√
(2n0 + rT ∗(P ))3T ∗(P )

n0σ2
Xr

(cr− δonr(1− 2pN)µ0/2).

The left-hand side approaches infinity as P →∞, so that the right-hand side needs to approach infinity as

P →∞. Hence, limP→∞ T
∗(P ) =∞, and the right-hand side satisfies the following relationship:√

(2n0 + rT ∗(P ))3T ∗(P )

n0σ2
Xr

(cr− δonr(1− 2pN)µ0/2) ∼
c− δon(1− 2pN)µ0/2√

n0σ2
X

r2(T ∗(P ))2
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Because αN = IN/(1−pN)P and αS = IS/pNP , which approach zero as P →∞, the left-hand side of (EC.2)

satisfies the following relationship:

P

(
1− pN√

2π
e
−n0(2n0+rT∗(P ))

2σ2
X
rT∗(P )

(αN−µ0)2

+
pN√
2π
e
−n0(2n0+rT∗(P ))

2σ2
X
rT∗(P )

(αS+µ0)2
)
∼

P√
2π
e
− n0

2σ2
X

µ2
0
.

Combining results, we obtain

P√
2π
e
− n0

2σ2
X

µ2
0 ∼

c− δon(1− 2pN)µ0/2√
n0σ2

X

r2(T ∗(P ))2

and, by rearranging terms, the desired result for Q∗/
√
P .

Using the previous result, the asymptotic result for V ∗ = V (T ∗) is straightforward to find. Let σ∗Z be σZ

evaluated at T ∗. Because limP→∞ T
∗ =∞, we know that limP→∞ σ

∗
Z = σX/

√
n0 = σ0. Then,

V ∗ =− ccap(r)− crT ∗+ δon (1− 2pN)µ0rT
∗/2 +Pσ∗Z

(
(1− pN)Ψ

(
αN−µ0

σ∗Z

)
+ pNΨ

(
αS +µ0

σ∗Z

))
V ∗ ∼− crT ∗+ δon(1− 2pN)µ0rT

∗/2 +Pσ∗Z

(
(1− pN)Ψ

(
−µ0

σ∗Z

)
+ pNΨ

(
µ0

σ∗Z

))
V ∗ ∼− crT ∗+ δon(1− 2pN)µ0rT

∗/2 +Pσ0

(
(1− pN)Ψ

(
−µ0

σ0

)
+ pNΨ

(
µ0

σ0

))

V ∗ ∼(−c+ δon(1− 2pN)µ0/2)

( √
n0σ2

Xφ(
√
n0µ0/σX)

(c− δon(1− 2pN)µ0/2)r2

)1/2√
P +Pσ0

(
(1− pN)Ψ

(
−µ0

σ0

)
+ pNΨ

(
µ0

σ0

))
V ∗ ∼Pσ0

(
(1− pN)Ψ

(
−µ0

σ0

)
+ pNΨ

(
µ0

σ0

))
,

and the last line is the statement in the lemma. �

C.4.2. Case II: constant setup costs, no discounting, fixed horizon. Because we assume undis-

counted rewards, case II is necessarily fixed horizon. If c− δon(1− 2pN)µ0/2≤ 0 in this case, then the first

order condition for T ∗ is never satisfied, and it is optimal to sample infinitely. We therefore analyse the

setting where c− δon(1− 2pN)µ0/2> 0. In addition, we allow Tmax =∞, i.e., there is no upper bound on T ,

because T ∗→∞ as P →∞, as shown below. Prop. 3 shows that r∗ = rmax is optimal. By multiplying T ∗

with rmax/2, we obtain asymptotic results for Q∗.

Lemma EC.2. If ccap(r) = ccap, ρ= 0, P (T ) = ζ(H−T −1T>0∆), c−δon(1−2pN)µ0/2> 0, and Tmax =∞,

then

lim
H→∞

T ∗√
ζ(H −∆)

=

( √
n0σ2

Xφ(µ0/σ0)

(c− δon(1− 2pN)µ0/2)r2
max + ζrmaxσ0(Ψ(µ0/σ0) + (1− pN)µ0/σ0)

)1/2

, (EC.3)

lim
H→∞

V ∗

ζ(H −∆)
= (1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0).

