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Abstract

This paper studies the estimation of latent group structures in heterogeneous time-varying
coefficient panel data models. While allowing the coefficient functions to vary over cross sections
provides a good way to model cross-sectional heterogeneity, it reduces the degree of freedom and
leads to poor estimation accuracy when the time-series length is short. On the other hand, in a lot of
empirical studies, it is not uncommon to find that heterogeneous coefficients exhibit group structures
where coefficients belonging to the same group are similar or identical. This paper aims to provide
an easy and straightforward approach for estimating the underlying latent groups. This approach is
based on the hierarchical agglomerative clustering (HAC) of kernel estimates of the heterogeneous
time-varying coefficients when the number of groups is known. We establish the consistency of this
clustering method and also propose a generalised information criterion for estimating the number
of groups when it is unknown. Simulation studies are carried out to examine the finite sample
properties of the proposed clustering method as well as the post-clustering estimation of the group-
specific time-varying coefficients. The simulation results show that our methods give comparable
performance as the penalised-sieve-estimation based classifier Lasso approach by Su et al. (2018), but

are computationally easier. An application to a cross-country growth study is also provided.

Keywords: Hierarchical agglomerative clustering; Generalised information criterion; Kernel estimation;

Panel data; Time-varying coefficients.



1 Introduction

Analysis of panel data has become one of the most important areas in theoretical and applied
econometrics. The double-index panel modelling framework facilitates the exploration of dynamic
information over time span and heterogenous structure over cross sections. In the past few decades,
there have been exciting developments in parametric and nonparametric panel model estimation and
inference, see, for example, Arellano (2003), Su and Ullah (2011), Chen et al. (2012), Robinson (2012),
Hsiao (2014) and the references therein. In the existing literature, it is typically assumed that the
regression relationship between variables is invariant cross sectionally, leading to homogenous panel
data models. However, such an assumption might be inappropriate in many practical applications
when the data are collected from individuals with different characteristics or in different geographical
locations. In the context of parametric linear panel data models, Ke et al. (2016) and Su et al. (2016)
impose latent group structures on the constant regression coefficients, and respectively use the binary
segmentation and shrinkage methods to detect and estimate the group structures. In this paper, we
aim to study this problem in a more general setting by allowing the model regression coefficients to

vary smoothly over time and the panel data to have general cross-sectional dependence.

Suppose that we have the panel observations: (Yj;, Xy), ¢ =1,--- , N, t =1,--- T, which are
allowed to be serially correlated over ¢t and cross-sectionally dependent over 7. The primary interest is
to investigate the relationship between the response variable Y;; and the p-dimensional explanatory

vector X;;. Consider the following heterogenous time-varying coefficient panel data model:
Y;t =o; + X;tﬁit + €it, (11)

where «; are individual specific effects, B,, are p-dimensional vectors of time-varying functional
coefficients which are heterogeneous over 7, and the model errors €;; are stationary over time ¢ but
may be cross-sectionally dependent. As in Robinson (1989) and Cai (2007), we assume that 3;, are
smooth functions of scaled times:

/61'15 = Bz(i

T), t=1,---,T, i=1,---,N, (1.2)

where 3,(-) is a p-dimensional vector of functions satisfying some smoothness conditions. In model

(1.1), we allow for the existence of heterogeneous intercept functions by letting the first element of
X;: be one. With X = (1, X1, ... 7Xit,p—1)/ and B;(%) = (Bio(L), Bia(L), ... ,52-,1,_1(%))/, we can



rewrite equation (1.1) as
t
Yii = a;+ X;tﬁz(f) T €t
ty X~ i
= a; + 51’,0(?) + Z Bi,k(T)Xit,kz + €t (1.3)
k=1

As both «; and S, (-) appear in the intercept of the model, to disentangle «; and 3;(-) from each
other, we impose the identification condition _/_, 8io(t/T) = 0 on the intercept functions (Boneva
et al., 2015). An alternative is to assume Zfil «; = 0 on the individual effects. In this paper we
use Zle Bio(t/T) = 0 for convenience of estimation. This will become clearer in Section 2 when we

develop the estimation procedure.

When the intercept functions f;o(-), ¢ = 1,..., N, are homogeneous, i.e., 8;0(-) = So(+), equation
(1.3) becomes a panel data model with a common time trend but heterogeneous time-varying slope
coefficients. Further assuming homogeneity of time-varying slope coefficients, i.e., 5, x(-) = Bi(+),
k=1,...,p—1, gives the model considered in Li et al. (2011), of which the nonparametric trending
panel model in Robinson (2012) is a special case. Panel data models with homogeneous time-varying
coefficients have been extensively studied in the literature (to list a few, Li et al., 2011; Chen et al.,
2012; Zhang et al., 2012; Chen and Huang, 2017), and their estimation and inference methods have
been well developed.

Note that model (1.3) offers great flexibility for modelling cross-sectional heterogeneity and
time-varying effects of regressors on the dependent variable. However, without considering any group
structure for 3,(-), we can only reply on the sample information from the i-th cross section to estimate
the time-varying coefficient vector 3,(-). This will lead to slow estimation convergence rates in large
samples and unsatisfactory estimation accuracy in finite samples when the time series length T is not
large enough. Consequently the benefits of panel data for giving a larger number of pooled observations
cannot be reaped. On the other hand, in a lot of empirical studies using heterogeneous panel data
models, researchers find group structures where coefficients within each group are homogeneous but
heterogeneous across groups. Such group structures arise due to the similarity of some cross sections
in certain characteristics such as their geographical location. Hence, in this paper we consider the case
where there exists a latent group structure for the heterogenous time-varying coefficient functions,
i.e., there exists a partition of the cross-sectional index set {1,2,--- N}, denoted by {Gy, -+ , Gk, },
such that

Bi(-) =v,(-) for i€ Gy and G,NG; =0 for k#j, (1.4)

where () denotes the empty set. We assume that the Lebesgue measure of {u € [0,1] : ~,(u) # ~,(u), k # j}
is uniformly (over k and j) strictly larger than a positive constant, and the number of latent groups,

Ky, is finite but may be unknown in practice. The aim of this paper is to uncover the latent



group structure (1.4) by estimating the number of groups Kj and determining the membership of
each index set G, k = 1,--- , Ky. Consequently, a nonparametric estimation of the time-varying
coefficient functions making use of the estimated group structure can be constructed, which has faster

convergence rate than the naive nonparametric estimation ignoring the latent group structure.

Estimation of latent group structures in nonparametric panel data models has received increasing
attention in recent years. Vogt and Linton (2017, 2018) introduce kernel-based clustering methods to
estimate the latent structures of univariate regression functions in panel data. Su et al. (2018) consider
the same model structure as (1.1), and use a sieve approximation for the time-varying coefficient
functions and the so-called classifier LASSO method to estimate the latent structure. In this paper,
we use a fundamentally different method and relax some restrictive model assumptions in Su et al.
(2018) (say, the cross-sectional independence assumption). Partly motivated by Li et al. (2018), we
combine the kernel estimation method of the heterogenous time-varying coefficient functions with the
classic hierarchical agglomerative clustering (HAC) method to estimate the latent group structure.
We then use a generalised information criterion to determine the unknown group number K. The

advantages and novelty of our methods lie in the following aspects.

(i) When X;; =1 and «; = 0 for all i and ¢, our model becomes Y;; = £;0(t/T") + €;, which is the
model considered in Vogt and Linton (2018) with a fixed-design covariate. Vogt and Linton
(2018) also use the classical HAC algorithm to cluster nonparametric regression curves but base
the HAC on the complete linkage of a multi-scale distance statistic which maximises a normalised
point-wise distance between two regression curves over a grid of bandwidth and covariate values.
The multi-scale distance statistic is constructed using large-sample approximation of normalised
point-wise distance maximised over a grid. Furthermore, although their method does not require
the selection of a bandwidth, it does require the choice of a threshold parameter, mn7, for
estimating the number of groups. Applied to the fixed design model Y;; = f;¢(t/T) + €i, our
method is more straightforward to implement. The second simulation example in Section 4.2
shows that, with a similar data generating process, our method performs at least as well as that
of Vogt and Linton (2018). Our proposed method can be easily implemented in R or Matlab
with readily available packages or functions for HAC algorithm. Although our method does
require a selection of a smoothing parameter, i.e., the bandwidth for nonparametric estimation
of the time-varying coefficient functions, such a selection problem has been extensively studied
in the literature and one can easily use one of the existing methods, such as the leave-one-out

cross validation to tackle it.

