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Abstract

We investigate value-based clinical trial design by applying a Bayesian decision-
theoretic model of a sequential experiment to data from the ProFHER pragmatic trial. In
the first applied analysis of its kind to use research cost data, we show that the model’s
stopping policy would have stopped the trial early, saving about 5% of the research budget
(approximately £73,000). A bootstrap analysis based on generating resampled paths from
the trial data suggests that the trial’s expected sample size could have been reduced by
approximately 40%, saving an expected 15% of the budget, with 93% of resampled paths
making a decision consistent with the result of the trial itself. Results show how substan-
tial benefits to trial cost stewardship may be achieved by accounting for research costs in
defining the trial’s stopping policy and active monitoring of trial data as it accumulates.
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1 Introduction

There is growing interest in the use of sequential clinical trials to assess the effectiveness and
cost-effectiveness of health technologies (Pallmann et al., 2018; Cui et al., 2017; Yin et al.,
2017; Wason et al., 2016; Bhatt and Mehta, 2016). Sequential trials offer the opportunity
to stop early and bring the better treatment to patients sooner. Interest is supported by the
idea of promoting ‘value-based’ clinical research: with DiMasi et al. (2016) estimating that
the out-of-pocket cost of bringing one new compound to market is in the region of $1600
million, commissioners are seeking new ways to make clinical trials more efficient, without
compromising the quality of their recommendations.

The development of new, value-based, methodologies for health technology assessment
(HTA) raises important and, to a large extent, unexplored, questions about the role they should
play in future HTA protocols. For example, in the area of drug development, the current sy-
stem of evaluation has its roots in demonstrating quality, safety (U.S. Congress, 1938) and
efficacy (U.S. Congress, 1962). More recently, countries including Australia, the United King-
dom, France and Canada have introduced the so-called ‘fourth hurdle’ of cost-effectiveness
into approval processes (Taylor et al., 2004). This historical context is important for assessing
the potential that new methodologies offer: notwithstanding their economic gains, careful as-
sessment must be made of whether their recommendations will be acceptable to patients, the
medical profession and wider society.

This paper takes the Bayesian decision-theoretic model of a sequential and value-based
experiment proposed by Chick et al. (2017) and applies it to the ProFHER trial, a pragma-
tic, multicentre, randomised controlled trial conducted in the United Kingdom which compa-
red surgery and sling immobilisation for the treatment of displaced proximal humeral fracture
(Handoll et al., 2015; Rangan et al., 2015; Corbacho et al., 2016). The model is sequential
because it assumes that trial data may be monitored as the trial progresses, permitting early
stopping or late running as a function of the data as it is observed; it is value-based because
its solution is a policy which maximises the expected net benefit of a technology adoption de-
cision, accounting for the costs of carrying out the trial and the costs incurred in switching
technologies. The model also provides a value-based rule for optimal trial design — run a se-
quential trial, run a trial with a fixed sample size, or run no trial at all — as a function of the
prior mean for incremental net monetary benefit INMB).

Although Chick et al. applied their model using a series of simulations based on published
papers, these lacked detailed and accurate information on a number of variables and parameters.
In this paper, we use the ProFHER trial’s outcome, treatment and research cost data to calibrate
their model much more accurately than has heretofore been possible. Chick et al.’s model
assumed that, prior to the start of the trial, all patients were being treated with the ‘standard’
treatment and all patients would switch to the ‘new’ treatment if it were found to be superior.
We use the work of Alban et al. (2018) to extend the model to account for the pragmatic
nature of the ProFHER trial and the fact that, prior to its commissioning, clinical practice
for treatment of proximal humeral fracture in the United Kingdom was mixed (that is, some
patients were managed surgically, others were managed non-surgically).! We use sequential
summary statistics based on the trial’s outcome and treatment cost data to chart a path for the
posterior mean for INMB. Comparing this path with the stopping policy, we establish when
the trial would have stopped and carry out bootstrap and Monte Carlo analyses to assess the

"Without the Alban et al. (2018) extension, it would not be possible for us to solve the model.
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policy’s operating characteristics.
Section 2 describes the ProFHER trial and its financial profile, section 3 outlines the version
of the model that we apply in section 4. Section 5 discusses our results.

