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Abstract

This paper studies the estimation of latent group structures in heterogeneous time-varying

coefficient panel data models. While allowing the coefficient functions to vary over cross sections

provides a good way to model cross-sectional heterogeneity, it reduces the degree of freedom and

leads to poor estimation accuracy when the time-series length is short. On the other hand, in a lot of

empirical studies, it is not uncommon to find that heterogeneous coefficients exhibit group structures

where coefficients belonging to the same group are similar or identical. This paper aims to provide

an easy and straightforward approach for estimating the underlying latent groups. This approach is

based on the hierarchical agglomerative clustering (HAC) of kernel estimates of the heterogeneous

time-varying coefficients when the number of groups is known. We establish the consistency of this

clustering method and also propose a generalised information criterion for estimating the number

of groups when it is unknown. Simulation studies are carried out to examine the finite sample

properties of the proposed clustering method as well as the post-clustering estimation of the group-

specific time-varying coefficients. The simulation results show that our methods give comparable

performance as the penalised-sieve-estimation based classifier Lasso approach by Su et al. (2018), but

are computationally easier. An application to a cross-country growth study is also provided.

Keywords: Hierarchical agglomerative clustering; Generalised information criterion; Kernel estimation;

Panel data; Time-varying coefficients.
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1 Introduction

Analysis of panel data has become one of the most important areas in theoretical and applied

econometrics. The double-index panel modelling framework facilitates the exploration of dynamic

information over time span and heterogenous structure over cross sections. In the past few decades,

there have been exciting developments in parametric and nonparametric panel model estimation and

inference, see, for example, Arellano (2003), Su and Ullah (2011), Chen et al. (2012), Robinson (2012),

Hsiao (2014) and the references therein. In the existing literature, it is typically assumed that the

regression relationship between variables is invariant cross sectionally, leading to homogenous panel

data models. However, such an assumption might be inappropriate in many practical applications

when the data are collected from individuals with different characteristics or in different geographical

locations. In the context of parametric linear panel data models, Ke et al. (2016) and Su et al. (2016)

impose latent group structures on the constant regression coefficients, and respectively use the binary

segmentation and shrinkage methods to detect and estimate the group structures. In this paper, we

aim to study this problem in a more general setting by allowing the model regression coefficients to

vary smoothly over time and the panel data to have general cross-sectional dependence.

Suppose that we have the panel observations: (Yit,Xit), i = 1, · · · , N , t = 1, · · · , T , which are

allowed to be serially correlated over t and cross-sectionally dependent over i. The primary interest is

to investigate the relationship between the response variable Yit and the p-dimensional explanatory

vector Xit. Consider the following heterogenous time-varying coefficient panel data model:

Yit = αi + X′itβit + εit, (1.1)

where αi are individual specific effects, βit are p-dimensional vectors of time-varying functional

coefficients which are heterogeneous over i, and the model errors εit are stationary over time t but

may be cross-sectionally dependent. As in Robinson (1989) and Cai (2007), we assume that βit are

smooth functions of scaled times:

βit = βi
( t
T

)
, t = 1, · · · , T, i = 1, · · · , N, (1.2)

where βi(·) is a p-dimensional vector of functions satisfying some smoothness conditions. In model

(1.1), we allow for the existence of heterogeneous intercept functions by letting the first element of

Xit be one. With Xit =
(
1, Xit,1, . . . , Xit,p−1

)′
and βi(

t
T

) =
(
βi,0(

t
T

), βi,1(
t
T

), . . . , βi,p−1(
t
T

)
)′

, we can
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rewrite equation (1.1) as

Yit = αi + X′itβi
( t
T

)
+ εit

= αi + βi,0
( t
T

)
+

p−1∑
k=1

βi,k
( t
T

)
Xit,k + εit. (1.3)

As both αi and βi,0(·) appear in the intercept of the model, to disentangle αi and βi,0(·) from each

other, we impose the identification condition
∑T

t=1 βi,0(t/T ) = 0 on the intercept functions (Boneva

et al., 2015). An alternative is to assume
∑N

i=1 αi = 0 on the individual effects. In this paper we

use
∑T

t=1 βi,0(t/T ) = 0 for convenience of estimation. This will become clearer in Section 2 when we

develop the estimation procedure.

When the intercept functions βi,0(·), i = 1, . . . , N , are homogeneous, i.e., βi,0(·) ≡ β0(·), equation

(1.3) becomes a panel data model with a common time trend but heterogeneous time-varying slope

coefficients. Further assuming homogeneity of time-varying slope coefficients, i.e., βi,k(·) ≡ βk(·),
k = 1, . . . , p− 1, gives the model considered in Li et al. (2011), of which the nonparametric trending

panel model in Robinson (2012) is a special case. Panel data models with homogeneous time-varying

coefficients have been extensively studied in the literature (to list a few, Li et al., 2011; Chen et al.,

2012; Zhang et al., 2012; Chen and Huang, 2017), and their estimation and inference methods have

been well developed.

Note that model (1.3) offers great flexibility for modelling cross-sectional heterogeneity and

time-varying effects of regressors on the dependent variable. However, without considering any group

structure for βi(·), we can only reply on the sample information from the i-th cross section to estimate

the time-varying coefficient vector βi(·). This will lead to slow estimation convergence rates in large

samples and unsatisfactory estimation accuracy in finite samples when the time series length T is not

large enough. Consequently the benefits of panel data for giving a larger number of pooled observations

cannot be reaped. On the other hand, in a lot of empirical studies using heterogeneous panel data

models, researchers find group structures where coefficients within each group are homogeneous but

heterogeneous across groups. Such group structures arise due to the similarity of some cross sections

in certain characteristics such as their geographical location. Hence, in this paper we consider the case

where there exists a latent group structure for the heterogenous time-varying coefficient functions,

i.e., there exists a partition of the cross-sectional index set {1, 2, · · · , N}, denoted by {G1, · · · ,GK0},
such that

βi(·) = γk(·) for i ∈ Gk and Gk ∩ Gj = ∅ for k 6= j, (1.4)

where ∅ denotes the empty set. We assume that the Lebesgue measure of
{
u ∈ [0, 1] : γk(u) 6= γj(u), k 6= j

}
is uniformly (over k and j) strictly larger than a positive constant, and the number of latent groups,

K0, is finite but may be unknown in practice. The aim of this paper is to uncover the latent
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group structure (1.4) by estimating the number of groups K0 and determining the membership of

each index set Gk, k = 1, · · · , K0. Consequently, a nonparametric estimation of the time-varying

coefficient functions making use of the estimated group structure can be constructed, which has faster

convergence rate than the naive nonparametric estimation ignoring the latent group structure.

Estimation of latent group structures in nonparametric panel data models has received increasing

attention in recent years. Vogt and Linton (2017, 2018) introduce kernel-based clustering methods to

estimate the latent structures of univariate regression functions in panel data. Su et al. (2018) consider

the same model structure as (1.1), and use a sieve approximation for the time-varying coefficient

functions and the so-called classifier LASSO method to estimate the latent structure. In this paper,

we use a fundamentally different method and relax some restrictive model assumptions in Su et al.

(2018) (say, the cross-sectional independence assumption). Partly motivated by Li et al. (2018), we

combine the kernel estimation method of the heterogenous time-varying coefficient functions with the

classic hierarchical agglomerative clustering (HAC) method to estimate the latent group structure.

We then use a generalised information criterion to determine the unknown group number K0. The

advantages and novelty of our methods lie in the following aspects.

(i) When Xit ≡ 1 and αi ≡ 0 for all i and t, our model becomes Yit = βi,0(t/T ) + εit, which is the

model considered in Vogt and Linton (2018) with a fixed-design covariate. Vogt and Linton

(2018) also use the classical HAC algorithm to cluster nonparametric regression curves but base

the HAC on the complete linkage of a multi-scale distance statistic which maximises a normalised

point-wise distance between two regression curves over a grid of bandwidth and covariate values.

The multi-scale distance statistic is constructed using large-sample approximation of normalised

point-wise distance maximised over a grid. Furthermore, although their method does not require

the selection of a bandwidth, it does require the choice of a threshold parameter, πNT , for

estimating the number of groups. Applied to the fixed design model Yit = βi,0(t/T ) + εit, our

method is more straightforward to implement. The second simulation example in Section 4.2

shows that, with a similar data generating process, our method performs at least as well as that

of Vogt and Linton (2018). Our proposed method can be easily implemented in R or Matlab

with readily available packages or functions for HAC algorithm. Although our method does

require a selection of a smoothing parameter, i.e., the bandwidth for nonparametric estimation

of the time-varying coefficient functions, such a selection problem has been extensively studied

in the literature and one can easily use one of the existing methods, such as the leave-one-out

cross validation to tackle it.

(ii) Su et al. (2018) first use the sieve estimation for the functional coefficients then use the classifier

LASSO (C-LASSO) method, which is first introduced in Su et al. (2016), to simultaneously

estimate the functional coefficient vectors and classify them into groups. This method does not

have a closed form solution, and hence an iterative numerical method has to be used to obtain
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an estimate of the latent groups. Hence, our method is implementationally easier. The first

simulation study in Section 4.2 shows that our method works as well as that of Su et al. (2018).

The rest of the paper is organised as follows. In Section 2, we develop an easy-to-implement approach

for estimating the latent group structure when the number of groups, K0, is known and then propose

an information criterion to estimate K0 when it is unknown. Section 3 gives the consistency of the

proposed clustering method and the method for estimating K0. Section 4 provides 2 simulation

examples, in which the data generating processes are similar to the simulation designs of Su et al.

(2018) and Vogt and Linton (2018) to facilitate comparison of performance of our method against

those of theirs. These are then followed by an empirical application to a cross-country economic

growth study consisting of 100 countries across the globe. Section 5 concludes the paper. All the

proofs are relegated to the appendix.

2 Estimation methodology

In this section, we first introduce a kernel-based HAC algorithm to estimate the latent groups by

assuming that the number of groups, K0, is known, and then propose a generalised information

criterion to determine the number K0.