Proof of Lemma EC.2. For functions f and g, we use the notation f(H) ∼ g(H) to denote

limH→∞ f(H)/g(H) = 1. For clarity, we make the dependence of T ∗ on H explicit with T ∗(H). We need to

show that

T ∗(H)∼

( √
n0σ2

Xφ(
√
n0µ0/σX)ζ(H −∆)

(c− δon(1− 2pN)µ0/2)r2 + ζrσX/
√
n0(Ψ(µ0

√
n0/σX) + (1− pN)µ0

√
n0/σX)

)1/2

.
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We know that T ∗(H) either satisfies the first order condition dV (T ∗(H))/dT = 0 or T ∗(H) = 0. Because

T ∗(H) = 0 is not optimal for sufficiently large H, T ∗(H) satisfies dV (T ∗(H))/dT = 0. Using the expression

derived in Appendix B, dV (T ∗(H))/dT = 0 is equivalent to

cr− δonr(1− 2pN)µ0/2 =(1− pN)

[
ζ(H −T ∗(H)−∆)

∂σ∗Z(H)

∂T
φ

(
αN(T ∗(H))−µ0

σ∗Z(H)

)

−σ∗Z(H)ζΨ

(
αN(T ∗(H))−µ0

σ∗Z(H)

)
−αN(T ∗(H))ζ

(
1−Φ

(
αN(T ∗(H))−µ0

σ∗Z(H)

))]

+ pN

[
ζ(H −T ∗(H)−∆)

∂σ∗Z(H)

∂T
φ

(
αS(T ∗(H)) +µ0

σ∗Z(H)

)

−σ∗Z(H)ζΨ

(
αS(T ∗(H)) +µ0

σ∗Z(H)

)
−αS(T ∗(H))ζ

(
1−Φ

(
αS(T ∗(H)) +µ0

σ∗Z(H)

))]
,

where σ∗Z(H) is σZ evaluated at T ∗(H). Because the left side of the equation is bounded for any H, the right

side must be as well. Thus, (H −T ∗(H)−∆)∂σ∗Z(H)/∂T is bounded and implies that limH→∞ T
∗(H) =∞,

limH→∞(H − T ∗(H)−∆) =∞, and (H −∆) ∼ (H − T ∗(H)−∆), with the use of expression for ∂σZ/∂T

derived in Appendix B. Using this observation on the above equation, we obtain the following relationship:

cr− δonr(1− 2pN)µ0/2+ζ
σX√
n0

(
Ψ

(
µ0
√
n0

σX

)
+ (1− pN)

µ0
√
n0

σX

)
∼ ζ(H −T ∗(H)−∆)

√
n0σ2

Xr

(2n0 + rT ∗(H))3T ∗(H)
φ

(
µ0
√
n0

σX

)
.

By rearranging and some additional asymptotic approximations, we obtain(
cr− δonr(1− 2pN)µ0/2 + ζ

σX√
n0

(
Ψ

(
µ0
√
n0

σX

)
+ (1− pN)

µ0
√
n0

σX

))
r(T ∗(H))2

√
n0σXφ

(
µ0
√
n0

σX

) ∼ ζ(H −∆).

The desired result is obtained by rearranging the terms and setting r= rmax, which we know to be an optimal

decision from Prop. 3. Using this result and following a similar procedure as in the proof of lemma EC.1, we

can obtain the asymptotic result for V ∗:

V ∗ =− ccap(r)− crT ∗+ δon (1− 2pN)µ0rT
∗/2 +P (T ∗)σ∗Z

(
(1− pN)Ψ

(
αN(T ∗)−µ0

σ∗Z

)
+ pNΨ

(
αS(T ∗) +µ0

σ∗Z

))
V ∗ ∼− crT ∗+ δon(1− 2pN)µ0rT

∗/2 + ζ(H −T ∗−∆)σ0

(
(1− pN)Ψ

(
−µ0

σ0

)
+ pNΨ

(
µ0

σ0

))
V ∗ ∼ζ(H −∆)σ0

(
(1− pN)Ψ

(
−µ0

σ0

)
+ pNΨ

(
µ0

σ0

))
. �

C.4.3. Case III: affine setup costs, no discounting, fixed patient pool. If c−δon(1−2pN)µ0/2≤ 0,