(ii) Su et al. (2018) first use the sieve estimation for the functional coefficients then use the classifier
LASSO (C-LASSO) method, which is first introduced in Su et al. (2016), to simultaneously
estimate the functional coefficient vectors and classify them into groups. This method does not

have a closed form solution, and hence an iterative numerical method has to be used to obtain
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an estimate of the latent groups. Hence, our method is implementationally easier. The first

simulation study in Section 4.2 shows that our method works as well as that of Su et al. (2018).

The rest of the paper is organised as follows. In Section 2, we develop an easy-to-implement approach
for estimating the latent group structure when the number of groups, Ky, is known and then propose
an information criterion to estimate K, when it is unknown. Section 3 gives the consistency of the
proposed clustering method and the method for estimating K,. Section 4 provides 2 simulation
examples, in which the data generating processes are similar to the simulation designs of Su et al.
(2018) and Vogt and Linton (2018) to facilitate comparison of performance of our method against
those of theirs. These are then followed by an empirical application to a cross-country economic
growth study consisting of 100 countries across the globe. Section 5 concludes the paper. All the

proofs are relegated to the appendix.

2 Estimation methodology

In this section, we first introduce a kernel-based HAC algorithm to estimate the latent groups by
assuming that the number of groups, Ky, is known, and then propose a generalised information

criterion to determine the number K.

2.1 Kernel based HAC algorithm

To illustrate the kernel-based clustering method for estimating the group structure, we first assume
that the number of clusters, Ky is pre-specified. The kernel-based clustering method applies the
classic HAC algorithm to kernel estimates of the time-varying coefficients 3,(-). To estimate 3;(-), we
first absorb a; into B;o(-) and denote 53;(-) = a; + Bio(+). Then model (1.3) can be written as

t
Yie = X;t,@f(f) + €,

where B (t/T) = (B;(t/T), Bia(t/T), ... ,52-7p,1(t/T))/. Assume that each coefficient function f; x(+),
1=1,2,--- N, k=0,1,--- ,p—1 are continuous. For each i =1,--- N, and any 0 < uy < 0, we

may use the kernel smoothing method to estimate 3] (uo):

-1

2% 4 t— UOT
B; (uo) = [;Xitxﬁf(( T ) , (2.1)

T
t—UQT
XY K
o (55)




where ,@:() = [@*0(),@1(), e ,@-,p,l(')}/, K (-) is a kernel function and h is a bandwidth. From
the definition of the above kernel estimation, it is easy to find that we only use the local sample
information from the i-th cross section, so its finite-sample performance may be relatively poor when
the time series length 7" is not large. We next extract the estimate of the individual intercept function

from @*0() Denote

p—1
~ ~
Ziw =Yu =) Bir(z) X (2.2)
k=1
It is easy to see that
~ !
Zip & a; + @,O(T) + €it, (2.3)

which implies

N

1 — 1 —
Z,L'%Oéi—i—— €it, 2.4
; t T; t ( )

given the identification condition Zthl Bio(t/T) = 0. We can eliminate the individual effects «; from

(2.3) by subtracting equation (2.4) from it, i.e.,

T

PO N t 1
Zit — Z Zit & Bzo(?) + €t — T Z €it-
t=1

t=1

=l

Since %Z?zl ¢4 = Op(1/V/T) = op(1) when T — oo, we can estimate (;o(-) in the same way as
in (2.1) but with X;; and Y}; replaced by 1 and th = Ait — %ZtT:l Z-t, respectively. Denote the
subsequent estimator by @70( -) and combine it with the estimators of the slope coefficient functions

above to form the estimator,
Bi(-) = [Bio(), Bia () Bipa ()]

of the original functional coefficient vector 3,(-).

We next apply the classic HAC algorithm to the estimates of the individual functional coefficients
constructed above to obtain an estimate of the latent groups. To this end, we first define a distance
measure for the estimated coefficient function. For any 8,(-) and B3,(-), define a weighted L,-distance

between them as:

T
~ 1 ~ ~
S = 2 |But/T) = Bya/T) | Wit/T), (2.5)
t=1
where || - ||, denotes the L,norm for a vector, ¢ > 1, and W (-) is a pre-specified non-negative

weight function which trims out the scaled time points close to either 0 or 1, circumventing the
well-known boundary effect in kernel estimation to unduly affecting the distance. Li et al. (2018)

use the Li-norm and choose W (-) as an indicator function to estimate the homogeneity structure



among the functional coefficients for independent cross-sectional data, whereas Vogt and Linton (2018)
consider the L..-distance for classifying univariate regression functions. In the numerical studies in
Section 4, we use the Ly-norm to measure the distance. Note that if the two indices ¢ and j are from

the same index set G, we expect that the value of gij will be small.

When the time span 7" tends to infinity, under some regularity conditions we may show that Bz(u)
converges to the true functional coefficient vector 8;(u) uniformly over v and ¢, indicating that ¢;;

defined in (2.5) would be a reasonable estimate of ¢§;; defined as

55 = [ 118w = By, W) (2.6

Then, we let Ay be an N x N distance matrix with the (7, j)-th entry being d,;. Correspondingly, we
let Ay be the estimated distance matrix of Ay with the (1, 7)-th entry being d;;. When i = j, it is

easy to find that d;; = gij = 0, indicating that the main diagonal elements of Ay and Ay are zero.

With the feasible distance matrix A ~, we can apply the classic HAC method to explore the latent
group structure among the individual functional coefficients. The HAC method has been commonly
used in the past few decades, see, for example, Ward (1963), Hastie et al. (2009), Everitt et al. (2011)
and the references therein. A recent extension to the kernel-based HAC method in nonparametric
classification can be found in Li et al. (2018) and Vogt and Linton (2018). For the time being, we
assume that K, the number of groups, is known a priori, and will later introduce an information
criterion for estimating this number when it is unknown. We let Q\l, cee ,QA K, be the estimated index

sets obtained via the following algorithm.

STEP 1. Start with N groups with each individual unit forming a group.

STEP 2. Search for the smallest off-diagonal element in A ~ and merge the corresponding two groups.

These two groups are closest to each other among all groups by the measure of distance used.

STEP 3. Re-calculate the distances between the current groups and update the estimated distance
matrix (with its size reduced after each merging). Here the distance between two groups .4; and
As is defined as the furthest distance between any two estimated functional coefficient vectors

with one from A; and the other from A,.

STEP 4. Repeat Steps 2 and 3 until the number of groups reaches K.

As with any clustering algorithm, in each iteration before the given number of groups is reached,
we merge the two groups which have the smallest distance to each other among all groups. The
measure of distance between groups impacts the clustering results. In this paper, we use the furthest

distance (or the “complete linkage” in the clustering analysis literature) between members from two
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groups to measure how far away they are from each other. Other possible distance measures are
the closest distance (or “single linkage” in the clustering analysis literature) or the weighted average

distance.

2.2 Selection of number of groups

The kernel-based HAC method above relies on prior information on the number of latent groups.
However, this number is usually unknown in practical applications and needs to be determined via
certain data-driven rule. Hence our next task is to develop such a rule. For a given value of K for the
number of latent groups, we let §1| Ky ,Q\K‘ x be the K estimated index sets from the kernel-based
HAC method in Section 2.1. In this case, there are K different vectors of coefficient functions,
denoted by vy (), -+, Yk (+), to be estimated, and it is sensible to pool data from individual units
belonging to the same estimated group in the kernel estimation. Specifically, with the estimated

group structure we have the following time-varying coefficient panel model:
Y O‘z+7k\K0 +Zﬂyk|K,j ztj+€it> [ ng\Ka k= 17 aK7 (27)

whose group-specific coefficient functions x(ug) = [’yk| K0(U0)s 5 Yk ij_l(uo)}/ can be estimated

as

Furlwo) = | Y ZX“X (t_Tl;loT) - ZX“YJK (t_TllfboT) (2.8)

ZEgk\K ZEQ k|K

fork=1,--- K, and any ug € (0,1). In (2.8), we have used the notation

Y;g Z Zzt>

where Z; was defined in (2.2). Note that we use Y;¢ instead of Y in (2.8). This is mainly to eliminate

the individual effects a; that may cause estimation bias in the above pooled kernel method.

We then define the following information criterion:
IC(K) =1logV2(K) + K - p, (2.9)

where p is a tuning parameter whose value may rely on N, T, and h (due to the nonparametric



kernel-based estimation of the time-varying coefficients in the panel model), and

(K) = 30 S0 7 Vi~ Xl Func (/7)) Wt/ 7).

k=1 gk\K t=1

The number of latent groups can be estimated by minimising the criterion IC(K), i.e.,

K = arg min_ IC(K), (2.10)
1<K<K

where K is a pre-specified upper bound for the number of latent groups.