2 The ProFHER trial

The ProFHER trial was a pragmatic, multicentre, randomised controlled trial conducted in the
UK National Health Service (NHS) which investigated the use of surgery versus nonsurgical
intervention (sling) to treat patients with a displaced proximal humeral fracture. The trial rand-
omised 250 patients aged 16 years and older who presented to orthopedic departments in NHS
hospitals between September 2008 and April 2011 to either: (1) surgical treatment, which con-
sisted of fracture fixation with plate and screws to preserve the humeral head, or humeral head
replacement, followed by active rehabilitation, or (2) non-surgical treatment, which consisted
of sling immobilisation for the injured arm for as long as was thought necessary, followed by
active rehabilitation. Follow-up took place after two years, which was later extended to five
years. Results of the clinical and economic evaluations are reported in Rangan et al. (2015),
Handoll et al. (2015) and Corbacho et al. (2016).

The trial’s results suggested that there was no significant difference between surgical in-
tervention and sling in terms of the primary outcome measure, the Oxford Shoulder Score
(OSS). Similar results were obtained for a range of other outcomes.? The economic evaluation
consisted of a cost-utility analysis taking the NHS perspective, using the EQ-5D-3L questi-
onnaire to measure quality-adjusted life years (QALYs). After two years’ follow-up it found
that, on average, patients randomised to surgery incurred greater costs, and slightly lower QA-
LYs, than patients randomised to sling: surgical intervention for one patient cost an estimated
£1,758 more than sling (the 95% confidence interval was (£1,126, £2,389)) and yielded an
estimated 0.0101 fewer QALYs (the 95% confidence interval was (-0.13, 0.11)). A five year
follow up, designed to check for potentially late-appearing complications or differential impro-
vement/deterioration in function, found the main results unchanged (Handoll et al., 2017).

The ProFHER trial was funded by the National Institute for Health Research, with a total
budget of £1,485,585. Figure 1 shows the cumulative research costs incurred over the lifetime
of the project (left axis, dashed blue line), together with the cumulative estimate of INMB at
one year (right axis, continuous red line, measured in blocks of ten patient pairs at a time?), the
outcome measure that is the focus of this paper. INMB is calculated as the difference between
the point estimate of the net monetary benefit of surgery minus the point estimate of the net
monetary benefit of sling.* Hence positive values of INMB suggest that surgery is superior,
from the cost-effectiveness perspective, and negative values suggest that sling is superior.

We used best judgement to classify costs according to whether they were fixed — i.e. in-
curred independently of whether patients were being recruited to the trial — and variable. We

2The physical component score, the mental component score, complications related to surgery or fractures, the
need for secondary surgery to the shoulder, new shoulder-related therapy and mortality.

3The path for INMB is drawn assuming that outcomes were observed in blocks of ten patients allocated to
sling, plus ten patients allocated to surgery, which is not what happened in practice because of randomisation. We
discuss this assumption further in section 4.

“4For each technology, net monetary benefit is equal to the point estimate of the quality of life measure at one
year, multiplied by a maximum willingness to pay of £20,000 for one quality-adjusted life (in line with guidance
from NICE 2013), minus the point estimate of the treatment cost of the technology.
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Figure 1: The ProFHER trial’s cost profile (left axis) and cumulative estimate of INMB at one year’s follow
up, plotted in blocks of ten patient pairs (right axis). Letters denote the following: A — recruitment starts; B —
recruitment finishes; C — one year follow-up finishes; D — two year follow-up finishes; E — publication of Handoll
et al. (2015) and Rangan et al. (2015)

estimated that costs of approximately £161,000 were incurred prior to the recruitment of the
first patients in September 2008 (labelled as ‘A’ in Figure 1). During the recruitment phase
(which finished in April 2011, labelled ‘B’) and the two-year follow-up phase (which finished
in April 2013, labelled ‘D’), further costs of approximately £1,020,000 were incurred. The
main results in Handoll et al. (2015) and Rangan et al. (2015) were reported two years later
(‘E’) and the project concluded at the end of December 2016. Approximately £289,000 of
costs were incurred post follow-up, which included covering the tasks of data preparation, cle-
aning, analysis and report writing. The total spend was therefore approximately £1,470,000.
The costs plotted in Figure 1 are those relating to the research project budget itself. Treatment
costs were not charged to the ProFHER trial’s budget, rather they were funded as part of nor-
mal commissioning arrangements within the NHS. For the purposes of this work, we assume
that treatment costs would have been the same with or without the trial, on average, across the
hospitals participating in the trial.

Blinding meant that the path of INMB shown in Figure 1 was not available to the investi-
gators as the trial progressed. The path shows that, although the estimate of INMB from the
first blocks of patients favoured surgery, INMB changed to favour sling in late 2010 and re-
mained that way for the rest of the follow-up period, resulting in an estimate of INMB equal to
approximately -£1,800 at the end of follow-up (point ‘C).