then the first order condition is never satisfied and it is optimal to sample infinitely. In that scenario, a

solution to (11) does not exist unless r is constrained and r∗ = rmax. We therefore analyse the setting where

c−δon(1−2pN)µ0/2> 0. Because the optimal recruitment rate grows unboundedly with P (as shown below),

we assume that rmax =∞, i.e., no upper bound on r. To obtain asymptotic results on Q∗, we only need to

multiply the results of r∗ with Tmax/2, as Prop. 4 shows that T = Tmax is optimal.

Lemma EC.3. If ccap(r) = cfixed + crr where cr > 0, ρ= 0, P (T ) = P and c− δon(1− 2pN)µ0/2> 0 then

lim
P→∞

r∗√
P

=

( √
n0σ2

Xφ(µ0/σ0)

[cTmax + cr − δon(1− 2pN)µ0Tmax/2]

)1/2

, (EC.4)

lim
P→∞

V ∗

P
= σ0[Ψ(µ0/σ0) + (1− pN)µ0/σ0].
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Proof of Lemma EC.3. Prop. 4 shows that it is optimal to have T ∗ = Tmax. The optimal r has to satisfy

the first order optimality condition ∂V (Tmax, r)/∂r = 0 for large enough P . The optimality condition is

equivalent to

P

(
1− pN√

2π
e
−n0(2n0+r∗(P )Tmax)

2σ2
X
r∗(P )Tmax

(αN−µ0)2

+
pN√
2π
e
−n0(2n0+r∗(P )Tmax)

2σ2
X
r∗(P )Tmax

(αS+µ0)2
)

=

√
(2n0 + r∗(P )Tmax)3r∗(P )

n0σ2
XTmax

(cr + cT − δonTmax(1− 2pN)µ0/2).

The optimality condition is the same as (EC.2) with the exception of exchanging T ∗(P ) with r∗(P ), exchang-

ing r with Tmax, and an additional cr on the right-hand side. The rest of the proof follows as the proof of

Lemma EC.1 and is not reproduced here. �

C.4.4. Case IV: affine setup costs, no discounting, fixed horizon. If c− δon(1− 2pN)µ0/2< 0 in

this case, the effective cost of sampling is less than or equal to zero, and, given the trial is run, it is optimal to

sample infinitely for any H. We, therefore, analyse the more interesting setting where c−δon(1−2pN)µ0/2≥

0. Notice that, unlike the previous cases, c− δon(1− 2pN)µ0/2 = 0 is considered here and gives interesting

results that differ substantially from the scenario when c− δon(1− 2pN)µ0/2> 0. Because both T ∗ and r∗

grow unbounded with P (shown below), we let Tmax =∞ and rmax =∞, i.e., there is no upper bound on

the decision variables.

Lemma EC.4. If ρ = 0, ccap(r) = cfixed + crr, where cr > 0, P (T ) = ζ(H − T − 1T>0∆), c − δon(1 −

2pN)µ0/2≥ 0, and Tmax =∞ and rmax =∞, then

lim
H→∞

V ∗

ζ(H −∆)
= (1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0).

In addition, if c− δon(1− 2pN)µ0/2≥ 0, then

lim
H→∞

r∗

(ζ(H −∆))1/4
= lim
H→∞

KT ∗

(ζ(H −∆))1/4
=

(
K2
√
n0σ2

Xφ(µ0/σ0)

c+ δon(1− 2pN)µ0/2

)1/4

,

if c− δon(1− 2pN)µ0/2> 0, and

lim
H→∞

r∗

(ζ(H −∆))1/3
= lim
H→∞

KT ∗

(ζ(H −∆))1/3
=

(
K2
√
n0σ2

Xφ(µ0/σ0)

cr

)1/3

,

if c− δon(1− 2pN)µ0/2 = 0, where K = σXζ(Ψ(µ0/σ0) + (1− pN)µ0/σ0)/(
√
n0cr).