In Section 3 below, we will show that the estimator K , defined in (2.10), is a consistent estimate
of the true cluster number Ky. To achieve the consistency property, we need to impose some mild
restriction on the tuning parameter p in the penalty term (see Appendix A). Section 4 will discuss
the practical choice of p in numerical studies. In practical data analysis, one first obtains K from
(2.9) and (2.10), and then use the kernel-based HAC procedure in Section 2.1 to identify the group
membership of G by stopping the algorithm when the number of groups reaches K.

3 Large-sample theory

In this section we establish the asymptotic property of the methodology proposed in Sections 2.1 and
2.2. Theorem 1 shows that the kernel-based HAC algorithm can consistently estimate the membership
of the latent groups G, k =1,--- , Ky, when the number K is known.

THEOREM 1. Suppose that Assumptions 1-4 in Appendix A are satisfied. If Ky, the number of

latent groups, is known a priori, then

P({é\la"'7§K0}:{g1a"',g[{0}>—>1 (3.1)

asT — oo.

REMARK 1. The consistency result in Theorem 1 is similar to some results in existing literature
(although in different model settings), such as Theorem 3.1 in Vogt and Linton (2017), Theorem 1 in
Li et al. (2018) and Theorem 4.1 in Vogt and Linton (2018). Note that we only require that 7" tends
to infinity in Theorem 1. So the above result is applicable to settings where the cross-sectional size
is either fixed or divergent to infinity. In addition, it is worth mentioning that we allow arbitrary

cross-sectional dependence in derivation of Theorem 1.



THEOREM 2. Suppose that Assumptions 1-6 in Appendix A are satisfied. Then we have
P (f{ - K0> S (3.2)

as’T — oo.

REMARK 2. Su et al. (2018) also propose an information criterion for selecting the number of groups
for their C-Lasso based clustering method and establish a similar consistency result under N,T — oo.
Vogt and Linton (2018) use a thresholding method to choose the number of groups, which is also
shown to be consistent. Li et al. (2018) also establish the consistency of their information criterion
for choosing the number of homogeneous groups among functional coefficients for independent cross-
sectional data. We note that in Theorem 2 we allow for the existence of cross-sectional dependence that
satisfies Assumption 6 (especially between cross sections belonging to the same group). Furthermore,
as in Theorem 1, the consistency result (3.2) holds whether N is fixed or diverging to infinity at a

slower rate than 7™, where m is a positive constant defined in Assumption 4.

4 Numerical studies

In this section, we first discuss how to choose the bandwidth i and the tuning parameter p in Section
4.1 and then provide two Monte-Carlo experiments in Section 4.2 to demonstrate the finite-sample
performance of the proposed methodology for identifying latent groups. Finally in Section 4.3, we
apply our method to a cross-country economic growth study and discover 4 groups of countries which

have distinct growth patterns.

4.1 Choice of tuning parameters

To achieve good grouping results, it is desirable to first obtain accurate nonparametric estimates of
the functional coefficients, which, in turn, requires a proper choice of the bandwidth h. As the aim is
to achieve good estimation accuracy, we can use existing bandwidth selection methods such as the
leave-one-out cross-validation. This method selects the h value which minimises the following mean
squared error
T
CV(h) = = > S Vi - X0BL ()]
i=1 t=1
where, for each ¢ = 1,..., N and t = 1,...,T, Y was defined in Section 2.2 (which relies on h as
the construction of Zt involves the nonparametric kernel estimates of the coefficient functions), and
BE?)(%) is the nonparametric estimate (with bandwidth &) of 3;(%) obtained by using observations

from the i-th cross section except the ¢-th observation (Y, Xi,t/T). The simulation studies in

10



Section 4.2 below show that such a selected bandwidth gives accurate estimation of the functional

coefficients and good clustering results.

A proper choice of the tuning parameter p is crucial in order for the information criterion to work

well. In our numerical study, we choose p as

:log(NKTh) or py— 2
NkTh > NgTh

with Ni = min{‘gAW( ,

k:zl,---,K}, (4.1)

where |A| denotes the cardinality of a set A. This corresponds to a generalised Bayesian information
criterion (GBIC with p = p;) or generalised Akaike information criterion (GAIC with p = py) by
treating N Th as effective sample size (for the smallest cluster when the number of clusters is K).
Such a criterion for estimating the number of latent groups works well in our simulation studies
in Section 4.2. A similar criterion can also be found in Wang and Xia (2009) and Li et al. (2018)
for variable selection and structure identification in high-dimensional varying-coefficient models for

independent cross-sectional data.

4.2 Simulation studies

For easier comparison with the methods in Su et al. (2018) and Vogt and Linton (2018), we adopt a
data generating process, i.e. DGP 2, from Su et al. (2018) in the first simulation study and then the
data generating process from Section 7 of Vogt and Linton (2018) but with a fixed-design covariate in

accordance with our modelling framework.
Simulated Example 1. This data generating process is the same as DGP 2 in Su et al. (2018),

+ Bia (i

t
Yie = i + Bio (5 T

T) )Xie+er, t=1,...,N, t=1...,T,

where a; and €; are independently drawn from the N(0, 1) distribution and are mutually independent,

(

Y,0(u) = 3F(u;0.5,0.1) iti € Gy,
Bio(u) = ¢ ya0(u) = 3[2u — 6u® + 4u® + F(u;0.7,0.05)]  if i € Gy, (4.2)
| 130(u) = 3[4u — 8u® + 4u® + F(u;0.6,0.05)]  if i € Gs,
[ ya(u) = 3[2u — 4u? + 2u® + F(u;0.6,0.1)] if i € Gy,
Bia(u) = ¢ m21(u) = 3[u—3u? 4+ 2u® + F(u;0.7,0.04)] if i € G, (4.3)
| 73,1 (w) = 3[0.5u — 0.5u* + F(u;0.4,0.07)]  ifi € Gs,

in which F(’U,,/L,V) = m, gl = {1,2,...,]\71}’ gg = {Nl + 1,N1 —|—2,...,N1 +N2}, and
Gs ={N1+ No+ 1,Ny + Ny +2,...,N; + Ny + N3}, and the cardinalities of the three groups are
defined as Ny = 0.3N, Ny = 0.3N and N3 = 0.4N. The intercept functional coefficients, 3;0(¢/T),

11



are demeaned so as to satisfy the identification condition Zthl Bio(t/T) = 0. Different sample sizes
of N =50,100 and T" = 40, 80 are considered, and for each combination of N and 7', 200 replicate
samples are drawn from the data generating process. The bandwidth used for the nonparametric
estimation of J3;(-) is selected using the leave-one-out cross validation method detailed in Section 4.1,
and the kernel function used is the Epanechnikov kernel K (u) = 3(1—u?), /4, where (v), = max{v, 0}.

For each combination of N and T, we report the accuracy of both the clustering and the
estimation of the time-varying coefficients. To measure clustering accuracy, we calculate the purity
and normalised mutual information (NMI) of our estimated clusters C = {Gi,....G #~} with the true

clusters Cy = {Gu, ..., 0k, }, which are defined, respectively, as

Purity(C, Co) = N Z max ‘gk NG|

1<j<Kyp

and

1(C,Cy)

NMI(C, Co) = —— :
(H(C)+ H(Co))/2

where 1(C, Cy) is the mutual information between C and Cy defined as

ii(mm&) o (N|§mg,~|)
G191 )

k=1 j=1

and H(C) is the entropy of C defined as

N
and H(Cp) is defined similarly. The advantage of using the measures of NMI and purity is that
the results do not depend on the ordering of clusters in C or Co. The closer the values of NMI
and purity are to 1, the more accurate the estimated clusters are to the true clusters. To measure
estimation accuracy, we calculate the root mean squared errors (RMSE) of three estimators of 3;(-):
the oracle estimator (obtained by assuming the true group structure is known a priori and pooling
data from members of each group to obtain group-specific estimates of the coefficient functions), the

pre-clustering estimator (obtained individual by individual without considering the group structure),

and the post-clustering estimator (obtained by pooling data from members of each estimated group
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Table 4.1: Frequencies at which K| is estimated for Simulated Example 1

Sample size GBIC GAIC
1 2 3(true) 4 5|1 2 3(true) 4 5
N =50 T=40|0 13 181 6 0[0 5 182 13 0
T=8 |0 0 200 0 0|0 O 199 1 0
N = 100 T=40]10 8 191 1 0|0 4 182 12 2
T=8 |0 0 200 0 0|0 O 200 0 0

~

for group-specific estimates). Here the RMSE of an estimator ,[A")‘() = (B1(), ... ,BN(-))/ is defined as

> 1Bz - Bl (4.4)

el

RMSE(3) = %Z {

where those Bi(-)’s belonging to the same group in the oracle or post-clustering estimation are equal.