3 Model of a value-based and sequential clinical trial

Chick et al. (2017) model a two-armed sequential clinical trial in which patients are rando-
mised, in a pairwise and sequential manner, to a new health technology, N, and a control (or
standard) health technology, S. The outcomes and costs of treatment for each patient are recor-
ded after a defined follow-up period of A > 0 units of time. To reflect beliefs concerning the
relative cost-effectiveness of the technologies before starting the trial, the model places a prior
distribution on the INMB of N compared with S. The objective of the model is to obtain a po-
licy to halt sequential recruitment to the trial. This policy maximises the expected net benefit of
carrying out the trial and then recommending one of the two technologies on cost-effectiveness
grounds, accounting for any costs incurred in switching technologies, as well as the size of the
total population that is expected to benefit from the technology adoption decision.

Denote the effectiveness of the two treatments by the random variables Ey € R (for the
new technology) and Fs € R (for the standard) and define the patient-level treatment costs of
using the technologies by the random variables Cy € R~ and Cs € R>,. INMB for pairwise
allocation ¢ is the difference between the net benefits of N and S, defined for each technology
as the monetary benefit minus the cost, or:

Xi = /\<EN,Z' - ES,i) - (CN,Z' - CS,i)7 (1)

where A € R. is the monetary value of one unit of effectiveness. It is assumed that X; | W ~
N(W, ag(), 1=1,2,..., Quny Where Q,,, is the maximum number of pairwise allocations that
can be made in the trial, 0% is the variance of INMB in the population (the ‘sampling variance’),
assumed known for the purposes of this paper, and IV is the unknown expected value of INMB
in the population (the ‘sampling mean’). Beliefs about W are assumed to have a A (pg, 032)
prior distribution. ny = 0% /02 is its so-called effective sample size.

Assuming a fixed rate of recruitment to the trial, we may express the delay in terms of time,
A, or pairwise allocations, 7 > 0. The sequential trial comprises three distinct stages:

1. during Stage I, patients are randomised to the two technologies but no cost or outcome
data are observed;

2. during Stage II, cost and outcome data are being observed and there is the option to
recruit more patients to the trial or to stop recruitment to the trial;

3. during Stage III, recruitment no longer takes place and outcomes and treatment costs
of patients in the ‘pipeline’ — those who have been treated but who have not yet been
followed up for the requisite period of time — are observed.

During Stages II and III, observations are used to update the prior/posterior distribution of W
sequentially. If, during Stage I, it is decided not to randomise a further pair of patients, Stage II
finishes and the trial moves to Stage III. Once all pipeline patients are followed-up, the adoption
recommendation is made for P patients who are expected to benefit from the adoption decision,
accounting for any cost incurred in switching from one technology to the other.

Define the adoption decision D € {S,N}. Alban et al. (2018) account for the pragmatic
nature of the ProFHER trial in which, prior to the start of the trial and owing to the absence
of definitive clinical guidance, some patients were treated with surgery and some were treated
with sling (implying that fewer than 100% of patients requiring treatment would be affected by



the adoption decision upon the trial’s conclusion). We incorporate this extension and define py
as the proportion of patients who are treated with the new technology N (surgery, in the context
of the ProFHER trial) prior to the start of the trial, so that the proportion 1 — py receive standard
treatment S (sling).

The model assumes a risk-neutral social planner who wishes to maximise expected net
benefit, defined as the sum of all patient health benefits, minus the costs of running the trial
and switching future patients to one of the two treatments. A valid policy 7 is defined as a rule
which takes the information available in the trial and maps it to an action, which is whether to
stop the trial during Stage II or to sample another pair of patients and, once all of the data have
been observed, choose the best technology. The information comprises the posterior mean and
its effective sample size. The expected reward from carrying out the trial is therefore:

V(73 po, o) =

— Ceap + Eﬂ— [—TC + [IDT+T:N(P(1 — pN)W — IN) + 1DT+T:3(PpN(—W) — Is)] | Mo, o }(2)
Ceap = 0 are the fixed costs of the trial, 1 = 1if [ is true and zero otherwise and Iy and I are
the costs of switching patients to N and S, respectively. [E, is the expectation induced by policy
mand T € {0,1,...,Q,.} is the number of pairwise allocations made at the time of stopping.
A policy m which maximises V' may be obtained by using dynamic programming: the discrete
time problem is approximated by a continuous time one and the partial differential equation
and boundary conditions which result solved. We call a policy 7* which solves the problem an
‘Optimal Bayes Sequential’ policy.