Proof of Lemma EC.4. For large enough H, the optimal trial design satisfies r∗T ∗ > 0 and the first

order optimality conditions ∂V (r∗, T ∗)/∂T = 0 and ∂V (r∗, T ∗)/∂r = 0. Using the expressions derived in

Appendix B and the property ∂σZ/∂r = (r/T )∂σZ/∂T , the first order optimality conditions are equivalent

to

(c− δon(1− 2pN)µ0/2)r∗+ (1− pN)

[
ζαN(T ∗)

(
1−Φ

(
αN(T ∗)−µ0

σ∗Z

))
+σ∗ZζΨ(

(
αN(T ∗)−µ0

σ∗Z

)]
(EC.5)

+ pN

[
ζαS(T ∗)

(
1−Φ

(
αS(T ∗) +µ0

σ∗Z

))
+σ∗ZζΨ(

(
αS(T ∗) +µ0

σ∗Z

)]
= ζ(H −T ∗−∆)

σ∗Z
dT

[
(1− pN)φ

(
αN(T ∗)−µ0

σ∗Z

)
+ pNφ

(
αS(T ∗) +µ0

σ∗Z

)]
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and

(cr + (c− δon(1− 2pN)µ0/2)T ∗)
r∗

T ∗
= ζ(H −T −∆)

∂σ∗Z
∂T

[
(1− pN)φ

(
αN(T ∗)−µ0

σ∗Z

)
+ pNφ

(
αS(T ∗) +µ0

σ∗Z

)]
,

(EC.6)

where σ∗Z is σZ evaluated at (T ∗, r∗). Notice that the right-hand side of both conditions are the same so we

can formulate a third condition:

(1− pN)

[
ζαN(T ∗)

(
1−Φ

(
αN(T ∗)−µ0

σ∗Z

))
+σ∗ZζΨ(

(
αN(T ∗)−µ0

σ∗Z

)]
(EC.7)

+ pN

[
ζαS(T ∗)

(
1−Φ

(
αS(T ∗) +µ0

σ∗Z

))
+σ∗ZζΨ(

(
αS(T ∗) +µ0

σ∗Z

)]
= cr

r∗

T ∗

We first show that limH→∞H −T ∗−∆ =∞ by means of contradiction. Assuming that limH→∞H −T ∗−

∆<∞ implies that limH→∞ T
∗ =∞. Then, the right-hand side of (EC.5) approaches zero as H→∞. But

the left-hand side is larger than zero so that (EC.5) cannot be satisfied for large enough H and we have

reached a contradiction.

Next, we show that limH→∞ T
∗ =∞ by contradiction. Assuming that limH→∞ T

∗ <∞, (EC.5) implies

that limH→∞ r
∗ =∞. We reach a contradiction in (EC.7) because the left-hand side is bounded and the

right-hand side is not.

Because we have established that limH→∞ T
∗ =∞, (EC.7) implies limH→∞ r

∗ =∞. In fact, (EC.7) implies

that

r∗ =

[
ζ(1− pN)

[
αN(T ∗)

(
1−Φ

(
αN(T ∗)−µ0

σ∗Z

))
+σ∗ZΨ

(
αN(T ∗)−µ0

σ∗Z

)]

+ ζpN

[
αS(T ∗)

(
1−Φ

(
αS(T ∗) +µ0

σ∗Z

))
+σ∗ZΨ

(
αS(T ∗) +µ0

σ∗Z

)]]
T ∗

cr

∼KT ∗, (EC.8)

where K = (ζσXΨ(−µ0
√
n0/σX)/(cr

√
n0). The asymptotic equivalence follows due to limH→∞ T

∗ =∞ and

limH→∞ r
∗ =∞.

The rest of the proof has to consider the two cases c− δon(1− 2pN)µ0/2 = 0 and c− δon(1− 2pN)µ0/2> 0

separately.

Assume first that c− δon(1− 2pN)µ0/2> 0. Combining (EC.6) and (EC.8), we obtain

K(cr + (c− δon(1− 2pN)µ0/2)T ∗)∼ ζ(H −T ∗−∆)

√
n0σ2

XK

(2n0 +K(T ∗)2)3
,

and with further simplifications

T ∗ ∼
( √

n0σXφ(
√
n0µ0/σX)

K2(c− δon(1− 2pN)µ0/2)
ζ(H −∆)

)1/4

.