We first report, in Table 4.1, the frequency at which a certain number of groups is chosen over 200
replications. Then in Table 4.2 we summarise the average and standard deviation (in parentheses) of
the purities and NMI’s between the kernel based HAC results and the true group structure over these
200 replications. The average and standard deviation (in parentheses) of the RMSE’s for the oracle,

pre-clustering, and post-clustering estimation of the f;(-)’s are presented in Table 4.3.

Table 4.1 shows that the GBIC chooses the correct number of groups in about 91% of the repeated
samples when the time series length 7" is 40 and this percentage rises to almost 100 when T increases
to 80, irrespective of whether N = 50 or 100. These results are comparable to those in DGP 1 of Su et
al. (2018), which are obtained from an information criterion deduced from their C-Lasso method. The
GAIC has very similar performance in all the four combinations of N and 7', which subsequently leads
to the GBIC and GAIC having similar NMI and purity values as well as post-clustering estimation
accuracy (measured by RMSE), as demonstrated by Tables 4.2 and 4.3. The NMI value for both the
GBIC and GAIC is between 0.83-0.85 when 7' = 40 and then rises to around 0.98 when 7" = 80, and
the purity is between 0.93-0.94 when T' = 40 and then rises to more than 0.99 when T = 80. The
RMSE’s of the GBIC and GAIC post-clustering estimation of the functional coefficients are close to
those of the oracle estimation. They are 50%-60% of the RMSE’s of the pre-clustering nonparametric
kernel estimation, a 40%-50% reduction, which shows the benefit of pooling data from cross sections

of the same group for estimation.

Simulated Example 2. This data generating process is the same as that in Section 7 of Vogt and

Linton (2018), except that we now replace the i.i.d. Uniform [0, 1] exogenous variable X;; with the
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Table 4.2: The average(standard deviation) NMI’s and purities for Simulated Example 1

Sample size GBIC GAIC
NMI Purity NMI Purity
N =50 T =40 | 0.8473(0.0980) 0.9408(0.0570) | 0.8465(0.0989) 0.9304(0.0672)
T =80 | 0.9772(0.0441) 0.9925(0.0161) | 0.9770(0.0449) 0.9919(0.0205)
N = 100 T =40 | 0.8474(0.0754) 0.9470(0.0389) | 0.8467(0.0751) 0.9370(0.0603)
T =80 | 0.9822(0.0295) 0.9952(0.0087) | 0.9822(0.0295) 0.9952(0.0087)

Table 4.3: The average(standard deviation) RMSE’s of §;(-) estimates for Simulated Example 1

Sample size Oracle Pre-clustering Post-clustering

GBIC GAIC
N 5o L =40 0.2508(0.0145) | 0.4856(0.0156) | 0.2932(0.0431) 0.2008(0.0393)
T =80 | 0.1917(0.0122) | 0.3618(0.0118) | 0.1969(0.0165) 0.1969(0.0165)
N — 109 T =407]0.2493(0.0120) | 0.4871(0.0122) | 0.2869(0.0349)  0.2851(0.0304)
T =80 | 0.1695(0.0082) | 0.3606(0.0090) | 0.1728(0.0108) 0.1728(0.0108)

fixed-design X;; = t/T. More specifically, data are generated from

t
Yi = BZ(T) + €it,

where
[ n(u) =Gu,3.3) if i € Gu,
) = Glu, L, 1) + G, 3, 1) iti € G,
— 11 3 1 3 1 if 4
iy = § 180 = Gl )+ Gl ) Ol TG us)
74(“) = G(“’? Ve Z) + G(U, g §) + G(U, g §) ifie g4’
v5(u) = G(u, 15, 15) + G(u, 1, 55) + G(u, &, 55) + G(u, 2, 3)  ifieGs,
| 7o(u) = Gl 1, 4) + Glu 5, ) + Gl 2 5) + Gu, B, %) ifie G,
where

2 2
the groups are defined as G; = {1,2,..., N1}, Go = {N1 + 1,...,3 Ny}, and Gz = {> Ny +
k=1 k=1

3 3 4 4 5 5
N G =AY Ne+ 1, Y N, Gs = {> N +1,..., > Ni}, and G = {>° Np +
k=1 k=1 k=1 k=1 k=1 k=1

6
1,..., > Ni},inwhich Ny = N/6,k = 1,...,6, ¢; are independently drawn from N (0, 02) distribution
k=1
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Table 4.4: Frequencies at which K| is estimated for Simulated Example 2

Error variance GBIC GAIC
4 5 6(true) 7 8| 4 5 6(true) 7 8
02=0492 (NSR=2) | 0 0 200 0 0|0 O 200 0 0
02=06 (NSR=3) | 1 0 199 0O 0|1 o0 199 0 O
02=0.77 (NSR=4) | 20 24 156 0 0|12 14 174 0 0

with 02 = 0.492, 0.60% and 0.7%, which correspond to noise-to-signal ratios (NSR) of 2, 3, and 4. As in
Vogt and Linton (2018), the sample size is set as N = 240, T = 200. The functions v (-), k = 3,4, 5,6,
have different smoothness in different regions of [0, 1]. Hence, a varying bandwidth (i.e., a bandwidth
whose value varies with the point u at which 3;(-) is evaluated) may produce better estimation than
a fixed-value bandwidth. However, for easier implementation, we still use a fixed bandwidth in the
kernel estimation, which is selected via the cross-validation method detailed in Section 4.1. The
subsequent clustering results (shown in Tables 4.4-4.6) are still satisfactory and comparable to those
in Vogt and Linton (2018), which are obtained based on a distance measure that maximises over
the domain of the coefficient functions and the range of values for the bandwidth h. However, our

method is easier and more straightforward to implement.

As in Simulated Example 1, 200 repeated samples are drawn from the data generating process, and
the same quantities (i.e., the frequencies at which the correct number of groups is chosen, the NMI
and purity, and the RMSE of the functional coefficients estimation) are computed and presented in
Tables 4.4-4.6. Unsurprisingly, as the error variance increases (or the NSR, increases), the performance
of both the GBIC and GAIC deteriorates, so does the accuracy of all the estimation approaches.
However, even when the NSR is 4 (02 = 0.7%), the GAIC selects the correct number of groups in
87% of the replications and the GBIC in 78% of the replications. This number is around 82.5%
in Vogt and Linton (2018) (although they have random-design X;; rather than fixed-design ¢/T" as
in our setting here). When the NSR is lower (i.e., 2 or 3), the GAIC and GBIC select the correct
number of groups in almost all of the replications. The RMSE’s of the post-clustering estimation
of the functional coefficients for the GBIC and GAIC are close to that of the oracle estimation,
and there is a reduction of around 45% in the RMSE by pooling data belonging to the same group,
compared with the non-pooling pre-clustering estimation. We also note that while the sample size of
N = 240,T = 200 in this example is larger than those in Simulated Example 1, the accuracy of the
GBIC and GAIC for selecting K and the subsequence HAC results in this example is lower than that
in Simulated Example 1. This is due to the fact that the NSRs in Simulated Example 1 are much
smaller (between 0.18-0.30).
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Table 4.5: The average(standard deviation) NMI’s and purities for Simulated Example 2

GBIC GAIC
NMI Purity NMI Purity
02 =0.49? (NSR=2) | 0.9998(0.0013)  0.9999(0.0005) | 0.9998(0.0013)  0.9999(0.0005)
02 =0.6° (NSR=3) | 0.9933(0.0147) 0.9975(0.0043) | 0.9933(0.0147) 0.9975(0.0043)
02 =0.77 (NSR=4) | 0.9497(0.0530) 0.9879(0.0107) [ 0.9549(0.0468) 0.9850(0.0147)

Error variance

Table 4.6: The average(standard deviation) RMSE’s of §;(-) estimates for Simulated Example 2

Post-clustering
GBIC GAIC
02 =0.49% (NSR=2) | 0.0527(0.0017) | 0.1299(0.0015) | 0.0527(0.0017) 0.0527(0.0017)
0? =0.6° (NSR=3) | 0.0749(0.0019) | 0.1517(0.0018) | 0.0759(0.0048) 0.0759(0.0048)
0?2 =0.77 (NSR=4) | 0.0818(0.0022) | 0.1703(0.0020) | 0.0939(0.0186) 0.0911(0.0154)

Error variance Oracle Pre-clustering

4.3 An empirical application

In this session we apply our kernel HAC method to a panel study of economic growth, in which we

consider the following growth model
t t t .
GYy = +5¢,0(T) +Bi,1(?)GKz‘t+/Bi,2(f)GPOPit+6it7 i=1,....,Nt=1,....T, (4.6)

where GRY; is the GDP annual growth rate of the i-th country in year ¢, GK;; is the annual growth
rate of capital formation, and GPOP;; is the annual growth of population. All three variables are
in percentages. Ideally, one would use the annual growth of labour input in place of GPOP;, but
since measures of labour input are scarce, we replace it with the annual population growth. The data
are obtained from the World Bank’s World Development Indicators (WDI) database and cover 61
countries over the period 1971-2016. A plot of the data for these variables is given in Figure 4.1.