There are two scenarios in which it is not optimal to enter Stage II: (1) the expected reward
of entering Stage I1 is less than that of running a trial with a fixed number of pairwise allocations
in the range (0,7]. In this scenario, the Optimal Bayes Sequential policy selects the same
sample size as a trial designed to maximise the difference between the expected value of sample
information and the cost of sampling (we call such a design the ‘Optimal Bayes One Stage’
design); (2) the value of the prior mean favours one of the two technologies so strongly that the
cost of conducting a trial outweighs the benefits. In this scenario, the Optimal Bayes Sequential
policy is to run no trial and base the adoption decision on the value of the prior mean alone.

Figure 2 presents the stopping policy for the problem in (sample size X prior/posterior
mean) space. Stages I to III of the sequential trial, as described above, are shown. Before
starting the trial, the prior mean i is compared with the ranges defined on the vertical axis by
the letters A, B, C and D. These are defined according to a comparison of the expected value of
running the sequential trial, running a trial with 7" < 7 and running no trial. If yg lies between
points C and D, it is optimal to run a sequential trial. For values of jy lying between A and C
or D and B, it is optimal to run a trial with 7" < 7. If the prior mean lies above A or below B,
no trial should be run and the adoption decision should be based on the value of the prior mean
alone: above A, prior information is strong enough to favour immediate adoption of surgery;
below B, it is strong enough to favour immediate adoption of sling. Chick et al. (2017, section
3) provide further discussion.

If it is optimal to run a sequential trial, recruitment of patients takes place during Stage I
but no outcomes are observed. At the start of Stage 2, outcomes and treatment costs for the
first pairwise allocation are observed and used to update the prior mean. Outcomes then arrive
sequentially, the posterior mean is updated and, as long as the posterior mean lies between
the upper and lower stopping boundaries, it is optimal to continue to recruit. As soon as the
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Figure 2: Stopping policy for the Optimal Bayes Sequential problem. Stage III is shown assuming that stopping
takes place at the maximum sample size of Q.. pairwise allocations.

posterior mean hits or crosses one of the two boundaries, it is optimal to halt recruitment and
move to Stage III.

4 Application to the ProFHER trial

The parameter values used for our application to the ProFHER trial, together with their sources,
are reported in Table 1. Details of the calculations used to obtain the parameter values are
provided in Appendix A. We run two versions of the model. The baseline version assumes that
the maximum number of pairwise allocations that could be made, (..., is equal to 125, so that
the sequential trial could recruit a maximum of 250 patients, equal to the actual sample size
chosen for the trial. A second version doubles ()., to 250 pairs of patients. The baseline version
ensures that the maximum sample size of the sequential trial cannot exceed that of the ProFHER
trial; the latter version offers the opportunity for learning more about cost-effectiveness before
deciding to conclude Stage II.

We assume that the delay, A, in observing the EQ-5D outcome measure and treatment costs
is equal to one year. We assume that the rate of recruitment to the sequential trial is equal to the
average rate of recruitment in the ProFHER trial itself (47 pairwise allocations). With follow-
up at one year, this implies that the delay, 7, in observing outcomes and treatment costs, is
also equal to 47 pairwise allocations. We assume a near non-informative prior, with g = 0
and ng equal to 2 pairwise allocations, representing the lack of evidence for effectiveness and
cost-effectiveness at the start of the trial. Finally, the trial costs plotted in Figure 1 are broken
down into best estimates of the fixed costs incurred prior to starting recruitment to the trial,
costs incurred between the start of recruitment and the end of follow-up (we assume a 50%
split between fixed and variable costs during this period), and post-follow-up. This leads to an
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Figure 3: Stopping boundaries showing the maximum length of Stages II and III, together with optimal Stage I
decisions for two versions of the model (Q,,.x = 125 and Q,,.x = 250)

estimate of the marginal cost per pairwise allocation equal to ¢ = £4,080.

Figure 3 shows the stopping boundaries for the two versions of the model in (ny + number
of pairwise allocations) x posterior mean space. The optimal Stage I decisions (run a sequential
trial, run a trial with a fixed sample size, run no trial), delineated by the letters A—D as they
were in Figure 2, are shown, together with circles showing the sample sizes when 7" < 7.