From (EC.8) it follows

r∗ ∼
(
K2√n0σXφ(

√
n0µ0/σX)

c− δon(1− 2pN)µ0/2
ζ(H −∆)

)1/4

,

and we are done with the proof for the case c− δon(1− 2pN)µ0/2> 0.
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Now, assume c− δon(1− 2pN)µ0/2 = 0. Combining (EC.6) and (EC.8), we obtain

Kcr ∼ ζ(H −T ∗−∆)

√
n0σ2

XK

(2n0 +K(T ∗)2)3
,

and with further simplifications

T ∗ ∼
(√

n0σXφ(
√
n0µ0/σX)

K2cr
ζ(H −∆)

)1/3

.

From (EC.8) it follows

r∗ ∼
(
K
√
n0σXφ(

√
n0µ0/σX)

cr
ζ(H −∆)

)1/3

,

and we are done with the proof for the case c− δon(1− 2pN)µ0/2 = 0.

Using the asymptotic behaviour of T ∗ and r∗, it is easy to show that

V ∗ ∼ ζ(H −∆) ((1− pN)σ0Ψ(−µ0/σ0) + pNσ0Ψ(µ0/σ0)) . �

C.5. Proofs for asymptotic results in section 3.6.2

Proof of Prop. 6 It is easy to check that limP→∞Pρ = ζ/ρ with fixed patient pool and that

limH→∞Pρ(T ) = ζ/ρ with fixed horizon, where convergence is uniform on the bounded domain 0 ≤ T ≤

Tmax. Similarly, α′N = INρ/((1− pN)ζ) = limP→∞αN = limH→∞αN(T ), and α′S = ISρ/(pNζ = limP→∞αS =

limH→∞αS(T ). Consider first rT > 0:

|V∞(T, r)−V (T, r)|= e−ρ(T+∆)σZ

∣∣∣∣ζρ −Pρ(T )

∣∣∣∣
(

(1− pN)

∣∣∣∣Ψ(α′N−µ0

σZ

)
−Ψ

(
αN(T )−µ0

σZ

)∣∣∣∣
+ pN

∣∣∣∣Ψ(α′S +µ0

σZ

)
−Ψ

(
αS(T ) +µ0

σZ

)∣∣∣∣
)

≤ σ0

∣∣∣∣ζρ −Pρ(T )

∣∣∣∣
(

(1− pN)

∣∣∣∣Ψ(α′N−µ0

σZ

)
−Ψ

(
αN(T )−µ0

σZ

)∣∣∣∣
+ pN

∣∣∣∣Ψ(α′S +µ0

σZ

)
−Ψ

(
αS(T ) +µ0

σZ

)∣∣∣∣
)
,

where the inequality uses σZ ≤ σ0 and e−ρ(T+∆) ≤ 1. Because Ψ(·) is a bounded function in the domain,

there is a constant C, independent of T and r, such that

|V∞(T, r)−V (T, r)| ≤C
∣∣∣∣ζρ −Pρ(T )

∣∣∣∣ .
Because Pρ(T ) converges uniformly to ζ/ρ, it follows that V (T, r) converges uniformly to V∞(T, r) when

rT > 0. Consider now rT = 0:

|V∞(T, r)−V (T, r)|=
∣∣∣ζ
ρ

max{0, (1− pN)µ0− INρ/ζ, −pNµ0− ISρ/ζ}

−Pρ(T ) max{0, (1− pN)µ0− IN/Pρ(T ), −pNµ0− IS/Pρ(T )}
∣∣∣

≤
∣∣∣∣ζρ −Pρ(T )

∣∣∣∣max{0, (1− pN)µ0− INρ/ζ, −pNµ0− ISρ/ζ}.
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Again, because Pρ(T ) converges uniformly to ζ/ρ, it follows that V (T, r) converges uniformly to V∞(T, r)

when rT = 0 and we are done proving that V (T, r) converges uniformly to V∞(T, r) as P →∞ or H→∞.