2.1 Kernel based HAC algorithm

To illustrate the kernel-based clustering method for estimating the group structure, we first assume

that the number of clusters, K0 is pre-specified. The kernel-based clustering method applies the

classic HAC algorithm to kernel estimates of the time-varying coefficients βi(·). To estimate βi(·), we

first absorb αi into βi,0(·) and denote β∗i,0(·) = αi + βi,0(·). Then model (1.3) can be written as

Yit = X′itβ
∗
i

( t
T

)
+ εit,

where β∗i (t/T ) =
(
β∗i,0(t/T ), βi,1(t/T ), . . . , βi,p−1(t/T )

)′
. Assume that each coefficient function βi,k(·),

i = 1, 2, · · · , N , k = 0, 1, · · · , p− 1 are continuous. For each i = 1, · · · , N , and any 0 < u0 < 0, we

may use the kernel smoothing method to estimate β∗i (u0):

β̂
∗
i (u0) =

[
T∑
t=1

XitX
′
itK

(
t− u0T
Th

)]−1 [ T∑
t=1

XitYitK

(
t− u0T
Th

)]
, (2.1)
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where β̂
∗
i (·) =

[
β̂∗i,0(·), β̂i,1(·), · · · , β̂i,p−1(·)

]′
, K(·) is a kernel function and h is a bandwidth. From

the definition of the above kernel estimation, it is easy to find that we only use the local sample

information from the i-th cross section, so its finite-sample performance may be relatively poor when

the time series length T is not large. We next extract the estimate of the individual intercept function

from β̂∗i,0(·). Denote

Ẑit = Yit −
p−1∑
k=1

β̂i,k
( t
T

)
Xit,k. (2.2)

It is easy to see that

Ẑit ≈ αi + βi,0
( t
T

)
+ εit, (2.3)

which implies

1

T

T∑
t=1

Ẑit ≈ αi +
1

T

T∑
t=1

εit, (2.4)

given the identification condition
∑T

t=1 βi,0(t/T ) = 0. We can eliminate the individual effects αi from

(2.3) by subtracting equation (2.4) from it, i.e.,

Ẑit −
1

T

T∑
t=1

Ẑit ≈ βi,0
( t
T

)
+ εit −

1

T

T∑
t=1

εit.

Since 1
T

∑T
t=1 εit = OP (1/

√
T ) = oP (1) when T → ∞, we can estimate βi,0(·) in the same way as

in (2.1) but with Xit and Yit replaced by 1 and Ẑc
it := Ẑit − 1

T

∑T
t=1 Ẑit, respectively. Denote the

subsequent estimator by β̂i,0(·) and combine it with the estimators of the slope coefficient functions

above to form the estimator,

β̂i(·) =
[
β̂i,0(·), β̂i,1(·), · · · , β̂i,p−1(·)

]′
,

of the original functional coefficient vector βi(·).

We next apply the classic HAC algorithm to the estimates of the individual functional coefficients

constructed above to obtain an estimate of the latent groups. To this end, we first define a distance

measure for the estimated coefficient function. For any β̂i(·) and β̂j(·), define a weighted Lq-distance

between them as:

δ̂ij =
1

T

T∑
t=1

∥∥∥β̂i(t/T )− β̂j(t/T )
∥∥∥
q
W (t/T ), (2.5)

where ‖ · ‖q denotes the Lq-norm for a vector, q ≥ 1, and W (·) is a pre-specified non-negative

weight function which trims out the scaled time points close to either 0 or 1, circumventing the

well-known boundary effect in kernel estimation to unduly affecting the distance. Li et al. (2018)

use the L1-norm and choose W (·) as an indicator function to estimate the homogeneity structure
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among the functional coefficients for independent cross-sectional data, whereas Vogt and Linton (2018)

consider the L∞-distance for classifying univariate regression functions. In the numerical studies in

Section 4, we use the L2-norm to measure the distance. Note that if the two indices i and j are from

the same index set Gk, we expect that the value of δ̂ij will be small.

When the time span T tends to infinity, under some regularity conditions we may show that β̂i(u)

converges to the true functional coefficient vector βi(u) uniformly over u and i, indicating that δ̂ij

defined in (2.5) would be a reasonable estimate of δij defined as

δij =

∫ 1

0

∥∥βi(u)− βj(u)
∥∥
q
W (u)du. (2.6)

Then, we let ∆N be an N ×N distance matrix with the (i, j)-th entry being δij . Correspondingly, we

let ∆̂N be the estimated distance matrix of ∆N with the (i, j)-th entry being δ̂ij. When i = j, it is

easy to find that δij = δ̂ij = 0, indicating that the main diagonal elements of ∆N and ∆̂N are zero.

With the feasible distance matrix ∆̂N , we can apply the classic HAC method to explore the latent

group structure among the individual functional coefficients. The HAC method has been commonly

used in the past few decades, see, for example, Ward (1963), Hastie et al. (2009), Everitt et al. (2011)

and the references therein. A recent extension to the kernel-based HAC method in nonparametric

classification can be found in Li et al. (2018) and Vogt and Linton (2018). For the time being, we

assume that K0, the number of groups, is known a priori, and will later introduce an information

criterion for estimating this number when it is unknown. We let Ĝ1, · · · , ĜK0 be the estimated index

sets obtained via the following algorithm.

Step 1. Start with N groups with each individual unit forming a group.

Step 2. Search for the smallest off-diagonal element in ∆̂N and merge the corresponding two groups.

These two groups are closest to each other among all groups by the measure of distance used.

Step 3. Re-calculate the distances between the current groups and update the estimated distance

matrix (with its size reduced after each merging). Here the distance between two groups A1 and

A2 is defined as the furthest distance between any two estimated functional coefficient vectors

with one from A1 and the other from A2.

Step 4. Repeat Steps 2 and 3 until the number of groups reaches K0.

As with any clustering algorithm, in each iteration before the given number of groups is reached,

we merge the two groups which have the smallest distance to each other among all groups. The

measure of distance between groups impacts the clustering results. In this paper, we use the furthest

distance (or the “complete linkage” in the clustering analysis literature) between members from two

7



groups to measure how far away they are from each other. Other possible distance measures are

the closest distance (or “single linkage” in the clustering analysis literature) or the weighted average

distance.

2.2 Selection of number of groups

The kernel-based HAC method above relies on prior information on the number of latent groups.

However, this number is usually unknown in practical applications and needs to be determined via

certain data-driven rule. Hence our next task is to develop such a rule. For a given value of K for the

number of latent groups, we let Ĝ1|K , · · · , ĜK|K be the K estimated index sets from the kernel-based

HAC method in Section 2.1. In this case, there are K different vectors of coefficient functions,

denoted by γ1|K(·), · · · ,γK|K(·), to be estimated, and it is sensible to pool data from individual units

belonging to the same estimated group in the kernel estimation. Specifically, with the estimated

group structure we have the following time-varying coefficient panel model:

Yit = αi + γk|K,0
( t
T

)
+

p−1∑
j=1

γk|K,j
( t
T

)
Xit,j + εit, i ∈ Ĝk|K , k = 1, · · · , K, (2.7)

whose group-specific coefficient functions γk|K(u0) =
[
γk|K,0(u0), · · · , γk|K,p−1(u0)

]′
can be estimated

as

γ̂k|K(u0) =

 ∑
i∈Ĝk|K

T∑
t=1

XitX
′
itK

(
t− u0T
Th

)−1  ∑
i∈Ĝk|K

T∑
t=1

XitY
c
itK

(
t− u0T
Th

) (2.8)

for k = 1, · · · , K, and any u0 ∈ (0, 1). In (2.8), we have used the notation

Y c
it = Yit −

1

T

T∑
t=1

Ẑit,

where Ẑit was defined in (2.2). Note that we use Y c
it instead of Yit in (2.8). This is mainly to eliminate

the individual effects αi that may cause estimation bias in the above pooled kernel method.

We then define the following information criterion:

IC(K) = logV2
n(K) +K · ρ, (2.9)

where ρ is a tuning parameter whose value may rely on N, T , and h (due to the nonparametric
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kernel-based estimation of the time-varying coefficients in the panel model), and

V2
n(K) =

1

NT

K∑
k=1

∑
i∈Ĝk|K

T∑
t=1

[
Y c
it −X′itγ̂k|K(t/T )

]2
W (t/T ).

The number of latent groups can be estimated by minimising the criterion IC(K), i.e.,

K̂ = arg min
1≤K≤K̃

IC(K), (2.10)

where K̃ is a pre-specified upper bound for the number of latent groups.

In Section 3 below, we will show that the estimator K̂, defined in (2.10), is a consistent estimate

of the true cluster number K0. To achieve the consistency property, we need to impose some mild

restriction on the tuning parameter ρ in the penalty term (see Appendix A). Section 4 will discuss

the practical choice of ρ in numerical studies. In practical data analysis, one first obtains K̂ from

(2.9) and (2.10), and then use the kernel-based HAC procedure in Section 2.1 to identify the group

membership of Gk by stopping the algorithm when the number of groups reaches K̂.

3 Large-sample theory

In this section we establish the asymptotic property of the methodology proposed in Sections 2.1 and

2.2. Theorem 1 shows that the kernel-based HAC algorithm can consistently estimate the membership

of the latent groups Gk, k = 1, · · · , K0, when the number K0 is known.

Theorem 1. Suppose that Assumptions 1–4 in Appendix A are satisfied. If K0, the number of

latent groups, is known a priori, then

P
({
Ĝ1, · · · , ĜK0

}
=
{
G1, · · · ,GK0

})
→ 1 (3.1)

as T →∞.

Remark 1. The consistency result in Theorem 1 is similar to some results in existing literature

(although in different model settings), such as Theorem 3.1 in Vogt and Linton (2017), Theorem 1 in

Li et al. (2018) and Theorem 4.1 in Vogt and Linton (2018). Note that we only require that T tends

to infinity in Theorem 1. So the above result is applicable to settings where the cross-sectional size

is either fixed or divergent to infinity. In addition, it is worth mentioning that we allow arbitrary

cross-sectional dependence in derivation of Theorem 1.
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Theorem 2. Suppose that Assumptions 1–6 in Appendix A are satisfied. Then we have

P
(
K̂ = K0

)
→ 1. (3.2)

as T →∞.