4.1 When would the sequential version of the ProFHER trial have stopped?

Figure 4 plots the two Stage II stopping boundaries from Figures 3a and 3b on the same dia-
gram, together with the path of the posterior mean for INMB from the ProFHER trial (in bold
black, markers: ‘o’). This is drawn using the summary data for effectiveness and treatment
costs from the trial, arranged in blocks of ten pairwise allocations and reported in Table 4.°> The
four other paths in Figure 4 are described in section 4.2. Figure 4 shows that, although doubling
the maximum sample size increases the maximum length of Stage II, it has little impact on the
stopping boundaries.

The first point on the path for the posterior mean, at the start of Stage II and for an effective
sample size of 49 pairwise allocations (equal to ny = 2 plus the delay of 47 pairwise alloca-
tions), is equal to the prior mean (o = 0). Figure 4 shows that, when @,,, = 125, Stage 1I
would have concluded after 107 patient pairs had been recruited, with a posterior mean equal
to -£1,110. This corresponds to the first point at which the posterior mean lies outside the red
stopping boundary. Follow-up of the 47 patient pairs in the pipeline is shown by the remaining

The trial summary data in Table 4 is the same as the data which are used to obtain the path for the cumulative
measure of INMB that is plotted in Figure 1, the only difference being that the plot in Figure 1 ca be thought of as
being ‘frequentist’, in that it omits the prior mean and effective sample size. As noted in section 2, patients were
not observed in blocks of (ten allocated to surgery + ten allocated to sling) at a time owing to randomisation. We
used our best judgement to create such blocks, based on the sequence in which outcomes and treatment cost data
was observed, in order to illustrate the path for the posterior mean in as simple a manner as possible.
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circles on the path and would have led to a decision being made in favour of sling, based on a
posterior mean for expected INMB equal to approximately -£1,810. Hence the sequential trial
would have stopped earlier, with no change in the adoption decision and little change in the es-
timate of cost-effectiveness, saving 18 patient pairs and approximately 18 x £4,080 = £73,000
(around 5% of the total cost of the trial).

When @),... = 250, the decision would have been no different, since the first point at which
the posterior mean lies outside the blue (dashed line) stopping boundary is the same as that
for the case of Q... = 125.° Hence, for this application, the stopping decision for stage II,
together with the final decision in the trial (favour sling), are relatively insensitive to whether
the maximum sample size of the sequential trial is set to the sample size of the ProFHER trial
itself, or to double that size.

4.2 Bootstrap analysis

Section 4.1 explored the performance of the sequential trial when applied to the ProFHER trial
using the specific sequence of data from the trial itself, arranged in blocks of ten patient pairs.
We now analyse the performance of the Optimal Bayes Sequential policy in the average, by
taking random draws from that sequence of data using a bootstrap analysis.

We resampled at random, and with replacement, from the data in Table 4. For each iteration

®Figure 4 appears to show the point lying precisely on the boundary, which would imply indifference between
stopping and continuing Stage II. However, it lies slightly outside the boundary.
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Final decision

Sling  Surgery Total
Qumax = 125
First crossing lower boundary (Sling) 0.814 0.022  0.836
First crossing upper boundary (Surgery) 0.110  0.054  0.164
Total 0924 0.076  1.000
Qmax =250
First crossing lower boundary (Sling) 0.824  0.019 0.843
First crossing upper boundary (Surgery) 0.103  0.054  0.157
Total 0.927 0.073  1.000

Table 2: Contingency tables for first crossing and final adoption recommendation decision from the bootstrap
analysis

Qmax = 125

Average INMB at stopping (SD; min, max) -£2,076 (£1,408; -£6,424, £4,753)
Average saving (as % of total spend) £216,240 (15%)
Average sample size (SD; min, max) 72 (17, 57, 125)

Qmax = 250

Average INMB at stopping (SD; min, max) -£2,093 (£1,396; -£6,300, £4,465)
Average saving (as % of total spend) £208,080 (14%)
Average sample size (SD; min, max) 74 (22; 57, 250)

Table 3: Summary statistics for the 100,000 resampled paths used for the bootstrap analysis

of the bootstrap, we used the sequence of outcome, cost and sample size data, together with
the prior mean and prior effective sample size, to create a cumulative path for the posterior
mean. For each of the resulting resampled paths for the posterior mean, we established the
point at which Stage II would have concluded, by comparing the path for the posterior mean
with the stopping boundaries. Four such paths are shown in Figure 4. The pink (markers: ‘+’),
blue (markers: ‘o’) and green (markers: ‘*’) paths all cross the lower stopping boundary first,
before pipeline patients are followed up and the final adoption decision recommends sling. The
black dashed path (markers: ‘L") crosses the upper boundary first, but by the time the pipeline
patients are followed up, the posterior mean for INMB is negative and so this path, too, results
in a recommendation of sling.