Due to uniform convergence, it follows that limP→∞ V
∗
P = limH→∞ V

∗
H = maxT,r V∞(T, r). We cannot guar-

antee a unique maximiser of V∞(T, r). However, uniform convergence also guarantees that, if a unique

maximiser (T∞, r∞) = arg maxT,r V∞(T, r) exists, then limP→∞ T
∗
P = limH→∞ T

∗
H = T∞ and limP→∞ r

∗
P =

limH→∞ r
∗
H = r∞. Thus, limP→∞Q

∗
P = limH→∞Q

∗
H = r∞T∞/2. �

Appendix D: Additional analysis of response-adaptive extensions

D.1. Some special cases which allow fully sequential trials

The sequential version of the one-stage optimal trial design problem in section 2.5, for the case of a fixed rate

of recruitment r, was written in section 5.1 as having the objective function in (17). If we can show that this

problem is equivalent (after suitable reparameterization) to an existing fully sequential trial, then special

cases of the one-shot trials proposed in section 2.5 can be run as fully adaptive trials, at least for the case of

a fixed rate of recruitment. In a fully sequential trial, the decision to continue the trial or to stop sampling

is made after the outcome of each patient pair is observed, as for an optimal stopping time problem.

This section affirms that this can be done by reparameterizing (17) for several special cases to match

the model of Chick et al. (2017). For these special cases, then, we can allow the duration of the trial T

to be response adaptive to observed outcomes, for any given fixed rate of recruitment r > 0, with a simple

transformation of a few parameters. The scenarios which enable fully sequential trials here are aesthetically

linked to the two special cases for comparative statics noted in the last paragraph of section 3.5.

To this end, we recall the objective function of the fully sequential trial in Chick et al. (2017).

V (π) = Eπ

[{
Q−1∑
t=0

−c+ δonXt+1

(1 + ρ̃)t

}
+

1D=N(PρW − I)

(1 + ρ̃)1Q>0(Q+τ)

]
. (EC.9)

Here, the policy π is a nonanticipative function which selects an action at to either continue sampling, or to

stop, on the basis of prior knowledge and the t samples observed so far, for t= 0,1,2, . . . ,Q. After stopping

and all data is observed, the new alternative is selected as best if PρW − I ≥ 0.

We first explore the differences between (17) and (EC.9) related to the fixed costs of the trial. The fixed

cost ccap(r) in (17) only affects the decision of running the trial or not, captured by action a0. Such decision

can also be made by computing the value of the optimal design with zero fixed costs, and then evaluating

whether it overcomes the fixed costs. Thus, fixed costs do not disturb the equivalence of the optimal trial

design once the decision to observe the first patient pair is taken, even though they do affect the optimal

choice of a0. We now explore equivalence of the sequential sampling models, assuming a0 indicates the first

sample is to be observed, for several special cases.

All the special cases in this subsection assume the fixed pool of post-adoption population, P (T ) = P , and

that the rate of recruitment is fixed. Preliminary results in this section were introduced in Alban et al. (2018).

This subsection corrects a misstatement from that paper for a special case below. The case of adapting the

rate of recruitment, rather than the number of patient pairs, is discussed in section 5.2.
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D.1.1. Current practice is standard treatment (pN = 0) When pN = 0, (17) becomes

V (π) =−1Q>0ccap(r) +Eπ

[
Q−1∑
t=0

δonXt+1− 2c

(1 + ρ̃)t

]
+Eπ

[
1D=N(PρW − IN)

(1 + ρ̃)1Q>0(Q+τ)

]
,

which is equivalent to (EC.9) by letting c′ = 2c and I ′ = IN.

D.1.2. Forcing the decision to adopt one of the two technologies, undiscounted rewards When

the adoption decision is forced to be N or S with undiscounted rewards8 (ρ̃= 0), we can use 1D=S = 1−1D=N

such that (17) becomes

V (π) =−1Q>0ccap(r)− pNPµ0− IS +Eπ

[
Q−1∑
t=0

δon(1− 2pN)Xt+1− 2c + 1D=N(PW − (IN− IS))

]
If pN < 1/2, then we can divide through by 1 − 2pN and add the constant Pρ(Q/r)pNµ0 − IS without

changing the optimal π. Thus, the optimal π maximises:

Eπ

[
Q−1∑
t=0

δonXt+1−
2c

1− 2pN

+ 1D=N

(
P

1− 2pN

W − IN− IS
1− 2pN

)]
,

which is in the form of (EC.9) when we let c′ = 2c/(1−2pN), P ′ = P/(1−2pN), and I ′ = (IN− IS)/(1−2pN).