We estimate the functional coefficients 3;( ) = (Bio(-), Bi1 ("), /312())/ using nonparametric kernel
smoothing with the Epanechnikov kernel and a bandwidth selected from the leave-one-out cross
validation. Then, the kernel HAC method is used to classify the estimated Bi( . ) with the number of
groups determined by the information criterion introduced in Section 2.2. Both GAIC and GBIC
identify four groups with the estimated group-specific functional coefficients depicted in Figure 4.3.
Figure 4.2 gives a dendrogram plot of the kernel HAC algorithm, in which the y-axis represents
distance (measured as the “complete linkage”) between groups of functional coefficient vectors, and

the z-axis shows the indices of countries. The dendrogram consists of a series of U shapes, each
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Figure 4.1: Plot of data. Left to right: GDP annual growth (in %), annual growth rate of capital
formation (in %), annual growth rate of population (in %).

representing the joining of two groups in a hierarchical tree. The memberships of the four estimated

groups are given in Table 4.7. A plot of the data by the 4 identified groups is given in Figure 4.4.

Most countries (48 out of 61 countries) are classified into the first group, while Groups 2 and 4
have 3 members each and Group 3 has 7 members. Figure 4.3 shows that the post-clustering estimates
for the functional coefficients for Group 1 have smaller variations over the sample period than those
for the other 3 groups do. This may indicate that the countries in Groups 2-4 experienced greater
economic structural changes than the countries in Group 1. For all the groups, the growth of capital
formation has an overall positive effect on the growth of GDP. However, the effect of population
growth is mixed. For Group 1 this effect is mixed and for Group 3 it is mostly positive over the
period considered. On the other hand, for Groups 2 and 4, it is mostly negative. Population growth
for Group 2 countries has an increasing negative effect, while it has a decreasing negative effect for

Group 4 countries.

5 Conclusions

In this paper we propose a kernel HAC method to estimate the latent group structure in a heterogeneous
time-varying coefficient panel data model. This method applies the classic HAC method to the kernel
estimates of functional coefficients from each cross section. It is easy to implement and provides

a consistent estimate of the latent group structure when 7" — oo, irrespective of whether there is
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Figure 4.2: A dendrogram of the HAC algorithm

Table 4.7: Memberships of the four estimated groups

Groups | Countries

1. Argentina, 2. Australia, 3. France, 4. Germany, 7. Italy, 8. Japan

9. Korea, Rep., 10. Mexico, 11. Netherlands, 12. Spain, 13. United Kingdom, 14. United States

15. Algeria, 16. Austria, 17. Bangladesh, 18. Belgium, 19. Benin, 22. Cameroon

23. Canada, 24. Colombia, 26. Denmark, 27. Dominican Republic, 28. Ecuador, 29. Egypt, Arab Rep.
30. Finland, 32. Greece, 35. Iran, Islamic Rep., 36. Ireland, 38. Lesotho, 39. Luxembourg

41. Malaysia, 43. Morocco, 44. New Zealand, 46. Norway, 47. Pakistan, 49. Peru

Group 1

50. Philippines, 51. Portugal, 52. Rwanda, 53. Senegal, 54. Singapore, 55. South Africa
56. Sri Lanka, 57. Sudan, 58. Sweden, 59. Thailand, 60. Togo, 61. Uruguay

Group 2| 5. India, 34. Honduras, 45. Nicaragua

GI‘Ollp 3 | 20. Bolivia, 21. Burkina Faso, 25. Congo, Rep, 31. Gabon, 33. Guatemala, 40. Madagascar, 48. Panama

GI‘Ollp 4 | 6. Indonesia, 37. Kenya, 42. Mauritania
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Figure 4.3: Post-clustering estimates of group-specific functional coefficients. Plots in each row
represent a component of the estimated coefficient vector, one for each group.
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Figure 4.4: A plot of data by estimated groups.
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cross-sectional dependence or not. We also introduce an information criterion to estimate the number
of groups when it is unknown and propose two possible choices for the tuning parameter in the
information criterion, which are then shown to work well in the simulation studies. The bandwidth
used in the kernel estimation can be chosen via a data-driven method, such as the cross-validation
method. In the simulation studies we adopt a data generating process from Su et al. (2018) and
another from Vogt and Linton (2018) to see how our method performs in their settings. The results
show that it performs comparably well to those of Su et al. (2018) and Vogt and Linton (2018). We
also apply our method to a panel study of economic growth and identify 4 groups of countries which

have different growth patterns.

A Technical conditions

We next list the technical assumptions which are needed to prove the main asymptotic results.

ASSUMPTION 1. The kernel function K(-) is a symmetric probability density function, which is

Lipschitz continuous and has a compact support [—1, 1].
ASSUMPTION 2. (i) For each i, the process {( X1, -+, Xitp-1,€) : 1 <t < T} is stationary and
a-mixing dependent with the mixing coefficient decaying to zero at a geometric rate.

(ii) The explanatory variables X; ;, 1 < j < p — 1, and disturbances €; satisfy the following

moment conditions

2 |26
125;}}(\[1325311[5 (| X;0.51%°) < o0, 1%%}](\[1[3 (e]*) < o0, (A.1)

where 6 > 2(m + 1) with m defiend in Assumption 4 below.

(iii) For each i, the p X p matrix A; = E(X;X],) is positive definite. Furthermore, there exist

two finite positive constants, \ and \, such that

0 <A< min Ay (A;) < max Apax (A;) < A < 00, (A.2)

1<i<N T I<i<N

where Apin(+) and Apax(+) denote the minimum and maximum eigenvalues of a square matrix,

respectively.

AsSuMPTION 3. (i) The group-specific coefficient functions v,(-), 1 < k < Ky, (and hence 3,(-),

1 <i < N), have continuous second-order derivatives on the interval [0, 1].

(ii) The weight function W (-) is non-negative and continuous on [0, 1]. In addition, there exists

a small positive constant w such that W(u) =0 ifu <w oru>1—w.
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ASSUMPTION 4. (i) There exists a positive constant m such that N = o(T™).

(ii) The bandwidth h satisfies h — 0 and (T'=2"+1/°p) /1og® T — 0o, where § was defined in
Assumption 2(ii).
(iii) Letting

(= min min _ §; ,

1<k#I<K i€Gk,j€G

we have h* + [log T/(Th)]"* = o(¢).

ASSUMPTION 5 (i) There exist two positive constants 1, with 0 < 7 < 1, and 7 such that

1<k<Kop 1<k1#k2<Ko

1-w
min |Gg| > 7 - N, min / v, (w) — 7k2(u)Hz W(u)du > 7o. (A.3)

(ii) The tuning parameter p satisfies p — 0 and lo%T + ht + ﬁ = o(p).

ASSUMPTION 6. For any index set G C Gy, k=1,--- | Ky,

= 0 (IPT*1) (A4)

T
Z Z 6js}(jsf(st

Jj€G s=1

T

i€g t=1

2

and
2

E ZZZZQtQ‘sKStX;t (|é| ZAZ> Xs =0 (|G]’T?) (A.5)

i€G t=1 jeg s=1 leg

where K = K (:1) and A; was defined in Assumption 2(iii).
REMARK A.1. The conditions on the kernel function K(-) in Assumption 1 are mild and satisfied
by some commonly-used kernel functions such as the Epanechnikov kernel and uniform kernel.
Assumption 2 allows that the panel time series observations are temporally correlated and the a-
mixing dependence is one of the weakest dependence conditions. The moment conditions in (A.1) and
(A.2) are crucial to derive uniform convergence (uniform over i and u) of some kernel-based quantities.
The smoothness conditions on the coefficient functions and weight function in Assumption 3 are not
uncommon. In particular, Assumption 3(ii) indicates that the kernel estimates are truncated at those
scaled time points that are close to the boundaries (0 and 1). Assumption 4 imposes some mild
restriction on the bandwidth, the relationship between the cross-sectional size and time series length,
and the smallest L,-distance between coefficient functions for different groups. A combination of
Assumptions 2(ii) and 4(i) indicates that there is a trade-off between the moment conditions and the
divergence rate of N. If the cross-sectional size diverges at a faster rate (m becomes larger), stronger

moment conditions (i.e., larger §) would be required for the relevant asymptotic theory. In fact,
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our theory still holds when N diverges at an exponential rate of T'. In the latter case, exponential
moment conditions would be needed for X;; and €;;. In addition, when 9§ is very large, the restriction
on the bandwidth in Assumption 4(ii) would become weaker. Assumption 4(iii) indicates that ¢ can
converge to zero at an appropriate rate. Assumptions 5 and 6 are mainly used to prove consistency
of K from the information criterion proposed in Section 2.2. Assumption 5(i) is crucial in order
to show that IC(K) > IC(Ky) when K < Kj (i.e., the model is under-identified). The high-order
moment conditions in Assumption 6 indicate that the panel observations can be serially correlated
and weakly cross-sectionally dependent, and both (A.4) and (A.5) are easy to verify when X, ; and

€;; are independent over both 7 and ¢.