We obtained 100,000 resampled paths for each version of the model (Q),., = 125 and
@ = 250) and performance characteristics are summarised in Tables 2 and 3. Table 2 shows
that, when (),,, = 125, the stopping rule makes the same reccommendation as made in the
ProFHER trial (sling) for 92% of the resampled paths. 11% of paths cross the upper boundary
first but make a recommendation of sling upon the trial’s conclusion; 5% cross the upper boun-
dary first and recommend surgery. 81% of paths cross the lower boundary first and conclude
by recommending sling; 2% cross the lower boundary first and conclude by recommending
surgery. The lower half of Table 2 shows that these results change only marginally when @),
is doubled to 250 pairwise allocations.

Table 3 shows that, when @),., = 125, the average of the estimates of the posterior mean
for INMB upon the trial’s conclusion is -£2,076. The average sample size is 72 pairwise allo-
cations, which is about 58% of the actual sample size of the trial. This represents an average
saving of 53 x £4,080 = £216,240. The lower half of Table 3 shows that, as expected, the
average sample sizes and the posterior mean for INMB upon the trial’s conclusion change
little when the maximum number of pairwise allocations is doubled. The average saving falls
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Figure 6: Further graphical analyses from the bootstrap

slightly, to £208,080, owing to the slightly increased average sample size (74 rather than 72
pairwise allocations) and very little gain in the proportion of decisions favouring sling.

Finally, Figures 5 and 6 present some graphical summaries of the bootstrap analysis, which
demonstrate some qualitative differences not observed in the numerical results of Tables 2 and
3. Figure 5b shows that setting the maximum sample size to (),... = 250 reduces the height of
the bar of the histogram that is seen at (),,,, = 125 in Figure 5a: by allowing the trial to run for
longer, more learning about 11 takes place. Having a larger maximum sample size also reduces
the probability of stopping throughout Stage II, as shown by the empirical CDFs in Figure 6a.
However, this makes little difference to the overall performance of the two scenarios, as already
seen. Finally, Figure 6b shows that the histograms for the posterior mean for INMB at adoption
are almost identical and right-skewed.
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4.3 Sensitivity analysis using Monte Carlo simulation

The bootstrap analysis in section 4.2 assumed a single prior mean and a fixed sampling mean.
In this section we use Monte Carlo simulation to explore how the sequential model performs
when the prior mean is varied over a range of values with sampling means drawn from the
resulting prior distributions. We investigate performance characteristics including the average
sample size, average reward and the probability of correctly selecting the better technology.
We do this for three trial designs: the Optimal Bayes Sequential design with @,.., = 125 and
@ax = 250 and the design that was used in the ProFHER trial itself (a fixed sample size design
with Q... = 125, which we call the ‘Fixed’ design).

We took a range of values of the prior mean between a lower limit of —£10,000 and an
upper limit of £10,000. For each value, we took the value of n used for the bootstrap and
made 15,000 random draws of W from the resulting distribution. For each draw, we sampled at
random from the sampling distribution and used these draws to generate a path for the posterior
mean. For each path we calculated the stopping time of the trial and the adoption decision.’
Results are presented in Figures 7a to 7d.

Figure 7a presents the average sample size of the Optimal Bayes Sequential design as a
function of the prior mean (red, continuous line for @),,, = 125 pairwise allocations; blue,
dashed line for @,., = 250) and the Fixed design (black, dash-dot line). The letters A-D
correspond to those marked in Figure 2. Figure 7a shows that, for both sequential designs, the
average sample size falls the further the prior mean is from zero, reflecting the lower expected
sample size that comes when the prior mean favours one of the two technologies. Doubling
(.. Increases the average sample size.

Figure 7b presents the proportion of times that each design makes the correct technology
adoption decision. Doubling the maximum sample size of the sequential design increases the
proportion of correct decisions by about one percentage point, reflecting the value of continuing
to learn about WW. Performance of all three designs is worst in the region of py = 0, although
the correct selection is still made in approximately 96-97% of the replications.