Remark 2. Su et al. (2018) also propose an information criterion for selecting the number of groups

for their C-Lasso based clustering method and establish a similar consistency result under N, T →∞.

Vogt and Linton (2018) use a thresholding method to choose the number of groups, which is also

shown to be consistent. Li et al. (2018) also establish the consistency of their information criterion

for choosing the number of homogeneous groups among functional coefficients for independent cross-

sectional data. We note that in Theorem 2 we allow for the existence of cross-sectional dependence that

satisfies Assumption 6 (especially between cross sections belonging to the same group). Furthermore,

as in Theorem 1, the consistency result (3.2) holds whether N is fixed or diverging to infinity at a

slower rate than Tm, where m is a positive constant defined in Assumption 4.

4 Numerical studies

In this section, we first discuss how to choose the bandwidth h and the tuning parameter ρ in Section

4.1 and then provide two Monte-Carlo experiments in Section 4.2 to demonstrate the finite-sample

performance of the proposed methodology for identifying latent groups. Finally in Section 4.3, we

apply our method to a cross-country economic growth study and discover 4 groups of countries which

have distinct growth patterns.

4.1 Choice of tuning parameters

To achieve good grouping results, it is desirable to first obtain accurate nonparametric estimates of

the functional coefficients, which, in turn, requires a proper choice of the bandwidth h. As the aim is

to achieve good estimation accuracy, we can use existing bandwidth selection methods such as the

leave-one-out cross-validation. This method selects the h value which minimises the following mean

squared error

CV(h) =
1

NT

N∑
i=1

T∑
t=1

[
Y c
it −X′itβ̂

(−t)
i,h (

t

T
)
]2
,

where, for each i = 1, . . . , N and t = 1, . . . , T , Y c
it was defined in Section 2.2 (which relies on h as

the construction of Ẑit involves the nonparametric kernel estimates of the coefficient functions), and

β̂
(−t)
i,h ( t

T
) is the nonparametric estimate (with bandwidth h) of βi(

t
T

) obtained by using observations

from the i-th cross section except the t-th observation (Yit,Xit, t/T ). The simulation studies in

10



Section 4.2 below show that such a selected bandwidth gives accurate estimation of the functional

coefficients and good clustering results.

A proper choice of the tuning parameter ρ is crucial in order for the information criterion to work

well. In our numerical study, we choose ρ as

ρ1 =
log(NKTh)

NKTh
or ρ2 =

2

NKTh
with NK = min

{∣∣∣Ĝk|K∣∣∣ , k = 1, · · · , K
}
, (4.1)

where |A| denotes the cardinality of a set A. This corresponds to a generalised Bayesian information

criterion (GBIC with ρ = ρ1) or generalised Akaike information criterion (GAIC with ρ = ρ2) by

treating NKTh as effective sample size (for the smallest cluster when the number of clusters is K).

Such a criterion for estimating the number of latent groups works well in our simulation studies

in Section 4.2. A similar criterion can also be found in Wang and Xia (2009) and Li et al. (2018)

for variable selection and structure identification in high-dimensional varying-coefficient models for

independent cross-sectional data.

4.2 Simulation studies

For easier comparison with the methods in Su et al. (2018) and Vogt and Linton (2018), we adopt a

data generating process, i.e. DGP 2, from Su et al. (2018) in the first simulation study and then the

data generating process from Section 7 of Vogt and Linton (2018) but with a fixed-design covariate in

accordance with our modelling framework.

Simulated Example 1. This data generating process is the same as DGP 2 in Su et al. (2018),

Yit = αi + βi,0
( t
T

)
+ βi,1

( t
T

)
Xit + εit, i = 1, . . . , N, t = 1 . . . , T,

where αi and εit are independently drawn from the N(0, 1) distribution and are mutually independent,

βi,0(u) =


γ1,0(u) = 3F (u; 0.5, 0.1) if i ∈ G1,
γ2,0(u) = 3[2u− 6u2 + 4u3 + F (u; 0.7, 0.05)] if i ∈ G2,
γ3,0(u) = 3[4u− 8u2 + 4u3 + F (u; 0.6, 0.05)] if i ∈ G3,

(4.2)

βi,1(u) =


γ1,1(u) = 3

[
2u− 4u2 + 2u3 + F (u; 0.6, 0.1)

]
if i ∈ G1,

γ2,1(u) = 3
[
u− 3u2 + 2u3 + F (u; 0.7, 0.04)

]
if i ∈ G2,

γ3,1(u) = 3
[
0.5u− 0.5u2 + F (u; 0.4, 0.07)

]
if i ∈ G3,

(4.3)

in which F (u;µ, ν) = 1
1+exp[−(u−µ)/ν] , G1 = {1, 2, . . . , N1}, G2 = {N1 + 1, N1 + 2, . . . , N1 + N2}, and

G3 = {N1 + N2 + 1, N1 + N2 + 2, . . . , N1 + N2 + N3}, and the cardinalities of the three groups are

defined as N1 = 0.3N , N2 = 0.3N and N3 = 0.4N . The intercept functional coefficients, βi,0(t/T ),

11



are demeaned so as to satisfy the identification condition
∑T

t=1 βi,0(t/T ) = 0. Different sample sizes

of N = 50, 100 and T = 40, 80 are considered, and for each combination of N and T , 200 replicate

samples are drawn from the data generating process. The bandwidth used for the nonparametric

estimation of βi(·) is selected using the leave-one-out cross validation method detailed in Section 4.1,

and the kernel function used is the Epanechnikov kernel K(u) = 3(1−u2)+/4, where (v)+ = max{v, 0}.

For each combination of N and T , we report the accuracy of both the clustering and the

estimation of the time-varying coefficients. To measure clustering accuracy, we calculate the purity

and normalised mutual information (NMI) of our estimated clusters Ĉ = {Ĝ1, . . . , ĜK̂} with the true

clusters C0 = {G1, . . . ,GK0}, which are defined, respectively, as

Purity(Ĉ, C0) =
1

N

K̂∑
k=1

max
1≤j≤K0

∣∣Ĝk ∩ Gj∣∣
and

NMI(Ĉ, C0) =
I(Ĉ, C0)

(H(Ĉ) +H(C0))/2
,

where I(Ĉ, C0) is the mutual information between Ĉ and C0 defined as

I(Ĉ, C0) =
K̂∑
k=1

K0∑
j=1

(
|Ĝk ∩ Gj|

N

)
log2

(
N |Ĝk ∩ Gj|
|Ĝk||Gj|

)
,

and H(Ĉ) is the entropy of Ĉ defined as

H(Ĉ) = −
K̂∑
k=1

|Ĝk|
N

log2

(
|Ĝk|
N

)

and H(C0) is defined similarly. The advantage of using the measures of NMI and purity is that

the results do not depend on the ordering of clusters in Ĉ or C0. The closer the values of NMI

and purity are to 1, the more accurate the estimated clusters are to the true clusters. To measure

estimation accuracy, we calculate the root mean squared errors (RMSE) of three estimators of βi(·):
the oracle estimator (obtained by assuming the true group structure is known a priori and pooling

data from members of each group to obtain group-specific estimates of the coefficient functions), the

pre-clustering estimator (obtained individual by individual without considering the group structure),

and the post-clustering estimator (obtained by pooling data from members of each estimated group

12



Table 4.1: Frequencies at which K0 is estimated for Simulated Example 1

Sample size GBIC GAIC
1 2 3(true) 4 5 1 2 3(true) 4 5

N = 50
T = 40 0 13 181 6 0 0 5 182 13 0
T = 80 0 0 200 0 0 0 0 199 1 0

N = 100
T = 40 0 8 191 1 0 0 4 182 12 2
T = 80 0 0 200 0 0 0 0 200 0 0

for group-specific estimates). Here the RMSE of an estimator β̂(·) =
(
β̂1(·), . . . , β̂N (·)

)′
is defined as

RMSE(β̂) =
1

N

N∑
i=1

{ 1

T

T∑
t=1

∥∥β̂i( tT )− βi(
t

T
)
∥∥2
2

}1/2
, (4.4)

where those β̂i(·)’s belonging to the same group in the oracle or post-clustering estimation are equal.

We first report, in Table 4.1, the frequency at which a certain number of groups is chosen over 200

replications. Then in Table 4.2 we summarise the average and standard deviation (in parentheses) of

the purities and NMI’s between the kernel based HAC results and the true group structure over these

200 replications. The average and standard deviation (in parentheses) of the RMSE’s for the oracle,

pre-clustering, and post-clustering estimation of the βi(·)’s are presented in Table 4.3.

Table 4.1 shows that the GBIC chooses the correct number of groups in about 91% of the repeated

samples when the time series length T is 40 and this percentage rises to almost 100 when T increases

to 80, irrespective of whether N = 50 or 100. These results are comparable to those in DGP 1 of Su et

al. (2018), which are obtained from an information criterion deduced from their C-Lasso method. The

GAIC has very similar performance in all the four combinations of N and T , which subsequently leads

to the GBIC and GAIC having similar NMI and purity values as well as post-clustering estimation

accuracy (measured by RMSE), as demonstrated by Tables 4.2 and 4.3. The NMI value for both the

GBIC and GAIC is between 0.83-0.85 when T = 40 and then rises to around 0.98 when T = 80, and

the purity is between 0.93-0.94 when T = 40 and then rises to more than 0.99 when T = 80. The

RMSE’s of the GBIC and GAIC post-clustering estimation of the functional coefficients are close to

those of the oracle estimation. They are 50%-60% of the RMSE’s of the pre-clustering nonparametric

kernel estimation, a 40%-50% reduction, which shows the benefit of pooling data from cross sections

of the same group for estimation.