B Proofs of the asymptotic results

In this appendix, we give the detailed proofs of the main theoretical results in Section 3. We start with
a proposition which shows the convergence rates of the individual functional coefficient estimators
B;(u) (defined in Section 2.1) uniformly over i and u, without placing any restrictions on the panel

cross-sectional dependence.

PROPOSITION B.1. Let Assumptions 1, 2, 3(i) and 4(i)(ii) in Appendix A hold. Then, as T — oo,

we have

Bi(u) — B;(w)|| = Op (K +m(T,h)), (B.1)

q

max sup
I<iSN <u<l-w

where ¢ > 1, (T, h) = [log T/(Th)]"’* and w is a small positive constant defined in Assumption 3(ii).

PrROOF OF PROPOSITION B.1. In this proof and that of Theorem 1, all the limiting results are
established under 7" — oo.

By the definition of Bl(u), we only need to show

a* _Aax — 2
[ sup ) Bi(w) = Bi(w)|| = Op (W +m(T.h), (B.2)
and
max sup |Bio(u) — ﬁlo(u)‘ = Op (W* +m(T,h)), (B.3)
1<i<N w<u<l—w

where B: (u) is defined in (2.1) and @70(u) is defined similarly to B: (u) but with X;; and Y}; replaced
by 1 and Z& (defined in Section 2.1), respectively.
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PROOF OF (B.2). Letting K,(u) = K (), we note that

Bi(u) — Bilu) = > XX, Ki(u) [Z XitYith(u)] - Bi(v)

t=1

= Z X X, Ki(u) {Z X X%, [Bi(t)T) — Bi(u)] Kt(u)} i
Z X X K () [Z Xiteith(u)]

= Aijl(u) + A@Q(U). (B4)

To prove (B.2), it is sufficient to show

max  sup [|Aii(u)ll, = Op(h?) (B.5)

I<iSN p<y<1-—h
and

max  sup [|Ai2(u)ll, = Op (m(T,h)). (B.6)

1<iSN p<y<i—h

We first give the detailed proof of (B.6) and then sketch the proof of (B.5). Observe that

XitX;'t Kt (U) — Al

3 -
[M] =

t=1

(XX, — A Ky (u

e

[XaXGy — A Ki(u) + O (1/(Th)) , (B.7)

Il
3/~
[M] =

t=1

I
3/ -
E

t=1

as it is easy to show, by Assumption 1, that
1 — -1
T ; Ki(u) = /_1 K(w)dw+ O (1/(Th)) =140 (1/(Th)) (B.8)

uniformly over h < u <1 — h.
Letting Qu(X) = XuX), — A; and ¢7" (X) be the (j, k)-entry of Qy(X), we next prove that

max max sup
1<4,k<p 1<i<N h<u<l—h

o Z A (X)Kw)| = Op (m (T, ). (B.9)
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As the number p is fixed, it is sufficient to prove

Th Zq% ()

for each (7, k). To prove (B.10), we use the truncation technique and define

max  sup
1<iSN p<y<i-h

= Op (m(T' h)) (B.10)

_(k ik ) m & k _(j,k
a5P(X) = g1 (Jgf0 (0] < TGP (X) = ¢F(X) - 730 (),

where I(-) denotes the indicator function, § and m were defined in Assumptions 2 and 4, respectively.

By Assumptions 2(ii) and 4(i), and the Bonferroni and Markov inequalities, we may show that for

any £ > 0,

max_ sup iZag’“(X)Kt(u) >5m<T,h>>

1<i<N p<u<i—n | Th

T
1 .
max  sup —E M (X) K, (u) >0>

1SN p<y<i—n | Th

¢ (X)

IN

max max
1<<N 1<¢<T

IA
- = = =
/—\/\/\

< S5 (o] 7
i=1 t=1
5
) (4,k) m+1

< N Tlréli%lrgtzglﬁl{qt (X)”/T

= O(N/T™) = o(1),
which leads to .

L )
max su — (X )K(u)| =0 T,h)). B.11
s, s | SO K] = or (n(T.1) (B.11)

On the other hand, we consider covering the closed interval [k, 1 — k] by some disjoint sub-intervals
T;, 1 <1 < L, with centres u; and length hny (T, h)/T™+Y/% Tt is easy to calculate that the number
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of such sub-intervals, L, is bounded by T™+Y/% /[hn, (T, h)]. Note that

max sup |- Z qZ] k) (x

1<i<N p<y<i—h

T

Zq§i V(XK (w

~—

+ max max sup
1<i<N 1<I<L ueIl

1
< max max |—
— 1<i<N1<i<L|Th

o Zqz (1) = ()

1<i<N 1<I<L

T
1
= max max T—Z: (]k X)Ki(w)| +Op (m (T, h)) (B.12)

by using Assumption 1 and the definition of q§§ k) (X).

Finally, by the Bonferroni inequality again and the exponential-type inequality for a-mixing

sequences (e.g., Lemma 1.3(2) in Bosq, 1998), we may show that

o DA (O K ()

1<i<N 1<I<L

(s

P (max max

> 5771 (Ta h))

IA

Y ad (X)Ki(w)| > € (Th) - (T, h))

=1 t=1

Th’}/CQIOgT
= O (NLexp{—c&?1ogT}) +O | NL- , B.13
( Xp{ 15 g }) ( nf/z(T’ h)T(m+1)/(25) ( )

where ¢, is a fixed positive constant, 0 < vy < 1, € and ¢, are chosen to be sufficiently large so that
the orders on the right hand side of the equality in (B.13) becomes o(1) (noting that both N and L
diverge at certain polynomial rate of 7'). Combining (B.12) and (B.13), we readily have

1« (Jk
75 2T (X

With (B.11) and (B.14), we prove (B.9), which together with (B.7), leads to

= Op (m(T,h)). (B.14)

max  sup
1<iSN p<y<i-h

T ZX”X = A;+Op (m(T, h)) (B.15)

uniformly over 1 <7 < N and h < u < 1 — h. Following similar arguments in the proof of (B.15) and
noting that E(e;|X;;) = 0 a.s., we can prove that

=Op (m(T,h)). (B.16)

max  sup
1<iSN p<y<i-h

T
1
Z XitEith(u)
Th —

q
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Using (B.15), (B.16) and Assumption 2(iii), we can complete the proof of (B.6)
On the other hand, by Assumption 3(i) and using the Taylor expansion for 3;(-), we may show
UJ

that (B.5) holds. With (B.5) and (B.6), we complete the proof of (B.2)

ProoOF OF (B.3). Recall that

Bio(u ZZ;Kt Z o(w).

t=1

Let .
Bzo ZZZCth )/ZK&(W
t=1
be an infeasible kernel estimate of f3; o(u) with Zf, defined as

Zzzsy zt - zt Zth kﬂzk

Ziy =
Then, in order to prove (B.3), we need only to show
max  sup |Bio(u) — Bio(w)| = Op (W% +m:(T, 1)) (B.17)
1<iSN y<u<1—w
and
max  sup |Bio(u) — ﬁw(u)‘ = Op (hQ +m(T,h)). (B.18)
1<iSN <u<l—w
Note that
1 I
Zr;: zt__ZZzs 5@0 +€it_T;€zs 510( )+€§t7
and
_ T T
Bio(u) = Bio(u) = Z €5 K (u Z Ki(u Z 51‘,0( Z Ki(u) = Bio(w)
t=1 t=1
— Kaalu) + Ao (B.19)
For A; 3(u), we may decompose it as
(B.20)

] =

t:l

T T
1
Ez‘th(U)/g Ki(u) E €it = u) + Aig.
=1

t=1
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Following the proof of (B.15), we may prove that

1g§>;vw<ig§_w| Ais(u)| = Op (m(T, h)) (B.21)
and
1 T
5 Miol = masg |7 ) | = Or () (822