Figure 7c plots the estimate of the ‘net gain’ of the sequential designs over the Fixed de-
sign. Net gain is defined as the difference between the average reward of the Optimal Bayes
Sequential and the Fixed design, accounting for both the reward accruing at the point of adop-
tion and the cost of the trial. The sequential designs outperform the Fixed design by between
£200,000-£300,000 because both save costs owing to early stopping (Figure 7a), while making
a similar proportion of correct decisions (Figure 7b).

Finally, Figure 7d compares the proportion of correct decisions when Q,,, = 125 from
Figure 7b (red, continuous line) with the proportion of correct decisions from what we term
a ‘frequentist’ approach to the MC simulation (green, dash-dot line). For the latter approach,
ny 1s set equal to zero, so that the sampling mean is no longer a draw from a prior distribution
but is equal to the prior mean for all 15,000 replications. When o = W = 0, the probability
of selecting surgery is equal to one half owing to the fact that the stopping boundaries are
symmetric, but it increases the further the IV lies from 0.

"In this subsection, a correct decision is defined according to the value of the draw for W: if W > 0 and the
adoption recommendation is surgery, this is defined as a correct decision. Similarly, if W < 0 and the adoption
recommendation is sling, this is defined as a correct decision.
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Figure 7: Operating characteristics for the Monte Carlo simulation

5 Discussion

With growing interest in value based health care and the use of adaptive and sequential clini-
cal trial designs to assess the effectiveness and cost-effectiveness of new health technologies,
there is a need to explore how new approaches to conducting health technology assessments
perform, from both economic and more traditional statistical perspectives. In this paper, we
have taken a recently published Bayesian decision-theoretic model of a sequential and value-
based experiment, together with an extension proposed by Alban et al. (2018), and applied it
to the ProFHER trial. We have presented a value-based rule for optimal trial design — run no
trial, run a trial with a fixed sample size, run a sequential trial — and assessed performance cri-
teria. Using the data as it accumulated from the trial itself, results show that, had the model’s
stopping policy been used for the sequence of data observed in the trial, it could have stopped
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early, saving about 5% of the research budget (approximately £73,000). A bootstrap analysis
based on averaging over resampled paths drawn from the trial’s data suggests that the sample
size would have been reduced by approximately 40%, saving 15% of the budget, with 93% of
resampled paths making a decision consistent with that of the trial itself.

Analysis of the distribution of stopping times shows a skewed distribution, with approxima-
tely 35% of resampled paths stopping at 57 pairwise allocations. This means that these ‘trials’
would have concluded with a sample size of just under half of the patients who were recruited
to the ProFHER trial itself. Given that the ProFHER trial has seen mixed uptake of its results
in the years following publication of Handoll et al. (2015) and Rangan et al. (2015) (Jefferson
et al. (2017) provide an assessment of the impact of the findings of the ProFHER trial on sur-
geons’ clinical practice), it is important to consider whether surgeons would consider such a
small sample size credible enough to change practice. One way to address this matter would
be to adapt the reward functions in the model to make the probability of uptake of the recom-
mended treatment a function of the strength of the results of the trial — namely, the value of
the posterior mean and the effective sample size at the time of stopping — or to impose a lower
bound on the stopping time of the model, above which it is thought that the results would be
acceptable to health care practitioners. Pursuing these options would involve trading-off some
of the expected savings of the trial with the expected benefit of an increased probability that the
trial influences practice.

There are many directions for future research. Firstly, the rewards of the adoption decision
are a function both of the size of the population to benefit and the cost of switching technolo-
gies. The former is hard to estimate pre-trial, when there exists a large degree of uncertainty
over the number patients who would meet the trial’s inclusion criteria (and who therefore would
benefit from the adoption decision in the post-trial period). There is also uncertainty over the
time horizon for which the adoption decision will be implemented. The latter requires an as-
sessment of the cost of switching technologies. Secondly, there is the question of defining the
fixed and variable costs of the trial itself: the stage II stopping boundaries are a function of the
variable costs alone; the decision about which trial design is optimal accounts also for the fixed
costs. Finally, the model that we apply assumes that the sampling variance is known, which is
unlikely to be the case in practice. This requires that either an estimate of the sampling variance
be used at the start of the trial (perhaps with a sensitivity analysis to investigate how the Stage
II stopping boundaries changes as the sampling variance changes) or that the methods of Chick
etal. (2017, Section 4) are used to obtain bespoke boundaries for the case of unknown variance.

A Parameter values and data from the ProFHER trial

Table 4 presents the point estimates of quality of life and costs, arranged in blocks of ten patient pairs, from the
ProFHER trial. These data are used to plot the path for the point estimate of INMB in Figure 1 (ignoring block 0,
which refers to the prior mean and its effective sample size). They are also the point estimates used to carry out
the bootstrap analysis of section 4.2.