Simulated Example 2. This data generating process is the same as that in Section 7 of Vogt and

Linton (2018), except that we now replace the i.i.d. Uniform [0, 1] exogenous variable Xit with the

13



Table 4.2: The average(standard deviation) NMI’s and purities for Simulated Example 1

Sample size GBIC GAIC
NMI Purity NMI Purity

N = 50
T = 40 0.8473(0.0980) 0.9408(0.0570) 0.8465(0.0989) 0.9304(0.0672)
T = 80 0.9772(0.0441) 0.9925(0.0161) 0.9770(0.0449) 0.9919(0.0205)

N = 100
T = 40 0.8474(0.0754) 0.9470(0.0389) 0.8467(0.0751) 0.9370(0.0603)
T = 80 0.9822(0.0295) 0.9952(0.0087) 0.9822(0.0295) 0.9952(0.0087)

Table 4.3: The average(standard deviation) RMSE’s of βi(·) estimates for Simulated Example 1

Sample size Oracle Pre-clustering Post-clustering
GBIC GAIC

N = 50
T = 40 0.2508(0.0145) 0.4856(0.0156) 0.2932(0.0431) 0.2908(0.0393)
T = 80 0.1917(0.0122) 0.3618(0.0118) 0.1969(0.0165) 0.1969(0.0165)

N = 100
T = 40 0.2493(0.0120) 0.4871(0.0122) 0.2869(0.0349) 0.2851(0.0304)
T = 80 0.1695(0.0082) 0.3606(0.0090) 0.1728(0.0108) 0.1728(0.0108)

fixed-design Xit = t/T . More specifically, data are generated from

Yit = βi
( t
T

)
+ εit,

where

βi(u) =



γ1(u) = G(u, 1
2
, 1
2
) if i ∈ G1,

γ2(u) = G(u, 1
4
, 1
4
) +G(u, 3

4
, 1
4
) if i ∈ G2,

γ3(u) = G(u, 1
8
, 1
8
) +G(u, 3

8
, 1
8
) +G(u, 3

4
, 1
4
) if i ∈ G3,

γ4(u) = G(u, 1
4
, 1
4
) +G(u, 5

8
, 1
8
) +G(u, 7

8
, 1
8
) if i ∈ G4,

γ5(u) = G(u, 1
12
, 1
12

) +G(u, 1
4
, 1
12

) +G(u, 5
12
, 1
12

) +G(u, 3
4
, 1
4
) if i ∈ G5,

γ6(u) = G(u, 1
4
, 1
4
) +G(u, 7

12
, 1
12

) +G(u, 3
4
, 1
12

) +G(u, 11
12
, 1
12

) if i ∈ G6,

(4.5)

where

G(u, µ, ν) = I
(∣∣u− µ

ν

∣∣ ≤ 1
)[

1−
(u− µ

ν

)2]2
,

the groups are defined as G1 = {1, 2, . . . , N1}, G2 = {N1 + 1, . . . ,
2∑

k=1

Nk}, and G3 = {
2∑

k=1

Nk +

1, . . . ,
3∑

k=1

Nk}, G4 = {
3∑

k=1

Nk + 1, . . . ,
4∑

k=1

Nk}, G5 = {
4∑

k=1

Nk + 1, . . . ,
5∑

k=1

Nk}, and G6 = {
5∑

k=1

Nk +

1, . . . ,
6∑

k=1

Nk}, in whichNk = N/6, k = 1, . . . , 6, εit are independently drawn fromN(0, σ2) distribution
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Table 4.4: Frequencies at which K0 is estimated for Simulated Example 2

Error variance
GBIC GAIC

4 5 6(true) 7 8 4 5 6(true) 7 8
σ2 = 0.492 (NSR=2) 0 0 200 0 0 0 0 200 0 0
σ2 = 0.62 (NSR=3) 1 0 199 0 0 1 0 199 0 0
σ2 = 0.72 (NSR=4) 20 24 156 0 0 12 14 174 0 0

with σ2 = 0.492, 0.602 and 0.72, which correspond to noise-to-signal ratios (NSR) of 2, 3, and 4. As in

Vogt and Linton (2018), the sample size is set as N = 240, T = 200. The functions γk(·), k = 3, 4, 5, 6,

have different smoothness in different regions of [0, 1]. Hence, a varying bandwidth (i.e., a bandwidth

whose value varies with the point u at which βi(·) is evaluated) may produce better estimation than

a fixed-value bandwidth. However, for easier implementation, we still use a fixed bandwidth in the

kernel estimation, which is selected via the cross-validation method detailed in Section 4.1. The

subsequent clustering results (shown in Tables 4.4-4.6) are still satisfactory and comparable to those

in Vogt and Linton (2018), which are obtained based on a distance measure that maximises over

the domain of the coefficient functions and the range of values for the bandwidth h. However, our

method is easier and more straightforward to implement.

As in Simulated Example 1, 200 repeated samples are drawn from the data generating process, and

the same quantities (i.e., the frequencies at which the correct number of groups is chosen, the NMI

and purity, and the RMSE of the functional coefficients estimation) are computed and presented in

Tables 4.4-4.6. Unsurprisingly, as the error variance increases (or the NSR increases), the performance

of both the GBIC and GAIC deteriorates, so does the accuracy of all the estimation approaches.

However, even when the NSR is 4 (σ2 = 0.72), the GAIC selects the correct number of groups in

87% of the replications and the GBIC in 78% of the replications. This number is around 82.5%

in Vogt and Linton (2018) (although they have random-design Xit rather than fixed-design t/T as

in our setting here). When the NSR is lower (i.e., 2 or 3), the GAIC and GBIC select the correct

number of groups in almost all of the replications. The RMSE’s of the post-clustering estimation

of the functional coefficients for the GBIC and GAIC are close to that of the oracle estimation,

and there is a reduction of around 45% in the RMSE by pooling data belonging to the same group,

compared with the non-pooling pre-clustering estimation. We also note that while the sample size of

N = 240, T = 200 in this example is larger than those in Simulated Example 1, the accuracy of the

GBIC and GAIC for selecting K and the subsequence HAC results in this example is lower than that

in Simulated Example 1. This is due to the fact that the NSRs in Simulated Example 1 are much

smaller (between 0.18-0.30).
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Table 4.5: The average(standard deviation) NMI’s and purities for Simulated Example 2

Error variance
GBIC GAIC

NMI Purity NMI Purity
σ2 = 0.492 (NSR=2) 0.9998(0.0013) 0.9999(0.0005) 0.9998(0.0013) 0.9999(0.0005)
σ2 = 0.62 (NSR=3) 0.9933(0.0147) 0.9975(0.0043) 0.9933(0.0147) 0.9975(0.0043)
σ2 = 0.72 (NSR=4) 0.9497(0.0530) 0.9879(0.0107) 0.9549(0.0468) 0.9850(0.0147)

Table 4.6: The average(standard deviation) RMSE’s of βi(·) estimates for Simulated Example 2

Error variance Oracle Pre-clustering
Post-clustering

GBIC GAIC
σ2 = 0.492 (NSR=2) 0.0527(0.0017) 0.1299(0.0015) 0.0527(0.0017) 0.0527(0.0017)
σ2 = 0.62 (NSR=3) 0.0749(0.0019) 0.1517(0.0018) 0.0759(0.0048) 0.0759(0.0048)
σ2 = 0.72 (NSR=4) 0.0818(0.0022) 0.1703(0.0020) 0.0939(0.0186) 0.0911(0.0154)

4.3 An empirical application

In this session we apply our kernel HAC method to a panel study of economic growth, in which we

consider the following growth model

GYit = αi + βi,0
( t
T

)
+ βi,1

( t
T

)
GKit + βi,2

( t
T

)
GPOPit + εit, i = 1, . . . , N, t = 1, . . . , T, (4.6)

where GRYit is the GDP annual growth rate of the i-th country in year t, GKit is the annual growth

rate of capital formation, and GPOPit is the annual growth of population. All three variables are

in percentages. Ideally, one would use the annual growth of labour input in place of GPOPit, but

since measures of labour input are scarce, we replace it with the annual population growth. The data

are obtained from the World Bank’s World Development Indicators (WDI) database and cover 61

countries over the period 1971–2016. A plot of the data for these variables is given in Figure 4.1.

We estimate the functional coefficients βi
(
·
)

=
(
βi,0(·), βi,1(·), βi,2(·)

)′
using nonparametric kernel

smoothing with the Epanechnikov kernel and a bandwidth selected from the leave-one-out cross

validation. Then, the kernel HAC method is used to classify the estimated βi
(
·
)

with the number of

groups determined by the information criterion introduced in Section 2.2. Both GAIC and GBIC

identify four groups with the estimated group-specific functional coefficients depicted in Figure 4.3.

Figure 4.2 gives a dendrogram plot of the kernel HAC algorithm, in which the y-axis represents

distance (measured as the “complete linkage”) between groups of functional coefficient vectors, and

the x-axis shows the indices of countries. The dendrogram consists of a series of U shapes, each
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Figure 4.1: Plot of data. Left to right: GDP annual growth (in %), annual growth rate of capital
formation (in %), annual growth rate of population (in %).

representing the joining of two groups in a hierarchical tree. The memberships of the four estimated

groups are given in Table 4.7. A plot of the data by the 4 identified groups is given in Figure 4.4.

Most countries (48 out of 61 countries) are classified into the first group, while Groups 2 and 4

have 3 members each and Group 3 has 7 members. Figure 4.3 shows that the post-clustering estimates

for the functional coefficients for Group 1 have smaller variations over the sample period than those

for the other 3 groups do. This may indicate that the countries in Groups 2-4 experienced greater

economic structural changes than the countries in Group 1. For all the groups, the growth of capital

formation has an overall positive effect on the growth of GDP. However, the effect of population

growth is mixed. For Group 1 this effect is mixed and for Group 3 it is mostly positive over the

period considered. On the other hand, for Groups 2 and 4, it is mostly negative. Population growth

for Group 2 countries has an increasing negative effect, while it has a decreasing negative effect for

Group 4 countries.