If pN = 1/2, the optimal π maximises

Eπ

[
Q−1∑
t=0

2c+ 1D=N(PW − (IN− IS))

]
,

which is in the form of (EC.9) when δ′on = 0, c′ = 2c, P ′ = P , and I ′ = IN− IS.

D.1.3. No switching costs and undiscounted rewards When IN = IS = 0 and rewards are not

discounted (ρ̃ = 0), then it is optimal to adopt N or S, and the transformation in Appendix D.1.2 is also

valid in this scenario.

D.1.4. No switching costs and µ0 = 0 When IN = IS = µ0 = 0, whether rewards are discounted or

not, we obtain a special case of the above subsection that can additionally accommodate scenarios with

discounted rewards. We again use 1D=S = 1−1D=N in (17) to obtain

V (π) =−1Q>0ccap(r) +Eπ

[
Q−1∑
t=0

δon(1− 2pN)Xt+1− 2c

(1 + ρ̃)t
+

1D=N(PρW )

(1 + ρ̃)1Q>0(Q+τ)

]
.

If pN < 1/2, then we can divide through by 1 − 2pN and obtain the optimal π by solving (EC.9) with

c′ = 2c/(1− 2pN), P ′ = P/(1− 2pN), and I ′ = (IN − IS)/(1− 2pN). If pN = 1/2 we obtain the optimal π by

solving (EC.9) with δ′on = 0, c′ = 2c, P ′ = P , and I ′ = IN− IS.

D.2. A forward-looking heuristic to optimise the recruitment rate in a response-adaptive

design.

The idea of our heuristic is to use the one-shot design to inform the dynamic decisions by reevaluating the

one-shot solutions after a relevant amount of information is gathered in the spirit of (Branke et al. 2007,

Frazier et al. 2008). After recruiting patients for a fraction 1/B of the duration prescribed by the one-shot

8 Alban et al. (2018) incorrectly claim that this results is also valid with discounted rewards.
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design with the prescribed rate, we revisit the available data to adjust the recruitment rate and duration by

solving again the one-shot design, this time running for a fraction 1/(B−1) of the newly prescribed duration

at the newly prescribed rate, given that there are B−1 batches remaining. We continue in this manner, with

batch b+ 1 running for fraction 1/(B− b) of the remaining samples prescribed when solving at time Tb. We

now give a detailed explanation of the heuristic leading to the proposed algorithm in Table EC.2.

The one-shot decisions made by our heuristic are very similar to the analysis in section 3 with minor

differences in the objective and constraints because the dynamic decisions need to account for patient pairs

in the pipeline and different setup cost structure. Define the present expected net gain at time T given

information K, maximum recruitment rate r̄, and patient pairs in the pipeline given by q, if the trial uses

recruitment rate r for an additional duration T :

Ṽ (T,r,D;K,T , r̄, q) =−(ccap(r)− ccap(r̄))+− cT̃ρ(T )r+ δon(T̃ρ(T )r/2)(1− 2pN)E [W |K ] (EC.10)

+ e−ρ(T+∆)E [1D=N((1− pN)Pρ(T +T )W − IN) + 1D=S(−pNPρ(T +T )W − IS) | K,T, r, q] .

Notice that (EC.10), unlike (5b), only accounts for additional costs of increasing recruitment rate and the

expectation is conditioned on having q patient pairs in the pipeline. The analog analysis of section 3 yields

the following closed-form equation:

Ṽ (T, r;K,T , r̄, q) =−(ccap(r)− ccap(r̄))+− cT̃ρ(T )r) + δon(T̃ρ(T )r/2)(1− 2pN)µ (EC.11)

+ e−ρ(T+∆)Pρ(T +T )σ̃Z

[
(1− pN)Ψ

(
αN(T +T )−µ

σ̃Z

)
+ pNΨ

(
αS(T +T ) +µ

σ̃Z

)]
,

where σ̃Z = σ2
X(Tr/2 + q(∆))/(n(n+Tr/2 + q(∆))).