=1
with 72(7T") = (log T/T)"*. In view of (B.20)—(B.22), we readily have

max sup |[A;s(u)| =Op (m(T,h)). (B.23)

I<i<N w<lu<l—w

On the other hand, by Assumption 3(i) and using the Taylor expansion of /3, ¢(-), we may prove
that
max  sup |A;4(u)| = Op(h?), (B.24)

1<i<N w<u<l—w

which, together with (B.19) and (B.23), leads to (B.17).
We next consider the proof of (B.18). Observe that

Brolu) = Biolw) = 3 (Zu—2 )m(@/im( i( Ziu = Zu)

t=1

= Ai,7( )+Ai,8~ <B25)
By (B.2) with ¢ = 2 and noting that the kernel function K(-) has a compact support [—1, 1] (see

Assumption 1), we may show that

1<iSN p<u<l—w Th

T
1 N
max  sup |—— E (Zit — Zit> K (u)
t=1

1 [(u+h)T|+1

= — Ziv~ Zu) K.
s, 2 (B ) o

_— NG
= (3- max_ sup (Z Bik(u) —51',1@(“)‘ >
k=1

1<i<N w<u<l—w

= Op (R +m(T,h)), (B.26)

where |-] denotes the floor function and ¢3 is a positive constant.
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On the other hand, we note that
T |Th] —|Th] T R
Z (Zi - ) = Z + Z + Y | (Ze-2). (B.27)

=1 ¢=|Th|+1 t=T—|Th|+1

Following the proof of (B.2), we may show that

. 1/2
max  sup ( — Bix( )’ ) =O0p(h+m(T,h)). (B.28)

1<i<N 0<u<h P

The uniform convergence rate in (B.28) is slower than that in (B.2) due to the kernel estimation
boundary effect. Similarly, the uniform consistency result still holds if supy<,<;, in (B.28) is replaced

by sup;_j<,<;- Consequently, we can prove that
|Th] T N
max T Z + Y (Zz-t - Zz-t> = Op (h(h + (T, h))) . (B.29)

t=1  ¢=T—|Th]+1

Similarly to the proof of (B.26), we have

| Tl
7 2

max |2 <Zit_Zit> — Op (h* + (T, h)) . (B.30)
t=|Th]+1

With (B.27), (B.29) and (B.30), we have

=Op (W +m(T,h)), (B.31)

which, together with (B.8), (B.25) and (B.26), leads to (B.18). The proof of (B.3) has been completed.
0

We next make use of Proposition B.1 to prove Theorem 1.

PROOF OF THEOREM 1. Let

LS B/ - B0/, W) (332

28



To prove (3.1) in Theorem 1, we only need to show that

]P’< max max (5” < min  min (5”) — 1 (B.33)
1<k<Ky 1,7J€G 1<k#I<Kp 1€Gr,j€G;

as T tends to infinity. Note that for the distance between true functional coefficients, we have d;; = 0
if 4,5 € G, and

min min _ 6;;, = ¢ >0,
1<k#I<Ky i€Gy,j€G

where ( is defined in Assumption 4(iii). Hence, to prove (B.33), it is sufficient to prove that

1%1;17?%(]\[ (52']' — 5ij = OP(C). (B34)
Note that
/5\1']'_52']' < gz‘j—(sij + |45 — 0ij -

By Assumption 3 and the definition of Riemann integral, we readily have that

max 5@‘ — 52']'

1<ij<N

= Op(1/T) = 0p(¢). (B.35)

On the other hand, by the Minkowski inequality and Proposition B.1, we may prove that uniformly
over 1 <1i,5 <N,

by~ 8| < Z |Biw/1) = By0/7) |~ 8i0/T) —aj<t/T>||q\W<t/T>

T—|Tw]|+1

- |Bict/T) = Bya/7)|| ~ 18it/T) = B,/ D)]|, | Wit/ )
t=|Tw|
T—|Tw|+1 -

< 7 [A (t/7) = Bi(t/7)|| +||B;t/7) — B,0/T)| | Wit/T)
t=|Tw] -

= 0p (1 h)) . (B.36)

Then, by (B.35), (B.36) and the triangle inequality, we can prove (B.34) by noting that h*+n, (T, h) =
0(¢) in Assumption 4(iii). The proof of Theorem 1 has been completed. O

We next provide the detailed proof of Theorem 2.

PROOF OF THEOREM 2. From the definition of K in (2.10), we only need to show that

P (]I(C(KO) —= min HC(K)) =l (B.37)

1<K<K
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Consider the following two cases: (i) 1 < K < Ky — 1 and (i) Ko+ 1 < K < K, which correspond,
respectively, to under-identification and over-identification of the latent groups. Let M(G) denote
the event that {Q\l, e ,Q\KO} = {Ql, e ,QKO}. For case (i), by Theorem 1 and Lemma B.1 below,

we have

P (IC(K,) < IC(K),1 < K < Ko — 1)
= PIC(K,) < IC(K),1 < K < Ko — 1, M(G)) + o(1)
— 1+4o0(1). (B.38)

On the other hand, for case (ii), by Theorem 1 and Lemma B.2 below, we have

P (]IC(KO) <IC(K), Ky +1< K < i%)
— P (IC(Ko) < IC(K), Ko + 1 < K < K, M(G)) +o(1)
= 1+0(1). (B.39)
Combining (B.38) and (B.39), we complete the proof of Theorem 2. O

LEMMA B.1. Suppose that the assumptions in Theorem 2 are satisfied. Then we have
P(IC(Kp) <IC(K),1< K< Ky—1)—1 (B.40)

conditional on the event M(G).

Proor oF LEMMA B.1. Without loss of generality, we only consider the case of K = Ky — 1 as the
other cases can be dealt with in the same manner. Conditional on the event M(G), two of the clusters
among Gy, - -+ , Gk, are falsely merged when the HAC algorithm stops at K = Ky — 1 . Without
loss of generality, we assume that G, 1 and G, are falsely merged, and let vy g, _1(-) = () for
k=1,---,Ko—2,and v, _qx,-1(-) be the vector of “pseudo” functional coefficients associated with
gKo—l\Ko—l = gK0—1 U gKO

Forie Gy, k=1,---, Ky — 2, note that

T
c = 1 72 ~
Yii — X;t7k|Kofl(t/T) = Yu-— T Z Zis — X;t’Yk\Koq(t/T)
s=1
1 — 1 — ~
= Yi— T Z Zis + T Z (Zis - Z ) — XV iro—1(t/T)
s=1 s=1
1 T 1 T
= € — T Z €is T f Z (Zis - Zis) - X;t [;Y\k|KO—1(t/T) - ')’k(t/T)] :
s=1 s=1
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Following the proof of Proposition B.1, we may show that

max max H'Ayk‘KO_l(u) - 'yk(u)H2 = Op (B* +m(T,h)) . (B.41)

1<k<Kp—2 wlu<ll—w

This, together with (B.22) and (B.31), indicates that

Ko—2 T Ko—2 T
1 c N 2 1
NT Z Z Z [Vie = Xi A (t/T)]" W (t/T) = NT Z e W(t/T)+op(1). (B.42)
k=1 i€y t=1 k=1 i€Gy, t=1

For i € Gg,_1, we note that

. 1 1 i R
Vi = XV ko—11k0—1(/T) = €11 — T Z Cis T (Zis - Zis) =X Vo101 (/T) = Vg1 (¢/T)]

and conditional on M(G),

-1

_ a t —uT d t —uT
Y ko-1]Ko-1(U) = Z ZXitX;tK< Th > Z ZX#YigK( Th ) ,

1€0 1K1 t=1 €0k —1)Ky—1 t=1

where G, 11501 = Gro-1 U Gk, and

€it — % 23:1 €is + % 23:1 Zz - Z\is + X;t7K0—1(t/T)7 (XS gKo—l;

Vi = -
€it — % Zzzl €is + % ZST:1 Zz — Zis + X;t7K0 (t/T), 1€ QKO.