5 Conclusions

In this paper we propose a kernel HAC method to estimate the latent group structure in a heterogeneous

time-varying coefficient panel data model. This method applies the classic HAC method to the kernel

estimates of functional coefficients from each cross section. It is easy to implement and provides

a consistent estimate of the latent group structure when T → ∞, irrespective of whether there is
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Figure 4.2: A dendrogram of the HAC algorithm

Table 4.7: Memberships of the four estimated groups

Groups Countries

Group 1

1. Argentina, 2. Australia, 3. France, 4. Germany, 7. Italy, 8. Japan

9. Korea, Rep., 10. Mexico, 11. Netherlands, 12. Spain, 13. United Kingdom, 14. United States

15. Algeria, 16. Austria, 17. Bangladesh, 18. Belgium, 19. Benin, 22. Cameroon

23. Canada, 24. Colombia, 26. Denmark, 27. Dominican Republic, 28. Ecuador, 29. Egypt, Arab Rep.

30. Finland, 32. Greece, 35. Iran, Islamic Rep., 36. Ireland, 38. Lesotho, 39. Luxembourg

41. Malaysia, 43. Morocco, 44. New Zealand, 46. Norway, 47. Pakistan, 49. Peru

50. Philippines, 51. Portugal, 52. Rwanda, 53. Senegal, 54. Singapore, 55. South Africa

56. Sri Lanka, 57. Sudan, 58. Sweden, 59. Thailand, 60. Togo, 61. Uruguay

Group 2 5. India, 34. Honduras, 45. Nicaragua

Group 3 20. Bolivia, 21. Burkina Faso, 25. Congo, Rep, 31. Gabon, 33. Guatemala, 40. Madagascar, 48. Panama

Group 4 6. Indonesia, 37. Kenya, 42. Mauritania
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Figure 4.3: Post-clustering estimates of group-specific functional coefficients. Plots in each row
represent a component of the estimated coefficient vector, one for each group.
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cross-sectional dependence or not. We also introduce an information criterion to estimate the number

of groups when it is unknown and propose two possible choices for the tuning parameter in the

information criterion, which are then shown to work well in the simulation studies. The bandwidth

used in the kernel estimation can be chosen via a data-driven method, such as the cross-validation

method. In the simulation studies we adopt a data generating process from Su et al. (2018) and

another from Vogt and Linton (2018) to see how our method performs in their settings. The results

show that it performs comparably well to those of Su et al. (2018) and Vogt and Linton (2018). We

also apply our method to a panel study of economic growth and identify 4 groups of countries which

have different growth patterns.

A Technical conditions

We next list the technical assumptions which are needed to prove the main asymptotic results.

Assumption 1. The kernel function K(·) is a symmetric probability density function, which is

Lipschitz continuous and has a compact support [−1, 1].

Assumption 2. (i) For each i, the process {(Xit,1, · · · , Xit,p−1, εit) : 1 ≤ t ≤ T} is stationary and

α-mixing dependent with the mixing coefficient decaying to zero at a geometric rate.

(ii) The explanatory variables Xit,j, 1 ≤ j ≤ p − 1, and disturbances εit satisfy the following

moment conditions

max
1≤i≤N

max
1≤j≤p−1

E
(
|Xit,j|2δ

)
<∞, max

1≤i≤N
E
(
|εit|2δ

)
<∞, (A.1)

where δ > 2(m+ 1) with m defiend in Assumption 4 below.

(iii) For each i, the p× p matrix ∆i = E(XitX
′
it) is positive definite. Furthermore, there exist

two finite positive constants, λ and λ, such that

0 < λ ≤ min
1≤i≤N

λmin (∆i) ≤ max
1≤i≤N

λmax (∆i) ≤ λ <∞, (A.2)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a square matrix,

respectively.

Assumption 3. (i) The group-specific coefficient functions γk(·), 1 ≤ k ≤ K0, (and hence βi(·),
1 ≤ i ≤ N), have continuous second-order derivatives on the interval [0, 1].

(ii) The weight function W (·) is non-negative and continuous on [0, 1]. In addition, there exists

a small positive constant ω such that W (u) = 0 if u ≤ ω or u ≥ 1− ω.
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Assumption 4. (i) There exists a positive constant m such that N = o(Tm).

(ii) The bandwidth h satisfies h→ 0 and (T 1−2(m+1)/δh)/ log3 T →∞, where δ was defined in

Assumption 2(ii).

(iii) Letting

ζ = min
1≤k 6=l≤K0

min
i∈Gk,j∈Gl

δi,j,

we have h2 + [log T/(Th)]1/2 = o(ζ).

Assumption 5 (i) There exist two positive constants τ1, with 0 < τ1 < 1, and τ2 such that

min
1≤k≤K0

|Gk| ≥ τ1 ·N, min
1≤k1 6=k2≤K0

∫ 1−ω

ω

∥∥γk1(u)− γk2(u)
∥∥2
2
W (u)du > τ2. (A.3)

(ii) The tuning parameter ρ satisfies ρ→ 0 and log T
T

+ h4 + 1
NTh

= o(ρ).

Assumption 6. For any index set G ⊂ Gk, k = 1, · · · , K0,

∑
i∈G

E

 T∑
t=1

‖Xit‖22 ·

∥∥∥∥∥∑
j∈G

T∑
s=1

εjsXjsKst

∥∥∥∥∥
2

2

 = O
(
|G|2T 2h

)
(A.4)

and

E

∑
i∈G

T∑
t=1

∑
j∈G

T∑
s=1

εitεjsKstX
′
it

(
1

|G|
∑
l∈G

∆l

)−1
Xjs

2 = O
(
|G|2T 2

)
(A.5)

where Kst = K
(
s−t
Th

)
and ∆i was defined in Assumption 2(iii).

Remark A.1. The conditions on the kernel function K(·) in Assumption 1 are mild and satisfied

by some commonly-used kernel functions such as the Epanechnikov kernel and uniform kernel.

Assumption 2 allows that the panel time series observations are temporally correlated and the α-

mixing dependence is one of the weakest dependence conditions. The moment conditions in (A.1) and

(A.2) are crucial to derive uniform convergence (uniform over i and u) of some kernel-based quantities.

The smoothness conditions on the coefficient functions and weight function in Assumption 3 are not

uncommon. In particular, Assumption 3(ii) indicates that the kernel estimates are truncated at those

scaled time points that are close to the boundaries (0 and 1). Assumption 4 imposes some mild

restriction on the bandwidth, the relationship between the cross-sectional size and time series length,

and the smallest Lq-distance between coefficient functions for different groups. A combination of

Assumptions 2(ii) and 4(i) indicates that there is a trade-off between the moment conditions and the

divergence rate of N . If the cross-sectional size diverges at a faster rate (m becomes larger), stronger

moment conditions (i.e., larger δ) would be required for the relevant asymptotic theory. In fact,
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our theory still holds when N diverges at an exponential rate of T . In the latter case, exponential

moment conditions would be needed for Xit and εit. In addition, when δ is very large, the restriction

on the bandwidth in Assumption 4(ii) would become weaker. Assumption 4(iii) indicates that ζ can

converge to zero at an appropriate rate. Assumptions 5 and 6 are mainly used to prove consistency

of K̂ from the information criterion proposed in Section 2.2. Assumption 5(i) is crucial in order

to show that IC(K) > IC(K0) when K < K0 (i.e., the model is under-identified). The high-order

moment conditions in Assumption 6 indicate that the panel observations can be serially correlated

and weakly cross-sectionally dependent, and both (A.4) and (A.5) are easy to verify when Xit,j and

εit are independent over both i and t.

B Proofs of the asymptotic results

In this appendix, we give the detailed proofs of the main theoretical results in Section 3. We start with

a proposition which shows the convergence rates of the individual functional coefficient estimators

β̂i(u) (defined in Section 2.1) uniformly over i and u, without placing any restrictions on the panel

cross-sectional dependence.

Proposition B.1. Let Assumptions 1, 2, 3(i) and 4(i)(ii) in Appendix A hold. Then, as T →∞,

we have

max
1≤i≤N

sup
ω≤u≤1−ω

∥∥∥β̂i(u)− βi(u)
∥∥∥
q

= OP

(
h2 + η1(T, h)

)
, (B.1)

where q ≥ 1, η1(T, h) = [log T/(Th)]1/2 and ω is a small positive constant defined in Assumption 3(ii).

Proof of Proposition B.1. In this proof and that of Theorem 1, all the limiting results are

established under T →∞.

By the definition of β̂i(u), we only need to show

max
1≤i≤N

sup
h≤u≤1−h

∥∥∥β̂∗i (u)− β∗i (u)
∥∥∥
q

= OP

(
h2 + η1(T, h)

)
, (B.2)

and

max
1≤i≤N

sup
ω≤u≤1−ω

∣∣∣β̂i,0(u)− βi,0(u)
∣∣∣ = OP

(
h2 + η1(T, h)

)
, (B.3)

where β̂
∗
i (u) is defined in (2.1) and β̂i,0(u) is defined similarly to β̂

∗
i (u) but with Xit and Yit replaced

by 1 and Ẑc
it (defined in Section 2.1), respectively.
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Proof of (B.2). Letting Kt(u) = K
(
t−uT
Th

)
, we note that

β̂
∗
i (u)− β∗i (u) =

[
T∑
t=1

XitX
′
itKt(u)

]−1 [ T∑
t=1

XitYitKt(u)

]
− β∗i (u)

=

[
T∑
t=1

XitX
′
itKt(u)

]−1{ T∑
t=1

XitX
′
it [β∗i (t/T )− β∗i (u)]Kt(u)

}
+[

T∑
t=1

XitX
′
itKt(u)

]−1 [ T∑
t=1

XitεitKt(u)

]
=: Λi,1(u) + Λi,2(u). (B.4)

To prove (B.2), it is sufficient to show

max
1≤i≤N

sup
h≤u≤1−h

‖Λi,1(u)‖q = OP (h2) (B.5)

and

max
1≤i≤N

sup
h≤u≤1−h

‖Λi,2(u)‖q = OP (η1(T, h)) . (B.6)

We first give the detailed proof of (B.6) and then sketch the proof of (B.5). Observe that

1

Th

T∑
t=1

XitX
′
itKt(u)−∆i

=
1

Th

T∑
t=1

[XitX
′
it −∆i]Kt(u) + ∆i

[
1

Th

T∑
t=1

Kt(u)− 1

]

=
1

Th

T∑
t=1

[XitX
′
it −∆i]Kt(u) +O (1/(Th)) , (B.7)

as it is easy to show, by Assumption 1, that

1

Th

T∑
t=1

Kt(u) =

∫ −1
−1

K(w)dw +O (1/(Th)) = 1 +O (1/(Th)) (B.8)

uniformly over h ≤ u ≤ 1− h.