The parameter values used for the analysis in section 4 are sourced and calculated as follows:

1. Estimate of the proportion treated with sling at the start of the trial, py: taken from Handoll et al. (2015,
page 104). Of 313 non-consenters in the ProFHER trial, 66 were assigned to surgery, 105 to sling, 118
were classified as ‘uncertain’ and data were missing for the remaining 24. Assume that non-consenters
were representative of the overall patient population for which the ProFHER trial was designed and that
patients with missing data for treatment, together with those classified as ‘uncertain’, do not systematically
differ from the study population either. Then it is estimated that py = 0.39 (= 66/171).
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EQ-5D-3L  Treatment costs Number of observations

Block Ex  Es CN Cs Ny MEg Moy NGy
0 (Prior) 0 0 0 0 2 2 2 2
1 0.74 0.67 3166 2102 10 10 4 6
2 0.85 0.69 1855 47 10 9 6 6
3 0.66 0.84 2464 120 9 9 5 7
4 0.77 044 2191 1150 10 9 5 7
5 0.66 0.73 3921 32 10 10 4 5
6 0.68 0.78 2854 582 10 9 4 8
7 0.78 0.61 2549 1223 10 9 6 3
8 0.60 0.71 3081 3028 10 10 7 5
9 0.52 0.73 2689 20 10 10 5 5
10 0.75 0.81 2434 821 9 10 9 6
11 0.62 0.65 1918 27 10 9 5 3

Table 4: Point estimates of EQ-5D and cost data from the ProFHER trial, together with the number of observations
used to obtain each point estimate, arranged in blocks of ten patient pairs. Also included is a row for the prior
mean (block = 0), together with the effective sample size of the prior Figure 4.

2. Estimated of switching costs: from personal communications it was believed that these costs would be
minor and they are assumed to be equal to zero.

3. Estimate of the sampling variance, o%: from the 95% confidence interval for INMB at one year provided
by the ProFHER trial’s data. The point estimate of INMB at one year was -£1601.66 and the upper limit
of the 95% confidence interval was -£458.06, based on approximately 60 pairwise allocations. Using a
critical value of t = 2, ox ~ v/60 x (-£458.66+£1601.66) /2 ~ £4,400.

4. Estimate of P, the post-decision population to benefit: there appears to be no reliable information on
the annual incidence rate of fractures meeting the inclusion criteria for the ProFHER trial. We therefore
estimated P using information from a number of sources. Corbacho et al. (2016, page 7) report that
there were 3,519 first listed consultant episodes for patients with fractures of the proximal humerus which
involved an operation during 2011-12.They assume that 80% of these were displaced fractures involving
the surgical neck. They make the conservative assumption that 50% of these cases may change from
surgical intervention to non-surgical intervention as a result of the ProFHER trial and calculate a £2.5m
saving to NHS England (i.e. 3,519 x 0.8 x 0.5 = 1,408 patients x AC= £1,758 = £2.5m). Treatment using
sling is classified as an outpatient appointment in the UK, and there are no data on the number of sling
administrations that took place during 2011-12. Given that Corbacho et al. (2016) estimate that there were
2,815 (=0.8 x 3,519 ) cases of fractures of the proximal humerus involving the surgical neck during 2011-
12, we use py from point 1 above to estimate that 4,403 ( 2,815 x ( 1 /(0.39) - 1) ) patients would have
been treated with sling. We therefore estimate an annual incidence rate of 2,815 + 4,403 ~ 7,000 patients
who may be treated either with surgery or sling. We combine this with a total duration for implementing
the decision resulting from the trial which is equal to 6 years, so P =6 x 7,000 = 42,000.

5. Estimate of ¢, the marginal cost per pairwise allocation, is calculated using the financial records from
the trial (those used to produce Figure 1). Approximately £161,000 was spent prior to recruiting the first
patients. This is classified as the fixed set-up cost of the trial. An estimated 50% of the £1,020,000 of costs
incurred between the start of patient recruitment and the finish of follow-up is taken to be the variable cost
of the trial, giving an estimate of the marginal cost of adding one pairwise allocation to be £510,000/125
= £4,080. The remaining 50% is taken to be a cost (such as overheads) which would have been incurred
during the recruitment phase even if no patients were being recruited. Finally, costs of £289,000 are
incurred post follow-up. This gives a total spend of £1,470,000.
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