Let Ay, = |g—1k‘ > icg, Qi k=1,..., Ko, and define

Vo101 (1) = (1Gko-1]1A k-1 + |Gxco| Aro) ™ (1Gk0-11A ky1Y iy 1 (1) + 1Grco | A iy Y ey (1))

as the “pseudo” functional coefficient vector corresponding to Gg,—1x,-1, Which is essentially a

weighted average of vy, ;(-) and g, (-) (note that when X, are identically distributed over 7, then

Yico-1jio-1(1) reduces to (|Giy 1] + Gieo) " (1Gk0-17Y -1 () + |Grco | Vi (). By (B.22), (B.31)
and following the proof of Proposition B.1, we may show that

sup H;)\’KO—1|K0—1<U> - ’YK0—1|K0—1(“)|| =Op (h2 +m (T, h)) . (B.43)

w<lu<l—w

By (B.22), (B.31) and (B.43), we can prove that, uniformly over i € Gg, 1 and ¢ satisfying w < ¢/T <
1—w,
Vi = Xi Ak 11xo 1 (H/T) = € + X1 (t/T) + Op (h* + (T, ),
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where vy (u) = vy, _1(4) — Yiy—1)x,-1(1). Consequently, we have

1
7 2 O Vi = XAk (/T)] WHT)
i€0rg-1
1
= N7 Z
g
g
1
T QZ

W(t/T) + Z Zyl t/T) X X (t/T)W (t/T) +

zegKO 1 t=1

etiztl/l (t/TYW(t/T)+ op(1)

= o
'ﬂ

v

IIM’ﬂ ||Mﬂ IIMH IIMH

W(t/T) + ()\-71)/_w||u1(u)||§W(u)du+0p(1), (B.44)

where A and 7 were defined in Assumption 2(iii) and 5(i), respectively. Analogously, we can also
prove that

Vi = XA k15001 (L/T)]* W(t/T)

3l-
M-

zEQKO t=1
1

i W (t/T) + (A- Tl)/w N o () |[3W (u)du + op(1), (B.45)

~
M”

>

Q

1€

Ko t=1

where vo(u) = v, (u) — ’)’KO_1|KO—1(“)-

Combining (B.42), (B.44), (B.45) and Assumption 5, we have
IC(Ky—1) = logVy(Ky—1)+ (Ko —1)-p

log{NTZZZ%W §T)+ Q) [ [l + )] W(U)du}+

k=1i€Gg t=1
(Ko—1)-p+ 0P(1)

= log {NT SSY S + <Am>} + (Ko = 1)+ p+ op(1)

k=11i€G t=1

> log {% Z >N e?tW(t/T)} + Ky p+op(1)

k=1i€G, t=1

— IC(Ky) + op(1). (B.46)

The proof of Lemma B.1 has been completed. 0
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LEMMA B.2. Suppose that the assumptions in Theorem 2 are satisfied. Then we have
P (HC(KO) <IC(K),Ky+1< K < f() =1 (B.47)

conditional on the event M(G).

ProOOF OF LEMMA B.2. As in the proof of Lemma B.1, without loss of generality, we only consider
the case of K = Ky + 1 and prove that

P(IC(Kp) < IC(Ko+ 1), M(G)) — 1. (B.48)
Conditional on the event M(G), one of the clusters of Gy, - - , Gk, are split into two sub-clusters when
the HAC algorithm stops at K = Ky + 1. Without loss of generality, we assume that G, is divided
into two sub-clusters and denote the resulting K, + 1 clusters as G5, - - - ,g;;o, Q}}OH with G; = Gy, for
k=1,--- Ko —1and G, UGk, 11 = Ik, In this case, the group structure is over-identified.
Observe that
Ko+1 1 T Ko+1
Va(Ko+1) = D = 20 3 (Vi = XiAumon (/D] WE/T) = Y Va(kEKo+1).
k=1 ieg; t=1 k=1

For any k =1,---, Ky + 1, we write

Me

T
~ 1 ~
Y — th’)’k|Ko+1(t/T) = € — X/it [’Yk|KO+1(t/T) Vi t/T T Z (Zis - Zz's)
s=1 s=1
= € — X} ['T’k|KO+1(t/T) - '7k(t/T)} + Qi (B.49)

where

1 1 -
Qi:_T;Eis+T;(ZiS_ZiS>
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and vj(u) = v, (u) if k=1,--- , Ko — 1 and v} (u) = v, (u) if k= K, and Kj + 1. Note that

T T p—-1
(%= ) = 5303 Xk [Buat/T) — st/ )]
t=1 t=1 k=1
T
= X0, 1) [Bl/T) - Bt/ T)]
t=1
1o d T
— ?ngt(op_l,lp_l) [ZXWX’K] [ZXiseisKst + Op(h?)
t=1 s=1 s=1

T —1
1 1 ~
= 72X | 2| 7 wax' ) (0p1. 1,1} KK | + Op(1?),

s=1 t=1
where )~(Z~t = (X1, - 7X7,'t,p—1)17 Ky,=K (ST—t) 0;. is a k-dimensional null vector and I is a k x k

identity matrix. By (B.15), we have

T Z X X Ko = Ay + Op(m (T, 1))

uniformly over 1 <¢ < N and 1 <t < T, and similarly
1 = -
Th Z XitKs = Ti+ Op(m(T, h))
t=1

uniformly over 1 <i < N and 1 < s < T, where f‘z = E(th) Hence,

T

T
% S (24— 24) = % S XA (0,0, T,) (Tt Op (T 1) + Op(h?).
t=1

s=1

All the above implies

T T
1 1 / — 1 (T
Qi=-—7 D cist T Y XA (0p 1,1, ) (Fi + Op(m(T, h)) +O0p(h?)
s=1 s=1

uniformly over ¢ = 1,--- | N. The last equality in (B.50) holds because of (B.22) and the similar
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result that & ZS L €isXig = Op(n2(T)) uniformly over 1 <4 < N. From (B.50), we readily have

N ZZQQ (t/T) = (NZQ)< th/T)

@egk t=1 Zegk

—op (S (25T +01)). (B.51)

By (B.22) and (B.50), we may show that

LS oy i -o, (% (Rl e)). (B.52)

ieg; =1
By (B.15), (B.50) and the Taylor expansion of v;(-), we readily have

;)\’k|K0+1(U) — i (u)

= Z Z Xt X Ko(u)

iegy t=1

[Z Z Xz’t(ﬁit + Qz)Kt(u) + OP(hZ)

i€Gy t=1
—1

= w > (A; + Op(m(T, b)) |gk‘ThZZXnenKt -

(IS 1eGy, t=1

ngl > (Ai+ Op(ni(T, b)) |gk|Th > QzZXmKt + Op(h?)
iegy 1€G) t=1
-1

_ ﬁzA’ |gk|T ZZX“%Kt ) (14 Op(m(T,h)))+

1€Gy t=1

s=1

1 1 1 <& .
Al > oA Il > L (? . fisX§s> A0, 1, Ipl)Tz‘] (1+Op(m(T, 1)) —

Gioa] gz (%Zﬂ (1+ Op (i (T, ) + Op(h)

zeg s=1

:2Rk,1 (U) + RkQ(U) +_Rk’3(U) + Op(h2> (B53>

uniformly for u € [k, 1—h], where K;(u) = K (*74L) as in the proof of Proposition B.1 and I'; = E(Xj,).
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Following arguments similar to the proofs of (B.51) and (B.52), we may show that

N ZZ{X [Ri.o(t/T) + Rys(t/T) + Op(h?)]} W(t/T) = (’g—]\ﬂ (IO%TH#)) (B.54)

zegk t=1

and

ieGy t=1 ( |
B.55
By (A.2) in Assumption 2(iii) and (A.4) in Assumption 6, we may show that
1 T
NT SO XL Rea(t/T) W(t/T)
i€gy t=1
T -1 2
1 /
< wp 2 X |g 2 A i |Th >3 Xy | | W)
iegy t=1 JEg;; JeG; s=1
2
S FAY Z Z || ”Lt||2 |g |Th Z ZX]SGJS st W(t/T)
@egk t=1 jegy s=1 )
|G "1 1
_ B.
Or (N|g;;|2T3h2 =Or\ N7h (B-56)
y (A.5) in Assumption 6, we can prove that
1 T
~T DO eaX Ry (t/T)W(t/T)
iegy t=1
. -1
1 /
- WZZG’*X“ |g | A, I |Th > ZXJSEJS o | W(t/T)
iegy t=1 VIS jegy s=1
-1
1
= 5 Z Z Z Z Eztejs tX Tl Z A] X]sW(t/T)
N]Q]Theg*tl A Gil =5
JjEG; s=1 JE€G;
|GEIT 1
_ B.
Or (N\g;;\T?h =0 v (B:57)
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By (B.49), (B.51), (B.52), (B.54)-(B.57) and Assumption 5(ii), we can prove that

IC(Ko+1) = logV2(Ko+ 1)+ (Ko+1)-p
Ko+1 T

= dog{ o= D S STEAWE/T) § o+ (Ko +1)-p+ 0p(o)

k=1 i€G; t=1

= logq D O S AW HT) § + (Ko 1) p+on(p)

k=1 1i€G; t=1

Ko T
1

k=11i€Gy t=1
The proof of Lemma B.2 has been completed. 0
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