Letting Qit(X) = XitX
′
it −∆i and q

(j,k)
it (X) be the (j, k)-entry of Qit(X), we next prove that

max
1≤j,k≤p

max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(u)

∣∣∣∣∣ = OP (η1(T, h)) . (B.9)
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As the number p is fixed, it is sufficient to prove

max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(u)

∣∣∣∣∣ = OP (η1(T, h)) (B.10)

for each (j, k). To prove (B.10), we use the truncation technique and define

q
(j,k)
it (X) = q

(j,k)
it (X)I

(
|q(j,k)it (X)| ≤ T (m+1)/δ

)
, q̃

(j,k)
it (X) = q

(j,k)
it (X)− q(j,k)it (X),

where I(·) denotes the indicator function, δ and m were defined in Assumptions 2 and 4, respectively.

By Assumptions 2(ii) and 4(i), and the Bonferroni and Markov inequalities, we may show that for

any ξ > 0,

P

(
max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q̃
(j,k)
it (X)Kt(u)

∣∣∣∣∣ > ξη1(T, h)

)

≤ P

(
max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q̃
(j,k)
it (X)Kt(u)

∣∣∣∣∣ > 0

)

≤ P
(

max
1≤i≤N

max
1≤t≤T

∣∣∣q(j,k)it (X)
∣∣∣ > T (m+1)/δ

)
≤

N∑
i=1

T∑
t=1

P
(∣∣∣q(j,k)it (X)

∣∣∣ > T (m+1)/δ
)

≤ N · T max
1≤i≤N

max
1≤t≤T

E
[∣∣∣q(j,k)it (X)

∣∣∣δ] /Tm+1

= O (N/Tm) = o(1),

which leads to

max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q̃
(j,k)
it (X)Kt(u)

∣∣∣∣∣ = oP (η1(T, h)) . (B.11)

On the other hand, we consider covering the closed interval [h, 1−h] by some disjoint sub-intervals

Il, 1 ≤ l ≤ L, with centres ul and length hη1(T, h)/T (m+1)/δ. It is easy to calculate that the number
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of such sub-intervals, L, is bounded by T (m+1)/δ/ [hη1(T, h)]. Note that

max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(u)

∣∣∣∣∣
≤ max

1≤i≤N
max
1≤l≤L

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(ul)

∣∣∣∣∣+ max
1≤i≤N

max
1≤l≤L

sup
u∈Il

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X) [Kt(u)−Kt(ul)]

∣∣∣∣∣
= max

1≤i≤N
max
1≤l≤L

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(ul)

∣∣∣∣∣+OP (η1(T, h)) (B.12)

by using Assumption 1 and the definition of q
(j,k)
it (X).

Finally, by the Bonferroni inequality again and the exponential-type inequality for α-mixing

sequences (e.g., Lemma 1.3(2) in Bosq, 1998), we may show that

P

(
max
1≤i≤N

max
1≤l≤L

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(ul)

∣∣∣∣∣ > ξη1(T, h)

)

≤
N∑
i=1

L∑
l=1

P

(∣∣∣∣∣
T∑
t=1

q
(j,k)
it (X)Kt(ul)

∣∣∣∣∣ > ξ · (Th) · η1(T, h)

)

= O
(
NL exp{−c1ξ2 log T}

)
+O

(
NL · Thγc2 log T0

η
3/2
1 (T, h)T (m+1)/(2δ)

)
, (B.13)

where c1 is a fixed positive constant, 0 < γ0 < 1, ξ and c2 are chosen to be sufficiently large so that

the orders on the right hand side of the equality in (B.13) becomes o(1) (noting that both N and L

diverge at certain polynomial rate of T ). Combining (B.12) and (B.13), we readily have

max
1≤i≤N

sup
h≤u≤1−h

∣∣∣∣∣ 1

Th

T∑
t=1

q
(j,k)
it (X)Kt(u)

∣∣∣∣∣ = OP (η1(T, h)) . (B.14)

With (B.11) and (B.14), we prove (B.9), which together with (B.7), leads to

1

Th

T∑
t=1

XitX
′
itKt(u) = ∆i +OP (η1(T, h)) (B.15)

uniformly over 1 ≤ i ≤ N and h ≤ u ≤ 1− h. Following similar arguments in the proof of (B.15) and

noting that E(εit|Xit) = 0 a.s., we can prove that

max
1≤i≤N

sup
h≤u≤1−h

∥∥∥∥∥ 1

Th

T∑
t=1

XitεitKt(u)

∥∥∥∥∥
q

= OP (η1(T, h)) . (B.16)
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Using (B.15), (B.16) and Assumption 2(iii), we can complete the proof of (B.6).

On the other hand, by Assumption 3(i) and using the Taylor expansion for β∗i (·), we may show

that (B.5) holds. With (B.5) and (B.6), we complete the proof of (B.2). �

Proof of (B.3). Recall that

β̂i,0(u) =
T∑
t=1

Ẑc
itKt(u)/

T∑
t=1

Kt(u).

Let

β̃i,0(u) =
T∑
t=1

Zc
itKt(u)/

T∑
t=1

Kt(u)

be an infeasible kernel estimate of βi,0(u) with Zc
it defined as

Zc
it = Zit −

1

T

t∑
s=1

Zis, Zit = Yit −
p−1∑
k=1

Xit,kβi,k
( t
T

)
.

Then, in order to prove (B.3), we need only to show

max
1≤i≤N

sup
ω≤u≤1−ω

∣∣∣β̃i,0(u)− βi,0(u)
∣∣∣ = OP

(
h2 + η1(T, h)

)
(B.17)

and

max
1≤i≤N

sup
ω≤u≤1−ω

∣∣∣β̂i,0(u)− β̃i,0(u)
∣∣∣ = OP

(
h2 + η1(T, h)

)
. (B.18)

Note that

Zc
it = Zit −

1

T

t∑
s=1

Zis = βi,0
( t
T

)
+ εit −

1

T

T∑
s=1

εis =: βi,0
( t
T

)
+ εcit,

and

β̃i,0(u)− βi,0(u) =
T∑
t=1

εcitKt(u)/
T∑
t=1

Kt(u) +

[
T∑
t=1

βi,0
( t
T

)
Kt(u)/

T∑
t=1

Kt(u)− βi,0(u)

]
=: Λi,3(u) + Λi,4(u). (B.19)

For Λi,3(u), we may decompose it as

Λi,3(u) =
T∑
t=1

εitKt(u)/
T∑
t=1

Kt(u)− 1

T

T∑
t=1

εit =: Λi,5(u) + Λi,6. (B.20)
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Following the proof of (B.15), we may prove that

max
1≤i≤N

sup
ω≤u≤1−ω

|Λi,5(u)| = OP (η1(T, h)) (B.21)

and

max
1≤i≤N

|Λi,6| = max
1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

εit

∣∣∣∣∣ = OP (η2(T )) (B.22)

with η2(T ) = (log T/T )1/2. In view of (B.20)–(B.22), we readily have

max
1≤i≤N

sup
ω≤u≤1−ω

|Λi,3(u)| = OP (η1(T, h)) . (B.23)

On the other hand, by Assumption 3(i) and using the Taylor expansion of βi,0(·), we may prove

that

max
1≤i≤N

sup
ω≤u≤1−ω

|Λi,4(u)| = OP (h2), (B.24)

which, together with (B.19) and (B.23), leads to (B.17).

We next consider the proof of (B.18). Observe that

β̂i,0(u)− β̃i,0(u) =
T∑
t=1

(
Ẑit − Zit

)
Kt(u)/

T∑
t=1

Kt(u)− 1

T

T∑
t=1

(
Ẑit − Zit

)
=: Λi,7(u) + Λi,8. (B.25)

By (B.2) with q = 2 and noting that the kernel function K(·) has a compact support [−1, 1] (see

Assumption 1), we may show that

max
1≤i≤N

sup
ω≤u≤1−ω

∣∣∣∣∣ 1

Th

T∑
t=1

(
Ẑit − Zit

)
Kt(u)

∣∣∣∣∣
= max

1≤i≤N
sup

ω≤u≤1−ω

∣∣∣∣∣∣ 1

Th

b(u+h)T c+1∑
t=b(u−h)T c

(
Ẑit − Zit

)
Kt(u)

∣∣∣∣∣∣
= c3 · max

1≤i≤N
sup

ω≤u≤1−ω

(
p−1∑
k=1

∣∣∣β̂i,k(u)− βi,k(u)
∣∣∣2)1/2

= OP

(
h2 + η1(T, h)

)
, (B.26)

where b·c denotes the floor function and c3 is a positive constant.
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On the other hand, we note that

Λi,8 =
1

T

T∑
t=1

(
Ẑit − Zit

)
=

1

T

bThc∑
t=1

+

T−bThc∑
t=bThc+1

+
T∑

t=T−bThc+1

(Ẑit − Zit) . (B.27)

Following the proof of (B.2), we may show that

max
1≤i≤N

sup
0≤u≤h

(
p−1∑
k=1

∣∣∣β̂i,k(u)− βi,k(u)
∣∣∣2)1/2

= OP (h+ η1(T, h)) . (B.28)

The uniform convergence rate in (B.28) is slower than that in (B.2) due to the kernel estimation

boundary effect. Similarly, the uniform consistency result still holds if sup0≤u≤h in (B.28) is replaced

by sup1−h≤u≤1. Consequently, we can prove that

max
1≤i≤N

∣∣∣∣∣∣ 1

T

bThc∑
t=1

+
T∑

t=T−bThc+1

(Ẑit − Zit)
∣∣∣∣∣∣ = OP (h(h+ η1(T, h))) . (B.29)

Similarly to the proof of (B.26), we have

max
1≤i≤N

∣∣∣∣∣∣ 1

T

T−bThc∑
t=bThc+1

(
Ẑit − Zit

)∣∣∣∣∣∣ = OP

(
h2 + η1(T, h)

)
. (B.30)

With (B.27), (B.29) and (B.30), we have

max
1≤i≤N

∣∣∣∣∣ 1

T

T∑
t=1

(
Ẑit − Zit

)∣∣∣∣∣ = OP

(
h2 + η1(T, h)

)
, (B.31)

which, together with (B.8), (B.25) and (B.26), leads to (B.18). The proof of (B.3) has been completed.