The algorithm in Table EC.2 shows how to use (EC.11) to make dynamic decisions using our forward-

looking heuristic. We present it for completeness to show how the one-shot value-based trial can be extended

in a natural way to batch sequential trials which adapt both the recruitment rate and duration of sampling.

We do not present numerical examples for this case, because the focus is on the one-shot trials, analysis and

extended numerical application above, and because adaptive durations for fixed rates have been discussed

by (Chick et al. 2017, Alban et al. 2018) and extended in section 5.1 above, and this groundwork lays the

work for future application-oriented batch sequential trials work.

Appendix E: Computation of CPCS and power

In section 3.5, we defined the CPCS as the conditional probability of correct selection of a technology for

adoption, given a specific value of W =w:

CPCS(w) = Pr(D∗ =Dorac |W =w),

where Dorac is the oracle’s adoption decision. In this section, we show how to compute it.

First of all, note that the optimal adoption decision depends on ZTr, which given W has the following

distribution:

ZTr |W ∼N
(
n0µ0 + rTW/2

n0 + rT/2
,

2rTσ2
X

(2n0 + rT )2

)
.
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Table EC.2 Heuristic for adapting recruitment rate and trial duration in B batches motivated by expected

value of information / knowledge gradient sampling approach.

1. Initialise: Set K to be the prior distribution for unknown W , T = 0, r̄= 0, q= 0.

2. For b= 0,1, . . . ,B− 1 batches of patient pairs.

(a) Find T ∗, r∗ to optimise (EC.11).

(b) Allocate samples for batch b+ 1 at rate r∗ for duration T ∗/(B− b).

(c) Update next decision time T ←T +T ∗/(B−b), the maximum rate r̄←max{r̄, r∗}, the information

set K given prior and data observed while batch b+ 1 samples were being allocated, the number

of patient pairs q in pipeline at the end of sampling for batch b+ 1.

3. Wait for remaining outcomes to be observed, select best alternative D on the basis of all information.

If W >αN(T ), the oracle adoption decision is N. Thus, the CPCS simplifies to

CPCS(w) = Pr(ZTr >αN(T ) |W =w).

We can then compute CPCS(w) = 1−Φ(UN), where

UN =
2n0(αN(T )−µ0) + rT (αN(T )−w)

σX
√

2rT
.

If w<−αS(T ), the oracle’s adoption decision is S, and we obtain CPCS(w) = Pr(ZTr <−αS(T ) |W =w) =

1−Φ(US), where

US =
2n0(αS(T ) +µ0) + rT (αS(T ) +w)

σX
√

2rT
.

Similarly, if −αS(T )≤w≤ αN(T ), the oracle adoption decision is M, and we obtain CPCS(w) = Pr(−αS(T )≤

ZTr ≤ αN(T ) |W =w) = Φ(UN) + Φ(US)− 1.

The final closed-form expression of CPCS is then

CPCS(w) =

 1−Φ(UN), w > αN(T )
1−Φ(US), w <−αS(T )
Φ(UN) + Φ(US)− 1, −αS(T )≤w≤ αN(T )

The computation of power requires the following definitions. Let α be the type I error and qx be the 1−x

quantile of a standard normal distribution. A two-sided hypothesis test, rejects the (null) hypothesis that

the population mean W is zero if the sample average X̄ = 2/(rT )
∑rT/2

i=1 Xi is larger than qα/2σX/
√
rT/2,

or smaller than −qα/2σX/
√
rT/2. The power is the probability of rejection given W =w:

power(w) = Pr

(
X̄ >

σX√
rT/2

qα/2 ∪ X̄ <− σX√
rT/2

qα/2

∣∣∣∣∣W =w

)

= Pr

(
X̄ >

σXqα/2√
rT/2

∣∣∣∣∣W =w

)
+ Pr

(
X̄ <−

σXqα/2√
rT/2

∣∣∣∣∣W =w

)

= 1−Φ

(
qα/2−

√
rt

2σ2
X

w

)
+ 1−Φ

(
qα/2 +

√
rt

2σ2
X

w

)
.
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