�

We next make use of Proposition B.1 to prove Theorem 1.

Proof of Theorem 1. Let

δ̃ij =
1

T

T∑
t=1

∥∥βi(t/T )− βj(t/T )
∥∥
q
W (t/T ). (B.32)

28



To prove (3.1) in Theorem 1, we only need to show that

P
(

max
1≤k≤K0

max
i,j∈Gk

δ̂i,j < min
1≤k 6=l≤K0

min
i∈Gk,j∈Gl

δ̂i,j

)
→ 1 (B.33)

as T tends to infinity. Note that for the distance between true functional coefficients, we have δij ≡ 0

if i, j ∈ Gk, and

min
1≤k 6=l≤K0

min
i∈Gk,j∈Gl

δi,j = ζ > 0,

where ζ is defined in Assumption 4(iii). Hence, to prove (B.33), it is sufficient to prove that

max
1≤i,j≤N

∣∣∣δ̂ij − δij∣∣∣ = oP (ζ). (B.34)

Note that ∣∣∣δ̂ij − δij∣∣∣ ≤ ∣∣∣δ̂ij − δ̃ij∣∣∣+
∣∣∣δ̃ij − δij∣∣∣ .

By Assumption 3 and the definition of Riemann integral, we readily have that

max
1≤i,j≤N

∣∣∣δ̃ij − δij∣∣∣ = OP (1/T ) = oP (ζ). (B.35)

On the other hand, by the Minkowski inequality and Proposition B.1, we may prove that uniformly

over 1 ≤ i, j ≤ N ,

∣∣∣δ̂ij − δ̃ij∣∣∣ ≤ 1

T

T∑
t=1

∣∣∣∣∥∥∥β̂i(t/T )− β̂j(t/T )
∥∥∥
q
−
∥∥βi(t/T )− βj(t/T )

∥∥
q

∣∣∣∣W (t/T )

=
1

T

T−bTωc+1∑
t=bTωc

∣∣∣∣∥∥∥β̂i(t/T )− β̂j(t/T )
∥∥∥
q
−
∥∥βi(t/T )− βj(t/T )

∥∥
q

∣∣∣∣W (t/T )

≤ 1

T

T−bTωc+1∑
t=bTωc

∣∣∣∣[β̂i(t/T )− βi(t/T )
∥∥∥
q

+
∥∥∥β̂j(t/T )− βj(t/T )

∥∥∥
q

]
W (t/T )

= OP

(
h2 + η1(T, h)

)
. (B.36)

Then, by (B.35), (B.36) and the triangle inequality, we can prove (B.34) by noting that h2 +η1(T, h) =

o(ζ) in Assumption 4(iii). The proof of Theorem 1 has been completed. �

We next provide the detailed proof of Theorem 2.

Proof of Theorem 2. From the definition of K̂ in (2.10), we only need to show that

P
(
IC(K0) = min

1≤K≤K̃
IC(K)

)
→ 1. (B.37)
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Consider the following two cases: (i) 1 ≤ K ≤ K0 − 1 and (ii) K0 + 1 ≤ K ≤ K̃, which correspond,

respectively, to under-identification and over-identification of the latent groups. Let M(G) denote

the event that
{
Ĝ1, · · · , ĜK0

}
=
{
G1, · · · ,GK0

}
. For case (i), by Theorem 1 and Lemma B.1 below,

we have

P (IC(K0) < IC(K), 1 ≤ K ≤ K0 − 1)

= P (IC(K0) < IC(K), 1 ≤ K ≤ K0 − 1,M(G)) + o(1)

= 1 + o(1). (B.38)

On the other hand, for case (ii), by Theorem 1 and Lemma B.2 below, we have

P
(
IC(K0) < IC(K), K0 + 1 ≤ K ≤ K̃

)
= P

(
IC(K0) < IC(K), K0 + 1 ≤ K ≤ K̃,M(G)

)
+ o(1)

= 1 + o(1). (B.39)

Combining (B.38) and (B.39), we complete the proof of Theorem 2. �

Lemma B.1. Suppose that the assumptions in Theorem 2 are satisfied. Then we have

P (IC(K0) < IC(K), 1 ≤ K ≤ K0 − 1)→ 1 (B.40)

conditional on the event M(G).

Proof of Lemma B.1. Without loss of generality, we only consider the case of K = K0 − 1 as the

other cases can be dealt with in the same manner. Conditional on the eventM(G), two of the clusters

among G1, · · · ,GK0 are falsely merged when the HAC algorithm stops at K = K0 − 1 . Without

loss of generality, we assume that GK0−1 and GK0 are falsely merged, and let γk|K0−1(·) = γk(·) for

k = 1, · · · , K0− 2, and γK0−1|K0−1(·) be the vector of “pseudo” functional coefficients associated with

GK0−1|K0−1 := GK0−1
⋃
GK0

For i ∈ Gk, k = 1, · · · , K0 − 2, note that

Y c
it −X′itγ̂k|K0−1(t/T ) = Yit −

1

T

T∑
s=1

Ẑis −X′itγ̂k|K0−1(t/T )

= Yit −
1

T

T∑
s=1

Zis +
1

T

T∑
s=1

(
Zis − Ẑis

)
−X′itγ̂k|K0−1(t/T )

= εit −
1

T

T∑
s=1

εis +
1

T

T∑
s=1

(
Zis − Ẑis

)
−X′it

[
γ̂k|K0−1(t/T )− γk(t/T )

]
.
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Following the proof of Proposition B.1, we may show that

max
1≤k≤K0−2

max
ω≤u≤1−ω

∥∥γ̂k|K0−1(u)− γk(u)
∥∥
2

= OP

(
h2 + η1(T, h)

)
. (B.41)

This, together with (B.22) and (B.31), indicates that

1

NT

K0−2∑
k=1

∑
i∈Gk

T∑
t=1

[
Y c
it −X′itγ̂k|K(t/T )

]2
W (t/T ) =

1

NT

K0−2∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T ) + oP (1). (B.42)

For i ∈ GK0−1, we note that

Y c
it−X′itγ̂K0−1|K0−1(t/T ) = εit−

1

T

T∑
s=1

εis +
1

T

T∑
s=1

(
Zis − Ẑis

)
−X′it

[
γ̂K0−1|K0−1(t/T )− γK0−1(t/T )

]
and conditional on M(G),

γ̂K0−1|K0−1(u) =

 ∑
i∈GK0−1|K0−1

T∑
t=1

XitX
′
itK

(
t− uT
Th

)−1  ∑
i∈GK0−1|K0−1

T∑
t=1

XitY
c
itK

(
t− uT
Th

) ,
where GK0−1|K0−1 = GK0−1

⋃
GK0 and

Y c
it =

 εit − 1
T

∑T
s=1 εis + 1

T

∑T
s=1

(
Zis − Ẑis

)
+ X′itγK0−1(t/T ), i ∈ GK0−1;

εit − 1
T

∑T
s=1 εis + 1

T

∑T
s=1

(
Zis − Ẑis

)
+ X′itγK0

(t/T ), i ∈ GK0 .

Let ∆k = 1
|Gk|
∑

i∈Gk ∆i, k = 1, . . . , K0, and define

γK0−1|K0−1(u) = (|GK0−1|∆K0−1 + |GK0|∆K0)
−1 (|GK0−1|∆K0−1γK0−1(u) + |GK0|∆K0γK0

(u)
)

as the “pseudo” functional coefficient vector corresponding to GK0−1|K0−1, which is essentially a

weighted average of γK0−1(·) and γK0
(·) (note that when Xit are identically distributed over i, then

γK0−1|K0−1(u) reduces to (|GK0−1|+ |GK0|)
−1 (|GK0−1γK0−1(u) + |GK0|γK0

(u)
)
). By (B.22), (B.31)

and following the proof of Proposition B.1, we may show that

sup
ω≤u≤1−ω

∥∥γ̂K0−1|K0−1(u)− γK0−1|K0−1(u)
∥∥ = OP

(
h2 + η1(T, h)

)
. (B.43)

By (B.22), (B.31) and (B.43), we can prove that, uniformly over i ∈ GK0−1 and t satisfying ω ≤ t/T ≤
1− ω,

Y c
it −X′itγ̂K0−1|K0−1(t/T ) = εit + X′itν1(t/T ) +OP

(
h2 + η1(T, h)

)
,
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where ν1(u) = γK0−1(u)− γK0−1|K0−1(u). Consequently, we have

1

NT

∑
i∈GK0−1

T∑
t=1

[
Y c
it −X′itγ̂K0−1|K0−1(t/T )

]2
W (t/T )

=
1

NT

∑
i∈GK0−1

T∑
t=1

ε2itW (t/T ) +
1

NT

∑
i∈GK0−1

T∑
t=1

ν ′1(t/T )XitX
′
itν1(t/T )W (t/T ) +

2

NT

∑
i∈GK0−1

T∑
t=1

εitX
′
itν1(t/T )W (t/T ) + oP (1)

≥ 1

NT

∑
i∈GK0−1

T∑
t=1

ε2itW (t/T ) + (λ · τ1)
∫ 1−ω

ω

‖ν1(u)‖22W (u)du+ oP (1), (B.44)

where λ and τ1 were defined in Assumption 2(iii) and 5(i), respectively. Analogously, we can also

prove that

1

NT

∑
i∈GK0

T∑
t=1

[
Y c
it −X′itγ̂K0−1|K0−1(t/T )

]2
W (t/T )

≥ 1

NT

∑
i∈GK0

T∑
t=1

ε2itW (t/T ) + (λ · τ1)
∫ 1−ω

ω

‖ν2(u)‖22W (u)du+ oP (1), (B.45)

where ν2(u) = γK0
(u)− γK0−1|K0−1(u).

Combining (B.42), (B.44), (B.45) and Assumption 5, we have

IC(K0 − 1) = logV2
n(K0 − 1) + (K0 − 1) · ρ

≥ log

{
1

NT

K0∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T ) + (λ · τ1)
∫ 1−ω

ω

[
‖ν1(u)‖22 + ‖ν2(u)‖22

]
W (u)du

}
+

(K0 − 1) · ρ+ oP (1)

≥ log

{
1

NT

K0∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T ) +
1

2
(λτ1τ2)

}
+ (K0 − 1) · ρ+ oP (1)

> log

{
1

NT

K0∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T )

}
+K0 · ρ+ oP (1)

= IC(K0) + oP (1). (B.46)

The proof of Lemma B.1 has been completed. �
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Lemma B.2. Suppose that the assumptions in Theorem 2 are satisfied. Then we have

P
(
IC(K0) < IC(K), K0 + 1 ≤ K ≤ K̃

)
→ 1 (B.47)

conditional on the event M(G).

Proof of Lemma B.2. As in the proof of Lemma B.1, without loss of generality, we only consider

the case of K = K0 + 1 and prove that

P (IC(K0) < IC(K0 + 1),M(G))→ 1. (B.48)

Conditional on the eventM(G), one of the clusters of G1, · · · ,GK0 are split into two sub-clusters when

the HAC algorithm stops at K = K0 + 1. Without loss of generality, we assume that GK0 is divided

into two sub-clusters and denote the resulting K0 + 1 clusters as G∗1 , · · · ,G∗K0
,G∗K0+1 with G∗k = Gk for

k = 1, · · · , K0 − 1 and G∗K0

⋃
G∗K0+1 = GK0 . In this case, the group structure is over-identified.

Observe that

V2
n(K0 + 1) =

K0+1∑
k=1

1

NT

∑
i∈G∗k

T∑
t=1

[
Y c
it −X′itγ̂k|K0+1(t/T )

]2
W (t/T ) =:

K0+1∑
k=1

V2
n(k|K0 + 1).

For any k = 1, · · · , K0 + 1, we write

Y c
it −X′itγ̂k|K0+1(t/T ) = εit −X′it

[
γ̂k|K0+1(t/T )− γ∗k(t/T )

]
− 1

T

T∑
s=1

εis +
1

T

T∑
s=1

(
Zis − Ẑis

)
=: εit −X′it

[
γ̂k|K0+1(t/T )− γ∗k(t/T )

]
+Qi, (B.49)

where

Qi = − 1

T

T∑
s=1

εis +
1

T

T∑
s=1

(
Zis − Ẑis

)
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and γ∗k(u) = γk(u) if k = 1, · · · , K0 − 1 and γ∗k(u) = γK0
(u) if k = K0 and K0 + 1. Note that

1

T

T∑
t=1

(
Zit − Ẑit

)
=

1

T

T∑
t=1

p−1∑
k=1

Xit,k

[
β̂i,k(t/T )− βi,k(t/T )

]
=

1

T

T∑
t=1

X̃′it(0p−1, Ip−1)
[
β̂
∗
i (t/T )− β∗i (t/T )

]
=

1

T

T∑
t=1

X̃′it(0p−1, Ip−1)

[
T∑
s=1

XisX
′
isKst

]−1 [ T∑
s=1

XisεisKst

]
+OP (h2)

=
1

T

T∑
s=1

εisX
′
is

 1

Th

T∑
t=1

(
1

Th

T∑
s=1

XisX
′
isKst

)−1
(0p−1, Ip−1)

′X̃itKst

+OP (h2),

where X̃it = (Xit,1, · · · , Xit,p−1)
′, Kst = K

(
s−t
Th

)
, 0k is a k-dimensional null vector and Ik is a k × k

identity matrix. By (B.15), we have

1

Th

T∑
s=1

XisX
′
isKst = ∆i +OP (η1(T, h))

uniformly over 1 ≤ i ≤ N and 1 ≤ t ≤ T , and similarly

1

Th

T∑
t=1

X̃itKst = Γ̃i +OP (η1(T, h))

uniformly over 1 ≤ i ≤ N and 1 ≤ s ≤ T , where Γ̃i = E(X̃it). Hence,

1

T

T∑
t=1

(
Zit − Ẑit

)
=

1

T

T∑
s=1

εisX
′
is∆

−1
i (0p−1, Ip−1)

′
(
Γ̃i +OP (η1(T, h)

)
+OP (h2).

All the above implies

Qi =− 1

T

T∑
s=1

εis +
1

T

T∑
s=1

εisX
′
is∆

−1
i (0p−1, Ip−1)

′
(
Γ̃i +OP (η1(T, h)

)
+OP (h2)

=OP

(
η2(T ) + h2

)
. (B.50)

uniformly over i = 1, · · · , N . The last equality in (B.50) holds because of (B.22) and the similar
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result that 1
T

∑T
s=1 εisX

′
is = OP (η2(T )) uniformly over 1 ≤ i ≤ N . From (B.50), we readily have

1

NT

∑
i∈G∗k

T∑
t=1

Q2
iW (t/T ) =

 1

N

∑
i∈G∗k

Q2
i

( 1

T

T∑
t=1

W (t/T )

)

=OP

(
|G∗k |
N

(
log T

T
+ h4

))
. (B.51)

By (B.22) and (B.50), we may show that

1

NT

∑
i∈G∗k

Qi

T∑
t=1

εitW (t/T ) = OP

(
|G∗k |
N

(
log T

T
+ h4

))
. (B.52)

By (B.15), (B.50) and the Taylor expansion of γ∗k(·), we readily have

γ̂k|K0+1(u)− γ∗k(u)

=

∑
i∈G∗k

T∑
t=1

XitX
′
itKt(u)

−1 ∑
i∈G∗k

T∑
t=1

Xit(εit +Qi)Kt(u)

+OP (h2)

=

 1

|G∗k |
∑
i∈G∗k

(∆i +OP (η1(T, h))

−1 1

|G∗k |Th
∑
i∈G∗k

T∑
t=1

XitεitKt(u)

+

 1

|G∗k |
∑
i∈G∗k

(∆i +OP (η1(T, h))

−1 1

|G∗k |Th
∑
i∈G∗k

Qi

T∑
t=1

XitKt(u)

+OP (h2)

=

 1

|G∗k |
∑
i∈G∗k

∆i

−1 1

|G∗k |Th
∑
i∈G∗k

T∑
t=1

XitεitKt(u)

 (1 +OP (η1(T, h))) +

 1

|G∗k |
∑
i∈G∗k

∆i

−1  1

|G∗k |
∑
i∈G∗k

Γi

(
1

T

T∑
s=1

εisX
′
is

)
∆−1i (0p−1, Ip−1)

′Γ̃i

 (1 +OP (η1(T, h)))−

 1

|G∗k |
∑
i∈G∗k

∆i

−1  1

|G∗k |
∑
i∈G∗k

Γi

(
1

T

T∑
s=1

εis

) (1 +OP (η1(T, h))) +OP (h2)

=:Rk,1(u) + Rk,2(u) + Rk,3(u) +OP (h2) (B.53)

uniformly for u ∈ [h, 1−h], where Kt(u) = K
(
t−uT
Th

)
as in the proof of Proposition B.1 and Γi = E(Xit).
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Following arguments similar to the proofs of (B.51) and (B.52), we may show that

1

NT

∑
i∈G∗k

T∑
t=1

{
X′it
[
Rk,2(t/T ) + Rk,3(t/T ) +OP (h2)

]}2
W (t/T ) = OP

(
|G∗k |
N

(
log T

T
+ h4

))
(B.54)

and

1

NT

∑
i∈G∗k

T∑
t=1

εit
{
X′it
[
Rk,2(t/T ) + Rk,3(t/T ) +OP (h2)

]}
W (t/T ) = OP

(
|G∗k |
N

(
log T

T
+ h4

))
.

(B.55)

By (A.2) in Assumption 2(iii) and (A.4) in Assumption 6, we may show that

1

NT

∑
i∈G∗k

T∑
t=1

[X′itRk,1(t/T )]
2
W (t/T )

≤ 1

NT

∑
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T∑
t=1

X′it

 1

|G∗k |
∑
j∈G∗k

∆j

−1 1

|G∗k |Th
∑
j∈G∗k

T∑
s=1

XjsεjsKst

2

W (t/T )

≤ λ−2 · 1

NT

∑
i∈G∗k

T∑
t=1

‖Xit‖22

∥∥∥∥∥∥ 1

|G∗k |Th
∑
j∈G∗k

T∑
s=1

XjsεjsKst

∥∥∥∥∥∥
2

2

W (t/T )

= OP

(
|G∗k |2T 2h

N |G∗k |2T 3h2

)
= OP

(
1

NTh

)
. (B.56)

By (A.5) in Assumption 6, we can prove that

1

NT

∑
i∈G∗k

T∑
t=1

εitX
′
itRk,1(t/T )W (t/T )

=
1

NT

∑
i∈G∗k
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t=1
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′
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t=1
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εitεjsKstX
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it
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1

NTh
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. (B.57)
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By (B.49), (B.51), (B.52), (B.54)–(B.57) and Assumption 5(ii), we can prove that

IC(K0 + 1) = logV2
n(K0 + 1) + (K0 + 1) · ρ

= log

 1

NT

K0+1∑
k=1

∑
i∈G∗k

T∑
t=1

ε2itW (t/T )

+ (K0 + 1) · ρ+ oP (ρ)

= log

{
1

NT

K0∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T )

}
+ (K0 + 1) · ρ+ oP (ρ)

> log

{
1

NT

K0∑
k=1

∑
i∈Gk

T∑
t=1

ε2itW (t/T )

}
+K0 · ρ+ oP (ρ)

= IC(K0) + oP (1). (B.58)

The proof of Lemma B.2 has been completed. �
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